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ABSTRACT

Virtually all survey data are weighted, such as those from the
NIT experiments, the Health Interview Surveys, the National Ambulatory
Care Survey, and the Current Population Survey. Weighted means are
common in survey design, where the design effect is defined to be the
ratio between the variance of the estimated mean from a stratified
random sample and the variance from a simple random sample of the same
size. Manski and Lerman (1977) derived the variance matrix for parameter
estimates from weighted log likelihood functions. This paper shows
that their results can be considerably simplified under certain condi-
tions; the variance matrix is the design effect (a scalar) times the
variance matrix from a simple random sample. In general, any estimate,
a probit coefficient, a regression coefficient, a mean, etc., can be

used as the basis of sample design.



The theory of sample design is well known (Cochran, 1977), and
so is the theory of weighted likelihood functions (Coslett, 1981; Manski
and Lerman, 1977). However, it is a fact that few researchers in econom-
ics use either sample design or weighted likelihood functions in applying
maximum likelihood estimation. Many are unaware that variances change
in well-known ways when data are weighted, and most cannot understand
the necessary theory and programming to alter their computer packages
to take account of the well-known results on weighted likelihood func-
tions. Unfortunately, weighted data are ubiquitous in survey data,
s0 the neglect of weighted likelihood functions is not merely an irrita-
tion, it is a general error. The purpose of this paper is to interpret
some sample design for the case of weighted likelihood functions; to
point out a potential simplification of the weighted likelihood functions
under fairly extreme but not unknown conditions; to apply these results
to the method of moments; and to suggest applications to sample design.
None of this is mathematically difficult, but at present weighted likeli-
hood functions seem totally impossible to most researchers. That need
not be the case,.

The first section rehashes the question of when weights are needed
in regressions and other models. The second section derives the familiar
deslgn effect from weighted likelihood functions under a specific assump-
tion. The third section relaxes the assumption somewhat. The fourth
section discusses the application of these ideas to the method of mo-
ments. The fifth section presents an empirical example using these
ideas. The sixth section suggests how these results could be used
in designing surveys intended to produce more than sample means and

cross-tabulations. A conclusion follows. An appendix reinterprets



standard results from sample design in terms of weighted log—likelihbod

functions,

Section 1: When Are Weights Required?

Almost all surveys are stratified, frequently on the basis of
a variable of analytical interest such as income. The effects of strati-
fication on the variances of estimated means is well known in survey
analysis. (See, for example, Cochran, 1977.) Rarely has stratification
been considered in the theory of likelihood functions, however. Hausman
and Wise (1979) used a weighted maximum likelihood procedure. Manski
and Lerman (1977) showed that the correct variance-covariance matrix
from a weighted log likelihood function is not the usual inverted Hessian
matrix or the inverted matrix of outer products of the first derivatives;
instead, it is the outer product matrix pre- and post-multiplied by
the inverted Hessian. (See Manski and Lerman, 1977, pp. 1984-5.)
The asymptotic properties of the likelihood ratio test are then based
on that product pre- and post-multiplied by the vector of differences
between the true and estimated values of the parameters. A considerable
simplification of those results is possible, requiring only a scalar
correction to the customary and more easily computed variances and
likelihood ratio tests calculated for maximum likelihood procedures.

Let the 1likelihood function be designated L, the log 1likelihood
function L¥*¥, the log likelihood of an observation on individual i be

fi, the first derivatives with respect to coefficients 8 be LZ or fe,

and the second derivatives with respect to 8 be Lze,, and f

[TAN

Assume that a sample of data X is drawn with unequal weights,
stratified in some way. Let y denote the outcome of interest. If

the sample is stratified on exogenous variables only, and the object



of the analysis is to estimate endogenous variables given exogenous
variables (and not the distribution of endogenous variables in the
population), then the stratification may be ignored. If stratification
is based on endogenous variables, e.g., cholce-based sampling, then
a weighted log likelihood function is required.

The difference between exogenous and endogenous stratification
hinges on the disturbance in the equation. In essence, weights are
needed when the weights are correlated with the disturbances in the
statistical model. The regression setting illustrates this. Assume
y = XB + € for endogenous y, exogenous X, and disturbance e. Stratifying
on X alters the distribution of y but not e. Thus, statistics based
ultimately on e, such as the variances of the estimated coefficients,
are not affected by stratification on X. On the other hand, stratifying
on y alters the distribution of € in the sample, including the variance.
Note that 1if stratification is carried out on an exogenous variable,
Zz, not included in the equation, then the distribution of disturbances
is affected if z should have been included directly or interactively.
A test of the difference of means can be written as a regression, but
if the samples within the groups whose means are compared are themselves
further stratified, then the distribution of the disturbance is affected
if the further stratification involved variables which also should
be in the regression. Note that omitted variable bias occurs only
if the omitted variables are correlated with the dummy variable included
in this implicit regression, but the distribution of € in the sample
1s changed as long as any stratifying variable is "omitted." The general
points illustrated here hold for all statistical models; the question

concerns the distribution of the disturbance.



To conclude: Weights are needed when the distribution of the
disturbance must be repaired (see Hausman and Wise, 1976). Weights
are therefore needed almost invariably when means are calculated from
real surveys, because stratifying variables are found among the omitted
variables, everything being omitted but a constant. In the test of
independence of rows and columns in a cross-tabulation, no doubt stratify-
ing variables are omitted, so weights are needed. 1In regression, weights
are not needed. 1In choice-based samples, weights are needed.

Section 2: The Familiar Design Effect; Weights Uncorrelated with
Exogenous Variables ’

As in Manski and Lerman (1977), it is assumed that the probability
mass or distribution function of the dependent variable in the sample
and in the population are known, The ratio of the population probability
distribution function (pdf) to that in the sample is the weight used
in the 1likelihood function. We assume in this section that weights
are stochastically independent of all exogenous and endogenous vari-
ables. That is true if the only regressor is a constant or if the
regressors are sets of dummy variables uncorrelated with the weights.
It is unlikely to be strictly true in general; it may or may not be
far wrong in a specific case. One could test the hypothesis of indepen-
dence of welghts and exogenous variables, for example using a regression.

The weighted log likelihood function is I§1nlif’i. The vector of
first derivatives of fi given 6%, the maximulmzjlikelihood estimator,
is independently and identically distributed with the usual mean (zero)
and variance (the Hessian). The asymptotic expectation of the outer

product of the first derivatives is the same as the asymptotic expecta-

tion of the Hessian; f is not a weighted log likelihood function.



E(-fieg') = E(figfig,) i.i.df for all if This usually leads to the
assertion that
* * *
- = 1
E(-L,,) E(yg.yg,), (0

used in deriving the properties of the maximum likelihood estimator

and the likelihood ratio test. Here the result is different.

N N

E(-Lgge) = E(= YW, flee,) - .2 W, E(-fo00) (2)
—_— i=1- i=1 —

E(L'LY,) = E(IWF, f, ) = § We E(Ff, £, ) (3)
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The stochastic part of the model determines the nature and form
of the likelihood function. Problems arise when weights are correlated
with the disturbance. Suppose for argument that there is only one
equation with one disturbance €. Person 1 draws a particular value
of the disturbance and may or may not be in an oversampled stratum,
If the same person were in the same population repeatedly having differ-
ent €'s each time, and the e€'s were observed only when person i was
drawn into the sample, the observed e's would trace out the unweighted
likelihood function, which is not the true distribution of €'s, seen
if person i's € were observed every time. Weighting the values of
fi alters the sample distribution of € to reproduce the population
distribution. However, the weights have another effect. They alter
the form of the likelihood function as noted above, and they alter

the form of the variance.

From (2) and (3) it follows that:
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* * *
—— E(-Ly.)) = E(L} Lg,). ()

If the weights were defined as W§ not summing to N, the scalar factor
* *
would be I(W}-N/ZWj)Z/N = NPZW;2/((IW})2-N) = NIW;°/(ZW()?. The scalar

*
factor exceeds one and thus E(-Lze,) < E(LeLz,).

With this result, one may proceed to evaluate the weighted variance
*
derived by Manski and Lerman. They define @ = E(-Lee,) and A =

N
E(LL¥ ). Let k = N/ ] We.
28 i1 '

Then,
Q= ak, @' = 2" 1/k, and @A = @7 V/k = A—1/k2f
Because k < 1 for all positive weights wi,
e lae™! > @71 > a7l (5)
More strongly,
[ 2™ ]2t |2 [aT], a1l 1 and 5.

So, use of the conventional inverted Hessian biases all variances and
covariances toward zero, and use of the outer product approximation
does so0 even more. However, k 1is easily calculated in any sample,
since it is k = (zwiz)/Nzwiz for weights scaled tc any sum.

The likelihood ratio statistic is biased upward. This follows
from the fact that the variances are understated by using the convention-
al forms. The chi-square statistic is based on a Taylor expansion
of the log likelihood function in the likelihood ratio, A (see Theil,

1971’ pPpP. 396—7)



2 qn 2 = 20L%(x,0%) - L*(X,0)), (6)
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where 8 is the restricted maximum likelihood estimator. Then

. 32f. (X,0") .
B *_ ) 1 -)(-_
2 ¢n A = (0 -9)' IW —SeieT (6 -6) (7)
WS . - 321, (X,07) . -
(ZQI’IA) =—N—/N (9 ‘9)' __-B—E-BET—- (2 ‘_9_)1/13- (8)

The matrix in the middle of the right side of (8) has the same
asymptotic distribution for all individuals, whether the sample is
or i1s not weighted; f is not a weighted log likelihood function. Asymp-
totically, of the terms on the right side of (8), only ZW? depends
on individuals' characteristics. The right side without the scalar
ZW% constitutes the information matrix of a random sample size of N,
and can be shown to follow a chi-square distribution with degrees of
freedom equal to the number of restrictions involved. (See Silvey,
1975, pp. 113-4.) Thus, it follows from (8) that the likelihood ratio
test is based on a number which must be multiplied by k to have the
usual chi-square distribution., The size of the information matrix
is overstated without the correction factor k; this is equivalent to
the statement that the covariance matrix is understated. Note that
the correction factor is needed whether the difference between maximized
likelihood functions is calculated using (6) or (8). The asymptotic
distribution of that statistic is affected by weights.

None of the arguments depend on the distribution involved in setting

up the 1likelihood function. The correction factor, therefore, does



not depend on the distribution involved, so long as the assumptions
supporting maximum likelihood estimation hold.

Two standard examples of maximum likelihood estimation which fit
the assumptions are presented in an appendix to illustrate these points:
estimating the mean of a normal distribution with a weighted sample
and testing the hypothesis of independence in a cross-classification

using the likelihood ratio chi-square.

Section 3., Weights Correlated with Endogenous Variables

Now E(f. f ) and E(f,

iofie 122') are not constant across individuals

because the weights are correlated with the explanatory variables,
If the weights depended on the mode of travel chosen, as in Manski
and Lerman, the same model that explains the mode chosen would explain
the weights as well.

Assume that the distribution of data in X converges to an asymptotic
distribution, which can depend upon the sample design, as the sample
size grows. Then both the weighted outer product of first derivatives
and the weighted second derivatives are functions of the data and parame-
ters in the sense of Amemiya's (1973, p. 1002) statement of Jennrich's
[1969] Theorem 1:

LEMMA 1 (Theorem 1 of Jennrich, 1969, p. 635): Let X be Euclidean
space and 6 be a compact subset of a Euclidean space. If h is a bounded
and continuous function on X x 6, and if {GT} is a sequence of distribu-
tion functions on X which converge to a distribution function G, then

( [

h(X,8)dGz(X) » | h(X,8)dG(X)

uniformly for all 6 in 6. For example
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w(i)(f, r. )dGT(X) +> | w(i)(rF,

161" 17191 90X

The implication is that the weighted function follows a single
distribution asymptotically. However, the weight is part of the function
under the integral and cannot be separated if it is a function of the

data X.

Note that E(fiefie') is not made a function of X by weighting

which is based on values of explanatory variables, The values of fiefie'

still constitute a random sample. So, even though the weights normally
are functions of the data, frequently linear, the E(fiefie') are constant
within categories of the outcome. Only the obser;;d-;istribution of
X is affected. Choice-based sampling requires weights based on the
outcomes. However, within discrete categories of the outcome, either
ranges of income in a weighted sample design from an N.I.T. experiment
or discrete choices of mode of travel or participation versus nonpartici-
pation, over persons 1 making choice j, or being in the range j,

2
W

. o ¥ _ *_ %
—NE E( ng,) = E(LgLg,

).

Consequently, in Manski and Lerman's variance formula, Q—1AQ-1, although
a single scale factor cannot be derived, the calculation of second

derivatives can be avoided. If the choices j=1 to C, then

=0
1]
I~

* ¢ J
L Fhee) - 1 B(Ljglyer) = 2
— J = -_— —— .
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f must be inverted, but it can be estimated by deflating each individ-
ual's outer product by a design effect calculated within the appropriate

choice category. Thus,

C c
o= .z Ay = .z d;B;
J=1 J=1
c
o= 138y
i=1
and o a0 = (2dB:)7 1 (EB:)(2d B )]
' 3P3 REARRN RN

where the A's and B's are appropriate positive definite matrices.

Both Q and A can be accumulated in one pass through a set of data.

Section Y4: The Method of Moments
In brief, the method of moments with weighted data works as fol-

lows. See Hansen (1982). Orthcgonality conditions are constructed:

Note that gj is a vector function, whose expected values are zero but
not zero for any person j. They could be, e.g., products of exogenous
variables and residuals. The function QﬁgN is minimized by choosing

0. These estimates are used to estimate

and
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<3
I}
b2

2 1
1ngj (8)g}(8)-

J

Then ij_tg is minimized. The 8§ thus obtained is distributed normally
with a mean of the true parameter vector and variance D'V_TDf In the
method of moments, second derivatives are never needed. However, the
weights are needed if the distribution of the disturbances is affect-
ed by the weighting (MOM is "fitting all models by OLS or GLS.") 1If

the weights are not correlated with the orthogonality conditions or

their first derivatives, then the same design effect holds--normalized

2

weights, ZwJ

/N for NZw?/(ij)2 in general. When the weights are correlat-
ed with the orthogonality conditions or their first derivatives, they
can be analyzed analogously to the case of MLE--but weights should

be taken into account.

Section 5: An Application to the Case of a Participation Equation

In this section, a study of the decision by elderly persons to
participate in the Food Stamp Program is used to illustrate the ideas
developed concerning weighted variances. First, the problem and the
data are discussed briefly, then the results of the estimation are
presented and discussed.

The Food Stamp Program is a welfare program under which many low-
income households are eligible to receive stamps in dollar denominations
tradeable for food in most stores. A persistent problem in the program
from the point of view of proponents has been the low rate of acceptance
of the stamps by eligibles, for which lack of information about the

program and the stigma of welfare are possible explanations. A study
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of elderly eligibles, the Food Stamp Cashout Project; was designed
to examine factors associated with rejection of the stamps. (Cashout
refers to payment in cash rather than stamps, a strategy for reducing
the stigma.) That project 1is discussed in great detail in Butler,
Ohls, and Posner (1985) and Blanchard et al. (1982).

Here, a probit model of participation in the program by 1,685
eligible persons is used to illustrate the effects of weighting. The
sample design of the project entailed sampling based, in part, on partici-
pation, because the 1lists of participants reduce the cost of drawing
a sample. That is the primary motivation mentioned by Manski and Lerman
for such sampling. The explanatory variables include sociodemographic
variables, age, race, sex, whether the eligible person lives alone,
years of education, and an interaction between sex and living alone;
geographical dummy variables standing for site (New York State, South
Carolina, or Oregon) and whether cash was paid (a "demonstration" site);
the potential bonus available and other gross income; frequency of
getting out of the house (daily, weekly, or less often), distance to
the Food Stamp office, and whether any bad experiences had ever been
encountered there; and a measure of knowledge of nutrition: how many
of the basic four food groups (breads, fruits and vegetables, meat
and high-protein substitutes, and dairy products) are named by example
in listing foods which should be eaten on a daily basis.,

The data are summarized in Table 1., Maximum likelihood estimates
are presented in Table 2, and method of moments estimates are presented
in Table 3. The results are strikingly similar. Only one coefficient's
sign ever changes, and that one, male-alone, has a t-value at most

of 0.3. All magnitudes are extremely close to each other., Similarly,
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Table 1

Summary Statistics for Variables Used in the Participation Equation

Standard
Mean Deviation Maximum Minimum
Constant 1.000 0.000 1 1
Age 73.855 6.176 99 65
Black 0.332 0.471 1 0
Male 0.296 0.457 18 0
Years of Education 7.269 3.699 18 0
Alone 0.816 0.387 1 0
N¥ Demonstration Site 0.09 0.287 1 0
NY Comparison Site 0.123 0.329 1 0
SC Demonstration Site 0.243 0.429 1 0
SC Comparison Site 0.228 0.420 1 0
OR Demonstration Site 0.148 0.355 1 0
OR Comparison Site 0.167 0.373 1 0
Food Stamp Bonus 35.253 24,372 183 10
Other Gross Income 301.540 116.500 1085 0
Out Daily 0.589 0.492 1 0
Out Weekly 0.277 0.u447 1 0
Qut Less Often 0.134 0.3H 1 0
Male and Alone 0.144 0.351 1 0
Distance to Food Stamp Office 0.5 0.664 7 0
Bad Experiences at Food Stamp Office 0.052 0.221 1 0
Knowledge of Nutrition 2.072 1.111 4 0
Sampling Weight 3.171 3.789 19.803 0.518
Participation 0.675 0.468 1 0

Sample Size: 1685
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Table 2

Maximum Likelihood Estimates of a Probit Model
of Participation in the Food Stamp Program

Unweighted Welghted
Ratio of
Standard Standard Standard
Coefficient Error Coefficient Error Errors
Constant 4,684 0.398 5.229 0.703 1.769
Age - 65 -0.019 0.006 -0.023 0.008 1.459
Black 0.212 0.090 0.119 0.129 1.434
Male -0.356 0.208 -0.174 0.348 1.670
Years of Education ~0.036 0.011 -0.051 0.016 1.390
Alone -1.114 0.217 -1.380 0.357 1.645
NY Demonstration Site 0.560 0.156 0.542 0.196 1.258
NX Comparison Site 0.055 0.131 0.186 0.190 1.454
SC Demonstration Site -0.251 0.122 -0.254 0.172 1.404
SC Comparison Site -0.075 0.127 -0.073 0.174 1.365
OR Demonstration Site 0.193 0.128 0.150 0.210 1.643
FS Bonus (10's) -0.157 0.020 -0.203 0.035 1.771
Gross Income (1000's) -6.823 0.502 -7.681 1.137 2.265
Qut Daily -0.139 0.112 ~0.232 0.153 1.362
Out Weekly -0.068 0.120 -0.203 0.163 1.355
Male - Alone 0.063 0.233 0.050 0.376 1.615
Distance -0.154 0.053 -0.187 0.070 1.322
Bad Experiences -1.776 0.201 ~1.876 0.235 1.170
Knowledge Of033 0.032 0.054 0.046 1.442
Average Effect 1.515
Theoretical Effect i.558

Sample Size = 1685
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Table 3

Method of Moments Estimates of a Probit Model
of Participation in the Food Stamp Program

Unweighted Weighted

Ratio of

Standard Standard Standard

Coefficient Error Coefficient Error Errors

Constant 5.281 0.565 5.715 0.669 1.186
Age - 65 -0.019 0.006 -0.023 0.008 1.562
Black 0.193 0.089 0.103 0.132 1.479
Male ~-0.366 0.252 -0.135 0.370 1.469
¥ears of Education -0.034 0.011 -0.049 0.016 1.447
Alone -1.309 0.288 -1.487 0.389 1.353
NY Demonstration Site 0.589 0.154 0.551 0.197 1.274
NY Comparison Site 0.100 0.140 0.227 0.196 1.397
SC Demonstration Site -0.281 0.121 -0.290 0.176 1.465
SC Comparison Site -0.106 0.124 -0.075 0.177 1.426
OR Demonstration Site 0.158 0.129 0.103 0.210 1.631
FS Bonus (10's) -0.179 0.024 -0.225 0.031 1.310
Gross Income (1000's) -8.031 0.939 -8.700 1.023 1.089
Out Daily -0.147 0.109 -0.235 0.154 1.422
Out Weekly -0.066 0.117 -0.187 0.166 1.411
Male - Alone 0.052 0.271 -0.001 0.397 1.464
Distance -0.160 0.057 ~0.195 0.068 1.199
Bad Experiences -1.795 0.225 -1.917 0.252 1.120
Knowledge 0.035 0.031 0.048 0.047 1.469
Average Effect 1.378
Theoretical Effect i.558

Sample Size = 1685
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the standard errors are very close in MLE and MOM estimates, but in
both cases the standard errors are increased by taking into account
the weights. The average effect, 1.378 under MOM and 1.515 under MLE,
is close to the theoretical design effect for these data, 1.558. The

t-values are overstated when weights are ignored.

Section 6: Implications for Sample Design

The ratio of the variance obtained using a particular sample design
and sample size to the variance obtained using a simple random sample
of the same size is the design effect. (See Cochran, 1977, p. 21,
98-101.) The sample design in a real survey normally involves trade-
offs between the cost of the interviews and the variances of the statis-
tical estimates obtained from the survey. In practice, the planning
involves the assumption that sample means are to be estimated. Previous
estimates of relevant means are obtained from other surveys, their
variances are noted, and explicit trade-offs are calculated. However,
the variances of regression coefficients, probit coefficients, or any
other models can be used in the exercise, as long as an appropriate
design effect is available.

Section 1 above shows that the usual design effect can apply to
likelihood functions of all types, not just to estimated means from
normally distributed populations. In planning a survey intended to
generate maximum likelihood estimates, the design effect may be calcu-
lated as always and applied to any MLE--probit cocefficients, t-values
from regressions, chi-square statistics from cross-tabulations, ete.

Even though the design effect may vary for different parts of
a population, except under restrictive conditions, it is possible that

the design effect within subgroups of a population--bus riders and




17

auto drivers, e.g., or participants and non-participants in a welfare
program--might not be too different, whereupon the same design effect
can be used in planning a survey. If there are major differences among
subpopulations, then a weighted average of them, weighted by variances
or variance-covariance matrices, should be used in planning whenever
maximum likelihood estimates or method of moments estimates of fancy
models are intended, rather than making the assumption that the design
effect for an estimated mean will be adequate. Modern econometrics
does not depend on tests of differences of means, and neither should

sample design.

Section 7. Summary and Conclusions

Weighted data are ubiquitous in social scientific research, but
the use of weights 1is rare, despite well-known theoretical research
in certain cases of welghting based on outcomes. Under certain condi-
tions, encountered in traditicnal problems of sample design, a scalar
factor can be aplied to the inverse Hessian or outer-product first
derivative matrix of maximum likelihood estimation to correct for the
weighting. In other cases, more elaborate calculation 1is required.
The method of moments is equally in need of weights in such cases;
the calculations are little more complicated than those normally en-
countered in the MOM, An illustrative example is presented in which
the variances are shown to increase with the application of choice-
based weights, and the magnitudes are close to the theoretical design
effect of sample design. Finally, in planning surveys, it is common
to use the design effect to estimate the increase in variance of an
estimated mean or proportion caused by stratification. This paper

shows that any planned statistical activity can be used in designing
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surveys. A probit coefficient, a regression coefficient, a sample
mean, or any other statistical estimate with a variance can be used.
Thus, surveys need not be planned as if only means and proportions

Wwere going to be estimated.
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Appendix: Two Basic Examples of Weighted Likelihood Functions

Example 1. Estimating the Mean and Variance from a Normal Distribution

The following shows the derivation of the MLE of a mean and variance
of a normal distribution from a weighted sample. The question arises
why a weighted log-likelihood function would be used, since the minimum
variance unbiased estimator of the mean of y is unweighted if Vi =
Mt e, £y i.i.d. N(O,oz). In practice the assumption mode is, rather,
that y, N(ut,oz) and that y, = X{8. That is, a multivariate regression
is implicit, possibly derived from a multivariate normal distribution
of Vi and.ﬁt' Then weights are needed to generate an unbiased estimator

of the mean of y:

E(yt) Ext(E(ytlﬁt))

I
=

<G -
[£es
.

Weights are needed whenever any form of stratification occurs. Whether
or not the implicit regression is carried out, the weights applied
to the sample of y's produce an unbiased estimator.

The log likelihood function is L*.

2
M N 1 (Xi W)
L = ] W n exp - ——— (9)
i=1 ov2m 20°
W, W, 1
1 1
L' = - — wm@n - —= in(?) - — (W (X;-w)?) (10)
202 '

The derivatives of L* with respect to u and 02 are



1
Ly = — QI (X4mp))) = 0 >y = TH;X,
20
« Wy
L = - + LW, (X;-w2) = 0 » o°
> u 1 1
g 20 20
L 2
Luu = (Zwl )/0
¥ =0
uo®
- W,
i 1
¥ L — -._Eg LW (X-w?) = - —
02a 20 20 20

The matrices of second derivatives Q@ and of the outer products of

derivatives A are as follows:

s . )
2 ] W
Q= -1 -
0o - M 0
20”
LW, (X, -
— IW; (X5
g
1
A=E — THy (%)
Zwi 1 o]
- 5 + 0 Zwi(xi_U)z
20 20
Ayy = E|—e(eW, (X, ~u))2| = E|—ew (X, -p)2] = —
11 = Bl (2W; (X5=u = Bl THE (X -
o} g o}

20

/W (11)

LW (Xy-wZ/TW;  (12)

(13)

(14)

(15)

first

2
0
i
(16)
20"l
Wy
W,
1
| - — 14 IH; (X -2 (17)
20 20
WS o° (18)
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Iy 1 2 1 3 3
. 20 20 20
(19)
(W )2 21w
By = E - — Ty s '8(zwi(xi—u)2)2 (20)
uo” Yg Yo
y 2.4 4
CURCINPTS LA A LR A LR T T
Bop = - NI - - — (21)
Mou 406 408 M08 20 )
From Manski and Lerman (1977, pp. 1984-5), the variance of the MLE
of u and 02 is (22).
2 2
O2 . zwi . 02 . 02 zwi .
IW; 02 IW; (Zwi)z
“1.0-1 _ _
QA0 = 5 = » (22)
20" Wy 24" 4 LW}
0 o 0 e 0 e 0 20" ¢ ———
i 2¢" i (zH;)?

where zwi = N,

The correction factor k is N/ZW% in terms of normalized weights
(Zwi=N). For the variance of the estimator of yu, the relevant values
are these: Q' has ¢°/N; A™! has 02/zw§, and the correct matrix has

022w§/(zwi)2. The required equations hold:

I 2 oy oI
o Tag™! = 271 k e (23)
e N
2.2
_ _ _ 2 2 a Zwi
o lae™! = a7k 8 5+ N2 = - — (24)
WS (zW$) N
2 2
a7l = a7k °——+—N—=T3— (25)
WS IWe
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The results follow for the variances of the estimated 02 with 2¢° substi-

tuted for o° in (23), (24), and (25).

Example 2. Likelihood Ratio XZ for a Test of the Independence of the
Rows and Columns in a Table

The log likelihood function for multinomial sampling of an RxC

table with probabilities Pij’ i=1 to R, j=1 to C, is
R C
L¥* = 2n(n11, Dygs +ees nRC) + 121 j§1nijwij2npij‘ (26)

The number of observations in the sample in cell (i,j) is n and

ij

n is the sample size. W is the average weight attached to observations

iJ
in cell (i,j). The weights serve the function of adjusting observed
frequencies by known sampling rates in order to eliminate biases in
relative proportions which would otherwise result. Assuming the weights
to be normalized so that they sum to n, and letting wij2 refer to an
individual ¢ in cell (i,j), the concentrated log likelihood function
is
R C Rij

= Lo Lanpgy LWy (21

i=1 j=1 =1 )

This is maximized with respect to the R times C p's first with
only the constraint 1=§ ; pij’ then with the additional constraints
that Pj j=Pi+P4js where EheJ"+" denotes addition over a column or row,
the constraint implies that the rows and columns are independently

distributed. In the first or "unrestricted" case, the estimated p's

are given by
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nij
pi; = ) Wiso/n.
J =1 J

The maximized value of L¥* is

R C Dij Ny j
LI (LWygen TWigp) - nognon. (28)
i=1 j=1 2=1 9=1

Under the "restricted" alternative hypothesis

C Bij
J=1 %=1
R Mij
i=1 2=1

and the maximized value of L* is

R c Dij ¢ Dij
i=1 j=1 =1 J=1 2=1
C R Mij R Mij
+ 3 D) Wijgn ) Wiig - n nn, (31)
J=1 1i=1 2=1 i=1 2=1 '

Twice the log of the likelihood ratio for this problem is (28) minus
(31), which can be written as
R C Dij i j R Mij c Mij
21 1 QWi tn TWiy/CT 0 THWgg) - (L IWig) o (32)
i=1 j=1 2=1 =1 i=1 2=1 J=1 2=1
This is the sum of observed frequencies times the log of the ratio
of observed frequencies to expected frequencies under the restricted

hypothesis, that is, the likelihood ratio chi-square. (The expected
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frequency is the row total times the column total divided by n.) Bishop,
Fienberg, and Holland (1975, pp. 513-8, 525-6) show that the likeli-
hood ratic statistic follows a chi-square distribution with degrees

of freedom equal to the sum of the eigenvalues of

-0.5 5 D‘O.5

D’!T m

in which D1T is a diagonal matrix with the vector of probabilities 7
(estimated by p) on the main diagonal, and I is the variance-covariance
matrix of the p's. The eigenvalues are either zero or one in this
case. The number of degrees of freedom is the difference between the
number of unconstrained parameters in the constrained and unconstrained
models, here (R-1)x(C-1).

With weighted data the variance matrix is multiplied by the design
effect. This makes the eigenvalues equal to the design effect or zero.
Thus the number of degrees of freedom in the chi-square distribution
is multiplied by the design effect. A chi-square distribution must
have an integral number of degrees of freedom, but a gamma distribution
need not, in general. Dividing the likelihood ratio statistic by the
design effect yields a statistic distributed as a chi-square with
(R-1)x(C-1) degrees of freedom.

Note that if stratification is based solely on variables which
define the marginals of the table, then the weights may be ignored
if there is no interaction effect. In this case, the chi-square statis-
tic is asymptotically zero. If an interaction effect is present, then
not only the marginal variable but also the interaction is stratified,
and the chi-square statistic ignores that interaction, inasmuch as

the test assumes its absence. Thus the test is biased toward rejecting
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independence. The comparable situation in regression occurs if an
interaction is omitted, the interaction involving a stratifying vari-

able., In this case the exogeneity exception does not apply.



