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Abstract 

We provide characterization and stability results for the 

stationary equilibria of a competitive infinite-horizon model that 

incorporates the nutritional requirements of physical labor. We find 

that for many aggregate land stocks, there is a large continuum of 

stationary equilibrium unemployment rates. Since unemployment can be 

seen to stem from inequality in the initial distribution of land 

ownership, we suggest that certain land reforms can reduce unemployment. 

In nontechnical terms, we assume that physical labor requires 

adequate nutrition, and that nutrition must be maintained over time by 

sufficient food consumption. We combine these key nutritional 

assumptions with standard economic assumptions: prices clear 

competitive markets; firms maximize profit while producing food from 

labor power and rented land; and persons maximize utility while 

consuming food, selling labor power and renting land to firms, and 

buying and selling land with one another. Typically we find that full 

employment is but one of many possibilities, and that higher rates of 

unemployment arise from greater inequality in the initial distribution 

of land. This unemployment arises in spite of competitive markets 

because the competitive wage alone is too low to provide adequate 

nutrition and thus persons without sufficient nonwage income from the 

rental of land cannot afford to work. Our work extends the literature 

by (1) modeling the dynamic nature of nutrition, (2) allowing persons to 

buy and sell land, and (3) providing initial observations about the 

ability of land reform to alleviate unemployment. 



1. Introduction 

We study the stationary equilibria of a competitive infinite-horizon 

model that incorporates the nutritional requirements of physical labor. 

Key parameters are the aggregate land stock and the initial distribution of 

land ownership. 

For many aggregate land stocks, we find a large continuum of station- 

ary equilibria. In certain equilibria, all persons are employed and well 

nourished. Yet in other equilibria from the same aggregate land stock, 

many persons are unemployed because they cannot meet the nutritional 

requirements of work. This result shows that unemployment and under- 

nourishment can exist in spite of competitive dynamic markets and ample 

aggregate resources. 

We also find that the root cause of unemployment and undernourishment 

is inequality in the initial distribution of land ownership. This suggests 

that land reform (in the sense of reducing the inequality of the initial 

land distribution) is an efficacious means of eradicating unemployment and 

undernourishment. Because increased employment raises aggregate output, 

this result directly contradicts the routinely cited equity-efficiency 

trade-off. 

This paper grows out of the static efficiency-wage literature (Leiben- 

stein (1957), Mirrlees (1975), Stiglitz (1976), Bliss and Stern (1978a, 

1978b), Dasgupta and Ray (1986, 1987a)). Ours Is the first competitive 

infinite-horizon model to incorporate the fact that work requires adequate 

nourishment (Guha (1987) and Gupta (1987) consider two-perlod models). In 

particular, we study each person's dynamic choice of body weight and land 

ownership in response to competitive prices. This rich model allows us to 

consider several issues that have not been previously addressed. 

First, the nutrltlonal requirement of work is Inherently dynamic. The 

fundamental nonconvexity arises because labor requires a considerable body 



weight, and because most food intake is expended in maintaining body 

weight. The static efficiency-wage literature simply assumes body weight 

is constant, and then combines the above facts to derive a nonconvexity in 

the relationship between food intake and labor capacity (see Bliss and 

Stern (1978b), pp. 381-382). We do not assume constant body weight, but 

rather permit it to vary over time in response to a person's consumption 

and activity history. Thus we accommodate for the first time the dynamic 

nature of the fundamental nutritional assumptions. 

Second, note that in Dasgupta and Ray's (1986, 1987a) static general 

equilibrium model, unemployment and undernourishment stem from inequality 

in the exogenous distribution of rental income from land ownership. We ask 

how that inequality in the distribution of land ownership will evolve over 

time. This question about agrarian structure is important in its own 

right. It is also important because Dasgupta and Ray's entire analysis 

would be crippled if the land distributions yielding unemployment could not 

be supported in stationary equilibrium. The answer is far from obvious. 

Unemployed persons, relative to employed persons, place a higher premium on 

increased land ownership because additional land not only earns the market 

rental rate, but also provides via this rental income the key to nourish- 

ment and employment. Since their return to land ownership is higher, it 

would seem that inequality would decrease over time. On the other hand, 

poor persons can sell land to buy food for the purpose of increasing their 

body weight and thereby securing employment. Wealthy persons can buy land 

without jeopardizing their ability to work. These observations would 

suggest that inequality will increase over time. It turns out that sta- 

tionary equilibria with unemployment are among the many possibilities. 

Third, we consider the stability of stationary equilibria to changes 

in the initial land distribution. We find that stationary equilibria are 

stable to small changes, and that large changes can greatly affect the 

unemployment rate. This is good news in the sense that our analysis is 



robust to small changes in the model's parameters. However, it is bad news 

in the sense that the real problems of unemployment and undernourishment 

can be robust to small land reforms. This stability analysis frames two 

important open questions. First, how drastic must a land reform be to jolt 

an economy out of a bad equilibrium? Second, how can a land reform be 

implemented, not in the narrow sense of a change in the initial land 

distribution (as we consider here), but in the more important sense of an 

ongoing policy such as progressive capital taxation? 

2. Nutritional Assumptions 

2.1. The Capacity Constraint 

Let t E {1,2, . . . )  be time (measured in days), let mt E R +  be a 

person's body weight (measured in kilograms), and let k t  E W+ be a person's 

labor power (measured in tasks accomplished). We assume an S-shaped 

relationship between body weight and maximum labor capacity in accord with 

the experimental data of Keys (1950) (see Bliss and Stern (1978b), p. 381, 

for details). This stylized relationship is shown in Figure 1, and it will 

be called the capacity constraint. The curve is not concave because a 

sizable portion of the human body is composed of internal organs and bones. 

(Implicitly we assume all persons are adults who are identical except for 

weight. In particular, all have the same height.) 

Considerations of tractability force us to assume that 1 E {o.?), 

where ? > 0. Thus we assume that each day, each person is either unem- 

ployed or works at the fixed rate of units of labor power. (Clearly this 

assumption is unattractive because undernourished people actually do work 

for fewer hours and/or at less intensity than well-nourished people.) 

Since it c (0.1) by assumption, we simplify our notation by introducing the 
- 

binary variable et .E (0,l) and the identity l t  = iet. Thus et = 0 denotes 



Fiqure 1: The true capacity constraint is shown by the light S-shaped 

curve In the variables ( m , ~ ) .  The approximation (1) is shown by the dark 

step-function in the variables (m,e). Equation (4) is shown by the dark 

step-function In the variables (n,e). 



unemployment and et = 1 denotes employment. 

Due to the discreteness of et, we approximate the capacity constraint 

given by the curve in Figure 1 with the statement 

which corresponds to the step function in Figure 1. Our economic model 

will be driven by the person-specific increasing returns to scale of (1). 

Note that this fundamental nonconvexity stems from the S-shaped capacity 

constraint and not from the discreteness of et. 

2.2. The Energy Balance Equation 

Let ft E R+ be the day's consumption of food (measured in calories). 

We posit the following energy balance equation having income on the left- 

hand side and expenditures on the right-hand side: 

where el, e2, and e3 are positive constants such that a3 > el. 

The single left-hand term is food intake. For expositional ease, we 

neglect the distinction between calories consumed and calorles absorbed 

into the bloodstream (Ray and Streufert (1987) maintain this distinction 

and obtain virtually identical results.) 

The first right-hand term gives the energy used to maintain the body 

under fasting conditions. It consists of the basal metabolic rate (which 

covers the energy needed to maintain tissues and to keep the heart and 

lungs moving) plus an additional 50% of the basal metabolic rate (which 

covers minimal voluntary activity such as eating, digesting, and washing). 

This term is large. Bliss and Stern ((1978b), pp. 373-374) cite FAO/WHO 

estimates of the daily energy needs of the most active male farm worker: 



2600 calories are needed for maintenance compared to only 900 calories for 

work. 

The second right-hand term gives the energy expended on work. First, 

. let us reiterate that lt measures physical, not mental, work. In crude 

terms, the human body is a machine that converts one calorie of food energy 

into about 1/4 calorie of work and wastes the remainder in heat (so that 

= 4 if k t  were measured in calories instead of tasks). Some research would 

suggest that the energy expended on work should increase with body weight 

(e.g., Bliss and Stern (1978b), p. 373). This correlation seems to stem 

from the fact that heavier persons must carry more of their own weight. 

But, this proportional increase seems to be offset by the proportional 

increase in the size of the load that a heavier person can carry (see 

Dasgupta and Ray (1987b), p. 49). Thus we exclude body weight from this 

term. 

The last right-hand term gives the energy stored by increasing body 

weight. One kilogram of fat stores about 4000 calories, while one kilogram 

of protein stores about 9000 calories. We disregard this distinction and 

take a3 E (4000,9000). We also disregard the fact that some energy is lost 

in the storage and retrieval process. We assume a3 > a1 since building new 

tissue costs more than maintaining old tissue for a day. 

This equation is quite abstract, for it says that the human body 

stores all calories that remain after exogenously determined maintenance 

and labor expenditures. In fact, the maintenance and storage terms are 

endogenously determined by the human body. These two terms address many 

competing objectives (e.g., to resist disease, to store calories, and to 

build muscle and control weight), and different humans place different 

weights on these competing objectives depending upon their personal and 

family histories. Dasgupta and Ray (1987b) and Srinivasan (19881 give 

further details from differing perspectives. In spite of Its shortcomings, 

equation (2) does specify in a tractable fashion the indisputable facts 



upon which our model is built: labor requires energy, maintenance requires 

an even greater amount of energy, and insufficient caloric intake results 

in emaciation. - 
Algebraic manipulation using the identity lt = net alters (2) to 

where 

0 = (03 - @1)/@3, 

gt = and 

The exogenous constant 13 lies in (0,l) because is positive and strictly 

less than 63 by assumption. Thus 0 may be regarded as a depreciation 

factor. The nonnegative scalar g measures food consumption in new units t 

(the new unit is equal to the number of calories that increases body weight 

by one kilogram). The exogenous constant a gives the decrease in body 

weight that would result from one day's employment while fasting. 

The fundamental nonconvexity arises because labor requires a consid- 

erable body weight (equation (I)), and because most food intake is expended 

in maintaining body weight (a1 is large). The large magnitude of now 

appears as the considerable difference between the depreciation factor B 

and unity. 

2.3. Survival Probability 

Emaciation reduces one's resistance to disease and hence increases the 

probability of death. Thus survival probability is an increasing function 

of body weight (at least at the low levels of body weight which are 

relevant here). This observation is formally specified at the end of this 

section. It is economically relevant because a lower survival probability 



implies a smaller concern for consumption in the future (i.e., a higher 

rate of impatience). 

Endogenous survival probability plausibly leads to endogenous 

population size. Yet considerations of tractability force us to assume a 

constant population size and to provide the following demographic 

interpretation: Each person who dies after period t is replaced in period 

t+l by a perfect clone, interpreted as the child of the deceased. In 

particular, this child inherits the body weight of its parent. This story 

accords crudely with the fact that in relatively undernourished dynasties 

(i.e., family lines), persons have shorter lifetimes and generations elapse 

more quickly. 

This demographic interpretation is implausible if body weight can fall 

to zero. Thus we assume each person is endowed with g E (0,(1-8):) units 

of food each day and must consume it immediately (this minimal consumption 

-1 
is wholly exogenous to Section 3's economic model). Define m = (1-8) g E 

(0,"m. Equations (1) and (3) imply that if mo 2 g ,  then (vt2l) mt 2 m. 
The reader might regard g as food gathered through gleaning or begging. 

This interpretation is flawed because all persons are assumed to get g even 

if they are productively employed in the economic model. Yet the unem- 

ployment we exhibit in the economic model would only be exacerbated if 

persons were forced to abandon g upon gaining employment. 

In order to simplify notation, define ct = gt - g and nt = mt - g .  

Algebraic manipulation of (1) and (3) yields 

- 
.(vtLl) e = 1 nt L n, t and 

(vtL1) nt = Bnt-l + ct - ae t' 
- 

where = m - m .  For expositional ease, we call nt nutrition rather than 

"weight in excess of m u .  



Finally, we formally specify survival probability by the function P: 

R+ -+ (0,1]. Given current nutrition nt, the value P(nt) gives the 

probability of being alive in the next period. We assume either exoaenous 

survival, in which case P is constant, or endoqenous survival, in which 

case P is continuous, strictly increasing below E, and constant above E. 

(The constancy of P above fi will allow us to determine more easily the 

equilibrium interest rate.) 

3. The Economic Model 

3.1. Land Ownership 

Let kt denote the amount of land owned by a dynasty at the end of 

period t. Let food be the numeraire, let q be a stationary price for one 

day's labor power (i-e., for tasks accomplished), let r be a stationary 

rental rate for one period's use of one unit of land, and let p be a 

stationary price for one unit of land. Each dynasty is constrained to 

satisfy both 

(vt~l) kt = kt-l + + qet - ct)/p 
and (vtll) kt L 0. 

Equation (6) states that income in excess of consumption is used to 

purchase land (rental and wage income are the only conceivable sources of 

income since we will postulate constant returns to scale and no other 

inputs). Although land may be sold, (7) stipulates that a dynasty may not 

own a negative amount of land (i.e., go into debt). Equation (7) is 

reasonable because of the incentive problems inherent in borrowing against 

future income, and because debt cannot be inherited by future generations. 

Debt is further discussed in Section 4 . 4 .  



3.2. Preferences 

The objective function of each dynasty is 

where 6 E (0,1) is a discount factor, P: W+ - (0,1] is the survival 
probability function defined above, and G: R+ 4 R+ is a single-period 

utility function. Assume that G is strictly increasing, strictly concave, 

and continuously differentiable over R++. Also assume that there is some 

a 
constant a < 1 such that for sufficiently large c, G(c) 5 c . 

The dynasty seeks to maximize (8) subject to the constraints (4)-(7) 

given prices (p,q,r) and its initial endowment of land and nutrition 
OD 

(ko,nO). A solution to this problem is a sequence < ( ~ ~ , e ~ , k ~ , n ~ ) > ~ = ~ .  

Such a solution is stationary if the subscript t can be dropped. 

The dynasty's maximization problem has a natural interpretation: every 

person in the dynasty maximizes expected utility. (The utility function of - t-u t-1 the person living in period u is XtZub [AS,,P(ns)]G(ct).) This inter- 

pretation rests upon the simplified demography of Section 2.3, no inter- 

generational altruism, zero single-period utility after death, and the 

assumption that each child inherits the land and nutrition of its deceased 

parent. 

3.3. Production 

In each period, food is produced from land and labor power through a 

2 production function F: R+ 4 R+. Assume that F is concave and constant- 

returns-to-scale, and that F is strictly increasing and continuously 

2 differentiable over I?++. Also assume that lim 
K- - F(K,l) = +-, and that F 

satisfies the Inada endpoint conditions: F(0,l) = F(1,O) = 0 and limK-O 

FK(Kll) = limE40 FE(l,E) = +-. The reader may interpret F either as a 



production technology for one giant competitive firm, or as a technology 

available to all persons in the economy. Due to constant returns to scale, 

both are equally consistent with our analysis. 

3.4. Stationary Equilibrium 

Let K > 0 be the aqqreqate land stock in the economy. Let there be a 

continuum of dynasties, indexed by j and distributed uniformly on [O,l]. A 

stationary equilibrium consists of the following (time-stationary) objects: 

3 prices (p,q,r) E R++, a consumption distribution c: [0,1] + R+, an employ- 

ment distribution e: [0,11 + {0,1), a land distribution k: [0,1] + R+, and 

a nutrition distribution n: [0,1] + IR+. This collection of prices and 

distributions is a stationary equilibrium if it satisfies the following 

four properties (implicitly, c, el and k must be Lebesque(u)-measurable). 

(a) For every j E [0,1], (c(j),e(j),k(j),n(j)) is a stationary solution to 

the maximization problem (4)-(8) given prices (p,q,r) and initial 

stocks (k(j),n(j)). 

(b) The aggregate land stock K is distributed by k: 1 k du = K. 

(c) The input markets clear given competitive behavior by the producer(s): 

2 (K, 1 e du) maximizes F(K1,E') - rK' - qE' over (K1,E') E IR+. 

(d) The food market clears: 1 c du = F(K, 1 e du). 

4. Characterization 

4.1. Characterization Theorem 

Define the employment rate E by E = 1 e du. We will characterize the 

various employment rates E (and the unemployment rates 1-E) that can 

prevail as the aggregate land stock K is parametrically varied. Define the 

viable threshold 5 by 



and define the full-employment threshold k by 

( 5  and k exlst because of the Inada conditions and the assumption that 

F(K,l) = +- ) .  Note that k must lie substantially above 5 .  The limK- 

reason for our nomenclature will soon become clear. 

Characterlzation Theorem: For any land stock K, there is a stationary 

equilibrium wlth employment rate E (and unemployment rate 1-E) if and only 

if both of the following conditions are met: 

K/E I K - and 

K / E 1 C  3 E =  1. 

(The Appendix contains a constructlve proof.) 

See Figure 2. Note that all (K,E) pairs having the same land/employ- 

ment ratio K/E form a line passing through the origin. For instance, if K 

< k, the Characterlzatlon Theorem states that the equilibrium K/E ratio can 

lie anywhere between 5  and k. The following three subsections provide 

Intuition for the theorem and argue that a higher K/E (I.e., a higher 

unemployment rate for a given K) stems from greater inequallty in the 

initial distribution of land. 

4.2. Beyond the Full-Employment Threshold k 

Equatlon (10) states that unemployment is inconsistent wlth a 

land/employment ratio K/E 2 k. The lntultlon Is straightforward: By the 

definition of k, K/E I k implies that the equilibrium wage is at least :+a, 

In which case even a landless and emaciated person could afford to become 



Fisure 2: Given aggregate land stock K, there is a stationary 

equilibrium with employment rate E (and unemployment rate 1-E) if and only 

if the pair (K,E) is on the solid line or within the shaded triangle. 



adequately nourished and to work. If K L E, then K/E must exceed E, and 
consequently, full employment is inevitable. Thus g can be thought of as a 

threshold beyond which "trickle-down" effects remove the "poverty trap" 

analyzed in this paper. 

4.3. Between the Viable and Full-Employment Thresholds 

Unemployment is possible when K lies below the full-employment 

threshold k. For intuition, consider any employment rate E C 1 such that 

- 
the equilibrium wage FE(K/E,l) lies below FE(k,l) = nto (such an E exists 

by K C k and the definition of k). Endow each unemployed dynasty with zero 

land and zero nutrition. Since the wage lies below ;+a, these luckless 

dynasties have but one feasible path satisfying (4)-(7), and it entails 

perpetual unemployment and zero consumption. (Stability Theorems 1 and 2 

show that a similar argument holds when the luckless dynasties are endowed 

with small positive stocks.) Endow each employed dynasty with K/E units of 

land and at least 5 units of nutrition. These fortunate dynasties will 

consume r(K/E)+q = F(K/E,l) in each period, and this covers their nutri- 

tional requirements of work because F(K/E,l) > F(K,1) I F(g,l) = (l-~);iu 

by K L K - and the definition of K. Notice that unemployment and under- 

nourishment are generated by inequality in the initial distribution. 

Extreme inequality is needed to support equilibria having employment rates 

near the lower bound imposed by (10). 

Full employment is also possible when K lies above the viable 

threshold g. Simply endow each dynasty with land K and nutrition 6. 

Everyone will consume rK+q = F(K,l) in each period, and this covers the 

nutritional requirements of work because F(K,1) I F(K,l) = (1-~)Eiu by 

K I K - and the definition of K. Thus egalitarianism implies full employment 

when K I g. 



The full-employment threshold K lies far above the viable threshold 5: 

is such that the wage alone suffices to renew the labor capability of an 

emaciated person, while K is such that total output per worker can maintain 

a worker's nutrition. This large region between K and k is of greatest 

interest, for here, there are competitive equilibria attaining full 

employment and adequate nutrition, and also competitive equilibria that do 

not come close to achieving this standard. We feel that this zone is a 

caricature-but a useful one--of many developing countries, where resources 

are adequate but unemployment and undernutrition nevertheless prevail. Our 

analysis reveals that both good and bad outcomes are consistent with 

competitive markets, and that the initial distribution of land is critical. 

4 . 4 .  Below the Viable Threshold g 

When K < 5, condition (10) continues to place a lower bound on the 

employment rate. In addition, condition (9) now imposes an upper bound 

that is strictly less than unity. This upper bound on employment (i.e., 

lower bound on unemployment) is purely technological. To be specific, let 

us say that E is viable from K if there exist stationary consumption, 

employment, and nutrition distributions (c, e ,n) that enable the employment 

rate E in accord with (4), ( 5 ) ,  and J c du I F(K,E). Lemma 1 (Appendix) 

shows that E is viable from K if and only if K/E Z 5 .  Thus condition (9) 

shows that any viable employment rate can be supported in a stationary 

equilibrium (subject of course to the lower bound of (10)). 

4.5. Efficiency 

One measure of efficiency is production efficiency, as measured by 

aggregate food production. Since aggregate production increases with 

employment (the domain of F is simply the nonnegative quadrant in Figure 

2 ) ,  equilibria with unemployment are plainly production inefficient 



whenever K E [ K , K ) .  In this sense, initial inequality can lead to 

permanent inefficiency in the aggregate. 

Pareto efficiency is another criterion. Due to the incomplete 

financial markets imposed by ( 7 ) ,  stationary equilibria may not be Pareto 

efficient. In particular, we argue below that some equilibria in the lower 

half of Figure 2's triangle are Pareto inefficient, while all equilibria in 

the upper half of Figure 2's triangle are Pareto efficient. 

Define KO by FE(K0,1) = (1-@)Eta. Since 5 < KO < k, the equation 

K/E = KO divides Figure 2's triangle. If K/E > KO, then the stationary 

equilibrium wage exceeds the stationary nutritional requirements of 

employment. Some of this surplus could be used to repay a loan that 

enabled an emaciated worker to accumulate nutrition E. Thus such 

stationary equilibria might be upset by complete financial markets and 

might fail to be Pareto efficient. On the other hand, if K/E < KO, then 

the stationary equilibrium wage is insufficient to cover the stationary 

nutritional requirements of employment. Thus a worker endowed with no land 

and nutrition E could not afford to work, and hence could not repay a loan. 

Therefore we conjecture that these stationary equilibria will not be upset 

by complete financial markets, and hence will prove to be Pareto efficient. 

5 .  Stability 

We divide our discussion of stability into two parts. First, we 

consider "individual stability", that is, we take stationary equilibrium 

prices as given and study a dynasty (of measure zero) whose initial stocks 

of land and nutrition entail a nonstationary optimum. We ask whether or 

not the optimum converges over time to a stationary optimum. Second, we 

make some remarks on "system stability", that is, we consider initial 

distributions of land and nutrition that are not stationary equilibrium 

distributions, and we ask how those distributions evolve over time in a 



nonstationary dynamic general equilibrium. In this case, prices can vary 

over time. Individual stability is addressed formally in Section 5.1, 

while the much moredifficult issue of system stability is ,addressed 

verbally in Section 5.2. 

5.1. Individual Stability 

Land k and nutrition n may be usefully regarded as a dynasty's two 

stock variables. Given prices (p,q,r), a land-nutrition pair (k,n) is 

optimal if there exists (c,e) such that (c,e,k,n) is a stationary solution 

to the optimization problem (4)-(8). The constraints (4)-(7) imply that 

every optimal land-nutrition pair with- employment (e=O) lies within 

Similarly, the constraints (4)-(7) imply that every optimal land-nutrition 

pair with employment (e=l) lies within 

- -1 S = { (k,n) 1 n = (rk+q-a)(l-8) and n ?  1 .  

For future reference, we define the point (E,:) to be the unique element of 

that satisfies either n = or k = 0. 

The curves S and 5 shift with the factor prices (r,q), which (in 

equilibrium) depend solely on the land/employment ratio K/E. Figures 3 and 

4 show _S and 5 when i; > 0, and Figure 5 'shows _S and 5 when i; = 0 (only the 

lower portion of S is shown since the rest is irrelevant). It may be 

instructive to note that > 0 if and only if K / E  < K O .  Section 4 of Ray 

and Streufert (1987) characterizes all stationary equilibrium land 

distributions in terms of such figures.. 

A set Q consisting of optimal (stationary) land-nutrition pairs is a 

2 global attractor if, at each initial (ko,nO) E R+,  an optimum to (4)-(8) 

exists and every optimum to (4)-(8) satisfies limt,,(kt,nt) e Q. Such a 



Figure 3: Stability Theorem 1 for K < k and endogenous survival. 



Fiqure 4: Stability Theorem 2 for K < K and exogenous survival. 



set Q is a local attractor if there is an open set B containing Q such that 

if (k ,n ) E B, then an optimum to (4)-(8) exists and every opti-num to (4)- 0 0 

(8) satisfies limt+a(kt,nt) e Q. An attractor Q is monotonic if the optima 

converging to Q also satisfy either (vtll) kt l kt-l or (vtll) kt 5 kt-l. 

Henceforth we assume that (l+r/p)-l = &P(;) . In other words, we 

assume that the equilibrium discount factor ( ~+r/~)-l is determined by 

&P(;), which is the subjective discount factor of all employed dynasties. 

This assumption is satisfied by all equilibria constructed in the proof of 

the Characterization Theorem. In addition, Lemma 4 (Appendix) shows that 

this assumption is satisfied by all equilibria in which some dynasty's 

(k,n) lies on 5 above ( h i ) .  Since all employed dynasties must be on 5, 

this lemma covers all equilibria except those singular cases in which all 

employed dynasties sit exactly at (E,;). 

Stability Theorem 1: Assume K < k and endogenous survival. Take any 

stationary equilibrium prices such that (l+r/p)-l = &P(E). Then 5-{(k,;)} 
- 

and {(0,0)) are monotonic local attractors. However, S is not necessarily 

a monotonic local attractor even though (E,;) is optimal. (See Figure 3, 

and Lemmas 5, 6, 8, and 10 in the Appendix.) 

Stability Theorem 2: Assume K < k, exogenous survival, and limc+O 

G c  = . Take any stationary equilibrium prices such that (l+r/p)-I = 

&P(;). Then S-{(E,n)) is a monotonic local attractor, and there is a land- 

nutrition pair (&,:) E s-{(O,O)) such that - Sn{(k,n)l (k,n)<<(k,n)) is a 
- 

monotonic local attractor. However, S is not necessarily a monotonic local 

attractor even though (E,;) is optimal. (See Figure 4, and Lemmas 5, 6, 9, 

and 10 in the Appendix.) 

Essentially, this pair of stability theorems says that all the 

stationary optima of (4)-(8) are locally stable, with the exception of 

, )  It is not surprising that optima in S - { ( E , n ) )  are stable, for near 



this set, the nutritional requirement of employment is not binding. Thus, 

the strict concavity of G implies that dynasties consume the same amount in 

every period: rko + q. 

It is important that the low stationary optima on S are locally 

stable, for if these optima were locally unstable, our entire analysis 

could be crippled by arguing that any slight increment to the assets of the 

poor would permit them to climb out of poverty. The key to this result is 

the observation that there is some neighborhood of the origin from which 

persons would not ever seek employment by accumulating the necessary land 

and nutrition. Because land generates rental income and nutrition 

depreciates, a person seeking to gain employment would first accumulate 

land rather than nutrition. By buying more land with the rental income, 

the person's land stock could accumulate at a factor of (l+r/p). Given 

endogenous survival (Stability Theorem I), this accumulation is unattrac- 

tive because the survival probability of undernourished persons falls below 

P(;), and hence their subjective discount factor falls below bp(;) = 

( 1 + r p )  . Given exogenous survival and sufficient desire for consumption 

smoothing (Stability Theorem 2 ) ,  accumulation is undesirable because the 

desire for consumption smoothing makes low consumption during the 

accumulation process very onerous. 

Although it was surprising to us that (Eli) is unstable, the result is 

a" 

intuitive. If no = n and kO is just a little less than E > 0, the person 

could work for many periods while maintaining his land close to E. In 

each period, he would sell a tiny bit of land to make up for the slight 

c4 

deficiency in rental income. In this case, <kt>tP1 is clearly moving away 

from E. The alternative to this scenario is to forego employment in the 

first period and to accumulate. This second option entails a large loss in 

consumption during the first period, and it is thus less attractive than 

the first option for persons whose kO is very close to k. The instability 



- 
Fiqure 5: Stability Th$.orem 3 for K I K. 



of (Eli) illustrates that it is technically difficult to solve the 

dynasty's maximization problem when (ko,nO) lies between (g.5) and (Eli) . 
Finally, if K 1 E l  the nutritional requirement for employment is 

never binding and every dynasty consumes rk + q in every time period. 
0 

Consequently, the following theorem is straightforward. 

Stabilitv Theorem 3: Assume K > g. Take any stationary equilibrium 

prices such that (~+r/~)-l = 6~(:). Then 5 is a monotonic global attrac- 

tor. (See Figure 5 ,  and Lemma 11 in the Appendix.) 

5.2. System Stability 

By "land reform1' we mean a change in the initial land distribution 

(i.e., an exercise in comparative dynamics). This entails issues of system 

stability because arbitrary changes in the initial land distribution will 

generally entail nonstationary equilibrium prices. 

Let the status quo be a stationary equilibrium in which K E [K,K), 

E < 1, all unemployed are landless, and all the employed have K/E units 

of land each (such equilibria are constructed in the Characterization 

Theorem's proof). After land reform, let the new land distribution be such 

that each originally unemployed dynasty has eK units of land, and each 

originally employed dynasty has (1-e)K/E + eK units of land, where e E 

[0,1]. Note that e = 0 yields the status quo, and e = 1 yields egalitari- 

anism. 

First assume exogenous survival. Stability Theorem 2 (Figure 4) 

indicates that sufficiently small land reforms (e near zero) will not have 

any effect on unemployment. Rather, the stationary equilibrium prices will 

be unaffected, the new land distribution will not change over time, and the 

rental income will have been permanently redistributed to the benefit of 

the unemployed. On the other hand, Section 4.3 (second paragraph) suggests 

that sufficiently large land reform ( e  near one) will eradicate unemploy- 



ment. A new equilibrium will result in which the originally unemployed 

permanently receive both wages and a substantial rental income. (The full 

story is complicated because nutrition (i.e., body weight) cannot be 

instantaneously redistributed. First the government could control the 

economy for a finite number of periods in order to position each dynasty's 

nutrition at or above (Lemma 12 in Appendix). Then the government could 

endow each dynasty with land K > 5 and relinquish control. The ensuing 

nonstationary equilibrium would exhibit full employment in every period and 

stationary prices, consumption, and land ownership. Each dynasty's 

- 1 
nutrition would converge to (rK+q-a)(l-8) . )  

We expect that somewhere in the unit interval there are threshold land 

reforms 2 and such that if e > e l  everyone will eventually be employed, 
and if e < 2 ,  the originally unemployed will revert back to perpetual 

unemployment. But the story is complicated. Nonstationary prices will 

result if e is large enough to make the originally unemployed want to 

accumulate land for future employment. Moreover, if e E [ ? , e l ,  the 

originally unemployed may split into two classes enjoying equal utility in 

period 1: one accumulating land and the other decumulating. 

Second, assume endogenous survival. Once again, small land reforms (e 

near zero) would not have any effect on unemployment (Stability Theorem 1). 

But, in contrast to the previous case, the new land distribution would not 

result in a stationary equilibrium. Rather, unemployed dynasties would 

seek to decumulate land because of their low survival probabilities. Since 

the unemployed want to sell land, the employed must be enticed to buy it. 

Yet the employed wish constant consumption streams because of the concavity 

of G. As a result, the price of land would fall immediately following the 

land reform, and then it would climb back to its original level. Bigger 

land reforms under endogenous survival are very similar to those discussed 

previously under exogenous survival, except for the fact that variable 

discount factors will further complicate the nonstationary dynamic 



equilibria that must be studied in order to calculate the threshold land 

reforms 2 and e .  
The dynamic stability of general equilibrium paths has been studied 

under convex structures by Bewley (1982), Coles (1983), Lucas and Stokey 

(1984), Yano (1984), Epstein (198?), and Benhabib, Jafarey, and Nishimura 

(1988). However, the pervasive nonconvexities of our model preclude an 

application of their techniques. The formulation of an adequate nonsta- 

tionary equilibrium theory in models such as ours remains a challenging 

task. 

APPENDIX 

Lemma 1: E is viable from K if and only if K/E > 5 .  

Proof: Recall that E is said to be viable from K if and only if there 

exist distributions c, e, and n such that 

Suppose E is viable from K. The four conditions defining viability imply 



By constant returns, this implies (1-8); + a I F(K/E,l), which implies K/E 

Z K - by the definition of K. - On the other hand, suppose K/E 1 K. - Define 

(c,e,n) by 

The first three of the four conditions defining viability are immediate. 

The last follows from the definition of 5 and constant returns: 

Q.E.D. 

Lemma 2: Suppose there is a stationary equilibrium with land K and 

employment E. Then K/E I k * E = 1. 

Proof: Suppose K/E I k. By equilibrium property (c) and the 

definition of k, 

If E were strictly less than 1, there would be an unemployed dynasty j 

consuming rk(j) in each period. But since q Z ii + a, this dynasty could 

increase its utility by consuming rk(j) + q in each period. Since this 

would contradict equilibrium property (a), we conclude that E = 1. Q.E.D. 

Lemma 3: Suppose (~+r/~)" = 6 p ( I )  and take any (kolno) . Then the 

stream defined by (vt21) (ct,et,k n ) = (rko+q, 1, kg, Bnt-l+rko+q-a) is 
t' t - the unique optimum from (kolnO) provided that (vtL1) nt L n. 



Proof: Consider the following problem: Given (ko,n0), maximize 

,subject to (5)-(7). Note that nutrition plays no role in this problem 

since (11) presumes exogenous survival and since the capacity constraint 

(4) is missing. Thus standard arguments (using (l+r/p)-l = &P(;) and the 

s-trict concavity of G) imply that the unique optimizer of (11) over the 

feasible set (5)-(7) is defined by (vt2l) (ctletlkt,nt) = (rko + q, 1, ko, 

Bnt- 1 + rkO + q - a). 
0 

Since (vtll) nt 1 by assumption, < ( ~ ~ , e ~ , k ~ , n ~ ) > ~ = ~  satisfies (4). 
0 

Hence ~ ( ~ ~ ~ e ~ ~ k ~ ~ n ~ ) > ~ = ~  is the unique optimizer of (11) over the smaller 

feasible set (4)-(7). 

Note that (8) is bounded from above by (11) because P is bounded from 

above by P(;). Also note that (8) and (11) assume the same value at 

0 0 

<(ctletlktlnt)>t,l. Thus < ( ~ ~ ~ e ~ ~ k ~ ~ n ~ ) > ~ = ~  is the unique optimizer of (8) 

over the feasible set (4)-(7). Q.E.D. 

Proof for the Characterization Theorem: Suppose there is an equili- 

brium with land K and employment E. Since any equilibrium E must be viable 

from K, Lemma 1 implies (9). Lemma 2 implies (10). 

On the other hand, suppose that (K,E) satisfies (9) and (10). Define 

prices by 

r = FK(K,E), and 

p = ~P(E) (l-&~(Fi) )-Ira 

Since K > 0 by assumption, since E > 0 by (lo), and since F is strictly 
2 

increasing over R++, we have (q,r,p) >> (0,0,0). Define the distributions 

(c,e,k,n) by 



Properties (b)-(c) follow immediately from the definitions of k, q, and r. 

Property (d) follows from the fact that (vjc[O,E]) c(j) = F(K,E)/E by 

Euler's Theorem. Property (a) is more involved. First take j c [O,E]. 

Euler's Theorem, (9), and the definition of 5 imply 

Hence the stationary stream (c(j),e(j),k(j),n(j)) is optimal by Lemma 3. 

Second take j E (Eel]. Si~,ce this case is vacuous when E = 1, we may 

assume E < 1. Thus, by (10) and the definition of 2, 

Therefore, since n(j) = 0, it is impossible to work without first accumu- 

lating land or nutrition. But since k(j) = 0, it Is also impossible to 

accumulate land or nutrition without labor income. T.herefore the station- 

ary stream (c(j),e(j),k(j),n(j)) = (O,O,O,O) is the only feasible stream. 

(Section 5.1 makes the distinct and significant observation that this 

optimum Is locally stable.) Q.E.D. 

Lemma I :  (~+r/~)-l = &P(B) in any stationary equilibrium such that 

(3j) (k(j) en(j) 1 Z - ( G l  



Proof: Suppose 6p(z) > (l+r/p)-l. By assumption, there is a dynasty 

whose stationary optimum (k,n) obeys (k,n) E s-(L,n). Since n > z by the 
definition of (k,;), it is feasible to increase first-period savings while 

maintaining first-period nutrition. Standard arguments using 6~(;) > 

(~+r/~)-l then show that this accumulation of land enables a consumption 

stream which yields higher utility than the original stationary stream. 

Suppose bp(z) < (~+r/~)-l. By assumption, there is a dynasty whose 

stationary optimum (k,n) obeys (k,n) E ~-(k,n). Note k > 0 by the 

definition of ( E l : ) .  Let s Z 1 satisfy both 

-1 s [b~(z)/(l+r/p) 1 < k(l+r/p)~l (rk+q) (2u)-l and 

[G(rk+q + (l+r/p) 
-s+l 

k) - G(rk+q)l/[(l+r/p) -s+l k] > G1(rk+q)/2, 

where u = G(rk+q) (l-bp(;) )-l . Such an s must exist because k > 0, because 

6P(z) < (l+r/p)-', and because GI is always positive. Consider taking the 

land k in period s and consuming its discounted value (l+r/p)-s+lk in the 

period 1. This decumulation would yield a utility gain in period 1 of 

G(rk+q + (l+r/p) -s+l k) - G(rk+q). The loss, evaluated at period s + 1, is 

at most u = G(rk+q) (l-6~(%))-'. This upper bound recognizes that by 

stripping away all land in period s, we may sacrifice all employment after 

period s. Thus the loss, evaluated at period 1, is at most [bP(i) lsu. The 

gain exceeds the loss: 

(the two inequalities follow from the inequalities defining s). Thus we 

conclude that this decumulation yields a utility higher than that of the 

original stationary stream. Q.E.D. 



Lemma 5: Suppose (l+r/p)-I = d~(;). Then an optimum exists from any 

(k0.n0) ' 

2 
Proof: Take any (ko,nO) E R+. Following Streufert ((1989b), Section 

2 
6), let A = R+x{O,l)xR+ be the action space, let a. = (O,O,ko,no) be the 

initial action, and let zt = (ct,et,k ,n ) be action in period t. Define t t 

the nonnegative aggregator W: AxR+ 4 R+ by 

By assumption, G and S are continuous, d > 0, and (vnt) P(nt) > 0. Thus W 

is continuous, and it is strictly increasing in future utility. Define the 

production correspondence T: A O A by 

0 T(at-l) = { at ( et = 0 and (ktlnt) = f (kt-llnt-l~ct) 1 
- 1 

u { at ( et = 1, nt Ir n, and (ktlnt) = f (kt-llnt-llct)' 1 ,  

3 2 where fO: R+ 4 R+ is defined by 

kt = kt-l + (rkt-l - Ct )/P 
nt = Bnt-1 + Ct' 

3 and fl: R+ -. R: is defined by 

To see that T is u.s.c., take any atml E A. Define K s A by K = [ O , C ~ - ~ + ~ ]  

x{O,l)x[O,kt-l+l]x[Olnt-l+l]. Note that the restriction Of T to K maps K 

into [ O , ( p + r ) k t ~ l + q l ~ ~ O , l 1 ~ ~ O I ( l + r / ~ ) k t ~ ~ + q / ~ l l B t 1 + ~ + t l + l  Also 

note that the restriction of T to K is closed (as defined by Berge (1963), 

p.  111) because f0 and f1 are continuous. Thus the restriction of T to K 

is U.S.C. (Berge, p. 112, Corollary to Theorem 7). Since at-l is in the 



interior of K, this implies that T is compact-valued and U.S.C. at at-l ( as 

defined on Berge, p. 109). Because this holds at all at-l E A, T is U.S.C. 
t 

Since at E T(at,l) implies kt 5 ( l + r / ~ ) k ~ - ~  + q/p, at E T (a 0 ) implies 

where @ = (q/p)/ln(l+r/p) > 0. Thus, at 
t 

E T (ao) implies 

Also note that by assumption, there are I < 1 and 2 E R+ such that (wchc) 

d G(c) 5 c . Hence 

t (vt2l) sup W(T (ao) '0) 

t 0 Hence b = ( + r p )  bounds the growth of <sup W(T (ao) ,O)>t=l (as defined in 
- 

Streufert (1989b), Section 6.2). Time perspective is bounded by d* = d = 

b~(6) < 1. Because (~+r/~)-l = bp(E) by assumption, 

An action stream satisfies (4)-(7) if and only if (vtzl) at E T(at-l), and 



the objective function (8) is the zero-limit of W (as defined in Streufert 

(1989b), Section 6.1). Thus biconvergence follows from Streufert ((1989b), 

Result 5), and the existence of an optimum follows from Streufert ((1989a), 

Theorem C). Q.E.D. 

-1 Lemma 6: Suppose (l+r/p) =6~(z). Then if (ko,nO) >> (El", the 

unique optimum is defined by (vtzl) (ct,et,kt,nt) = (rkO+q, 1, kg, 
- 1 

Bnt-l+rkO+q-a). (Note limt_, (kt,nt) = (kO, (rkO+q-a) (1-B) E 5. I 

OD 

Proof: Consider the stream <(ct,et, kt,"t!>t=l defined by (vt2l) 

(ctlet,k t .n t I = (rko + q, 1, ko, Bnt,l + rkO + q - a). Since rko + q - a 
OD 

is constant, <nt>t=l converges monotonically to (rko + q - a) (I-*)-' > 

(rk + q - a) (l-~)-' 2 n (the weak inequality follows from the definition of 
( t i ) ) .  Thus, since n > b 8, we have (vt21) nt 5 ?i. Since (~+r/~)-l = 0 

6~(:) by assumption, we may apply Lemma 3. Q.E.D. 

Lemma 7: Assume K < K. Take any stationary equilibrium prices. Then 

there exists a (k,g) E S-(0,O) and a ?I < 8 with the following property: If - - 
(ko.no) << (k,o), - - if < ( ~ ~ , e ~ ~ k ~ , n ~ ) > ; = ~  is feasible from (ko,nO), and if 

A 

(3t21) nt > n, then there is a time s 2 1 such that ks > k, (vtss-1) - 
A 

kt C lc, - (Vtss) et = 0, and (vtcs) nt 5 n. (Intuitively, when K < 2 ,  there 

is a (&,g) >> (0,O) such that if you start out below (k,q), you must - - 
accumulate at least k units of land before working. During this accumula- - 
tion period,, your nutrition cannot exceed < ii. ) 

Proof: We have q < ?i + a by K / E  s K < k and the definition of g. 

Thus we may choose (k,q) E 2-(0,O) to satisfy BG + (p+r)& + q - a < E. ' - - 
Define ?I = + (p+r)g + q - a; - 

First consider any ) such that ktel S k and pkt-l + nt-l - - t-1 - 
pk + Q. If et were equal to 1, (5)-(7) would Imply 



Thus, n < ii and (4) imply et = 0. Since et = 0, we may combine '(5) and (6) 

to eliminate c and obtain t 

- 1 
Since n - = rk( - 1-8) by ( & , p )  E 2, 

The previous two equations imply pk + nt < pkt,l t + "t-1 - - = pk + Q. 

Now take any (kt-l,nt-l) such that kt-l I k - and pkt-l + nt-l < pk - + 9. - 
+ + 

Since there is some nt-l 2 nt-l such that pkt-l + "t-1 = pk + Q, the - - 
A 

previous paragraph implies that if (4)-(7) are satisfied, then nt S n, 

et = 0, and pkt + nt 5 pk - + 9. 
OD 

Finally, let (ko,nol << ( k , ~ ) ,  - - let < ( ~ ~ ~ e ~ ~ k ~ ~ n ~ ) > ~ = ~  be feasible from 
A 

(ko,nO) , and suppose (stL1) nt > n. Define 

s = min { t L 0 1 kt > k or pkt + nt > pk + g 1 .  - - - 

(r This set is nonempty because nt > n̂ implies kt-l > & or pkt-l + nt-l > P& + 

e - by the previous paragraph. Since (ko,nO) << ( k , ~ )  , w e  have s L 1. 



The definition of s assures (vt5s-1) kt 5 &. Note (ks-l,ns-l) is 

well-defined because s 1 1. Since (ks-l,ns-l) satisfies ks-l l & and pks,l 

+ n 5 pk + g by the definition of s, the paragraph before the previous s- 1 - - 
one implies pks + n 5 pk + a. Thus the definition of s implies ks > k. s - - 
Finally, since (vtls-1) kt 5 k - and pkt + nt 5 pk - + - by the definition of 

s, the paragraph before the previous one implies that (vtls) et = 0 and 
- 

(vtls) nt 5 n. Q.E.D. 

Lemma 8: Assume K < K and endogenous survival. Take any stationary 

-1 equilibrium prices such that (l+r/p) = 6~(;). Then there is a ( k , ~ )  E 

S-(0,O) such that if (ko,nO) << (k," ), then every optimum is such that - 
(vtzl) et = 0, (vt21) kt 5 kt-l, and limt+=ct = limt,-kt = limt,=nt = 0. 

P o :  Define (&.p) E 2--(O. 0) and n < via Lemma 7. Note (~+r/~)-l 

= ~P(?-I) by assumption. Let d denote this equilibrium discount factor, let 
- 
d = dP(n) < dl and let a = In z/ln d. Note that 2 = da, and that a > 1 

since In 2 < In d < 0. Define k E (0,k) so that - 

where u = ~(rd-l& + q) (1-d)-l. Such a & exists because limk-O GI ((p+r)k) > 
-a a-1 - duk k 0 since G is strictly concave, and because - - 0 since 

a > 1. Define n to be the second coordinate of the point on 5 whose first 
coordinate is -k. Since 0 < k < k, 0 < g < n. - - - 

0 

Take any (ko,no) << (k,~). Let < ( ~ ~ ~ e ~ ~ k ~ ~ n ~ ) > ~ = ~  be a feasible 

stream from (ko,no) such that (at2l) nt ?. n. By Lemma 7, there is an s 2 1 

I - 
such that ks > k, (vtcs-1) kt 5 &, (vtss) et = 0, and (vtss) nt 5 n. - 
Consider taking the land ks and consuming in the first period its present 

s- 1 discounted value d 
ks. This would yield a utility gain in the first 

period of G(cl + dS-lkS) - G(cl). Since eS = 0 and kS-l 5 lc, we have that - 
- 1 

kS 5 d ks-l 5 d-lk. - Thus, the utility loss, evaluated at period s + 1, is 



at most u = ~(rd'l~ + q) ( 1-d)-l. This upper bound recognizes that by 

stripping away ks we may sacrifice employment in every period after period 

s. Since (vtSs) nt 5 n, the utility loss evaluated at period 1 is at most 

-s d u. The gain exceeds the loss: 

The first inequality follows from the strict concavity of G, cl I (p+r)ko 

(since el = O), and ko < k. The second holds by the definition of k. The 

third follows from k 5 d-sko (since (vtSs) et = 0), ko < , and a > 1. 

The fourth holds because ks > k. Since the gain exceeds the loss, we - .. 
conclude that every optimum from (ko,nO) satisfies (vtll) nt I n. 

0 

Again, take any (ko,nO) << (kt". Let < ( ~ ~ , e ~ , k ~ , n ~ ) > ~ = ~  be an 
.. 

optimum from (ko,nO). By the previous paragraph, (vtll) nt < n. Note that 
.. 0 

(vtll) nt I n implies (vtll) et = 0 by ( 4 ) ,  and thus < ( ~ ~ , e ~ , k ~ , n ~ ) > ~ = ~  

optimizes (8) over the smaller feasible set defined by ( 5 ) - ( 7 )  and (vt21) 

e = 0. Also note (vt21) nt c n̂ implies (vel) 6P(nt) I ̂d < d. Therefore, t 
m 

standard arguments demonstrate that is monotonically decreasing and 

- that limt+=kt - limt+=c = limt+-n = 0. t t Q.E.D. 

Lemma 9: Assume K < r(,  exogenous survival, and limc+,G1(c) = +-. 

Take any stationary equilibrium prices such that (l+r/p)-l = 6~(z). Then 

there is a ( k , ~ )  - E - S-(0,O) such that if (nO,ko) << (k,:), the unique 

optimum is defined by (vtll) (ct,et,kt,nt) = (rkO, 0, kg, Bnt-l+rkO). 
-1 

(Note limt+- (kt,nt) = (kg, rko(l-B) ) E 2 . )  



Proof: Define ($,n) - - c 2-(0.0) and < fi via Lemma 7. Note ~l+r/~)-l 

= &P(E) by assumption. Let d denote this equilibrium discount factor. 

Define k - E (O,$) so that - 

- 1 where u = ~(rd-lk - + q) (1-d) . Such a 5 exists because limk+O G1((p+r)k) = 

+-. Define q to be the second coordinate of the point on S whose first 

coordinate is k. Since 0 < k - < k, 0 < 5 < n. - - 
OD 

Take any (kd,no) << (kt=). Let < ( ~ ~ , e ~ , k ~ , n ~ ) > ~ = ~  be a feasibie 
A 

stream from (ko,nO) such that (ztll) nt > n. By Lemma 7, there is an s > 1 
A 

such that ks > k, - (vtls-1) kt I k, - (vtss) et = 0, and (vtls) nt 5 n. 

Consider taking the land ks and consuming in the first period its present 

discounted value ds-'ks. This would yield a utility gain in the first 

period of G(cl + ds-lkS) - G(cl). Since e = 0 and ks-l 4 lc. we have that 
S - 

- 1 
k s < d  kS-l < d-lk. - Thus, the utility loss is at most dSu = dS~(rd-lk - 
+ q 1 - d l .  This upper bound recognizes that by stripping away ks we may 

sacrifice employment in every period after period s. The gain exceeds the 

loss : 

The first inequality follows from the strict concavity of G, cl I (p+r)ko 

(since el = O), and ko < 5. The second holds by the definition of &. The 

third follows from ks > k. Since the gain exceeds the loss, we conclude - 
* 

that every optimum from (ko,nO) satisfies (vtzl) nt S n. 

dD Again. take any (kO.nO) << (5.3. Let < ( ~ ~ , e ~ , k ~ ~ n ~ ) > ~ = ~  be an 
* optimum from (kO,no). By the previous paragraph. (vt2l) nt < n. Note that 



A m 
(vtL1) nt I n implies (vtll) et = 0 by (Q), and thus < ( ~ ~ , e ~ , k ~ , n ~ ) > ~ = ~  

optimizes (8) over the smaller feasible set defined by (5)-(7) and (vt>l) 

e = 0. Therefore, exogenous survival and the strict concavity of G imply t 

that (vt21) ct = rko and (vtIl) kt = kg. Thus (vtll) nt = + rko. 

Since these facts are true for all optima, and since an optimum exists by 

Lemma 5, the optimum is unique. Q.E.D. 

Lemma 10: Suppose (l+r/p)-l = 6p(E) and k > 0. Then there is an 

-. 
c > 0 such that if kO e ( - k )  then every optimum from (ko,n) is such 

that kl < kg. 

Proof: Note (~+r/~)-l = 6p(Z) by assumption. Let d be this 

equlibrium discount factor. Define s I 1 such that 

OD 

Such an s exists because Et=l dt-lCi(rE + q) = G(rE + q) (1-d)-l. Define & E 

(o;dSE). Fix kO E (E-&,E). 

OD - 
Let < ( ~ ~ t e ~ ~ k ~ ~ n ~ ) > ~ = ~  be a feasible stream from (ko,n) that satisfies 

k1 2 k If el were equal to 1, then (5). (6). the definition of k, and 

the assumption > 0 would imply 

- 
n1 = n - p(kl-kg) + [rko + q - (1-8): - a] 

< ii - p(kl-kg) + Irk + q - ( I - B ) ~  - a ]  

- 
= n - p(kl-kg) 
< Fi. - 

Thus ( 4 )  implies el = 0. Therefore, total'income discounted to period 1 is 

bounded by (rE + q)(l-d)-l - q = (rii + dq)(l-d)-l. Thus utility is bounded 

by G(rE + dq)(l-d)-'. 

Now we relax kl L ko and construct a feasible stream that exceeds this 

upper bound. First consider all t 5 s. Define (ct,et.kt.nt) = (rE + s t  1. 



-t - i - d ( k - k )  ) (4) obviously holds. (5) holds since rk + q = (1-8): + 

a by the definition of E and by the assumption k > 0. (6) is verified by 

S 
algebraic manipulation. (7) holds since is decreasing and ks > - 

d-st > 0 by the definitions of kO and t . Second consider all t > s. 

Define (ct,et) = (0,0), andlet (kt,+) evolveaccording to (5) and (6). 

(4) and (7) obviously hold. This stream yields a utility of - 
dt- 1 

G (rE + q) , and by the definition of s, this exceeds the upper bound 

derived when kl > kg. Q.E.D. 

Lemma 11: Assume K I k. Take any stationary equilibrium prices such 

that (~+r/~)-l = 6p(H). Then for any (kO,nO) the unique optimum is defined 

by (vt21) (ct,et,kt ,nt) = (rkO+ql 1, kg, 8nt-l+rk0+q-a). (Note limt+,, 

- 1 
(kt,nt) = (kO, (rkO+q-a)(l-8) E 3 . )  

Proof: Consider the stream defined by (vtll) (ct,et,kt,nt) = 

(rko + q, 1, kol 8nt-1 + rko + q - a). Note that (vtll) nt L q - a > "ny 

K/E I K > k and the definition of K. Since (l+r/p)-l = &P(:) by 

assumption, we may apply Lemma 3. Q.E.D. 

Lemma 12: Assume K I 5 ,  and let no be an initial nutrition distri- 

bution (not an initial stock as elsewhere in the Appendix) in which a 

nonzero proportion of the population is adequately nourished (i .e., JJ ( {  j I 

no(j) 2 ) )  > 0). Then there exists a finite sequence of consumption, 

employment and nutrition distributions < ~ ~ ~ e ~ , n ~ > ~ = ~  ' such that (1) the 

equations (4), (5), and 5 ct dj~ = F(K, 5 et ~ J J )  are satisfied at each t = 

.., 
1,2, ... s, and (2) (vj) ns(j) 2 n. 

Proof: Without loss of generality, assume n is weakly decreasing. 
0 

00 

Define Eo = sup { j I nO(j) > ) and define <Et>tzl recursively by 

-1 Et = min { 1, Et-l + [P(K,E,-~)-( (l-~):+a)~,_~l (+a) 1 -  

If Et < 1, then 



Since K > L[ and Eo > 0 by assumption, the above inequality shows that 
0 

'Et>t=O is a weakly increasing sequence and that there is a finite s such 

that ES = 1. 

s Define <ct,et,n > t t-1 at each t by 

(4) is satisfied since j E [O,Et-l) implies nt-l(a) 2 E. ( 5 )  is satisfied 

by the definition of each nt. Also, 

- Finally, Es = 1 and the definition of ns assures that (vaa[O,l]) ns(a) 2 n. 

Q.E.D. 
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