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Abstract 

There is no question that traditional mathematics courses such as algebra, geometry, and 

calculus contribute to the math proficiency of high school students. What is not usually recognized, 

however, is that math-related and applied courses such as the ones found in science and vocational 

education programs also appreciably increase math skills. Using a two-stage least squares model and 

an errors in variables model, the author analyzes the contribution of specific courses to growth in 

mathematics proficiency during the last two years of high school. Unlike similar previous studies, the 

econometric models used in the present study control for measurement error in prior achievement- 

that is, how proficient the students were as sophomores. The author uses his findings to recommend 

a systemic reform of high school curricula in which math skills are taught in applied contexts and not 

only as abstract principles. 



Applied Versus Traditional Mathematics: 
New Econometric Models of the Contribution of High 

School Courses to Mathematics Proficiency 

I. INTRODUCTION 

Within the last decade the nation has developed a renewed interest in improving the academic 

skills of high school students, motivated in large part by widespread concern over the deteriorating 

performance of high school students throughout the 60's and 70's on the SAT and other national 

examinations, the exceedingly poor performance of American high school students in international 

comparisons of math proficiency, and the reported dissatisfaction among employers with the basic 

skills of young workers (Congressional Budget Office, 1986; Congressional Budget Office, 1987; 

McKnight et al., 1987). 

In mathematics and science this concern has been heightened by the fact that, while most high 

school students enrolled in the past in a full complement of English courses, many students took no 

mathematics or science coursework beyond the ninth or tenth grade (see Table 1). Increased 

enrollments in mathematics and science have therefore emerged as perhaps the most important 

mechanism for spurring growth in mathematics achievement. In fact, in 1983, the National 

Commission on Excellence in Education (NCEE) in their report, A Nation at Risk, recommended that 

states require high school graduates to take a minimum of three years of mathematics and three years 

of science in grades nine through twelve. The report also recommended that graduates be required to 

take at least four years of English, three years of social studies, and a 112 year of computer science.' 

As indicated in Table 2, less than half of the graduates of the high school class of 1982 would have 

satisfied the recommended math requirement. Only 30 percent would have satisfied the recommended 

science requirement. 



TABLE 1 

The Distribution of Credits Earned in Mathematics and Science: 
1982 High School Graduates 

Credits Earned Math Science 

0 
1 I2 
1 
1 112 
2 
2 112 
3 
3 112 
4 
4 112 
5 or more 

Mean credits earned 

Source: High School and Beyond Sophomore Cohort Transcript Survey. 

Note: Percentages do not add to 100.0 due to rounding. 



TABLE 2 

The Share of Students Satisfying the NCEE's Minimum Graduation Requirements: 
1982 High School Graduates 

Minimum Graduation 
Requirements 

Share Satisfying 
Requirements 

3 or more math credits 
3 or more science credits 
3 or more math and 3 or more 

science credits 
4 or more English credits 
3 or more social studies credits 
4 or more English credits and 3 or 

more social studies credits 
3 or more math credits, and 3 or 

more science credits, and 4 or 
more English credits, and 3 or 
more social studies credits 

Source: High School and Beyond Sophomore Cohort Transcript Survey. 

Note: NCEE = National Commission on Excellence in Education. 



State governments responded rapidly to the demands for tightened graduation requirements. 

In fact, within twelve months of the publication of A Nation at Risk thirty-five states introduced or 

strengthened their graduation requirements ( B e ~ e t t ,  1988). Their response, however, fell far short 

of the Nation at Risk recommendations. Only ten states adopted the recommended math requirement 

of three years and only three states adopted the recommended science requirement of three years 

(Meyer, 1990). In contrast, thirty-nine states implemented (and two states recommended to local 

districts) the four-year requirement in Eng l i~h .~  

Given the failure of most states to implement the ambitious math and science reforms 

articulated in A Nation at Risk, what can be done to promote development of mathematics skills in 

secondary schools? To answer this question, it is necessary to identify the factors that do, in fact, 

contribute to mathematics learning. In light of the current focus on course-taking requirements, this 

paper concentrates on identifying the contribution of secondary school courses to mathematics 

proficiency. The major new finding is that mathematics learning is substantial in many courses other 

than traditional mathematics courses, particularly for the most academically disadvantaged students, 

the group that takes the least amount of traditional mathematics. Moreover, many "math-related" 

courses are in subjects such as vocational education that are quite popular with students, particularly 

in contrast with math courses. These empirical findings indicate that learning mathematics in an 

applied context is a viable alternative or complement to enrolling in traditional mathematics. In the 

concluding section of this paper I draw on these findings to articulate a new curriculum-wide, 

systemic strategy for spurring growth in mathematics proficiency. This approach rejects the 

traditional view as exemplified in A Nation at Risk, that mathematics instruction is the sole province 

and responsibility of high school mathematics departments. The evidence suggests that given existing 

courses (that is, the current "technology of production"), a systemic approach to mathematics 

learning-in particular, shared responsibility for math instruction across vocational education, science, 
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and traditional mathematics--could more than triple the mathematics learning of academically 

disadvantaged high school students. Presumably, new vocational and applied science courses, 

explicitly designed with a mathematics focus, could generate even more impressive gains. The idea 

of integrated academic and vocational education is not, of course, without precedent. Writing-across- 

the-curriculum programs, which require that writing skills be taught in all courses, not just English, 

reflect a similar motivation. 

Methodological Issues 

In developing a curricular model of mathematics learning, this study gives careful 

consideration to the econometric problems inherent in estimating the causal (value-added) contribution 

of courses to mathematics proficiency. Since course enrollment choices are heavily influenced by 

& mathematics achievement, I find that estimates of the effects of courses on in 

mathematics achievement are extremely sensitive to model misspecifications. In particular, models 

that control for prior achievement using proxies (e.g., family background) rather than actual prior 

achievement yield severely biased parameter estimates. In addition, measured prior achievement itself 

is a very imperfect control for prior achievement due to unavoidable error in its measurement. 

I offer two alternative models for obtaining consistent parameter estimates in the presence of 

measurement error in prior achievement: an instrumental variablesltwo-stage least squares estimator 

(2SLS) and an errors in variables (EV) estimator. Both models maintain the assumption that the 

unexplained components of achievement growth are uncorrelated from year to year. I present some 

evidence that this may not be a bad assumption. A more general investigation of this issue awaits the 

availability of data containing at least three periods of achievement data. 

The first method, which has not previously been used in educational production function 

research, is motivated by a recursive structural model of curricular enrollments and mathematics 

proficiency. I show that the math proficiency equation can be estimated using two-stage least squares 
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(2SLS). The key instruments in the first-stage equation for prior math achievement are prior course 

enrollments. The second method uses an external estimate of the variance of the measurement error 

in prior achievement to obtain consistent parameter estimates. Fortuitously, both approaches yield 

remarkably similar parameter estimates, which suggests that my empirical results are quite robust. 

These methods may have important applications in other models of educational production. 

Plan of the Paper 

Section I1 articulates a curricular model of mathematics learning that relates growth in 

mathematics proficiency from the end of tenth to the end of twelfth grade to courses taken during that 

two-year period. The section begins with a brief review of related literature, in particular, studies of 

educational production functions and public and private school effectiveness. 

Section 111 describes the course enrollment data used in our empirical analysis. The data were 

taken from the base year (spring 1980), first follow-up (spring 1982), and high school transcript 

surveys of the High School and BeyondISophomore Cohort (HS&B) study. This survey is the most 

up-to-date source of information on high school enrollments and test score performance (measured 

prior to and after participating in courses). 

Section IV assesses the statistical models that have been used in previous analyses of the 

determinants of academic achievement. This literature has generally failed to adequately address the 

problem of measurement error in tests. As mentioned above, I propose new two-stage least squares 

and errors in variables models of the determinants of mathematics learning that are derived from a 

structural model of secondary enrollment choices and mathematics learning. 

Section V compares the performance of alternative models of mathematics learning. 

Section VI presents estimates for college-bound students and academically disadvantaged, 

nondisadvantaged, and advantaged students, using the preferred estimators identified in the previous 



section. Among the preferred estimators, the statistical results are exceptionally robust. Alternative 

2SLS and errors in variables models yield very similar parameter estimates. 

Section VII concludes the paper with an analysis of the implica€ions of our empirical analysis 

for specific academic reforms. 

Review of the Literature 

Since the publication of the "Coleman Report" (Coleman et al., 1966) just over two decades 

ago, numerous researchers have examined the links between academic achievement, as measured by 

student performance on standardized tests, and school quality. At face value, their research findings 

seem surprising and even contradictory. On the one hand, studies by Hanushek (1971), Murnane 

(1975), and others have found, as expected, that some teachers and schools contribute substantially to 

measured student achievement. On the other hand, obvious measures of school and teacher quality 

and school inputs, such as per-pupil expenditures, studentlteacher ratios, and teacher experience, were 

found not to be strongly or systematically related to student performance. Instead, the primary 

influences on student performance were student and family backgrounds--characteristics that cannot 

easily be changed in the short run (if at all) to improve student achievement (Hanushek, 1986).' 

Although these findings may be due, in part, to poor measurement of school inputs, an 

alternative explanation is that student and school performance is determined primarily by factors other 

than conventionally defined school inputs, for example, the organization and process of education, the 

curricular content of education, student effort, and the quality of school inputs within the context of 

specific student and classroom needs.4 Recent research, using analytic methods similar to those 

developed in the school inputleducational production function literature, has begun to explore the 

importance of these factors. 
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In particular, the controversial research by Coleman, Hoffer, and Kilgore (1982) has 

stimulated a lively debate over the authors' conclusion that private schools are better than public 

schools in promoting academic achievement.' The authors* original research was controversial, in 

part, because it was based on cross-sectional data from the base-year survey of the High School and 

Beyond (HS&B) study, rather than on longitudinal data containing test score data for the same cohort 

over time. Recently, Hoffer, Greeley, and Coleman (1985) and Alexander and Pallas (1985) used 

base-year and follow-up data for the HS&B sophomore cohort to examine the contribution of public 

and private schools to the change in student test scores from the tenth to the twelfth grades. (Our 

empirical analysis is also based on these data.) Despite the fact that the two papers relied on very 

different statistical methods: they both concluded that private high schools have an advantage over 

public high schools in developing academic skills that is roughly equivalent to two-thirds of a year's 

(Alexander and Pallas) to one full year's (Hoffer et al.) growth.' An intriguing aspect of the Hoffer, 

Greeley, and Coleman paper of particular relevance here is the finding that higher average 

enrollments in advanced mathematics courses for private school students fully account for the private 

school advantage in mathematics achievement g r ~ w t h . ~  This, of course, implies that advanced math 

courses contribute substantially to the development of mathematics skills. 

Researchers who have examined this question have concluded, almost without exception, that 

enrollment in advanced mathematics is a powerful determinant of mathematics profi~iency.~ Welch, 

Anderson, and Harris (1982), drawing on data from the seventeen-year-old wave of the 1977-1978 

National Assessment of Educational Progress (NAEP) in mathematics, found, as in previous 

educational production function studies, that family and community characteristics accounted for a 

large share (25 percent) of the variance in NAEP mathematics achievement. Total enrollment in 

mathematics courses (as reported by the students), however, explained an additional 34 percent of the 

variance in mathematics achievement, raising the total variance explained to 59 percent.'' Schmidt 
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(1983) reported similar results in his analysis of the National Longitudinal Study of the High School 

Class of 1972: personal characteristics and hours of instruction in mathematics and other subjects in 

grades ten through twelve explained 57 percent of the variance in mathematics achievement. 

Although these studies, as we shall see, were correct in identifying high school mathematics 

coursework as perhaps the major determinant of mathematics-skills development while in high school, 

they undoubtedly overstated its contribution to the level of math proficiency, because they did not 

(and could not, given the data) control for prior (to high school) mathematics achievement. 

Pallas and Alexander (1983), on the other hand, analyzed a data set, the ETS Study of 

Academic Prediction and Growth, that contained measures of math achievement as of the middle of 

the twelfth grade and the beginning of ninth grade, as well as detailed high school transcripts. 

Unfortunately, different tests were administered to the students in these two years, the School and 

College Ability Test (SCAT) to ninth graders and the Scholastic Aptitude Test (SAT)-or its 

psychometric equivalent, the Preliminary Scholastic Aptitude Test @SAT)-to twelfth graders. The 

authors felt that this would not corrupt their findings, arguing that the quantitative subtest of the 

SCAT (SCAT-Q) was a reasonable proxy for the math component of the SAT (SAT-M). Indeed, 

they reported that personal and family characteristics plus the SCAT-Q accounted for 57 percent of 

the variation in the senior-year SAT-M score, with course enrollments explaining an additional 12 

percent. The latter percentage is substantially less than that in either the Welch, Anderson, and 

Harris (1982) or Schmidt (1983) studies, thus confirming the need to adequately control for prior 

achievement in estimating the value added by courses or other school inputs. 

Pallas and Alexander (1983), unlike the papers cited earlier but as the present one will, 

estimated the contribution of individual courses, rather than total years or semesters of mathematics 

coursework, to growth in mathematics proficiency. Course variables were derived from high school 

transcripts and thus were likely to be relatively free of error." They included thirteen different 
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mathematics courses in their analysis, as well as three math-related courses: physics, quantitative 

business, and quantitative industrial arts (i.e., drafting and drawing). At face value, their estimates 

indicate that growth in mathematics proficiency is spurred exclusively by advanced math or math- 

intensive courses such as geometry, trigonometry, calculus, and physics; algebra 1 and 2 make no 

contribution to the development of mathematics skills, and the contributions of general math 1, 

applied math, and quantitative business are actually negative, although generally not statistically 

significant. 

In the value-added context, the negative coefficient estimates are somewhat implausible since 

they indicate that students participating in such courses experienced an attendant loss of mathematics 

skills. In fact, the heavy tilt of the estimates--large positive coefficients for advanced courses, zero 

coefficients for intermediate courses (algebra 1 and 2), and negative coefficients for low-level 

courses--strongly suggests that the course coefficients reflect something other than the value added or 

causal effect of the courses, such as perhaps the fact that the ninth grade SCAT-Q test is an imperfect 

control for the twelfth grade math SAT test, the authors' outcome variable. 

But a possibly more important factor is that Pallas and Alexander (1983) failed to control for 

the fact that the SCAT-Q, like all tests of finite length, is subject to measurement error. Failure to 

control for measurement error, of course, is not unique to the Pallas and Alexander (1983) paper, but 

its consequences are likely to be particularly severe in a model that includes detailed course 

variables.12 These variables tend to be highly correlated with prior test scores, thereby grossly 

magnifying the consequences of even modest measurement errors in test scores. The evidence 

presented in Section V suggests that the coefficient estimates in Pallas and Alexander (1983) are, in 

fact, severely biased due to measurement error in the SCAT-Q test. 
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Studv Obiectives and Definition of Course Variables 

The objective of this study is to estimate the extent to which high school mathematics and 

math-related courses contribute or have the potential to contribute to the growth of mathematics 

proficiency. In order to estimate the contribution to mathematics proficiency of alternative math and 

math-related courses, I estimate a "curricular" educational production function. The exact 

specification of this model is affected by the following two considerations, both of which are unique 

to a model of curricular effectiveness. First, most high school students enroll in five to six courses at 

any point in time. Since test batteries were administered to the students in the HS&B survey during 

the spring of tenth and twelfth grade, the students could have taken eighteen or more courses (some 

lasting a single semester) during the intervening period. In essence, students were exposed to 

multiple rather than single treatments, which means that even simple estimates of course effectiveness 

must be derived using multiple regression methods. Alternatively, it might be possible to categorize 

students into mutually exclusive programs or course enrollment patterns, and then estimate the 

effectiveness of alternative patterns.I3 This approach could be attractive, for example, in evaluating 

the relative effectiveness of new demonstration programs. The disadvantage of this approach, 

however, is that it fails to identify the factors that lie behind program effectiveness. Since the 

purpose of this paper is to identify the effectiveness of particular courses, the model needs to include 

a fairly detailed list of courses. 

In most of the models estimated in this study, I include course variables without allowing for 

possible interactions. In future work, it would be interesting to investigate the degree of 

substitutability and complementarity among different courses. Unfortunately, the data used in this 

study (High School and Beyond) are simply too weak to support a more elaborate specification. The 

main problem is that measurement error in the growth in mathematics proficiency (the outcome 

variable) is enormous, approximately 70 percent of the variance of the change in math test scores (see 
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Table A-1). This error variance is substantially larger than the error variance of either the pre (tenth 

grade) or post (twelfth grade) math test scores, due to the fact that the true changg in proficiency 

from tenth to twelfth grade varies substantially less than the level of math proficiency. In addition, 

measurement error in the change in math scores is the sum of measurement error in the sophomore- 

and senior-year tests, given the assumption of uncorrelated measurement errors in the two tests, a 

reasonable assumption. The large error variance in the change in mathematics proficiency is 

essentially equivalent to a reduction in sample size, relative to tests without error, of over 75 

percent.14 As a consequence, the standard errors in the models estimated in this paper are 

surprisingly large, given that the sample contains well over 10,000 students, thereby limiting the 

opportunity to explore more flexible functional forms. 

The second consideration is the extent to which it is permissible to aggregate courses into 

aggregated field- or subject-level variables in order to limit the number of explanatory variables in the 

model. Some aggregation is clearly necessary since the transcripts in the HS&B data base contain 

over one thousand different course titles, from approximately one thousand high schools. The 

consequences of course aggregation are illustrated by considering the effect of aggregating two 

course-enrollment variables, say Xli = general math and X, = trigonometry. Then, the contribution 

of X, and X, is given by 

cYlXli + a2Xz + + XZ;) + (a, - alJXli + (a, - alJX,, 

where (Xli + Xa is the new course aggregate and a,, is the coefficient on the course aggregate. The 

two terms on the far right become part of the residual error. If a, and cu, are equal, a,, will equal a, 

and a, and the two terms on the far right drop from the equation. This well-known result indicates 

that it is permissible to aggregate variables that share the same coefficient. Of course, a priori, it is 

difficult to know which course variables share the same coefficients, except, perhaps, for the large 
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number of courses that are hypothesized to have no effect on mathematics learning, for example, 

physical education, health, social studies, foreign languages, and English. 

Aggregation of courses with dissimilar coefficients will lower the explanatory power of the 

model by adding to the variance of the error term. If the variation in coefficients is relatively small, 

however, aggregation will yield a more precise estimate of the (weighted) average effect of the course 

aggregate. This average coefficient is similar to the mean coefficient in a model with random 

coefficients. Unfortunately, this procedure may also create severe bias in many, if not all, of the 

parameters in the model, including those for which aggregation is perfectly permissible. In the 

example discussed above, this would occur if (1) enrollment in general math (X,J is negatively 

correlated with a course variable such as foreign language enrollment, (2) enrollment in trigonometry 

(Xd is positively correlated with foreign language enrollment, and (3) the trigonometry coefficient cu, 

is greater than the general math coefficient a,. Under these plausible conditions, the foreign language 

coefficient will be biased upward because it acts as a proxy for enrolling in trigonometry rather than 

general math. In order to minimize this problem, I refrain (where feasible) from aggregating courses 

that are hypothesized to have large, but possibly different, effects on mathematics learning. In 

particular, I include eleven different mathematics variables in the analysis, ranging from general math 

to algebra 1 to calculus. In total, the model includes nineteen different course variables. Previous 

analyses have typically included fewer course variables. As reported by Koretz (1988), these studies 

have tended to generate some peculiar results, such as a large apparent effect of foreign language 

instruction on mathematics learning. Improper aggregation of courses may be one reason for these 

anomalous results. Some studies, incidentally, also exclude important course variables from their 

analysis, such as science coursework, thereby introducing old-fashioned omitted variable bias. 

As mentioned above, the curricular model of mathematics learning estimated in this study 

distinguishes nineteen different course-, field-, or subject-level variables, fourteen of which are 
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hypothesized to have large positive effects on mathematics learning. The latter variables include both 

traditional mathematics courses, appliedlvocational math courses, and math-related courses drawn 

from the sciences and vocational education. Although other subjects may contain math-related 

courses, in this study, I focus only on math-related courses in science and vocational education. 

The premise that high school vocational or science courses can and do contribute to the 

development of mathematics (or, more generally, academic) skills is based on the notion that the 

applied, often "hands-on, " orientation of these (and other) courses stimulates student interest in 

learning and provides concrete opportunities to learn the abstract principles taught in mathematics, 

English, and other "core" subjects. To the extent that individual learning styles differ, some students 

may actually learn mathematics more readily in the applied context offered by these courses than in 

the formal setting typically present in traditional mathematics courses. Thus, applied courses could 

complement or even substitute for traditional math courses in the production of mathematics skills. 

By design, the course variables included in the analysis span a continuum that ranges from 

formal, abstract mathematics to applied mathematics. In addition, some courses involve full-time 

study of mathematics, while others involve part-time, perhaps incidental, study of mathematics, for 

example, the math-related science and vocational courses. I emphasize these distinctions because I 

believe that my empirical evidence can be assessed at two levels. First, the evidence can be 

interpreted as estimates of the average effectiveness of particular courses in producing mathematics 

skills, as of 1980 to 1982. To the extent that curriculum offerings now and in 1982 are reasonably 

similar, the model estimates can be used to predict the current consequences of alternative 

course-enrollment patterns, for example, increased enrollments in algebra 1. In other words, these 

estimates can be interpreted as the current "technology" for producing mathematics skills. 

Second, the evidence can be used to test the general proposition that mathematics can be 

learned efficiently in an applied context--for example, in a science lab or in a vocational workshop. 



Unfortunately, the HS&B data offer only a weak test of the potential of applied courses to promote 

math-skills development because the math-related courses identified in the analysis were probably not 

designed with this goal in mind. Nonetheless, strong positive evidence that applied courses promote 

mathematics proficiency would establish the principle that mathematics can be learned outside of 

traditional mathematics courses. Such a finding would suggest ways of improving the technology of 

mathematics production, perhaps by vigorously expanding applied math and math-related courses 

andlor by linking together traditional mathematics and math-related courses. This issue is explored 

more fully later in the paper in light of the empirical evidence. 

The formal, abstract mathematics courses included in the analysis are, in ascending order of 

difficulty, basic math, general math, computer math, prealgebra, algebra 1, geometry, algebra 2, 

precalculus (algebra 3, trigonometry, advanced geometry, and mathematic analysis), and calculus. 

These course variables are reasonably well defined and reflect minimal or no amounts of aggregation. 

Enrollments in these and other courses are discussed in Section III. 

Two applied math variables, each with a full-time focus on mathematics instruction, are 

included: applied math and specific vocational math. The course titles included in these variables are 

. listed below (with Classification of Secondary School Course [CSSC] codes in parentheses): 

Applied Math 

o consumer mathematics (27.01 14) 
o mathematics as a liberal art (27.0109) 
o mathematics for employment (27.0 1 10) 
o science mathematics (27.0108) 
o technical mathematics (27.01 1 1) 
o vocational mathematics (27.01 10) 
o other applied mathematics (27.0300) 

Specific Vocational Math 

o agricultural mathematics (01.015 1) 
o business mathematics 1 (07.017 1) 
o business mathematics 2 (07.0172) 
o nurse's mathematics (17.065 1) 
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The essential difference between the two variables is that specific vocational math courses are 

structured around a particular vocational subject such as business and presumably draw most or all of 

their examples from this subject. Specific vocational math courses may also tend to be taught by 

vocational educators rather than math teachers. The HS&B data, however, provide no information on 

this point. 

Vocational education courses were split into two groups, math-related and non-math- 

related.'' Courses were designated as math-related or non-math-related on the basis of course titles 

and descriptions. Although these designations were subjective and therefore subject to error, they 

were influenced by a well-defined set of guidelines. A vocational course was considered math-related 

if: 

o It was one of several vocationallscience specialties, such as agricultural science; 

o It was any of the following course types: 

-- architectureldrafting, 
- accounting/bookkeeping, 
- computer programming, 
- data processing, 
- economicslfinancelinvestmentsltaxation, 
- electricity, 
- electronics, 
-- insurance, 
-- real estate; 

o It relied on geometric or spacial skills, for example, drafting and graphics courses. 

The courses included in the math-related group are listed in Appendix B. These course classifications 

were made prior to any data analysis. Thus, the empirical results are not contaminated by "data 

mining." To the extent that some vocational courses have been misclassified in one category or 

another, the estimated differential between math-related and non-math-related courses is apt to be 

understated. (In practice, however, the estimated difference between the two groups of courses is 

substantial, as discussed below.) 
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Finally, science courses were separated into two groups: chemistry and physics, and biology' 

and survey science. The former group was hypothesized to be more math-related than biology or 

survey science. 

Summarv 

In this section, I have defined the curriculum variables that are included in my curricular 

model of mathematics learning. In the next section, I discuss the data used in the empirical analysis. 

IIl. DATA 

-y 

The data used in this study were derived from the sophomore cohort of the High School and 

Beyond study, a nationally representative sample of tenth grade students as of 1980. Participants in 

the study were surveyed and tested during the spring of 1980 and again two years later.16 The 

particular sample used in the research consists of 10,961 students who had valid test-score data and 

complete transcript information for all four years of high school. This sample includes 10,106 high 

school graduates and 855 students who dropped out of high school after participating in the spring 

1980 (base-year) HS&B survey. Courses in the transcript file were originally coded according to the 

Classification of Secondary School Courses (CSSC), a classification containing well over a thousand 

defined and described high school courses. These courses, in turn, were grouped into fields and 

subject areas using the Secondary School Course Taxonomy (SST), presented and discussed in the 

First Interim Report of the National Assessment of Vocational Education (1988). (See also Brown et 

al., 1989.) The distinction between math-related and non-math-related vocational education was made 

following the rules given in Section XI. All tables report course enrollments in terms of standard 

Carnegie credits." Course enrollments reflect all passed and failed courses.'' 
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A battery of six tests was administered to the sophomore HS&B sample during the spring of 

their sophomore year and again exactly two years later. The tests covered mathematics, the primary 

test used in our analysis, as well as reading, vocabulary, writing, science, and civics. Although the 

tests, at face value, measure competencies in six distinct areas, Rock et al. (1985) conducted a factor 

analysis of the tests that indicated that two underlying factors-a math and a verbal factor--account for 

essentially all of the legitimate (error-free) variance in the six test scores. In addition, the estimated 

reliability of the civics test was found to be exceptionally low (approximately 50 percent-see 

Appendix Table A-1). As a result, the empirical analysis is based on a subset of the tests: the 

mathematics test, a composite verbal score (the sum of reading and vocabulary test scores), and the 

science test. The verbal and science tests are included as additional explanatory variables in the 

econometric model of mathematics learning, to pick up the possible effect on mathematics learning of 

skills other than those measured by the HS&B math test.19 Total testing time was twenty-one 

minutes for the mathematics test and forty-seven minutes for the five other tests. The math test 

consisted of thirty-eight items, eighteen involving arithmetic skills, twelve involving algebra skills, 

and eight involving geometry skills. The inclusion of test items related to specific high school 

mathematics courses--algebra 1 and geometry--raises the possibility that the HS&B math test taps both 

cognitive mathematics ability and specific knowledge of algebra and geometry skills. If so, estimates 

of the contribution of algebra 1, geometry, and algebra 2 to the growth of mathematics skills may be 

overstated, relative to other courses such as prealgebra, trigonometry, calculus, applied math, and 

math-related vocational education. 

In order to allow for the possibility that the math effectiveness of different courses varies in 

the population, I typically disaggregate the data into college-bound and non-college-bound students 

and low-, mid-, and high-math-proficiency students. As discussed more fully in Section VI, students 

were classified into math proficiency triptiles (thirds) on the basis of predicted rather than actual 
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sophomore math achie~ement.~ Approximately 60 percent of the sample identified themselves 

during the base-year (sophomore-year) survey as students who expected to attend college. The 

remaining 40 percent indicated no plans to obtain postsecondary education (25 percent) or plans to 

obtain postsecondary vocational training (15 percent). 

In the remainder of this section I present estimates of course enrollment in the key course and 

subject areas described in Section I1 and descriptive statistics for the sophomore- and senior-year 

mathematics tests. 

High School Course Enrollments 

As reported in Table 3, students in the HS&B sample took an average of 2.72 credits in 

vocational education and appliedlspecific vocational math during their junior and senior years, 

approximately 27 percent of all credits. As expected, vocational education (including appliedlspecific 

vocational math) accounted for a larger share of the total credits of non-college-bound graduates (38 

percent) than for either college-bound graduates (20 percent) or high school dropouts (29 percent). 

Of course, individuals who dropped out after the spring of their sophomore year took predictably few 

credits, on average, in all subject areas. Vocational courses identified as math-related accounted for 

only one-fifth of all vocational credits, slightly more than a half-credit, one-semester course, on 

average. Appliedlspecific vocational math represented only 4 percent of all vocational courses. 

Coursework in math-related vocational education was nearly identical for college-bound and 

non-college-bound students. 

College-bound and non-college-bound students differed sharply in terms of their average 

coursework in mathematics, science, and foreign languages. College-bound graduates earned 2 112 

times as many credits in mathematics and science as non-college-bound graduates and more than four 

times as much foreign language instruction. In fact, non-college-bound graduates took only slightly 

more mathematics and science than dropouts. College-bound graduates also tended to take more 



TABLE 3 
Average Course Enrollments in Eleventh and Twelfth Grade 

Courses by Graduation Status and Post-High School Plans 

High School High School 
High School Graduates1 Graduates1 All 

Dropouts Non-College-Bound College-Bound Students Course 

Vocational education 
Math-related voc . 
Non-math-related 

All vocational courses 

Specific voc. math 
Applied math 

Mathematics 
Basic 
General 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Algebra 2 
Precalculus 
Calculus 

All math coursesa 

Science 
survey 
Biology 
Chemistry 
Physics 

All science courses 

English 
Social studies 
Fine arts 
Foreign languages 
Personal and other 

Total credits 
Sample size 

Source: Author's computations from the high school transcripts collected as part of the High School 
and Beyond study. 

Note: Course enrollments are measured in terms of standard Carnegie credits. A one Carnegie 
credit course typically meets for five fifty to fifty-five minute periods per week for an entire school 
year. A typical one-semester course would earn one-half credit. 

"Excluding specific voc. math and applied math courses. 



advanced mathematics courses than non-college-bound students and substantially more chemistry and 

physics. 

These numbers suggest that from the limited perspective of mathematics-skills development, 

the effectiveness of math-related and non-math-related vocational education is especially important for 

non-college-bound students. During their junior and senior years the non-college-bound graduates 

took roughly equivalent amounts of mathematics and math-related vocational education (about one 

semester in each), but five to six times as much non-math-related vocational education (almost six 

semesters). 

Table 4 summarizes the performance of students on the HS&B mathematics test. The average 

sophomore score in 1980 was 13.44, with a standard deviation of 9.70. The average gain in test 

scores from the tenth to the twelfth grade was 1.92 points, approximately 1 point per year. Although 

this change was modest relative to the (accumulated) variation in tenth grade achievement, as argued 

by Jencks (1985) and Hoffer, Greeley, and Coleman (1985), this does not necessarily imply that the 

observed gain in math scores was small and inconsequential, but rather that individual variation in 

growth in mathematics achievement from preschool through tenth grade was substantial. Table 4 

indicates that high school dropouts scored poorly on the sophomore test (5.78) and failed to score 

appreciably better two years later. In contrast, non-college-bound and college-bound graduates had 

higher sophomore scores and increased their test scores by 1.08 and 2.71 points, respectively, from 

the tenth to the twelfth grade. 

Variation in mathematics learning, as will be demonstrated, depends critically on the number 

and types of courses taken by high school students. However, before discussing my best estimates of 

the contributions of different courses to mathematics development, it is informative to examine Table 

5, which reports the average gain in math scores for students with different levels of total 



TABLE 4 

Average Math Test Scores by Graduation Status 
and Post-High School Plans 

High School High School 
High School Graduates1 Graduates1 All 

Dropouts Non-College-Bound College-Bound Students 

Sophomore score 5.78 9.46 17.22 13.44 
(6.86) (8.10) (9.35) (9.70) 

Senior score 

Gain in score 

Sample size 855 3,759 6,347 10,961 

Source: Author's computations from the high school transcripts collected as part of the High School 
and Beyond study. 

Note: Standard deviations are reported in parentheses. 



TABLE 5 

Average Sophomore Math Test Scores and Gain in Senior Test Score, 
by Number of Math Credits in Eleventh and Twelfth Grade and Post-High School Plans 

Non-College-Bound College-Bound All Students 
Soph. Gain Soph. Gain Soph. Gain 

Math Credits Score Score Score Score Score Score 

0 8.50 0.13 
1 /2 8.37 1.15 
1 9.16 1.58 
1 112 9.30 1.58 
2 10.87 3.03 
2 112 or more 12.78 3.59 

Overall mean 8.94 0.97 
Sample size 4,448 

Source: Author's computations from the high school transcripts collected as part of the High School 
and Beyond study. 
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mathematics enrollment over four years. These results cannot be used to infer the contribution of 

mathematics courses to mathematics learning, because they ignore the influences of other math-related 

courses and possible variation in the effects of different math courses. Nonetheless, Table 5 suggests 

that mathematics- instruction has a powerful effect on the development of mathematics skills. Students 

who took no mathematics during their juniorlsenior years essentially failed to improve their math 

scores from the tenth to the twelfth grade. In contrast, students who enrolled in even a half credit 

significantly improved their mathematics proficiency, and students with the highest math enrollments 

scored the greatest gains. College-bound students improved their scores somewhat more than non- 

college-bound students, perhaps due to the fact that college-bound students tended to enroll in more 

advanced courses than non-college-bound students (see Table 3). 

IV. ECONOMETRIC METHODOLOGY 

The primary objective of this section is to develop models of mathematics proficiency which 

can be estimated consistently despite the presence of measurement error in prior achievement. To 

provide the proper context for this discussion, I begin by describing a system of enrollment and 

learning equations. This provides a framework for describing the parameter bias that afflicts many 

statistical models commonly used to study the determinants of educational outcomes. In Section V, I 

estimate and compare the models discussed in this section in order to validate and determine the 

empirical importance of the theoretical arguments presented below. To simplify presentation, student 

subscripts (i) are generally omitted in the equations that follow. 

The equation system presented below consists of five equations: equations for true math 

proficiency (measured without error) at the end of periods 0, 1, and 2 (To, TI, and T,, respectively) 
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and course enrollment equations for periods 1 and 2 (XI and X,, respectively). The structure of the 

model is essentially recursive. Enrollments are assumed to depend on lagged (prior) achievement and 

personal characteristics (Z), and achievement is assumed to depend on lagged enrollments, lagged 

achievements, and personal characteristics. 

Since X, and X, are vectors, C,, Dl and D, represent parameter matrices, and b, and b, are parameter 

vectors. In our context, periods 0, 1, and 2 correspond to birth through eighth grade, ninth and tenth 

grade, and eleventh and twelfth grade, respectively. The system can obvio.usly be extended to more 

than three periods. As is, equation (4.1) depends only on personal and family characteristics (2) and 

thus should be interpreted as a reduced-form equation in Z.,' 

In the absence of measurement error in test scores To and T,, ordinary least squares could be 

used to obtain unbiased estimates of all five equations under the following conditions: (I) the 

enrollment equation errors (w) and the math proficiency equation errors (e) are uncorrelated and (2) 

the math proficiency errors (e) are not correlated over time. 

The first condition is violated if the effects of courses vary randomly across individuals and 

students know of and are responsive to that variation. This is a possible source of selection bias that 

is not explicitly captured in this study. The first condition is also violated if particular enrollment 

choices (say, enrollment in calculus) tend to be correlated with unobserved experiences that produce 
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math gains (for example, participation in math clubs). Exclusion of such experiences, of course, 

could cause omitted variable bias in estimates of course effectiveness (a). However, given that most 

mathematics learning probably occurs in classrooms rather than in unobserved extracurricular 

activities, this is probably not a serious problem. This issue is likely to be more serious in models of 

verbal achievement, however. 

The second concern, correlation over time in the achievement equation errors (%, e,, and G, 

is potentially important. For example, students with high motivation and students from highquality 

schools may tend to "out perform" the model year after year. On the other hand, if the model 

includes a rich set of personal and community characteristics (represented by variable Z), the degree 

of correlation over time in the achievement errors may be minimal. In the analysis that follows, I 

maintain the assumption that errors el and e, are uncorrelated. Some check on the validity of this 

assumption is provided by including in the model variables that measure individual motivation, 

attitudes, and postsecondary plans. In fact, I find that these variables are unrelated to achievement 

growth. I conclude from this finding that errors in achievement growth may reflect essentially 

random factors that differ from year to year. A more general investigation of this issue awaits the 

availability of data on at least three periods, rather than the two periods available in the High School 

and Beyond data. 

The system of equations discussed above provides a convenient framework for assessing the 

bias to be expected from model misspecifications. Below, I will consider three issues: (1) the 

consequences, if any, of assessing the determinants of math proficiency using test data that span two 

or more years rather than a single year; (2) the consequences of replacing T, in equation (4.5) with 

proxies for prior achievement, such as personal characteristics and prior course enrollments; and (3) 

the consequences of excluding prior achievement (T,) from equation (4.5). 
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The consequences of the first problem-missing an intermediate measure of performance-can 

be assessed by substituting the equation for T1 (4.3) into the equation for T, (4.3, which yields: 

(4.6) T2 = Z(6, + 04,) + X,CY, + xlale2 + o ~ ~ ~ T ~  + q + B,e, 

Equation (4.4) indicates that course enrollments X, are correlated with T1 and therefore with el from 

equation (4.3). As a result, the estimated coefficient on second-period enrollments (a,) in (4.6) will 

be biased. In effect, within-period "shocks" to math proficiency (not accounted for by Z, XI, and 

To), which have an opportunity to affect enrollments, will be mistakenly soaked up by period-2 

enrollments. This effect is likely to be small in the HS&B data, which span only two years, since 

annual shocks to the level of mathematics proficiency are likely to be relatively small. This effect 

could, however, cause serious bias if the time between tests is long, say four or more years.= 

Equation (4.6) also reveals that the estimated influence of courses taken during the first half of a 

two-year period (XI) may be exaggerated or diminished, depending on whether 8, is greater or less 

than one. Our empirical evidence suggests that 8, is quite close to unity. This factor is therefore not 

an important source of bias. 

The consequences of replacing prior test score Tl in equation (4.5) with the best available 

proxies can be assessed by substituting equation (4.1) into (4.6). This eliminates To from the 

equation, yielding: 

(4.7) T2 = Z(b2 + 826, + e1e260) + x2a2 + x1ale2 + q + e2el + ele2eo. 

As is evident, this equation, like the previous one, accords greater weight to personal characteristics 

to offset the absence of prior test information. Indeed, if the variance of % and el is zero-in other 

words, if personal characteristics (Z) perfectly predict math achievement scores To and TI-this 

equation will yield unbiased parameter estimates. Not surprisingly, this is an incredibly strong and 

unlikely assumption. If violated, the estimated effectiveness of period 1 and 2 course enrollments 

(coefficients a, and aJ will be seriously biased due to their correlation with errors % and el. The 
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coefficients will reflect both the genuine effectiveness of these courses and the degree to which the 

course enrollments were influenced by prior achievement. Since many studies have been forced to 

rely on an equation similar to (4.7), I estimate a variant of it in Section V and compare it with results 

known to be unbiased under more general conditions. I will refer to estimator (4.7) as the prior 

achievement proxy model.P 

Finally, consider the consequences of dropping period-1 enrollments from equation (4.7). 

Since enrollment decisions tend to be highly intercorrelated (e.g., calculus students typically enroll in 

a ninth through twelfth grade pattern of algebra 1, geometry, precalculus, and calculus), omitting X1 

from (4.7) clearly adds additional bias to estimates of the effect of personal characteristics (2) and 

second-period enrollments on second-period learning. In Section V, we will refer to this model as the 

super biased model. 

As a prelude to discussion of the consequences of measurement error in TI, it is useful to 

write down alternative formulas for the parameters of the proxy and super biased models discussed 

above. First, express T, as functions of the right-hand-side variables included in each model: 

The coefficients .R and 7 of these two "auxiliary" regressions have no direct structural interpretation 

but merely summarize the conditional relationships among the indicated variables. The effect of 

dropping the prior test control from equation (4.5) (the super biased model) or replacing it with 

proxies is found by substituting (4.9) and (4.8), respectively, into (4.9, yielding: 
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Prior Achievement Proxy Model 

(4.10) T2 = Z(6, + o2?r,) + X1?rlB2 + X2(cu2 + 02rJ + % + 02~, 

Super Biased Model 

(4.11) T2 = Z(62 + 0270) + Xz(a2 + 6272) + % + 92% 

In summary, this section presented a five-equation system of course enrollments and math 

learning. Two commonly used, but biased, estimators were derived and discussed within the context 

of a fully specified set of equations: the prior achievement proxy model and the super biased model. 

An important new finding also emerged: estimates of curricular learning equations may be subject to 

bias if outcomes (such as mathematics proficiency) are measured more than a year apart (assuming 

that enrollment decisions are made ann~a l ly ) .~  The HS&B data set fares reasonably well by this 

standard since achievement levels were measured only two years apart. The analysis suggests, 

however, that estimates of the effectiveness of courses taken primarily in twelfth grade may be 

slightly biased: positively biased for courses taken by upper-ability students (e.g., precalculus, 

calculus) and negatively biased for courses taken by lower-ability students. As previously mentioned, 

this type of bias increases as the time between outcome measurements increases and may become 

quite serious for outcomes measured four or more years apart. Pallas and Alexander's (1983) use of 

data with achievement levels measured at four-year intervals may account, in part, for their 

unexpected finding that nonadvanced math courses make no contribution to the development of 

mathematics skills.2S 
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The Conseauences of Measurement Error in Test Scores 

As is well known, measurement error in an explanatory variable causes downward bias in the 

estimated regression coefficient associated with the error-ridden variable and either positive or 

negative bias in other parameters. Despite this, most studies discussed in the previous literature 

review failed to use estimators that dealt appropriately with measurement error. This may have been 

due to the fact that the studies were based on tests that were reasonably reliable (say, greater than 85 

percent reliability). However, even modest levels of test error may generate severe bias if test scores 

are highly correlated with other variables included in the equation, such as, in the present case, 

course enrollments and personal characteristics, variables both highly correlated with achievement 

levels. Below, I develop two quite different strategies for solving the problem of measurement error 

in our period 1 test score ('I',). 

As is customary, I assume that measured achievement T, is the sum of true, unobserved 

achievement (T;) and an independent error (v): 

(4.12) T, = T; + v 

Then, the measurement-error ratio associated with T, is given by: 
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where uf = variance of the measurement error and of = variance of observed TI. The reliability 

of TI is simply 1-X. As previously mentioned, the consequences of measurement error in TI depend 

on the measurement-error ratio X and the degree to which TI is correlated with the variables 

contained in equation ( 4 3 ,  measured by the percentage variance explained in the auxiliary regression 

(equation 4.9 above) of T, on Z and &, that is, RZ(T1, Z, XJ. 

The "effective" level of measurement error, then, is given by: 

and the bias in OLS estimates of equation (4.5) caused by measurement error in T, is given by: 

(4.16) bias(&,) = E(b2 - a,) = 8,q2m 

where 7, and 7, are defined in auxiliary regression (4.9).26 As is evident, the bias in OLS estimates 

of course effectiveness (a;) is largest for courses taken by students with the highest prior achievement 

(represented by large values of 7, from auxiliary regression (4.9)). As reported later in the paper in 
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Table 7, courses such as chemistry/physics, algebra 2, precalculus, and calculus have values of q, that 

range from 2.8 to 8.5 Even modest levels of measurement error are therefore likely to cause severe 

bias in the estimated effectiveness of these courses. If measurement error is quite large, the bias that 

it introduces is comparable to the bias introduced by totally excluding T, from equation (4.5). As the 

equations below indicate, OLS estimation of equation (4.5) yields parameter estimates that are 

weighted averages of the true structural parameters (8,, a,, and 6J and the super biased coefficients 

given in equation (4.11): 

As the effective level of measurement m rises, the OLS estimates converge to the super biased 

estimates. 

An important implication of this analysis is that including T, in the model of math learning 

without correcting for measurement error could result in estimated parameters that are no better, or 

even worse, than excluding T, and replacing it with reasonably good proxies! This is particularly 

likely to occur if the effective level of measurement error m is large (close to 1) and if enrollment 

choices X, and X, are highly partially correlated, given Z.n In this case, significant measurement 

error in T, permits X, to soak up the prior contribution of X, to T, and the effect of T, on X,. 



33 

This analysis demonstrates the critical importance of controlling for test measurement error in 

curricular models of achievement growth. In more general models that allow mathematics learning to 

depend on math achievement T,, math aptitude (A,), and perhaps other achievement or aptitude 

measures, the problems caused by measurement error in several tests are similar to those analyzed 

above. The estimation techniques discussed in the next section extend readily to situations involving 

several tests measured with error. 

A Consistent Estimator that Solves the Problem of Measurement Error 

There are two major approaches to solving the problem of measurement error in explanatory 

variables such as prior math achievement. The first, which I will refer to as the errors in variables or 

EV estimator, uses estimates of the variances (and possibly covariances) of measurement errors to 

deflate (or attenuate) elements of the cross-product matrix of variables that are inflated due to 

measurement error. In the simple case, where only one explanatory variable is measured with error, 

for example, prior math achievement T, in model (4.9, this technique involves subtracting the 

estimated sum of squares of the measurement error v ,  (that is, ~ ( Z p f )  = NYJ:, where N = the total 

sample size) from the sum of squares of observed prior math achievement Tli (that is, C,T,~). This 

technique extends readily to situations with multiple variables measured with error.% 

The EV estimator has not been widely used in the economics literature because estimates of 

the variances (and covariances) of measurement errors are typically unavailable in most data sets. In 

the case of test scores, however, these estimates are commonly available. 

Arguably, the best, although least common, method for obtaining such estimates involves 

testing and retesting a group of students, ideally with the same or nearly identical test instruments. 

The two tests must be spaced far enough apart so that individual performance on the retest is not 

influenced by exposure to the first test. On the other hand, the tests must be spaced close enough 
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together so that true achievement (or aptitude) is essentially identical for both tests. In other words, 

the tests must be measuring the same achievement (or aptitude) level.29 Given two independent 

estimates of test performance, say test score T, and retest score T,', an estimate of the variance of 

measurement error in the test is given simply by o: = V o w  - Cov(T,, Ti') .m 

The more common method for estimating the variance of test measurement errors-and the 

one used to generate such information for the tests contained in the HS&B data set-is based on a 

single set of test scores. This technique generates an estimate of the reliability of a test referred to as 

Cronbach's coefficient alpha, or, in the special case of dichotomously scored test items (that is, right 

or wrong), Kuder-Richardson formula 20 (KR20) (Lord and Novick, 1968). This technique is 

comparable in spirit to the test-retest method since it measures the consistency of performance on 

different test items, as opposed to the consistency in performance across a test and its retest. As is 

well known, however, coefficient alpha is essentially a joint measure of the homogeneity of items on 

a test and individual consistency of performance across these items. Thus, to the extent that tests 

such as math proficiency tap more than one skill dimension, coefficient alpha will tend to understate a 

test's true reliability and therefore exaggerate its level of measurement error. On the other hand, to 

the extent that student test performance is influenced by day-specific factors such as alertness, mood, 

and testing conditions, coefficient alpha may actually overstate a test's true reliability. It would be 

fortuitous if the biases caused by test heterogeneity and day-specific error were generally offsetting, 

but I obviously have no way of knowing whether or not this is the case in the HS&B data. 

Given the fact that coefficient alpha yields reliability estimates that may be overstated or 

understated, it follows that EV estimators constructed off such measures are subject to biases of 

unknown direction and size. In fact, Hoffer, Greeley, and Coleman (1985) and Jencks (1985) raise 

objections to Alexander and Pallas' (1985) use of this technique in the latter's analysis of the 
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effectiveness of public and private schools. The former authors suggest that Pallas and Alexander 

(1985) used an exaggerated estimate of the severity of test measurement error (derived from 

coefficient alpha), thus causing downward bias in their EV estimate of the effectiveness of private 

AS previously mentioned, however, the failure of coefficient alpha to reflect day-specific 

error suggests that the biases caused by this approach could be positive or negative. Given this 

uncertainty, it is fortunate that I am able to construct a second estimator that does not depend on an 

external estimate of the variance of the test error in measurement. This second estimator also offers 

an opportunity to assess in one particular data set the offsetting influences of test heterogeneity and 

day-specific error. 

The second major approach to obtaining consistent parameter estimates in the presence of 

measurement error derives from the techniques developed to estimate simultaneous equation systems. 

In fact, the system defined by equation (4.1) and (4.5) can be used to construct a credible and 

powehl  two-stage least squares (2SLS) estimator of mathematics learning. No additional 

assumptions are required other than those articulated above. The maintained assumption of zero 

correlation of the errors el and e, is, of course, an assumption that would be desirable to relax for 

both the EV and 2SLS estimators. 

The 2SLS estimator implied by equations (4.1) and (4.5) consists of a first-stage equation for 

prior achievement TI, with right-hand-side instrumental variables XI, X2 and 2, and a second-stage 

equation consisting of T1 predicted from the first stage, X2 and Z. This technique essentially purges 

measured T1 of its error component (v). 

The reason this estimator "works" is that ninth and tenth grade enrollments do not directly 

affect learning in eleventh and twelfth grade and thus can be used to predict prior achievement 

measured during the spring of tenth grade.32," As indicated in Section V, these instruments (i.e., 

XI) add substantial explanatory power to the first-stage prior-achievement regression, above and 
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beyond the variance explained by Z and X,. As we shall see, this accounts for the excellent 

performance of the 2SLS estimator. 

Despite the practical appeal of the 2SLS estimator discussed above, to my knowledge it has 

not previously been used in achievement-outcome studies. This may be explained in part by the fact 

that the estimator is identified because enrollment decisions during the first and second halves of high 

school (XI and X,, respectively) are not perfectly linked. Some school-level inputs, on the other 

hand, may vary little over periods of two to four years, and thus may not provide sufficient variation 

to enable the 2SLS approach to work. The 2SLS approach could, however, be used to assess the 

effectiveness of high school classroom and teacher characteristics, which obviously vary from class to 

class. Such a model would need to take into account the fact that high school students are 

simultaneously exposed to different teachers and classrooms and different courses." This suggests 

that any model of high school classroom and teacher effectiveness would need to embed within it a 

model of curricular effectiveness much like the one presented in this study. In fact, my curriculum 

model could be extended quite simply to allow for teacher and classroom effects by allowing the 

vector of course enrollment coefficients a, to vary as a function of classroom and teacher 

characteristics. 

The previous analysis requires an important qualification. My conclusions are based on the 

maintained assumption of zero correlation between the errors in the achievement growth equations. If 

this assumption is false, both the EV and the 2SLS estimators will produce biased parameter 

estimates. In fact, if the achievement equation errors are correlated, prior course enrollments fail to 

qualify as valid instrumental variables for the 2SLS estimator. However, variants of the EV and 

2SLS models discussed above can be designed to address both the problems of serial correlation and 

measurement error. As mentioned earlier, these models require data on at least three periods. 
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Summarv 

In this section I have examined the major econometric models used in studies of achievement 

outcomes. An important and perhaps surprising finding of the analysis is that curricular models of 

achievement growth that fail to correct for measurement error in prior achievement are likely to 

generate severely biased parameter estimates. These estimates may, in fact, be worse than the 

estimates obtained from models based only on proxies for prior achievement. I considered two 

estimators designed to solve the problem of measurement error in prior achievement, an errors in 

variables (EV) estimator and a two-stage least squares (2SLS) estimator. 

V. PERFORMANCE OF ALTERNATIVE ESTIMATORS 

This section compares the performance of alternative estimators of a curricular model of 

mathematics learning. My objective is to assess the extent to which common model misspecifications, 

of the kind discussed in Section IV, result in parameter estimates that are badly biased. Although the 

methodological findings presented in this section are limited, strictly speaking, to educational-outcome 

models that include course enrollments, they may also apply to educational-outcome models in 

general. 

Since the focus of this section is on methodological issues, substantive interpretation of the 

empirical results is deferred to Section VI. Here, I present estimates for one particular population 

group: non-college-bound students. I focus on this group because there is strong substantive interest 

in the issue of improving their academic skills. 
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Summarv of Alternative Estimators 

Figure 1 provides a brief summary of the five major estimators discussed in Section IV. With 

the exception of the last estimator, the estimators are ranked in order of expected performance. The 

2SLS and EV estimators provide the benchmark for comparing all other estimators. The 2SLS 

estimator, the EV estimator, and the estimator with no correction(s) for measurement error are 

estimated with and without controls for more than one achievement (or aptitude) score. 

Two commonly used estimators, not discussed earlier, are also included in Figure 1: the 

simple least squares difference equation (#3) and an ad hoc estimator that I refer to as the residual 

growth specification (#7).35 Both estimators impose particular values of 8, (the coefficient on prior 

math achievement TI) in estimating structural equation (4.5). Any estimator that imposes 8, at some 

value, say 6, shifts TI over to the left-hand side of the equation in the form of constructed variable 

T, - 6T,. This eliminates T, as a contaminating ('bias-causing) source of measurement error in the 

equation, although measurement error adds to the error in the equation. This suggests that a simple 

least squares difference equation could generate estimates that are less biased than estimators based on 

missing or error-ridden measures of prior achievement (estimators 4 through 6 in Figure 1). 

Fortunately, there is no need to accept an estimator with any inconsistency if a data set contains 

information on prior achievement. If such data exist, the 2SLS or EV estimators dominate the simple 

difference equation, the residual growth specification, or any other estimator based on an arbitrarily 

imposed value of 19,.~~ 

Before comparing the alternative estimates presented in this section, it is useful to recognize 

that the seven estimators listed in Figure 1 can be viewed, more or less, as simple variations of a 

model in which a constructed dependent variable T, - 6T, is regressed on Z and &. The 
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FIGURE 1 

Summary of Alternative Estimators 

Dependent RHS Other 
(Outcome) Test RHS Equation 
Variables Variables8 Variables Number Estimator 

2SLS with single RHS test var. 

2SLS with multiple RHS test vars. 

EV with single RHS test var. T1 

TI, A, 

None 

EV with multiple RHS test vars. 

Simple difference equation 
( O B I  

Uncorrected measurement error 
with single RHS test var. 
( O W  

Uncorrected measurement error 
with multiple RHS test vars. 

Prior achievement proxy model 
( O W  

None 

Super biased model (OLS) None 

None Residual growth specificationb 

I f  a model includes more than two tests, Al should be interpreted as a vector of test scores. 

' T h i s  model is described in endnote 35. 



consequences of alternative estimators (with different values of 6 )  can then be found by subtracting 

equation (4.9) from (4.1 I), which yields: 

Note that if 8 = 8,, the bias terms in (5.1) drop from the equation. The extreme model variants are 

represented by the super biased estimator (8 = 0 )  and the simple difference equation ( 8  = I)." 

The implication of this analysis is that a model that generates badly biased estimates of 8, will also 

generate badly biased estimates of a, (course effectiveness) and 6, (the contribution of personal 

characteristics). In the empirical results presented below, I therefore focus on comparing a selected 

set of parameter estimates from alternative estimators, rather than all parameter estimates. These 

include $ (the estimated coefficient on prior math achievement) and the coefficients on prealgebra, 

chemistrylphysics, foreign languages, and calculus. 

Is Measurement Error a Problem? 

Table 6 presents estimates of the curricular model of mathematics learning for non-college- 

bound students using two different estimators, OLS with no correction for measurement error in T, 

(estimator 4A) and 2SLS (estimator 1A). First-stage estimates are reported in Table A-6."' Both 

models adopt a specification that includes only one right-hand-side test score. The biased least 

squares coefficient obtained on prior (sophomore) mathematics (b2 = 0.68) is similar to estimates 

obtained in previous studies. At face value, being so far from unity, this estimate indicates that 

mathematics skills depreciate quite rapidly over a two-year period. When compared with the 2SLS 



TABLE 6 
Estimates of the Simple Two-Stage Least Squares add 

Biased Least Squares Models of Math Gain for Non-College-Bound Students 

Biased OLS Model 
Std. 

Coeff. Error 

Simple 2SLS Model' 
Std. 

Coeff. Error 
Right-Hand-Side 

Variable 

Sophomore math test 

Credits in eleventhltwelfih grade 
Basic math 
General math 
Computer math 
Realgebra 
Algebra 1 
Geometry 
Algebra 2 
Precalculus 
Calculus 

Specific vocational math 
Applied math 

Chemistrylphysics 
Biologylsurvey science 

Math-related voc. ed. 
Non-math-related voc. ed. 

Englishlsocial studies 
Foreign languages 
F i e  arts 
Personal and other 

Graduation indicatof 
Female 
Black 
Hispanic 
Asian 

Suburban 
Urban 
Northeast 
West 
South 

Constant 

Sample size 

Source: Estimates by author based on data from the High School and Beyond study, 1980 and 1982. 
'Fit-stage results for the sophomore math test equation are reported in Appendix Table A-6. 
The graduation indicator is set to 1 if the student graduated from high school, zero otherwise. 
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estimate of 0.95, however, it is clear that the biased least squares estimate is badly downwardly 

biased due to measurement error in the sophomore math test. The 2SLS estimate of 8, is actually 

quite close to unity. This suggests that math skills depreciate only modestly, if at all, for high school 

aged youth.39 

I can compute an estimate of the level of measurement error in the sophomore mathematics 

test from these estimates, since equations (4.14) and (4.15) imply the following formulas for the 

effective degree of measurement error m and the measurement ratio 

(5.3) X = [I - R ~ ( T , ,  2, XJ] m 

Given the RZ reported in Table 7 below, this yields the following estimates: 

i i  = 1 - 0.716 = 0.284 

fi. = [I - 0.2581 . 0.284 = 0.211 

As indicated, the effective level of measurement error (m) is about 1 113 times the measurement error 

ratio (A). This increase is due to the significant collinearity between T, and the other variables in the 

math-learning equation (Z and Xd--see Table 7. 

The 2SLS estimate of X is quite similar to the estimate obtained by Rock et al. (1985) using 

the psychometric technique discussed in Section IV (see Appendix Table A-1). As one would expect, 

both estimates are substantially larger than the estimated measurement-error ratio for &l students, as 

reported in Appendix Table A-1 (1 - 0.868 = 0.132). This stems from the fact that the variance of 

sophomore test scores is much less in the restricted non-college-bound population than in the complete 

student population. One might expect, therefore, that the problem of measurement error would be 

exacerbated by estimating separate models for particular population groups (e.g., non-college-bound 

students). As explained below, however, this may or may not be the case since the level of 



TABLE 7 
Estimates of Auxiliary Sophomore 

Math Test Regression for Non-College-Bound Students 

Right-Hand-Side Variable Coefficient Standard Error 

Credits in eleventhltwelfth grade 
Basic math 
General math 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Algebra 2 
Precalculus 
Calculus 

Specific vocational math 
Applied math 

Chemistrylphysics 
Biology/sumey science 

Math-related voc. ed. 
Non-math-related voc. ed. 

Englishlsocial studies 
Foreign languages 
Fine arts 
Personal and other 

Graduation indicator 
Female 
Black 
Asian 
Hispanic 

Urban 
Suburban 
Northeast 
West 
South 

Constant 

Sample size 

Source; Estimates by author based on data from the High School and Beyond study, 1980 and 1982. 
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collinearity between TI, Z, and X, tends to be significantly lower in restricted samples, thereby 

offsetting the increase in relative measurement error. This point is illustrated below. 

Define tl as the component of Tl explained by Z and &, and E as the unexplained part of 

TI. As discussed in Section IV, the effective degree of measurement error depends on the 

measurement-error ratio A = a t / v a f l 1 )  and the collinearity between TI, Z, and X,, as measured by 

R2(Tl, Z, X2) = 1 - Var(E)Nar(T,). Then, the effective degree of measurement error, given a 

selection rule S, is given by 

a t / v a f l ,  IS) 

- - at 
vat(€ IS). 

As is evident, exogenous selection rules that are uncorrelated with E leave the effective degree of 

measurement error unchanged. On the other hand, endogenous selection rules may alter the variance 

of ( E  IS), thereby changing the effective degree of measurement error. Since my selection rules 

(stratification by predicted prior math achievement and college-bound and non-college-bound) are 

based on exogenous variables XI, X,, and Z, the problem of measurement error may be made neither 

better nor worse by splitting the data into subgroups. 

As indicated in Table 6, measurement error in Tl has a profound effect on the biased least 

squares estimates. In particular, the least squares estimate of the calculus coefficient is more than 
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double the 2SLS estimate. The chemistrylphysics, precalculus, and algebra 2 coefficients are 

similarly upwardly biased. In contrast, the coefficients on prealgebra and non-math-related vocational 

education are downwardly biased. In general, measurement error in T, generates strong positive bias 

for those courses taken by students with the highest prior math scores and negative bias for courses 

taken by students with the lowest prior math scores. The coefficients on courses taken in eleventh or 

twelfth grade by mid-level students--algebra 1 and English, for example-are essentially unaffected by 

measurement error. These results accord, as they should, with the estimates in Table 7 of the 

auxiliary regression of T, on X, and 2. (See equation 4.19.) 

One additional indication of misspecification in the biased least squares estimator is the fact 

that the foreign language coefficient is rather substantial (0.434), particularly when compared with the 

2SLS estimate (0.1 12 with a standard error of 0.239). A priori, it is difficult to believe that foreign 

language instruction contributes significantly to mathematics learning. Indeed, the 2SLS estimate 

indicates that it does not. 

At face value, the 2SLS estimates suggest that the most productive high school math course is 

algebra 1, followed (in order) by prealgebra, geometry, and algebra 2. As discussed in Section III, 

this pattern of results may be explained, at least in part, by the fact that the HS&B test includes items 

that require algebra and geometry skills. If so, it could be argued that the HS&B test is not the 

perfect test for measuring the contribution to mathematics learning of courses such as algebra 2, 

precalculus, chemistry, and math-related vocational education. Since eleventh and twelfth grade 

enrollments in these courses substantially outweigh enrollments in prealgebra, algebra 1, and 

geometry (see Table 3), it might have been better if the HS&B math test had placed greater emphasis 

on measuring cognitive mathematics skills andlor specific achievement skills related to the subjects 

taken during the eleventh and twelfth grade. As a result, it is important to interpret my empirical 



46 

estimates with some caution. Clearly, it would be useful to reestimate the models presented in this 

study using a richer and more extensive battery of mathematics tests.41 

The overall performance of the 2SLS estimator is excellent. The coefficient on prior 

mathematics achievement is very precisely estimated and, as a result, the estimated standard errors in 

the 2SLS model are only slightly larger than the OLS estimates. This fortunate result is due to the 

fact that the unique exogenous variables in the first-stage equation (i.e., those variables that are 

excluded from the second-stage equation) add substantial "kick" to this equation-the R2 increases 

from 26 percent in Table 7 to 39 percent in Appendix Table A d .  

Despite the excellent performance of the model, it explains a relatively small share of the 

variance in achievement growth, as measured by the R2p2 - TI) statistic. Note that the tables in this 

paper report the R2 statistic for the model with T2-Tl as the dependent variable rather than T,. The R2 

statistic for the model with T2 is much higher. It also provides a misleading sense of the predictive 

power of the model because virtually all of the explanatory power in that model is accounted for by 

prior achievement. However, to maintain consistency with the text, the coefficient on prior math 

achievement is taken from the model with T2 as the dependent variable. The comparable coefficient 

for a model with a dependent variable of &-TI) is given by the reported coefficient minus one. In 

other respects, the two forms of the model are identical. The low explanatory power of the model is 

due in part to the fact that the reliability of (T2-TI) (i.e., test gain) is only 30 percent (Appendix Table 

A-1). In fact, the 2SLS model explains 20 percent of the "usable" variance of (T2-T1).42 This still 

indicates, however, that idiosyncratic factors are a major determinant of individual achievement 

growth, at least as measured by the HS&B test for the period covering eleventh and twelfth grades. 

The explanatory power of the model might have been higher for a test more closely matched to the 

mathematics content of eleventh and twelfth grades, for example, algebra 2, precalculus, calculus, 

chemistry, and physics. 
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In order to provide some check on the validity of the maintained assumption that the 

achievement equation errors are uncorrelated over time, I reestimated the model with the following 

additional variables: a measure of individuals' expected schooling at the end of tenth grade, two 

attitudinal variables that measure whether "students have math anxiety or a fear of mathn and whether 

"students believe that math is important or useful," and a measure of mother's educational attainment, 

as reported by students." The estimates indicate, perhaps surprisingly, that these variables are 

unrelated to achievement growth, conditional on prior achievement, course enrollments, and basic 

demographic characteristics. I conclude from this finding that unexplained achievement growth may 

be due to essentially,random factors that differ from year to year. As mentioned earlier, a more 

general investigation awaits the availability of data containing at least three periods. 

Alternative 2SLS and EV Estimates 

Table 8 presents estimates of three alternative estimators of the model of mathematics 

learning: (I) a general 2SLS estimator that includes prior science and verbal test scores, as well as 

prior mathematics achievement (estimator 1B); (2) a general EV estimator comparable to this 

estimator (estimator 2B); and (3) a simple EV estimator comparable to the simple 2SLS estimator 

discussed above (estimator 2A). The respective estimators "correct" for measurement error in all 

right-hand-side test scores. 

The reported standard errors for the 2SLS model are the conventional asymptotic standard 

errors for the 2SLS estimator. The standard errors for the EV models are based on the regression 

output of a standard ordinary least squares package. As mentioned earlier, the EV estimates were 

derived from an adjusted cross-product matrix. The matrix was adjusted to correct for the presence 

of measurement error in the variance of all achievement scores. As pointed out by Fuller (1987), the 

standard errors obtained from an ordinary least squares package are biased downward for EV models. 

Fuller (1987) presents correct asymptotic formulas for the variance of EV parameter estimates. Since 



TABLE 8 
Estimates of Alternative Two-Stage Least Squares and Errors in Variables 

Models of Math Gain for Non-College-Bound Students 

Right-Hand-Side 
Variable 

General 2SLS Model General EV Model EV Model 
with 3 Endogenous with 3 Endogenous with Endogenous 

Soph. Tests ' Soph. Tests Soph. Math Test 

Std. Std. Std. 
Coeff. Error Coeff. Error Coeff. Error 

Sophomore math test? 
Sophomore science testb 
Sophomore verbal testb 
Credits in eleventhltwelfth grade 

Basic math 
General math 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Algebra 2 
Precalculus 
Calculus 
Specific voc. math 
Applied math 
Chemistrylphysics 
Biologylsurvey science 
Math-related voc. ed. 
Non-math-related voc. ed. 
Englishlsocial studies 
Foreign languages 
Fine arts 
Personal and other 

Graduation indicator 
Female 
Black 
Hispanic 
Asian 
Suburban 
Urban 
Northeast 
West 
South 
Constant 
R-square (T,-T,) 
Sample size 

Source: Estimates by author based on data from the High School and Beyond study, 1980 and 1982. 
'First-stage results are reported in Appendix Table A-6. 
bEndogenous variables subject to measurement error. 



49 

the EV estimates in this paper are presented for comparative purposes only, I have not taken the extra 

step of computing asymptotic standard errors for the estimates. 

As is evident in Table 8, the three alternative estimators yield results that are strikingly 

similar to the simple 2SLS estimates in Table 6 discussed above. For example, the chemistrylphysics 

coefficients are, respectively, 0.83, 0.88, 0.96, and 0.93 in these four models. The precalculus 

coefficients are, respectively, 1.51, 1.54, 1.58, and 1.63." There is no strong evidence that 

mathematics learning is affected by prior skills other than mathematics. As one would expect, 

however, the standard errors on the sophomore math, science, and verbal coefficients in the general 

2SLS model are much larger than in the simple 2SLS model. This is due to the fact that the same 

instrumental variables are used to predict all three sophomore test scores in their first-stage equations. 

Earlier in this section, I observed that the psychometric estimate of the level of measurement 

error in TI (A) was nearly identical to the estimate derived from the 2SLS estimator. As a result, we 

should not be too surprised that our 2SLS and EV estimators generate nearly identical estimates. In 

other contexts, of course, the two estimators may yield quite different results. On the basis of this 

study, however, one could argue that it would generally be better to use an EV estimator to correct 

for measurement error in test scores than to ignore measurement error altogether. 

This section assesses the performance of the six commonly used estimators summarized in 

Figure 1. Estimates of selected parameters are presented in Table 9 for each e s t ima t~ r .~  The 

estimators are ordered, for the most part, in terms of their respective estimates of 83 the coefficient 

on prior math achievement. Hence, results for the simple difference equation appear in the first row 

and results for the super biased model appear in the last row. 

The principal conclusion to be drawn from Table 9 is that the estimators that have dominated 

previous studies of educational outcomes--the least squares model with no measurement-error 



TABLE 9 
The Effect of Alternative Estimators on Selected Parameter Estimates 

(for Non-CollegeBound Students) 

Estimator Sophomore Math Test" Prealgebra ChemistryIPhysics Foreign Languages Calculus 

3 Simple difference equation 

1A 2SLS with single RHS test 

1B 2SLS with multiple RHS tests 

2A EV with single RHS test 

2B EV with multiple RHS tests 

4A Uncorrected measurement error 
in single tests 

4B Uncorrected measurement error 
in multiple tests 

5 Prior achievement model 

6 Super biased model 

Source: Estimates by author based on data from the High School and Beyond study, 1980 and 1982. 

Notes: Estimated standard errors are reported only for estimator 1 A, since the estimates vary only slightly across the different estimators. 
The estimates reported in this table were drawn from the complete model estimates reported in Tables 6, A-7, and A-8. 

a The sophomore math test coefficient is fixed at a value of 1.0 in the simple difference equation estimator. 
The sophomore math test coefficient is fixed at a value of 0.0 in the super biased model. 

' This estimate is intended to illustrate the implicit level of bias caused by replacing T, with proxy variables. The procedure used to 
construct this estimate is discussed in endnote 46. 
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correction (#4), the prior achievement proxy model (#5), and the super biased model (#6)-perform 

atrociously within the context of my curricular model of mathematics learning. With respect to 

estimates of 82, these estimators deviate radically from the simple 2SLS estimate of 0.95. The prior 

achievement proxy and super biased models are particularly bad: the implied value of O2 in the proxy 

model is 0.430 and the imposed value of 6, in the super biased model is, of course, zero.& As 

expected, these estimators also yield estimates of curricular effectiveness that are severely distorted. 

The calculus coefficient, in particular, is terrifically sensitive to incomplete control for prior 

achievement, as is the coefficient on foreign language coursework. In the super biased model, for 

example, the calculus coefficient is inflated by a factor of 590 percent and the foreign language 

coefficient is inflated by a factor of 1,114 percent over the simple 2SLS coefficients (Table 6). In the 

prior achievement proxy model, the comparable figures are 239 percent and 388 percent, 

respectively. 

For future studies that may lack the requisite data to use one of the EV or 2SLS estimators, it 

may be helpful to note that if we believe that foreign language instruction makes no contribution to 

mathematics learning, a hypothesis that is confirmed by our 2SLS estimates, the foreign language 

coefficient actually is a very sensitive measure of model misspecification. In the present context, the 

alternative least squares estimates (aside from the simple difference equation) are emphatically 

rejected by this "specification test. " 

Summary 

In this section I demonstrated the importance of adequately controlling for prior mathematics 

achievement when estimating the value-added contribution of high school coursework to mathematics 

proficiency. Moreover, I found that apparently slight imperfections in measured prior achievement 

dramatically affected estimates of curricular effectiveness. I successfully demonstrated the merits of 
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the structural 2SLS estimator that was discussed in Section IV and found that alternative EV estimates 

were remarkably similar to 2SLS estimates. It would be interesting in future studies to see if EV 

estimators yield statistical results that are close to estimates that do not depend on external estimates 

of the level of measurement error. 

My results suggest that empirical studies of curricular effectiveness must be based on 

longitudinal outcome data. The estimators that were based only on senior mathematics achievement 

were found to generate quite unsatisfactory results. This means that large and expensive data bases 

such as the National Assessment of Educational Progress are not useful for exploring the determinants 

of achievement growth. Since explorations of this type are of vital importance, it seems obvious that 

greater national attention should be given to developing longitudinal data bases that, like the High 

School and Beyond study, include extensive achievement, student, and school-level data. 

The next section evaluates and interprets the empirical estimates obtained using the 2SLS 

estimator. The estimates from the EV estimator were quite similar and therefore are not discussed. 

VI. MODEL ESTIMATES FOR ACADEMICALLY DISADVANTAGED AND ADVANTAGED 
STUDENTS 

The objectives of this section are to: (1) assess the extent to which mathematics learning is 

substantial in courses other than traditional mathematics courses, in particular, math-related vocational 

education, appliedlvocational math, and math-related science; (2) estimate the extent to which the 

effectiveness of mathematics and math-related courses varies among different student groups; and (3) 

assess the principle that mathematics can be learned in an applied context--for example, in a science 

lab, or in a vocational workshop. 

In order to explore the possible differential effectiveness of courses, I present separate 

estimates of the 2SLS model for college-bound and non-college-bound students and for students 
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classified into sophomore math proficiency triptiles (thirds). These two variables were used to stratify 

the student population because previous studies have shown that they are the two most important 

predictors of math enrollment decisions. Students are classified into math proficiency triptiles on the 

basis of their predicted rather than actual sophomore math score in order to avoid inducing truncation 

(or selection) bias into the estimates for each triptile."' This is necessary because predicted rather 

than actual prior achievement appears in the second stage of the 2SLS estimator. If prior achievement 

were measured without error, incidentally, it would be perfectly legitimate to stratify the sample on 

the basis of actual prior achievement, as long as this variable is included as an explanatory variable. 

As indicated in Appendix Table A-5, the sophomore math regression used to predict sophomore math 

scores explains a large share (55 percent) of the variable's "usable" variance-its reliability is 87 

percent, as indicated in Appendix Table A-1. If otherwise, it would be a poor variable for separating 

the population into distinctly different groups. 

Separate estimates for college-bound students and all students are presented in Table 10. m e  

comparable estimates for noncollege-bound students were given in Table 6.) Estimates by math 

triptiles are given in Table 11. These estimates are based on the simple 2SLS estimator (estimator 

1A). Virtually identical results were obtained from using a general 2SLS estimator that includes prior 

science and verbal achievement as well as prior math achievement (estimator 1B). These alternative 

estimates are contained in Appendix Tables A-9 and A-10. 

As indicated in Tables 10 and 11, the evidence that mathematics skills can and are being 

learned outside of traditional mathematics courses is striking. Although the specific estimated effects 

vary across population groups (in part, due to finite sample variation), specific vocational math, 

applied math, and chemistrylphysics all contribute substantially to the development of mathematics 

proficiency, particularly for the top two triptiles. In fact, for the middle triptile, math-related science 

is nearly 50 percent as productive as typical intermediate to advanced math courses in promoting 



TABLE 10 
Estimates of Simple 2SLS Model of Math Gain 
for College-Bound Students and AM StudenM 

Right-Hand-Side Variable 
All Students 

Coeff. Std. E m r  
Colleee-Bound Students 

Coeff. Std. Ermr 

Sophomore math test 

Credits in eleventhlhvelfth grade 
Basic math 
General math 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Algebra 2 
Precalculus 
Calculus 

Specific vocational math 
Applied math 

Chemistrylphysics 
Biologylsurvey science 

Math-related voc. ed. 
Non-math-related voc. ed. 

Englishlsocial studies 
Foreign languages 
F i e  arts 
Personal and other 

Graduation indicator 
Female 
Black 
Asian 
Hispanic 

Urban 
Suburban 
Northeast 
West 
South 

Constant 

Sample size 

Source: Estimates by author based on data from the High School and Beyond study, 1980 and 1982. 
'Fit-stage results for each group are reported in an appendix available from the author. The variables included in each 
first stage are identical to those listed in Appendix Table A-6. 
'Endogenous variables subject to rnensurcrncnt error. 



TABLE 11 
Estimates of Simple 2SLS Model of Math Gain for 

Each Predicted Sophomore Math Test Triptile' 

Right-Hand-Side 
Variable 

Lower Third Middle Third U~uer  Third 
Std. Std. Std. 

Coeff. Error Coeff. Error Coeff. Error 

Sophomore math test? 

Credits in eleventhltwelfth grade 
Basic math 
General math 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Algebra 2 
Precalculus 
Calculus 
Specific voc. math 
Applied math 
Chemistrylphysics 
Biologylsurvey science 
Math-related voc. ed. 
Non-math-related voc. ed. 
Englishlsocial studies 
Foreign languages 
Fine arts 
Personal and other 

Graduation indicator 
Female 
Black 
Asian 
Hispanic 
Urban 
Suburban 
Northeast 
west 
South 
Constant 
R-square (T,-T,) 
Sample size 

Source: Estimates by author based on data from the High School and Beyond study, 1980 and 1982. 
'First-stage results for each triptile are reported in an appendix available from the author. The variables included in 
each first stage are identical to those listed in Appendix Table A-6. Triptile samples are described in the text. 
bEndogenous variables subject to measurement error. 
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math-skills development. The applied math courses are even more productive. For the top two 

triptiles, specific vocational and applied math courses contribute from 1.1 to 2.4 points to 

achievement growth. 

The evidence for the lower triptile provides modest support for the notion that applied courses 

contribute to math achievement, although the specific pattern of coefficients differs somewhat. In 

particular, math-related vocational education makes an important contribution to math learning for this 

group. As one would expect, the effect of a single math-related vocational course (0.369) is less than 

the effect of a traditional math course; for example, the prealgebra coefficient is 1.749 for this group. 

A more informative comparison, however, should take into account the fact that students in this group 

take substantial amounts of vocational education, in fact, 7.7 times as much vocational education as 

mathematics in grades eleven and twelve (see Table A-4). Thus, the cumulative effect of enrollments 

in math-related vocational courses could be quite substantial. If, for example, students take two 

credits of math-related vocational education in eleventh grade and three credits of math-related 

vocational education in twelfth grade-a typical enrollment pattern for a vocational concentrator-the 

gain in math achievement from these courses alone would amount to 1.35 points.48 In fact, the 

estimates suggest that a portfolio of five credits of math-related vocational education and two applied 

math credits would raise math achievement for the lower third by 3.2 points, almost four times their 

actual gain of 0.85 points." Additional enrollments in math-related science or traditional 

mathematics could, of course, add substantially to this total. Indeed, Table 11 indicates that 

prealgebra, algebra 1, geometry, and algebra 2 are just as effective for students in the lower triptile as 

for those students in the top two triptiles. However, the effectiveness of math-related vocational 

education is limited to non-college-bound students (Table 6) and students in the lower triptile. This 

implies that the mathematical content of these courses is, at present, rather elementary. 
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At face value, the estimates indicate that specific vocational math provides no contribution to 

math proficiency for non-college-bound students and students in the lowest triptile. The effectiveness 

of applied math for these students is stronger (about 0.65), but still less than the estimates for college- 

bound students (Table 10). These estimates suggest that noncollege-bound students may be enrolled 

in different types of specific vocational and applied math courses than college-bound students. In 

particular, the applied math courses taken by non-college-bound students may be less mathematically 

challenging than the applied math courses taken by college-bound students. 

One puzzling aspect of Tables 10 and 11 is the fact that the estimated effectiveness of 

upper-level courses--calculus, chemistry/physics, precalculus, and algebra 2--is lower for the top 

triptile than for the middle triptile and lower for college-bound students than for non-college-bound 

students. This result could be an artifact due to the fact that the top triptile is more likely to have 

students who received a perfect or near-perfect test score at the end of grade 12. One way to 

examine this possibility is to toss out the top 10 percent of the sample, based on the predicted 

sophomore math score. Table 12 presents estimates for the group in the fiftieth to ninetieth 

percentiles. With the top 10 percent excluded, I find, as surmised, that the coefficients for the 

advanced courses listed above jumped to levels quite comparable to estimates obtained for the middle 

third. 

VII. CONCLUSION 

My analysis demonstrates, as expected, that participation in mathematics courses significantly 

enhances mathematics proficiency. This finding lends support to the common sense recommendation 

in A k  that high school students should be required to take additional mathematics 

courses. But, the analysis also demonstrates that the development of mathematics skills is substantial 

in certain kinds of vocational-technical courses, quantitatively oriented science courses such as 



TABLE 12 
Estimates of Simple 2SLS Model of Math Gain for Students with Predicted Sophomore 

Math Scores between the 50th and 90th Percentiles' 

Right-Hand-Side Variable Coefficient Standard Error 

Sophomore math testb 

Credits in eleventhltwelfth grade 
Basic math 
General math 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Algebra 2 
Precalculus 
Calculus 
Specific vocational math 
Applied math 
Chemistrylphysics 
Biologylsurvey science 
Math-related voc. ed. 
Non-math-related voc. ed. 
Englishlsocial studies 
Foreign languages 
Fine arts 
Personal and other 

Graduation indicator 
Female 
Black 
Asian 
Hispanic 

Urban 
Suburban 
Northeast 
West 
South 

Constant 

Sample size 

Source: Estimates by author based on data from the High School and Beyond study, 1980 and 1982. 
aFirst-stage results for each group are reported in an appendix available from the author. The variables 
included in each first stage are identical to those listed in Appendix Table A-6. 
bEndogenous variables subject to measurement error. 
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chemisuy and physics, and applied math courses such as business and consumer mathematics. In 

other words, learning mathematics in an 9 ~ 1 , l i a  context is a viable alternative or complement to 

enrolling in traditional mathematics. This finding is particularly important for non-college-bound and 

academically disadvantaged students, who tend to take the minimum amount of required mathematics 

but substantial amounts of vocational education. It is also important for college-bound students, a 

group that actually takes more vocational education than mathematics in high school. The estimates 

suggest, however, the need to improve the mathematical rigor of the math-related vocational courses 

and specific vocational math courses taken by non-college-bound students. 

This suggests that the next wave of academic reforms should encourage svstemic reform of 

much of the high school curriculum, in particular, vocational education, science, and mathematics. 

The current reforms implicitly and mistakenly assume that mathematics instruction is the sole 

province and responsibility of high school mathematics departments, whereas the empirical results 

reported in this paper demonstrate that vocational education and science could be important vehicles 

for teaching mathematics. Although the empirical findings of this study pertain only to the 

development of mathematics skills, it is plausible that the more general principle is also true, namely 

that academic skills such as communications, problem solving, and mathematics can be learned in an 

applied context, outside of traditional English and mathematics courses. If so, future academic 

reforms should consider the extent to which subjects such as vocational education, science, fine arts, 

and social studies can extend, reinforce, and motivate interest in academic skills that have traditionally 

been acquired primarily in English and traditional math courses. Such reforms will undoubtedly 

prove more difficult to design and implement than simply changing high school graduation 

requirements. However, given the fact that minimum graduation requirements in mathematics and 

science have not risen above two courses (in each area) in the vast majority of states, it would be 
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prudent to broaden the arsenal of policy tools used to stimulate growth in academic competencies 

among high school students. 



TABLE A-1 

The Mean, Variance, and Estimated Reliability of 
the HS&B Sophomore Cohort Test Battery (Formula Scores) 

Number of Error All Students Non-College-Bound Students 
Test Test Items Variance' Mean Variance Reliability Mean Variance Reliability 

Sophomore test 
Mathematics 3 8 12.390 13.436 94.090 0.868 8.937 64.697 0.808 
Verbalb 40 10.768 16.146 86.75 1 0.876 11.834 60.058 0.821 

Reading 19 5.198 7.167 22.677 0.771 5.118 15.999 0.675 
Vocabulary 21 5.570 8.973 28.016 0.801 6.713 21.345 0.739 

Science 20 5 -570 9.255 19.945 0.721 7.663 17.646 0.684 
Writing' 17 5.290 8.810 24.701 0.786 6.711 22.790 0.768 
Civicsc 10 3.423 4.715 6.970 0.509 3.789 6.252 0.453 

Senior test 
Mathematics 
Verbalb 

Reading 
Vocabulary 

Science 
Writing 
Civicsc 

Test gain 
Mathematics 
Verbalb 

Reading 
Vocabulary 

Science 
Writing 
Civicsc 

Source: Estimates by author based on data from the High School and Beyond study, 1980 and 1982. 
"Estimates of the variance of measurement error for the sophomore and senior tests were obtained from Rock et al. 
(1985). They are based on Cronbach's coefficient alpha for formula scores. Estimates of the variance of measurement 
error for test gain were obtained by summing the sophomore and senior error variances; this procedure assumes that the 
measurement errors on the sophomore and senior tests are uncorrelated. 
bThe verbal test is the unweighted sum of the reading and vocabulary tests. 
These tests are presented here for the sake of completeness. They are not used in the analysis. 



TABLE A-2 
Average Course Enrollments in Grades Nine through Twelve by 

Graduation Status and Post-High School Plans 

High School High School 
Graduates1 Graduates1 

High School Non-College- College- All 
Dropouts Bound Bound Students Course 

Vocational education 
Math-related voc. 
Non-math-re1 ated 

All vocational courses 

Specific voc. math 
Applied math 

Mathematics 
Basic 
General 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Algebra 2 
Precalculus 
Calculus 

All math courses 

Science 
Survey 
Biology 
Chemistry 
Physics 

All science courses 

English 
. Social studies 

Fine arts 
Foreign languages 
Personal and other 

Total credits 
Sample size 



TABLE A 3  
Average Course Enrollments in Ninth and Tenth Grade 

Courses by Graduation Status and Post-High School Plans 

High School High School 
Graduates1 Graduates1 

High School Non-College- College- All 
Dropouts Bound Bound Students Course 

Vocational education 
Math-related voc. 
Non-math-related 

All vocational courses 

Specific voc. math 
Applied math 

Mathematics 
Basic 
General 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Algebra 2 
Precalculus 
Calculus 

All math courses 

Science 
Survey 
Biology 
Chemistry 
Physics 

All science courses 

English 
Social studies 
Fine arts 
Foreign languages 
Personal and other 

Total credits 
Sample size 



TABLE A-4 

Average Course Enrollments in Eleventh and Twelfth Grade 
Courses by Predicted Sophomore Math Test Triptiles 

Lower Middle upper All 
Third Third Third Students Course 

Vocational education 
Math-related voc. 
Non-math-related 

All vocational courses 

Specific voc. math 
Applied math 

Mathematics 
Basic 
General 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Algebra 2 
Precalculus 
Calculus 

All math courses 

Science 
Survey 
Biology 
Chemistry 
Physics 

All science courses 

English 
Social studies 
Fine arts 
Foreign languages 
Personal and other 

Total credits 
Sample size 



TABLE A-5 

Estimates of a Reduced-Form Sophomore Math Test Regression for All Students' 

Right-Hand-Side Variable Coeff. Std. Error 

Credits in eleventhltwelfth grade 
Basic math 
General math 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Algebra 2 
Precalculus 
Calculus 

Specific vocational math 
Applied math 

Chemistrylphysics 
Biologylsurvey science 

Math-related voc. ed. 
Non-math-related voc. ed. 

Englishlsocial studies 
Foreign languages 
Fine arts 
Personal and other 

Graduation indicator 
Female 
Black 
Asian 
Hispanic 

Urban 
Suburban 
Northeast 
West 
South 

(table continues) 



TABLE A-5 (continued) 

Right-Hand-Side Variable Coeff. Std. Error 

Credits in ninth grade 
Basic math 
General math 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Advanced math 

Specific vocational math 
Applied math 

Chemistrylphysics 
Biology 
Survey science 

Math-related voc. ed. 
Non-math-related voc. ed. 

Englishlsocial studies 
Foreign languages 
Fine arts 
Personal and other 

Math GPA in ninth grade 
English GPA in ninth grade 
Soc. studies GPA in ninth grade 
For. lang. GPA in ninth grade 
Science GPA in ninth grade 
Other courses GPA in ninth grade 

Expected postsecondary 
vocational educationb 

Constant 
R-square 
Sample size 

"This equation is identical to the first-stage sophomore math test equations used throughout this paper. 

'Years of postsecondary vocational education that the student expects to obtain. 



TABLE A-6 

first-Stage Estimates of the General 2SLS 
Model of Math Gain for Non-College-Bound Students' 

Sophomore Math Sophomore Science Sophomore Verbal 
Test Regression Test Regression Test Regression 

Std. Std. Std. 
Coeff. Error Coeff. Error Coeff. Error 

Right-Hand-Side 
Variable 

Credits in eleventhlhvelfth grade 
Basic math 
General math 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Algebra 2 
Precalculus 
Calculus 

Specific vocational math 
Applied math 

Chemistrylphysics 
Biologylsurvey science 

Math-related voc. ed. 
Non-math-related voc. ed. 

Englishlsocial studies 
Foreign languages 
Fine arts 
Personal and other 

Graduation indicator 
Female 
Black 
Asian 
Hispanic 

urban 
Suburban 
Northeast 
West 
South 

(table continues) 
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TABLE A-6 (continued) 

Right-Hand-Side 
Variable 

Sophomore Math Sophomore Science Sophomore Verbal 
Test Reeression Test Regression Test Regression 

Std. Std. Std. 
Coeff. Error Coeff, Error Coeff. Error 

Credits in ninth grade 
Basic math 
General math 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Advanced math 

Specific vocational math 
Applied math 

Chemistrylphysics 
Biology 
Survey science 

Math-related voc. ed. 
Non-math-related voc. ed. 

Englishlsocial studies -0.449 (0.176) -0.414 (0.099) -0.859 (0.182) 
Foreign languages -1.021 (0.501) 0.341 (0.281) 0.828 (0.518) 
Fine arts 0.120 (0.199) 0.079 (0.112) 0.292 (0.206) 
Petsonal and other -0.086 (0.194) -0.023 (0.109) 0.050 (0.200) 

Math GPA in ninth grade 1.113 (0.110) 0.264 (0.061) 0.107 (0.113) 
English GPA in ninth grade 0.288 (0.120) 0.065 (0.067) 0.741 (0.124) 
Soc. studies GPA in ninth grade 0.108 (0.101) 0.112 (0.056) 0.493 (0.104) 
For. lang. GPA in ninth grade 0.925 (0.198) 0.027 (0.111) 0.404 (0.204) 
Science GPA in ninth grade 0.343 (0.124) 0.306 (0.069) 0.437 (0.128) 
Other courses GPA in ninth grade 0.247 (0.134) 0.155 (0.075) 0.147 (0.138) 

Expected postsecondary 
vocational educationb 0.599 (0.115) 0.391 (0.065) 0.713 (0.119) 

Constant 6.551 (0.605) 7.467 (0.339) 10.568 (0.625) 

Sample size 4,421 4,421 4,421 

'This equation is identical to the first-stage sophomore math test equations used throughout this paper. 
byears of postsecondary vocational education that the student expects to obtain. 



TABLE A-7 
Estimates of Alternative Biased Models of Determinants of Math Gain for Non-College-Bound Students 

Super Biased 
Flooded Difference Senior Math Test 

Simple Difference Model, Including Model, Excluding 
Model with 3 Soph. Tests Proxies for 
Omitted with Measurement Omitted Soph. 
Sovh. Math Test E m r  Imored Math Test 

Std. Std. Std. 
Coeff. E m r  Coeff. E m r  Coeff. E m r  

Sophomore math tesr 
Sophomore science tesr 
Sophomore verbal test' 

Credits in eleventhltwelfth grade 
Basic math 
General math 
Computer math 
Prealgebra 
Algebra 1 
Geomefry 
Algebra 2 
Precalculus 
Calculus 

Specific vocational math 
Applied math 

Chemistrylphysics 
Biologylsurvey science 

Math-related voc. ed. 0.161 (0.100) 0.388 (0.092) 0.988 (0.123) 
Non-math-related voc. ed. -0.119 (0.049) -0.109 (0.045) -0.082 (0.060) 

Englishlsocial studies 
Foreign languages 
F i e  arts 
Personal and other 

Graduation indicator 
Female 
Black 
Hispanic 
Asian 

Suburban 
urban 
Northeast 
west 
South 

Constant 0.555 (0.349) 1.293 (0.363) 7.720 (0.430) 

Sample size 4,448 4,421 4,448 

'Endogenous variables subject to measurement error. 



TABLE A-8 

Estimate of the Prior Achievement Proxy Model for Non-College-Bound Students 

Right-Hand-Side Variable Coeff. Std. Error 

Credits in eleventhltwelfth grade 
Basic math 
General math 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Algebra 2 
Precalculus 
Calculus 

Specific vocational math 
Applied math 

Chemistrylphysics 
Biologylsurvey science 

Math-related voc. ed. 
Non-math-related voc. ed. 

Englishlsocial studies 
Foreign languages 
Fine arts 
Personal and other 

Graduation indicator 
Female 
Black 
Asian 
Hispanic 

Urban 
Suburban 
Northeast 
West 
South 

(table continues) 
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Table A-8 (continued) 

Right-Hand-Side Variable Coeff. Std. Error 

Credits in ninth grade 
Basic math 
General math 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Advanced math 

Specific vocational math 
Applied math 

Chemistrylphysics 
Biology 
Survey science 

Math-related voc. ed. 
Non-math-related voc. ed. 

Englishlsocial studies 
Foreign languages 
Fine arts 
Personal and other 

Math GPA in ninth grade 
English GPA in ninth grade 
Soc. studies GPA in ninth grade 
For. lang. GPA in ninth grade 
Science GPA in ninth grade 
Other courses GPA in ninth grade 

Expected postsecondary 
vocational education 

Constant 
R-square 
Sample size 



TABLE A-9 
Estimates of General 2SLS Model of Math Gain for Non-College-Bound 

Students, College-Bound Students, and All Students' 

Right-Hand-Side 
Variable 

Non-College-Bound College-Bound 
Students Students All Students 

Std. Std. Std. 
Coeff. Error b f f .  Error Coeff. Error 

Sophomore math tesr 
Sophomore science tesr 
Sophomore verbal test' 
Credits in eleventhltwelfth grade 

Basic math 
General math 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Algebra 2 
Precalculus 
Calculus 
Specific voc. math 
Applied math 
Chemistrylphysics 
Biologylsurvey science 
Math-related voc. ed. 
Non-math-related voc. ed. 
Englishlsocial studies 
Foreign languages 
Fine arts 
Personal and other 

Graduation indicator 
Female 
Black 
Hispanic 
Asian 
Suburban 
Urban 
Northeast 
West 
South 
Constant 
R-square CT,-T,) 
Sample size 

'First-stage results for each group are reported in an appendix available from the author. The variables included in 
each first stage are identical to those listed in Appendix Table A-6. 
bEndogenous variables subject to measurement error. 



TABLE A-10 
Estimates of General 2SLS Model of Math Gain for 

Each Predicted Sophomore Math Test Triptile' 

Right-Hand-Side 
Variable 

Lower Third Middle Third U ~ w r  Third 
Std. Std. Std. 

Coeff. Error Coeff. Error Coeff. Error 

Sophomore math test 
Sophomore science testb 
Sophomore verbal testb 

Credits in eleventhltwelfth grade 
Basic math 
General math 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Algebra 2 
Precalculus 
Calculus 
Specific voc. math 
Applied math 
Chemistrylphysics 
Biologylsurvey science 
Math-related voc. ed. 
Non-math-related voc. ed. 
Englishlsocial studies 
Foreign languages 
Fine arts 
Personal and other 

Graduation indicator 
Female 
Black 
Asian 
Hispanic 
Urban 
Suburban 
Northeast 
West 
South 
Constant 
R-squre V,-T,) 
Sample size 

'First-stage results for each triptile are reported in an appendix available from the author. The variables included in 
each first stage are identical to those listed in Appendix Table A-6. Triptile samples are described in a note in 
Appendix Table A4. 
bEndogenous variables subject to measurement error. 



TABLE A-11 
Estimates of General 2SLS Model of Math Gain for Students with Predicted Sophomore 

Math Scores between the 50th and 90th Percentilesa 

Right-Hand-Side Variable Coefficient Standard Error 

Sophomore math testb 
Sophomore science testb 
Sophomore verbal testb 

Credits in eleventhltwelfth grade 
Basic math 
General math 
Computer math 
Prealgebra 
Algebra 1 
Geometry 
Algebra 2 
Precalculus 
Calculus 
Specific vocational math 
Applied math 
Chemistrylphysics 
Biologylsurvey science 
Math-related voc. ed. 
Non-math-related voc. ed. 
Englishlsocial studies 
Foreign languages 
Fine arts 
Personal and other 

Graduation indicator 
Female 
Black 
Asian 
Hispanic 

Urban 
Suburban 
Northeast 
West 
South 

Constant 11.280 (1.498) 

Sample size 4,368 

=First-stage results are reported in an appendix available from the author. The variables included in the 
first stage are identical to those listed in Appendix Table A-6. 
bEndogenous variables subject to measurement error. 
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Endnotes 

'For college-bound students, an additional two years of foreign language was recommended. 

m e  three-year social studies requirement was implemented in twenty-seven states, while four 

states implemented the 112-year computer science requirement (Education Commission of the States, 

1987). 

'Hanushek (1986) reviewed 147 different educational production function studies published since 

the Coleman Report in 1966. As indicated in Table 8 of his paper, of the 112 studies that estimated 

the effect of studenttteacher ratios on test performance, only 9 reported statistically significant, 

positive coefficients, while 14 reported statistically significant, negative coefficients. Similar results 

were observed for teacher education, teacher salaries, per-pupil expenditures, and teacher experience, 

although in the latter case, statistically significant, positive coefficients were reported in 33 out of 109 

studies. See also Hanushek (1981). 

'Teacher quality may be considered context specific if, for example, the types of skills best suited 

to teaching an applied mathematics course to low-achieving students differ from the skills best suited 

to teaching a trigonometry course to college-bound students. As pointed out by Hanushek (1986), if 

teacher quality is largely context specific, rather than universal, standard educational production 

functions will be unable to capture the sources of teacher productivity. 

'Critiques of the original Coleman, Hoffer, and Kilgore analysis (together with their replies) can 

be found in the Harvard Education Review (November 1981) and in two issues of Sociolow of 

EBhcAimd (AprillJuly 1982 and October 1983). Greeley (1982) conducted a similar analysis that 

examined the differential effects of Catholic and public schools on black and Hispanic students. Noel1 

(1982) and Murnane, Newstead, and Olsen (1985) also conducted analyses using only the senior 

cohort. They attempted to control for unobserved differences in public and private school students 

using econometric techniques designed to correct for selection bias. 
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These statistical methods are evaluated in Section IV. 

'Alexander and Pallas (1985) point out that the estimated private school advantage is small 

relative to the accumulated variation in test scores up through sophomore year-less than 0.1 standard 

deviation. This comparison is misleading, however, since the estimated private school advantage 

pertains to the growth in test scores over two years. Over this interval, Hoffer, Greeley, and 

Coleman (1985) estimate that Catholic school students learn the equivalent of three grades' worth of 

material, compared to two grades' worth for public school students, on average. 

%offer, Greeley, and Coleman (1985) report (see their Table 2.8) that Catholic school students 

take an average of 2.74 advanced math courses, compared to 2.08 courses taken by public school 

students. The authors argue that the higher advanced math enrollments in private school are, in fact, 

an outcome of private school attendance. Goldberger and Cain (1982), in their critique of the earlier 

Coleman, Hoffer, and Kilgore (1982) report, argue the opposite-that enrollment and high school 

track decisions are determined primarily, if not exclusively, by nonschool factors such as unmeasured 

student ability and family background. This is clearly an important area for further research. 

90ne exception is the research in the First International Mathematics Study, also discussed in 

Husen (1972). 

''The authors analyzed the effects of total semesters of coursework in algebra, advanced algebra, 

geometry, trigonometry, and calculus. Similar results were obtained, they report, when business, 

general math, prealgebra, and other math courses were also included in the total. 

"Fetters, Stowe, and Owings (1984) compared transcript and self-reported course enrollments, 

using the HS&B sophomore data base. Assuming that the transcript data were correct, they found 

that self-reported enrollments in mathematics tended to be somewhat overstated with a reliability of 

only 70 percent. 
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'ZIn fact, the same authors in a paper cited earlier (Alexander and Pallas, 1985) criticized Hoffer, 

Greeley, and Coleman (1985) for failing to correct for measurement error in the sophomore (HS&B) 

tests. Indeed, estimates in the two papers differed, in large part, because Alexander and Pallas (1985) 

used a statistical technique designed to correct for measurement error in the sophomore tests while 

Hoffer, Greeley, and Coleman (1985) ignored the problem. Section IV presents a detailed analysis of 

alternative estimators designed to correct for measurement error. 

"See Alexander and Pallas (1984) for an analysis of the effectiveness of alternative course 

patterns. 

"The proportionate increase in the variance of parameter estimates due to measurement error in 

ATi is given by reciprocal (1 - unreliability ratel(1-R2)) = reciprocal (0.2391), given that R2 = 0.08 

and the unreliability rate is 0.70. 

"Robin S. Horn, Mark Braddock, and I prepared the classification of math and non-math-related 

vocational courses for the National Assessment of Vocational Education. Becky Hayward and Nancy 

Adelman provided helpful comments. 

16All estimates reported in this paper were computed using the HS&B transcript sample weight, 

TRWT. 

''A one Carnegie credit course typically meets for five fifty- to fifty-five-minute periods per week 

for an entire school year. 

''Failed courses, which represented less than 5 percent of all enrollments, were included because 

the empirical evidence suggested that these courses made some contribution to growth in math test 

scores. 

'Qock et al. (1985) found that the HS&B science test was highly correlated with both their 

mathematics and verbal factors. In a model that includes the HS&B math, composite verbal, and 
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science tests, it may be reasonable to interpret the science test as a measure of math skills not 

explicitly measured in the mathematics test andlor a measure of mathematics aptitude. 

PAs explained in Section VI, this was done so as to avoid introducing bias, due to sample 

truncation, into the 2SLS estimates presented in that section. 

21All equation systems of this type will include an equation similar to (4.1) unless all of the prior 

determinants of achievement, external to the family, are measured. 

Z?he fact that high school spans four years is therefore a poor reason to study the gain in 

achievement over a four-year period, rather than over four consecutive one-year periods. 

PThe papers discussed earlier by Welch, Anderson, and Harris (1982), Schmidt (1983), and 

Coleman, Hoffer, and Kilgore (1982) rely on the prior achievement proxy model. As already 

mentioned, this probably accounts for the inflated coefficients in mathematics courses in the first two 

studies. 

%is conclusion is also based on the implicit assumption that enrollment decisions are influenced 

by annually (or more frequently) updated student knowledge of their own achievement levels. 

=I argued earlier that measurement error in their prior test score also might account for the 

estimated pattern of coefficients. 

%e parameter m is always 2 0 and 5 1, since the largest value of R2 is l-A and the minimum 

value of A and RZ is zero. 

nAs indicated in equations (4.10) and (4.16), the expected coefficient on course enrollments (XJ 

in the prior achievement proxy model is (cu, + e2uJ and in the model with a fallible measure of T, is 

(az + me,tlJ. The former model exhibits less bias if %< mq2. Define C as the matrix of 

coefficients from the regression of vector XI on vector x2, given 2. Then q2 can be related to .~r, by 

considering the consequences of dropping XI from the model: 7, = ?r, + Cu,. The prior 

achievement proxy model exhibits lower bias if ?r, < m(u2 + Ca,) or, equivalently, if u2 < 
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Cx,rn/(l-m). Thus the prior achievement proxy model exhibits lower bias if X, and X2 are highly 

correlated (as reflected in C) and if measurement error is high (as reflected in m). 

9 n  the latter case, if errors in measurement are correlated, it will also be necessary to adjust for 

inflated covariances among the variables measured with error. Often, however, it is not unreasonable 

to assume that measurement errors are uncorrelated, which eliminates the need to obtain estimates of 

the correlation structure of errors. 

"See Allen and Yen (1979). 

%is follows because a: = Varm - Covp, T') = Varp* + u,) - Cov(T* + u,, T* + UJ = 

+ ~ where T* = true test performance, and u, and u2 are independent measurement errors with 

2 
equal variance 0,. Although sampling variation could cause small differences between the variances 

of T and T', large differences could suggest that the two tests are measuring different things. 

"Since average prior achievement is higher among private school students than public school 

students, upward bias in the coeff~cient on prior achievement (due to overcorrection for measurement 

error) would cause downward bias in the estimated private school effect. Jencks (1985) also criticizes 

Alexander and Pallas (1985) for including only one prior achievement score on the right-hand side of 

their achievement equation. 

32Since tests were administered to the students in the HS&B data during the spring of their 

sophomore and senior years, coursework taken during the tenth grade could arguably make a small 

contribution to the growth in achievement between tests, contrary to the assumption made in the text. 

As a precautionary step, therefore, I do not actually use tenth grade enrollments in predicting T,. 

This step ensures that the estimates are consistent, with only a small loss in efficiency. 

"Additional exclusion restrictions on the elements of Z that belong in equation (4.5) could, if 

correct, also help provide independent variation in TI, thereby increasing the efficiency of the 

estimates. 
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%is characteristic sharply differentiates the high school experience from the typical elementary 

school experience, in which students are taught predominantly by a single teacher. See Hanushek 

(1971) for an empirical study of the effectiveness of elementary school teachers. 

Wrhe so-called residual growth estimator is an ad hoc two-step estimator that, in my view, has no 

theoretical justification. In step one, T2 is regressed on T,. In step two, the residual from this 

equation, say T2 - 6, - PT, , is used as the dependent variable in an equation that includes 

Z and 4. This estimator is exactly equivalent to imposing the value 8 2  = p in estimating equation 

(4.5). In practice, this estimator may outperform the estimator with uncorrected measurement error 

(#4) because: (1) the downward bias in 6 due to measurement error in T, is not exacerbated by 

multicollinearity (as in estimator #4) and (2) the exclusion of Z and X2, variables that are positively 

correlated with T,, creates a positive bias in 6. There is absolutely no guarantee, however, that the 

negative and positive biases in p (as a surrogate estimate of 8,) exactly offset each other. 

course, in the unlikely event that the true value of 8, were somehow known, a least squares 
\ 

estimator that imposed the true value of 8, would generate more efficient estimates than the 2SLS 

estimator. In addition, if 8, were "approximately known" (that is, known with a reasonably high 

degree of precision), an estimator that imposed the approximately known value of 6, could generate 

parameter estimates with lower mean squared error than the 2SLS estimator. In effect, a small 

amount of bias would be deliberately introduced in return for greater precision. Unfortunately, our 

ex ante uncertainty about 8, is rather large. In fact, our consistent estimate of 8, differs radically 

from the biased estimates of 8, produced in most previous studies. 



3'The prior achievement proxy model does not directly fit within the "family" of models discussed 

in the text because it includes an additional vector of right-hand-side variables: X,. However, an 

equivalent value (or values) of 8 is implicitly defined by equating the biased coefficient on 3 (say, 

a) with its theoretical value from equation (5.1): a, + (8, - 6)q,. Then, 6 = 0, - (a - a&. 

T 'he  first-stage equation includes the following instrumental variables: eleventhltwelfth grade 

enrollments (XJ, ninth grade enrollments, demographic characteristics (Z), and ninth grade 

gradepoint averages (GPAs) in math, English, social studies, foreign language, science, and other 

courses, and a measure of postsecondary educational expectations. Similar, but less precise, estimates 

were obtained with the GPA and expectations variables removed. 

%is conclusion is based on the assumption that all mathematics learning is school based. If 

some learning of mathematics takes place in nonschool experiences, and the incidence of nonschool 

mathematics learning is related to math ability, the coefficient on prior math achievement (8J reflects 

both the negative depreciation of skills and the positive contribution of nonschool learning that is 

predicted by T,. 

%ese formulas are based on the assumption that math learning depends on Z, X,, and prior 

math achievement. Empirical results presented later in this section indicate that this hypothesis cannot 

be rejected. More complicated formulas could be used to retrieve estimates of X if additional tests 

(measured with error) were included in the model. 

41More fundamentally, this study points to the need to collect and validate more extensive 

longitudinal data on mathematics proficiency, tied to extensive school and student-level data and high 

school transcript data. From a psychometric standpoint, the models presented in this study provide a 

new and potentially powerful mechanism for validating alternative tests of mathematics achievement 

and aptitude. 
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4?R2 as a percentage of the usable variance of (T2 - T,) is given by reported R2 divided by the 

reliability of (T, - T,) (0.06110.296 = 0.206). 

43Fetters, Stowe, and Owings (1984) report that the reliability of the mother's education variable 

is over 80 percent. I did not include student-reported parental income as an explanatory variable 

because of its low reliability, 50 percent, as estimated by Fetters and his colleagues. 

"The only major difference occurs in the estimated calculus coefficients: 1.64 in both 2SLS 

models versus 1.94 in both EV models. Given that the standard error on each of these coefficients is 

about 1.34, these differences are obviously not statistically significant. 

Qese empirical results were drawn from Tables 6, 8, A-7, and A-8. 

&As indicated in endnote 37, an illustrative estimate of 8 is given by 

where â  is an estimated coefficient from the prior achievement proxy model (I have arbitrarily used 

the calculus coefficient), b2 and 6, (calculus) are consistent 2SLS estimates, and ij2 is the calculus 

coefficient from the auxiliary T, regression in Table 7. 

47See Hausman and Wise (1977) or Maddala (1983) for a discussion of truncation bias. The 

estimates used in predicting sophomore math achievement are presented in Appendix Table A-5. 

%is prediction, which cannot be derived from Table 11, is based on a model that allows for and 

finds modest diminishing returns in the effectiveness of math-related vocational education. 

4The actual gain of 0.85 points is reported in a table that is not in the present paper. 
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