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Abstract 

This paper deals with statistical methods for analyzing samples of data in which individuals 

move alternately between two discrete states. The intended application is to people suffering 

repeated spells of homelessness. We model the history of an individual as an alternating renewal 

process and then use this stochastic framework to pose and answer a number of questions. We 

show how to efficiently analyze data gathered by randomly sampling the occupants of each state 

and by sampling people changing state--becoming homeless, for example. We offer a partial 

solution to the question of how best to design a survey of this state. Finally, we study how to 

handle data giving the state history of individuals over a period of time. In particular we show 

how an optimally designed sample of people observed for a brief period of time can be as 

informative as a random sample observed for a prolonged period. This latter result appears to 

promise significant economies in the design and analysis of surveys of the homeless and allied 

phenomena. 



1. Introduction. 

Homelessness is surely a phenomenon worthy of serious scientific study. This is par- 

ticularly so when those involved are children. Of the methods required for such a study, 

statistical analysis is central. The work reported here is a contribution to the development 

of effective methods for the statistical analysis of homelessness. 

Viewed purely as a statistical phenomenon,homelessness has three outstanding char- 

acteristics. It is binary; one is either homeless or one is not. It is rare; most people are 

never homeless. It is of variable duration; some spells of homelessness are brief, others pro- 

longed. These characteristics have implications both for the design of surveys of homeless, 

or potentially homeless, people, and for the statistical analysis of the results. It is these 

implications that we propose to explore. 

The present work originated out of a consideration of a survey of homeless women and 

children in New York city.' This survey gathered data on about twelve hundred women in 

the city who were pregnant or with children. About half of these women were obtained by 

sampling applicants for shelter at the city's Emergency Assistance Units. The remainder 

were sampled from the population of welfare recipients in the city. The information ob- 

tained from each woman consisted of a list of personal characteristics, which we shall refer 

to as coz~ariates. These were supplemented by taking from administrative records a partial 

history of each woman's previous shelter visits, if any. A number of questions naturally 

arise out this survey. What is a sensible family of models with which to analyse the data ? 

Was it a good idea to sample women in this way and are there better schemes ? Could one 

have done better by using different proportions of women from each of the two sampling 

modes ? 

The main, but not exclusive, focus of the present paper is on the analysis of the 

covariate data. We consider a family of models based on a view of homelessness as an 

alternating renewal process. The elements of the theory of such processes are sketched in 

section 2 of the paper. The principal advantage of this point of view is that it enables one 

to gain a clear understanding of a sampling scheme, such as that used in the New York 

study, in which some people are sampled while they are becoming homeless and others 

1 The authors of this paper wish to acknowledge the comments of C.F. Manski, discussant when 
the paper was presented at an IRP Workshop, and Renya Reed. 

s i c k m a n  et al. (1989). 



are sampled when they are not homeless. The principal disadvantage is that it is not 

an approach which readily allows the investigator to  model the effect of covariates which 

are changing over time. This latter is, however, a problem the solution to which is not 

well understood anywhere in the literature at  the time of writing. Moreover, the model is 

rather sensitive to misspecification due to  neglected heterogeneity. This exploration of the 

renewal model finds its main justification in the way it facilitates the study of the question 

of how to interpret and design sampling schemes for a two state process. A more flexible 

class of models is probably necessary for applied work designed to get accurate estimates 

of policy relevant parameters. 

In section 3 of the paper we apply the alternating renewal model to the problem of 

analysing the covariate information. Here we point out the connection between the analysis 

of covariate data gained by sampling an alternating renewal process and the problem of 

inference from choice or response based samples - called case/control samples in the 

biometric literature. In this section we identify a simple procedure for efficient estimation 

for a class of ways of sampling an alternating renewal process and give a result showing 

the equivalence of two apparently different estimators. We also consider the question of 

how best to sample such a process and we are able to add a little to the literature on this 

difficult question. Finally in this section we consider the question of how estimators are 

affected when the simplifying assumptions of the renewal model are violated in what seems 

a plausible way. 

In section 4 we examine some of the preceding questions when the data include not 

only the covariate information but also give: sections of the state history - the times of 

entrances to and exits from each state. Here we use the numerical values of parameters 

and actual covariate distributions taken from an alternating model fitted to  some Dutch 

labor market data. The principal issue examined here is the potential gains from sampling 

these data in various 'response-based' ways. 

It should be pointed out that the present enquiry is motivated by the problems posed 

by a rather special type of homelessness, that of women who move in and out of emergency 

shelter. Such women are readily counted and listed. It is therefore relatively easy to 

devise and analyse alternative schemes for sampling them. It may well be that for most 



homelessness, that of men or youths or childless women, the principal statistical problem 

is is precisely that of counting and listing the homeless. We do not address this question 

and we concede that in consequence our work may in fact may reasonably be regarded as 

missing the main statistical point, so far as much homelessness is concerned. 



2. Renewal Processes. 

2.1 Basic Theory. An ordinary renewal process is a sequence of independent and iden- 

tically distributed non-negative random variables, X1, X 2 , .  . . These quantities may be 

interpreted as the times between events, an event, or renewal, occurring at times X1, XI + 
X2, X1 + X2 + X3,.  . . Associated with any such process there are two sequences of random 

variables 

Nt, defined as the number of renewals occurring in (0, t).  

S, is the time until the r'th renewal. 

The common distribution of the {X,) will be taken, in what follows, to be absolutely 

continuous with probability density function f (x). 

A modified renewal process is defined as above except that the density of the first time, 

X I ,  namely f l (x) ,  may be different from that of the others, f ( t ) .  

An alternating renewal process (ARP) is a sequence of independent and identically 

distributed pairs of non-negative random variables TI, S1, T2, 5'2,. . . in which all T's and 

S's are stochastically independent. Tj can be interpreted as the time spent in the j'th visit 

to state 1, and Sj as the time spent in the j'th visit to state 2. The process is alternately in 

state 1 then in state 2. These times have absolutely continuous distributions with density 

functions gl ( t) ,  g2 ( 3 )  whose means are finite. 

Associated with an ARP which starts in state 1 are four sequences of random variables, 

Nl t ,  defined as the number of entrances to state 1 in (0, t) ,  and 

N2t, defined as the number of entrances to state 2 in (0,t). 

S1, is the time until the r'th entrance to state 1; S2, is the time until the r ' th entrance to 

state 2. Note that 

NZt if the process is in state 1 at t 
Nlt = 

NZt - 1 otherwise. 



This is because, for the process to be in state 1 at t ,  there must have been as many 

entrances to  state 1 as exits from it (entrances to 2). 

Putting X, = T, + S,, then {X,) is an ordinary renewal process with density function 

f ( x )  given by the convolution of gl(.) and g2(.). Similarly, putting X1 = TI, X, = ST-1 + 
T,, T > 1, then {X,) is a modified renewal process with f l  (x)  = gl(x); f (x )  = gl(x)  *g2(x). 

Let k,(x) be the probability density function, (pdf), of S,, T =, 1,2,  . . . and let an 

asterisk above any function denote its Laplace transform. Then from ( I ) ,  in view of the 

independence of the {X,), 

for the ordinary renewal process; 

for the modified renewal process; 

for the ARP starting in state 1 whose events are entrances to state 1, and 

for the ARP starting in state 1 whose events are entrances to state 2. 

The renewal function is H ( t )  = E[Nt], the expected number of renewals in (0, t). If 

K,(t) is the distribution function associated with k,(t), we have 



The second line follows because Nt < r if and only if S, > t so that 

It follows from (8) that the Laplace transform of H( t )  is 

since K:(s) = ( l /s)k, ' (s)  is the relation between the the Laplace transform of density and 

distribution functions. 

Concentrating on the ARP we shall derive the renewal function for entrances to state 

1 for a process which starts in state 1, which we shall denote by. H l ( t ) .  Using (6) we have 

after summing the geometric progression. Similarly, the renewal function for entrances to 

state 2 for a process which starts in state 1 has Laplace transform, using ( 7 ) )  

H l ( t )  and H2( t ) ,  which can be found by inversion of (10) and (ll),give the expected 

number of transitions into state 1 and 2 for a process which starts in state 1. A related 

important probability is that of the event that state 1 is occupied a t  any time t. This may 

be found by the following simple argument. As we saw above, for a process that starts in 

state 1, that state is occupied at  t if and only if Nlt = N2t. Let 6 = Nlt  - NOt + 1. Then 



6  = 1  if state 1  is occupied at t  and is zero otherwise. Thus 

P(6 = 1 )  = P (  state 1  occupied at t  given it was occupied at 0 )  = r l ( t )  

= E ( 6 )  

= E ( N 1 t )  - E ( N 2 t )  + 1  

( 1 2 )  = H l ( t )  - H 2 ( t )  + 1.  

Thus 

r ; ( s )  = H ; ( s )  - H ; ( s )  + 11s.  

While H l ( t )  and H 2 ( t )  may be calculated exactly, in principle, once the density func- 

tions gl and g2 are specified, the behaviour of these renewal functions for large values of t  is 

of interest. Their behaviour for large t  is determined by the behaviour of their transforms 

for s  close to zero.3 Since the Laplace transform is a moment generating function the sign 

of whose argument is reversed we can write g ; ( s )  = 1  - s p j  + 0 ( s 2 )  as s  -+ 0 ,  where pj  is 

the (finite) expectation T, ( j  = 1 )  or of S,  ( j  = 2) ,  we find from ( 1 0 )  

Here p  = p1 + p2. Formally inverting these expressions gives 

P1 lim r l ( t )  = - 
t-ao tL 

Proofs involve Tauberian theorems; see Feller (1966) ,  chapter 8. 



2.2 An ARP Model for Homelessness. Imagine a large population of constant size, 

the members of which are at  risk of homelessness. With each member of this population 

is associated a vector of time-invariant characteristics, or covariates, x.  We proceed by 

considering sub-populations homogenous with respect to x,  i.e. by arguing conditionally on 

x. Let state 1 represent being housed and let state 2 represent being homeless. We suppose 

the experience of each member of such a sub-population is a realisation of an alternating 

renewal process with gj(t) = gj(t; x )  for j = 1,2. Members of different sub-populations 

follow alternating renewal processes involving different distributions of the lengths of stay 

in each state. We assume the processes for different people are stochastically independent. 

In terms of the three statistical features of homelessness described in section 1, this 

model is binary - there are only two states; homelessness may be rare - state 2 may be 

rarely visited; and, unless gz is degenerate, visits to state 2 last for varying lengths of time. 

This is a model for the phenomenon, i.e. it simplifies reality, and it does so in two main 

ways. The first is that it assumes that the lengths of visits to each state are stochastically 

independent, given the covariate vector. How serious this is presumably depends on how 

completely the covariate vector x captures the systematic determinants of the average 

lengths of stay in each state. We shall show later that the omission of autocorrelated 

determinants of the expected stay in each state is likely to bias estimates of the effect of 

x on these means. 

The second, and perhaps more important, simplification is that it allows only for 

time-invariant covariates x. For example, the speed at  which women leave the New York 

city shelter system is known to depend in part upon the number of children for which they 

are responsible. This is not time-invariant. On the other hand, this model is going to 

be applied to data in which the main dimension of variation is cross-sectional, between 

people, and not inter-temporal. We shall in effect be dealing with short time series for many 

people. The effect of differing numbers of children upon the length of stay in shelter will 

be largely determined by comparing the experiences of different women - with differing 

numbers of children - over short time periods, and not by comparing the experiences of 

the same woman as her family size changes. It may not be unreasonable to suppose that 

most relevant, time-varying, covariates are roughly constant over the time intervals for 



9 

which data is likely to be available. 

We may apply the results of the preceding section to deduce relevant probabilities and 

expectations of homelessness. For example the expected number of episodes of homeless- 

ness - visits to state 2 - between times t l  and t2 for a person who is initially housed 

and whose covariate vector is x is 

The probability that such a person is homeless at time t is, from (12) ,  

which is one minus the probability that she is housed. 

The exact form of these expressions will depend upon the form of the probability 

density functions for the lengths of stay in each state, gl(.),  g2(.). In the particular case in 

which these distributions are Exponential these expressions are reasonably simple. If we 

suppress the dependence of the means on x for notational simplicity, and let X = p/p1p2, 

we find that 

These give 

For t2 close to t l ,  i.e. over a short time interval, (23) is approximately 
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And when t l  is remote from the time origin 

and 

These expressions, (21 ) to (27) are given to exemplify the particular forms that can be 

taken on by the expressions given earlier. In what follows we do not assume that durations 

are in fact Exponential, which seems a most unlikely assumption. The form (27), which we 

have previously given in (16) is correct quite generally as t l  --+ oo - for the Exponential 

case this approach is exponentially fast. The form (26) is also generally correct, neglecting 

terms of O(t2 - t l  )', for large t l .  

We see that the expected number of episodes of homelessness in any interval is ap- 

proximately proportional to the length of the interval and inversely proportional to the 

mean time between such episodes. Entrances to homelessness occur, on average, every p 

days, so it is plausible that the chance of observing such an entrance on any one day is lip. 

The probability of being found homeless is approximately the ratio of the mean duration 

of homelessness to the mean time between spells of homelessness. 



3. Sampling Schemes and their Likelihoods. 

Let us maintain the accuracy of the ARP model and assume that the object of the 

investigator is to study the effect of the covariates on the process. There are various 

probabilities that may be of interest and it is important to distinguish between them. One 

possible object of interest is the probability that a person with covariate x is homeless at 

a point of time. This is r 2 ( t ; x ) ,  and it is approximately equal to p2(x) /p(x)  if t can be 

assumed large. Its relative frequency interpretation is the proportion of people of that x 

class who are homeless after t years have elapsed since the start of the process. Another 

object of interest is the probability that a person with covariate x will become homeless 

during an interval of time from say t l  to t2.  This is P(N2,, - N2tl > OJx), which is 

approximately equal to ( t2  - t l ) / p (x )  if the interval is short and t l  large. Yet another 

quantity of potential interest is the expected total time spent homeless during an interval 

by someone whose covariate vector is x. 

Now consider sampling a large population of people each of whose experiences are 

realisations of ARP processes appropriate to their particular covariate vector. We might 

randomly sample the population so that each member has the same chance of inclusion 

as every other. The difficulty with this is that if homelessness is rare, for those types of 

people who comprise the bulk of the population, even a large random sample may contain 

few, if any, who experience this event. 

It will therefore be desirable to construct a sampling scheme that is guaranteed to 

contain a substantial fraction of people with experience of homelessness. One way of doing 

is to sample from the subset of people who occupy state 2 - who are homeless - at 

a moment in time. This is called, for obvious reasons, a stock sample. Another way of 

achieving this end is to sample from the subset of people who, during an interval of time? 

are observed to enter state 2 - to become homeless. This is a flow sample. A total 

sample could thus be comprised of separate random samples of the sub-populations who 

( I )  occupy state 1 at a point in time; (2) who occupy state 2 at a point in time; and (3) 

who move from state 1 to state 2 (or, alternatively, from 2 to 1) during an interval of time. 

Such a total sample is called a stock/flow sampling scheme and the likelihood to which it 

leads is given in the next sub-section. 



The sampling scheme used in the New York city study could be interpreted as a 

stock/flow scheme, although in fact it departed in its details from the simplest version of 

such a scheme. Women were excluded from the sample if they had had a very recent stay 

in shelter; and there was, of course, a fraction of non-respondents. 

3.2 Stock and Flow Samples. Let us label the subgroups of the population by an 

indicator j such that 

0 if a person enters state 2 in to ,  to + A, 
1 if a person resides in state 1 at t l ,  

2 if a person resides in state 2 at t2; 

where the t j ,  j = 0,1,2, and A are chosen by the sampler. It will be convenient also to 

define binary indicators of group membership 

l i f j = i  
Yi = j = 1,2. 

0 otherwise 

Let Pjx = P(j(x)  j = 0,1,2. These give the fractions of people with covariate x who fall 

into each of these three groups. Note that these groups are neither mutually exclusive nor 

exhaustive. The probabilities {Pjx} may be deduced from the ARP model and we shall 

give explicit forms later. 

The marginal probability mass function of the covariates, x, over the population will 

be assumed to have finite support X ,  with probability px attached to the point x. The 

fractions of the population who fall into each group are qj = Ex Pjxpx, j = 0,1,2 Finally, 

the fraction of the population in group j who have covariate x is Qxj, x E X. This gives 

the conditional distribution of x given j .  

The object of the investigation is to study the effect of the covariates on the renewal 

process. The information for this is provided by the {Pjx}. To determine what can, in 

principle, be learned from a stock/flow sampling scheme we must determine whether the 

Pjx are identifiable in such a scheme and then find out what can be deduced from this 

knowledge. 

The sampling scheme is observe a total of N people, where each sampled person is 

chosen from group j with probability hj ,  C hj = 1. The vector h = (ho,  h l ,  h2)  is chosen 



by the investigator and we shall make some remarks in a subsequent section on how h 

should be chosen. Once a person is sampled we observe her covariate ~ e c t o r . ~  

In an indefinitely large sample we could learn Qxj, j = 0,12, as long as each h j  was 

positive. And by the law of conditional probability, 

It follows that the ratios of the {Pjx) are identifiable from knowledge of the {Qxj) and of 

the {qj). The {qj) may be known. For example in New York city the whole population may 

be taken as the women with children in receipt of social welfare; state 2 may be identified 

as 'in a city shelter'; and state 0 as 'entering shelter in a particular week'. Administrative 

procedures count the people in each group.5 If the qj are not known, they may be estimated 

from an auxiliary sample of size, say, n in which only group membership is observed. The 

argument above shows that the ratios of the {Pjx) are non-parametrically identified as N 

and n + oo. We shall show later that this, toget her with a stationarity assumption, implies 

that the mean durations are non-parametrically identified as functions of the covariates. 

We shall now describe efficient and computationally simple methods of parametric 

inference from stock/flow samples, concentrating on the case in which the only information 

gathered from a sampled person is her covariate vector together, of course, with the identity 

of the group from which she was taken. The argument here is based, in part, on recent work 

by Imbens (1990),which in turn follows earlier work by Manski, McFadden and Cosslett 

(1981). We shall concentrate on inference in the case in which the qj are assumed known 

4We may also observe some aspect of each person's state biography, for example by asking 

for retrospective information about states occupied in the past. We shall assume for the 

moment that no such additional information is gathered. In section 4 we shall look at the 

case in which the we observe both the covariate vector and a section of state biography. 
'A similar example arises in studies of unemployment where state 2 may be 'registered as 

unemployed'; state 0 as registering as unemployed during a particular week'; and state 1 

as 'in the labor force but not unemployed'. Many countries keep count of the total in each 

category. 



to the investigator prior to sampling but the distribution of the covariate vector, p,, is 

not. We suppose that the Pjx are specified up to a 2K dimensional parameter vector 

9 E O c R ' ~ .  
Consider a single woman. She is drawn from group j with probability hj ,  and given 

that she is from group j her covariate vector has probability Qxj. Hence the likelihood 

contribution is 

p ( j ,x )  = hjQxj = hjPjxpx/qj = ~ j p j x ~ x ,  

where wj = hj/qj. This is the joint distribution of the covariate vector x and random 

group label j. The associated marginal and conditional distributions are 

T, is the distribution of x induced by the stock/flow sampling scheme and it generally differs 

from p, which is the distribution of the covariate vector in the population. Similarly, Rjx 

is the conditional probability of group membership induced by the stock/flow sampling 

scheme and generally differs from Pjx which is the probability that a person randomly 

sampled from the population of people with covariate x is in group j. 

Efficient and simple parametric inference for this problem can be approached via the 

method of moments. We shall describe a set of moments or orthogonality conditions 

which, together, exhaust the information in the sample about the true value of 9 which 

we shall label 9'. In making these calculations it is convenient to regard the vector h as 

an additional unknown parameter, even though it is in fact known to the sampler. We 

distinguish between the vector h which will be an argument to various functions and the 

true (known) value h*. Put y = (9 h)  and y* = (0' h*). 

The starting point for inference will be the likelihood formed from the conditional 

distribution of j given x; p( j lx) given in (29). For a single observation6 the log likelihood 

6We shall always assume that random variables corresponding to different agents are 



The 2K 8 scores from this log likelihood are assembled in the vector 

This expression, being a score function, has mean zero at O*, h*. 

The next set of moments exploit the fact that, by design, E ( Y ~ )  = h;.  Thus we let the 

2 vector $2 be 

Again, $2 has mean zero at h*.  
The final set of moments exploit the fact that the marginal probabilities qj are the 

expectations of the conditional probabilities Pjx  with respect to the population distribution 

of the covariate. Thus 

which may be written as 

where w; = h; /q j .  Equation (33) may be written 

stochastically independent so that log likelihoods are sums of their single observation coun- 

terparts. This rules out aggregate shocks. Whether this is a serious qualification to our 

argument is unclear to us. 



where the * indicates that y is evaluated at y*. Thus the vector $3 defined by 

has mean zero at y*. This is our third set of moment conditions. Note that the distribution 

with respect to which the expectations are taken is that governing the data, p ( j , x ) ,  given 

by (29). 
Now let + = $2 $3); let W = E($ybt); and let r = E(&~/dy) .  Assume that W is 

non-singular. If it is not some moments are redundant and may be deleted. Let $ be the 

sample mean value of +. Then 

is the generalised method of moments (GMM) estimator of 9 * ,  h*. (Imbens (1990)). It is 

such that n(;i - y*)  --+ N(0, (I"W-IF)-' ) and 4 is fully asymptotically eff i~ient .~ 

Two other proposed estimators for the choice based sampling framework can also be 

readily expressed in this method of moments framework. Firstly, the estimator which 

solves 

(35) s = argmine$,(O, ~*)W;'$,(B, h*),  

i.e. which solves the equation G1(O, h*) = 0 is the conditional maximum likelihood es- 

timator, CML, of Manski and McFadden (1981). Here Wl is the covariance matrix of 

$1 

Secondly, the estimator which solves 

'There is a version of this procedure when some or all of the { q j )  are unknown. And it 

may also be readily extended to the case in which supplementary information about the 

{ q j )  is available from a random sample of the y's. This information yields an additional 

moment equation. 



i.e. which solves q1(8,  ij) = 0 is the modification to the CML estimator suggested by 

Cosslett (1981). In this procedure the true sampling probabilities {h;) are replaced in 

the conditional likelihood by the fractions of observations falling into each group, ijj = 

N - ' C  n y ~ n .  ' 
It remains to consider the choice of functional form for Pjx(8). The simplest choice, 

and the only one which avoids having to specify an origin for the .4RP,' is to use the forms 

which apply when t + m. These are, 

Pox = A/p(x; 8) 

P l x  = p1(x; O)Ip(x; 6) 

P2x = p2(x; O)IP(X; 8). 

Clearly the p j  are identifiable from the ratios of the {Pjx) and are thus, by our previous 

argument, identified. Moreover, only the means of the distributions gl ,  92 are identified 

from the likelhood we have described. To identify other aspects of these distributions we 

must observe more about the process than the covariate vectors of stock/flow sampled 

individuals. Notice that to identify both the means it is essential to have observations 

from all three groups. The New York city study mentioned earlier drew observations only 

from those entering shelter - group 0 - and from those out of shelter - group 1 , from 

which only p1 may be determined." Samples from the stocks alone identify only the ratio 

of the mean stays in each state. A flow sample is necessary to separate these means. The 

'The ~ rob lem (36) reduces to solving $,(B, ij) = 0 because $2(h) = 0 is solved by h = ij. 
'It is possible to calculate the probabilities {Pjx) exactly for any choice of density functions 

gj( .)  by numerical inversion of the relevant Laplace transforms. We do not do this because 

we wish to focus on theoretical issue for which the fine detail of the specification of the 

{Pjx) has little relevance. Taking t large also lets us avoid specifying a time origin for 

the process, to  do which involves formulating a more detailed behavioural model than is 

required for our present purposes. 
' ' They also obtained supplementary observations - from administrative records - of the 

previous shelter stays of all sampled individuals. This information would help to identify 

P2. 



intution here is that to identify the mean stays in each state we must have a realisation of 

the process, i.e. a section of the state biography. A flow sample is just such a section and 

presumably the shortest section of biography that would yield identification. 

Under this specification, the conditional probabilities of the groups that are induced 

by stock/flow sampling take the form 

(38) Rjx(6, h) = 
WjPj j = 1,2. 

wo + WlPl + W?P2 

This is a model with a trinomial Logit structure. It has the standard Logit form if 

This is the functional form we shall assume in what follows, although some results apply 

to more general forms for the {pj). 

We can now examine the proposed method of moments estimator in the light of 

these functional forms, since they enable us to get explicit expressions for the conditional 

likelihood scores which are the elements of qhl. On differentiation we find 

aL  
ae - = (Rjx(O, h) - yj)xl, if 0 is the coefficient of xl in pj. 

In particular, the scores correspoding to the intercepts are 

Comparing these expressions with the elements of $72 and $73 given by (32) and (34) we see 

that these scores are linear combinations of the elements of $72 and $73, e.g. Rlx(0, h) - yl = 

hl - yl - (h l  - RlX(O, h). Thus the elements of $7 are linearly dependent so that the modified 

CML estimator, 8, which equates $, and 4, to zero will necessarily equate to zero. 
Thus 8 is fully efficient in this model." 

"This result clearly only depends on the way in which the intercepts enter the p's - 

multiplicatively - and not on the rest of the parametrisation of the pj. Essentially this 

result has been previously given by Manski and McFadden (1981). 



We may confine attention, with this ~arametrisation, to the modified CML estimator, 
- 
6. Even here further simplification is possible. In   articular let us compare the CML 
estimator, 8, to e. The conditional choice probabilities induced by stock/flow sampling 

may be rewritten, exploiting the functional form (39), as 

where a, = log[wj/wo]. Similarly, 

where b j  =  log[^^/^^], and iFj = ijj/qj. 

Now let and 821 be the slope components of the CML estimator which solves 
- 
$,(6*, h )  = 0. Then we must have 

for 1 = 1,2, .  . . K, j = 1,2. But if we substitute and 821 into the corresponding expres- 

sions for q1(6, ij) we find 

which equal zero for 

Hence the slope coefficients in the CML estimator and its modified version are identical; 

these estimators differ only in the intercepts. This fact will be exploited in the next section, 

in which look at the question of how many observations to select from the flow and from 

each stock This is the question of optimal sampling fractions. 



3.3 Optimal Sampling Fkactions. 

An important problem is how best to choose the numbers of observations, mi, from 

each group. This admits of no general solution because the optimal numbers of observations 

depend upon the true, but unknown, value of 8. As Hsieh, Manksi and McFadden remark, 

'This fact severely limits the guidance we can give to a researcher attempting to select an 

efficient sample design'.12 Numerical calculations reported by Cosslett (1981) indicate that 

the optimal design is often not far from that of equal shares, in which the same number of 

observations is taken from each group. 

There is, however, one important case in which the optimal design can be determined 

analytically, a case which helps to explain Cosslett's results. Consider the ARP model with 

specification (39) for the p j .  For this model we know that the CMLE is fully efficient for 

the slope coefficients Oj l  so let us examine its covariance matrix and see how this depends 

upon the choice of { h j ) .  Differentiating . ~ l  (8, h )  with respect to 8 and taking expectations 

gives for the information matrix for a single observation 

(45) 1(8*,  h )  = E,; ( R: @I xx') 

where 

and @I denotes the Kronecker product. The matrix xx' is of order K x K and the vector 

x includes a unit for the intercepts. 

Now suppose we consider the particular case in which O;, = 0, j = 1 ,2 ,  so that the 

Pjx  do not in fact depend upon the covariates, although the investigator is unaware of 

this. Then 1 simplifies considerably, and in particular P& = q, and RIx = h j .  Then we 

readily find that Z may be written in the form 

12HMF page 659. 



where 

and 

The upper left element of H refers to the parameters of p l  and the lower right to those of 

p2. The inverse of Z is the asymptotic covariance matrix of d%(j - 8') which is 

But the fully efficient modified CML estimator for the slope coefficients { B j l )  is iden- 

tical to the slope components of 9 so the asymptotic covariance matrix of 8,1 can be found 

by deleting from (48) the two rows and columns corresponding to the intercept estimates. 

This gives 

where C1 is C after deletion of the row and column corresponding to the unit element in 

x. If we now ask for the choice of h which will, in some sense, minimise (49), a natural 

criterion is I Vl 1 ,  the generalised variance. This is 

from a well known property of the determinant of Kronecker products.13 But 

which is maximised over ho + hl + h2 = 1 by h j  = 113, j = 0,1,2. It follows that the 

generalised variance is minimised by an equal shares allocation of observations - take 

equal numbers from the flow and from both stocks when the effect of the regressors on 

the means is believed to be 'small'. In particular, equal shares would be sensible when the 

13Magnus and Neudecker (1989), page 29. 



main object is to test whether the regressors have any effect. This result ÿ re sum ably helps 

to explain the prominence of the equal shares allocation in Cosslett's numerical results 

referred to earlier. Note that the form (47) is the leading term in a Taylor series expansion 

of the information matrix about B;, = 0 so that equal shares will be nearly optimal for 

small departures of the slopes from 

It will be interest for the material of section 4 to give the explicit form of the infor- 

mation matrix under equal shares sampling. Substituting hi = 113 into (47) gives 

so that the asymptotic covariance matrix of f l ( e  - 8') will be 

We shall see in section 4 that this expression is surprisingly accurate even when the slopes 

are not zero. Note that it is independent of the values of the intercepts, {BjS,). 

An interesting comparison is between the covariance matrix under equal shares sam- 

pling and that under a sampling scheme in which each group is sampled in proportion to 

its frequency in the population, which we might call random sampling. Under random 

sampling we must have h j  = qj/ C q;, since the h's must sum to one, although the q's will 

not. Substituting this form into (47) we find 

for the asymptotic covariance matrix of the CMLE under 'random' sampling. The ratio of 

the generalised variance of the coefficient estimators under equal shares sampling to that 

141t should be emphasised that our optimality result is not universal. It refers to estimation 

of 8, within the class of stock/flow schemes, and with a loss function given by the generalised 

variance. Other sampling schemes may be optimal when the objects of estimation are, for 

example, covariate mean stock or flow probabilities, or when a different loss function is 

appropriate. 



under random sampling is equal to  
9091 92 

q3 
which is one when all the 9's are equal (to 0.5) and is otherwise less than one by the 

arithmeticlgeomet ric mean inequality. 

There is one other result on optimal allocation that might be mentioned here. This 

is that equal shares is also optimal when there is but a single (real) regressor whose 

distribution has two points of support and the model is, therefore, saturated. 

3.5. The Effect o f  Neglected Heterogeneity. 
The renewal model assumes independence of the durations of successive spells, condi- 

tional on the measured covariate x .  Perhaps the most natural way to relax this assumption 

is to  suppose that there may be persistent, individual specific, determinants of the duration 

of stay that have not been measured by the econometrician. Such effects would induce a 

correlation between the durations of stay. Suppose that ,  conditional on x and some time- 

invariant scalar u j ,  the distribution of the lengths of stays in state j is g j ( t ;  x ,  u j ) ,  j = 1,2. 

The interpretation of u j  is that it captures the effect of the unmeasured persistent deter- 

minants on the durations of stay in each state. Let the corresponding means be p j ( x , u j )  

and let u = ( u l ,  uz). The vector u has some joint distribution over the population and is 

distributed independently of x. 

Suppose now that the ARP model is satisfied for populations homogeneous with respect 

to both x and u. Then the algebra of section 2.1 goes through conditionally on x and u 

and the probability that a person randomly selected from a sub-population homogeneous 

with respect to x and u will be found to  be in state j is, for large t,  

P ( in  state jlx, u )  = ~ j ( x ,  u )  
p(x, u) , j = 1,2. 

However, if all the econometrician can be observe is x ,  the relevant probability is that 

unconditional on u ,  namely, 

P ( i n  state j lx)  = E, ~ j ( x ,  U)  [ p(x, u) ] = P;,, j = 1,2. 



Similarly, the probability of an entry to state 2 in an interval of length A is 

A 
P(entry to state 2 in t, t + Alx) = E, 

Notice that (51) and (52) are expectations of ratios, not ratios of expectations. Therein 

lies the source of the difficulty. 

We shall now use these expressions to examine the specification error that is made 

when an investigator assumes that the data is generated by an ARP model conditional 

on x when in fact the correct model is given by the probabilities (51) and (52). Such an 

investigator might adopt the specification 

considered earlier. Suppose further that the means conditional on both x and u are 

This investigator would naturally use the CMLE to estimate the 8's, since this would 

be asymptotically efficient on his (false) assumptions. He would therefore maximise 

where 

In a large sample, as N --+ oo, L(8) will converge uniformly in 8, under suitable regularity 

conditions, to 

(56) 

Here, 



and 

Here r: is the true distribution of x induced by stock/flow sampling. 

Under suitable regularity conditions the CML estimator will converge to the unique 

maximiser of C(8). It will, therefore, satisfy the equations 

Let us then consider the relation between the solution of these equations, 8, and the 

true parameters 8'. We can make some analytical progress and then we shall resort to 

computation. Assume a single real regressor for simplicity. In the first place note that if 

8;, = 8; = 0, then the RJ, do not depend upon x. Hence equations (58,59) can be solved 

by e l l  = = 0, since this will equate R;, and Rjx  for every x. Thus when x really has 

no effect on the durations of stay in each state the ML estimator will tell us so. 

Secondly, consider the simpler problem of binary choice and random sampling, when 

the equations analogous to (58, 59) are 

where 

and x = (1, 2). Suppose that px has two points of support, say at x = x l ,  xo. Then the 

equations (60) imply that 



This is approximately equivalent to equating both P,' - P,(O) and its derivative to zero at 

x = xo = 0, say. This implies that 

Putting v = 1/(1 + e") and solving for O1/O; gives 

Since g(u) = u(1 - u)  is a concave non-negative function of u it follows from Jensen's 

inequality that 0 5 O1 /O; 5 1. Only if there is no neglected heterogeneity, and u has a de- 

generate distribution, does O1 = 0;. Thus in this case the effect of neglected heterogeneity 

is to attenuate the estimated effect of a regressor on the event probability. 

This heuristic argument does not prove that attenuation will be the result for more 

general regressor distributions. Still less does it prove this for the more complicated 

stock/flow sampled ARP. It does, however point in that direction. 

The tables below report a selection of the results of some calculations designed to 

measure the effect of neglected heterogeneity on estimates of the effects of the covariates 

on the renewal process. While the slope coefficients { O I j )  are the most obvious measures 

of these effects, in practice an investigator is likely to want to calculate the effects of 

the covariates on more readily interpretable quantities. In particular he may wish to 

calculate the way in which15 x affects the probability that a woman will be homeless. 

Since this probability is p2(x) /p(x) l  this measure might be ~ l o g [ p 2 ( x ) / p ( x ) ] / ~ x .  The 

correct measure of this elasticity at the point x is 

6 = - log E, ~ 2 ( 2 ,  O * )  
ax a [p l (x ,  0.) + p2(x,  o*) I 

where p j (x ,  0') are given by (54). An investigator who ignored unmeaured heterogeneity 

whould, however, calculate 

15We shall assume a single real regressor for simplicity. 



where the p j (x ,  6) are given by (53) and 6 is the CML estimate which, in a large sample, 

is close to the solution of (58) and (59). 

We have, therefore, solved equations (58) and (59) for various choices of the joint 

distribution of ul and u2; of the distribution of x, p,;  and for various sampling schemes h. 

Given the solution 6 we calculated e, (62), and compared it to c, (61). The value of x at 

which the elasticities were calculated was the population mean of p , .  

The tables below give a selection of the results. We varied the distribution of x 

between one which was symmetrical and one which was highly skewed. We assigned equal 

variances to ul and u2 and measured the magnitude of these variances by the ratio var 

u/(var u + var ex),  which we denote by 1 - r2.  The larger this number the more serious 

is the omitted heterogeneity. And we chose to compare the equal shares sampling scheme 

with that which we termed random sampling in the last section. We also include the true 

probability of being in state 2, denoted by p*.  

True and Estimated Elasticities 
Equal Shares Sampling 

Sym. .03 .57 -31 - 3 3  
Skew . 0 7  .99 -.012 -.010 
Sym. .34 .53 -.52 -.61 
Skew .56 .91 -.I3 -.03 



True and Estimated Elasticities 
Random Sampling 

Sym. .03 .57 -.81 -.82 
Skew .07 .99 -.011 -.012 
Sym. .34 .53 -.52 -.59 
Skew .56 .91 - . I3  -.04 

The conclusions to be drawn from this evidence appear to be as follows. Neglected 

heterogeneity does bias the estimated elasticities. There is little difference in the bias 

between random and equal shares sampling. The biasI6 is generally not large except when 

there is both large heterogeneity omitted and the state probabilities are highly unequal. 

We have also considered the bias in the estimates of the slope coefficients. The biases 

are always in the direction of zero, confirming the attenuation suggested by the analysis 

given above. These biases, in proportionate terms, are much more severe than those 

shown in the table above. If the primary interest of an investigator is in the 0 coefficients 

themselves then it will be important to make some allowance for the possibility of neglected 

heterogeneity. The distribution of the u's is clearly non-parametrically unidentified from 

the distribution only of the covariate vector. It will be necessary to observe sections of 

the state biography before attempting to estimate a model which allows for unmeasured 

heterogeneity. In the next section we shall report some results on inference from stock/ 

flow sampled populations when the data also includes state biographies. 

I6St rictly, the inconsistency 



4. Optimal Sampling with Biographical Data. 

We now turn to an examination of the question of optimal sampling of a population 

moving alternately between two states for which we observe both the covariate vector and 

a section of the state biography. We shall define a collection of strata of the population 

and consider sampling schemes which involve randomly sampling individuals from within 

each stratum. The strata we shall consider are the stocks and flows of section 3 except 

that we shall distinguish between the flows in two directions, 1 - 2 and 2 + 1, and we 

shall also consider the whole population as a stratum. This gives us five strata as opposed 

to the three of section 3. They will be labelled by S and we shall define corresponding 

random binary indicators of stratum membership. 

I 0 the whole population 

1 residents of state 1 at t 

S = 2 residents of state 2 at t 

3 entrants to state 2 in t , t  + A 
4 entrants to state 1 in t , t  + A 

The probabilities of stratum membership, conditional on the covariate vector, x,  are 

Psx = P(Slx) ,  S = 0,.  . .4. These probabilities are specified, as in section 3, to take the 

form 

Of course Pox = I.  The corresponding marginal probabilities are the expectations of the 

Psx with respect to p,, the distribution of the covariate vector over the population. They 

are, as before, denoted by {qs), and qs = Cx Psxpx. Of course qo = 1. 

We shall also observe for each sampled person her state biography over T months. This 

biography is completely described by (a) the initial state i, and (b) a vector t = ( t  t2 ,  . . .) 



of times between changes of state. A binary indicator of the initial state will be 

In order to handle observations on the state biography ( i , t )  we can no longer be 

content to specify only the mean stays in each state but must, at least for fully parametric 

inference, specify the density functions gl ( t  (x), g2 (t (x) that govern the duration of each 

type of stay. Since our present purpose is purely theoretical we shall choose the simplest 

model in which gl and g2 are Exponential distributions. Thus 

This implies that our model is an alternating Poisson process (APP). For such a process 

the probability of state biography t conditional on initial state i and covariate x is 

where 

d l  = # transitions from 1 to 2 

d 2  = # transitions from 2 to 1 

Tj  = total time spent in state j, j = 1,2. 

Assuming that the process is in equilibrium the probabilities of the initial states conditional 

on x are 

The sampling scheme is the natural extension of that used in section 3 in which we 

take a sample of size N by selecting stratum S with probability h,, C h, = 1, and then 

randomly selecting a person from within the chosen stratum. The vector h = (ho , .  . . h4)  



is chosen by the investigator and we aim to study how the choice of h affects the precision 

of inference about 8. 

Inorder to do this we define the generalised method of moments estimator by a 

straightforward extension of the method of the last section, and write down the asymptotic 

covariance matrix of n(9 - 8'). This covariance matrix will be computed numerically 

from simulated APP data using parameter values estimated from real observations. We 

shall study the diagonal elements of this matrix for various choices of sampling scheme, h, 

and length of biography, T. 

To simulate data we need to select a particular alternating Poisson process and to do 

this we fitted such a model to a sample of 372 Dutch males observed over the 84 months 

from January 1977 to December 1983. The scalar covariate was initial age minus 35 

years which is approximately uniformly distributed from -15 to 15. The states were (1) 

not employed and (2) employed. The estimated regression functions were 

Thus 8;0 = 4.0,8;, = 0.043, etc. The numbers of transitions in this sample had the 

following frequency distributions. 

#Transitions Frequency Frequency 
1 - 2  2 - 1  

Thus 338 men had no transitions into employment; 268 had no transitions out of employ- 

ment; etc. A total of 1.51 transitions were observed in the 7 years, or about 1 transition 

for every 2 men. This is therefore a group displaying little movement between states.17 It 

"Further information about the sample and data base is given in the appendix. 



is arguable that sluggish movement such as this is not dissimilar to what one might find 

in studying homelessness. 

We should emphasise that we do not claim that an alternating Poisson process is a 

good description of these data - it is almost certainly not. Our intention is to use the 

data to get a feel for some reasonable values for the parameters, and we regard fitting 

an APP as somewhat analogous to fitting a straight line through an almost surely curved 

scatter of points. 

To construct the moment equations we need the likelihood of a single observation 

generated in the following steps; ( I )  select stratum s with probability h a ;  (2) select an 

individual from that stratum; (3) observe her covariate vector; and (4) observe her tran- 

sition history for T months from the date of sampling. In the case of strata other than 

the whole population - stratum zero - the stratum choice determines the initial state i. 

For example, stratum 3 implies initial state 2. The joint probability of stratum indicator 

s, initial state indicator y, biography t and covariate x is p(s, y ,  t ,  x) which we factor as 

Since the biography depends on the stratum only via the initial state p(tls, y, x)  = p(tly, a : ) ,  

which is (65). The second component of (67) is 

Here p(ylx, 0) = p : p ~ - ~ / p ,  while for s = 1,2,3,4, p(ylx,s) is either 1 or 0 depending on 

which initial state is implied by the stratum selected. Also the p(slx) are given by (64). 

Hence, for feasible combinations of stratum and initial state, 



The marginal distribution of z (induced by stock/flow sampling) is got by summing over 

s ,  y to give 

as in (29). Note that in a random sample from the whole population, where ho = l , r ,  

reduces to p, wo Po= = p,, whole population distribution of z ,  as it should. Otherwise r, 

differs from p,. 

We now form the first moment conditions by considering the conditional distribution 

of the data given the covariate vector. This is 

The first factor liere is (69) divided by (70). The second factor is (65). Notice that ,  as in 

section 3, p, has cancelled from this conditional distribution. The first set of moments are 

the 8 scores from this conditional distribution. 

The second set of moments recognise the fact that E ( s  j)  = h j ,  j = 0,1,2,3,4. Hence 

Note that $2 has only four elements since the h's sum to one. 

The final set of moments expresses the fact that the q's are the means of the conditional 

stratum probabilities. Thus 



Thus the moments are 

(76) 

where 

Since qo = 1, q2 = 1 - ql,qq = q3, only two such conditions are required. 

If A is the covariance matrix of '1C, = ($1, $2 , .$J~) the method of moments estimator of 

6' is the 8 solution of the problem18 

Note that if q is known the minimisation is only with respect to 0, h. The asymptotic 

covariance matrix of n(j - y*)  is given by 

where r = E(a$/ay).  It is V that we evaluate numerically for alternative choices of T and 

h. We consider specifically three cases 

1. T = 12; ql, q3 unknown. 
2. T = 12; ql, q3 known. 
3. T - 1 ;  ql,q3known. 

We shall compare V for these three cases with the reference case of simple random 

sampling and observation of the biography for 84 months. We shall refer to this as case 0. 

The sampling schemes for which we shall report results are 

1. h = (l,O,O,0,0); 

2. h = (0,0.25,0.25,0.25,0.25); 

3. h = (0,0.33,0.33,0.17,0.17). 

la$ contains the sample means of the moment conditions. 



The first is simple random sampling while the second and third are two types of equal 

shares stock/flow sampling. Case 3, which takes equal numbers from the flow and both 

stocks, matches the definition of equal shares used in section 3. 

The matrix V was calculated by simulating 50,000 realisations of an equilibrium al- 

ternating Poisson process with parameter values given above and with z uniform in the 

population over -15 to 15. This implies that the covariance matrix C defined in section 

3 is diagonal with a: = 75. These realisations were used to construct 11, and hence to 

calculate A and r, leading to an estimate of V. The results are given in the table below 

and diagrammatically in figures 1 to 3. 

Asymptotic variances of coefficient estimates under 

alternative sampling schemes and observation periods. 

1 0  0 0 0 8 4  
12 
12 x x 
l x x  

0 114 114 114 114 12 
12 x x 
l x x  

0 113 113 116 116 12 
12 x x 
l x x  

Notes: The first five columns give the sampling probabilities; T is the length of the 

state biography that is observed; and 93 are the marginal probabilities of strata 1 and 

3, a x indicates they are known; the remaining columns give the asymptotic variances of 

the method of moments estimates with the true values at the top. 

In the figures the axes measure the precision - one over the variance - of the two slope 

cofficients estimates ell and ezl, or rather of O(ejl - 6 . ) .  The points marked 0,1,2,3 
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plot these vectors for the three cases given in (77) together with the reference case 0. Each 

figure refers to a different h vector. The further a point is from the origin the more precise 

the estimate. If two points fall on the 45 degree line through the origin and point A is 

twice as far from the origin as point B then the precision of estimator A could be achieved 

with just twice as many observations using the estimator associated with point B. 

Figure 1 compares random sampling with biographical information for different lengths 

of time. A lot of precision is lost if we randomly sample and observe only for 12 months ' 

instead of for 84. Since the point labelled 0 is about four times further from the origin 

as the (coincident) points labeled 1 and 2 we see that observing for seven times as long 

is equivalent to having four times as many observations. Since points 1 and 2 coincide, 

knowledge of the q's has virtually no effect on the precision of the slope estimates when 

observation is for only twelve months. 

Figures 2 and 3 depict pure stock/flow sampling schemes, together with the reference 

case. Comparing these with figure 1 we see a dramatic improvement in the precision of 

the shorter observations schemes. Comparing point 3 to point 0 we see that the same 

precision could be achieved with (a) N randomly sampled people observed for 7 years 

or (b) 2N stock/flow sampled people observed for 1 month. This is a quite remarkable 

result. Inevitably, however, the euphoria must be qualified. These people move only slowly 

between states so that if, as with random sampling, all the information comes from the 

biographies, long biographies are required before much information is obtained. In a more 

volatile population biographical information may be expected to be more informative as 

compared to the information in the covariate distribution. 

Turning to the numerical values of the variances given in the table we can make one 

interesting observation. Consider the variances of the slope coefficient estimates for the 

two stock flow schemes which are 0.08 for the one month scheme and 0.07 for the 12 

month scheme. If we refer back to section 3.3 we gave there the covariance matrix of the 

equal shares stock/flow sampling scheme with no biographical data when the true slopes 

were zero. In particular the slope variances were equal and given by 3 x 2  = 6 times the 

lower right element of C-'.  But C is diagonal with a2 = 75. Hence with no biographical 

information and zero true slopes we should find the variance of the slope estimators to 



be both equal to 6/75 = 0.08. This is precisely the value of these variances under equal 

shares stock/flow sampling with one month's observation. Hence we can argue that (a) 

one month$ observation virtually amounts to not having biographical data a t  all, but, 

more importantly, (b) zero slope variances can be a rather good guide to the asymptotic 

variances even when the true slopes are not zero.lg 

lgThis may be another reflection of the observation that equal shares sampling, which is 

optimal for zero slopes, is often nearly optimal when slopes are not zero. 



5. Summary and Conclusions. 

We have examined some statistical consequences of viewing homelessness and similar 

phenomena as an alternating renewal process conditional on some time invariant covariate 

vector. We assumed that an investigator, perhaps for predictive purposes, wishes to cal- 

culate the effect of the covariates on various aspects of the process. Our main results are 

as follows. 

1. To gather data to provide the basis for estimates of these effects one can do 

significantly better than randomly sampling the population at risk. 

2. A useful sampling scheme is to randomly sample the occupants of each state and 

those who move from state to state. This is a stock/flow sampling scheme. 

3. Such a scheme is a dynamic version of the choice-based sampling scheme discussed 

in the econometrics of discrete choice. 

4. We have given an asymptotically efficient and computationally simple estimator 

for both the choice-based sampling scheme and its stock/flow extension. Depending on 

the parametrisation used this procedure can reduce to a multinomial Logit calculation. 

5. A stock/flow scheme which takes equal numbers from each stock and the flow is 

optimal when regression effects are zero and can be expected to be not far from optimal, 

usually, otherwise. 

6. When individuals are followed through time in order to observe their state transi- 

tions an efficient stock/flow sample with a brief period of observation can yield as much 

information as a random sample followed for much longer. 

7. When the correct model is an alternating renewal process disturbed by unobserved 

inter-personal heterogeneity the method of moments estimator yields estimates which are 

typically attenuated, and this attenuation can be severe. However, estimates of elasticities 

of state occupancy probabilities with respect to covariates are, apparently, less severely 

affected by this misspecification. 

It seems reasonable to conclude from these results that in designing surveys of the 

homeless it would be sensible to consider a balanced stock/flow scheme, and to make 

inferences from it with the method of moments procedure that we have described." 

''We have not mentioned the costs of sampling individuals in different ways and these 



Appendix 

The data used in section 4 are from the ORIN data set and form a random sample 

of size 372 from that part of the male population that was between 23 and 53 years of 

age in 1977. Their labour market histories have been recorded for the 84 months between 

January 1977 and December 1983. 

The standard errors of the coefficient estimates that have been used as the 0"s in 

section 4 are 

The mean age was 34.9 years. The average total time spent in state 1 - not employed 

- was 15.7 months, so the average time spent employed was 68.3 months. The marginal 

probability of being in state 1, ql was calculated to be 0.17. The marginal probability of 

a transition per unit time period, 9 3 ,  was 0.0031. A typical individual with age 35 would 

be expected to complete a cycle through the states in about 325 months. 

would of course have to be taken into account in computing an optimal design. 
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