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ABSTRACT

A major drawback to the traditional Markov formulation is

that it assumes population homogeneity with respect to transi­

tion behavior. This assumption, clearly, is violated in most

instances of social mobility. In an attempt to relax the homo­

geneity requirement and still retain the essential character of

a Markov process, B1umen, Kogan, and McCarthy (1955) developed

the "mover-stayer" model, in which heterogeneity is attributed

to the presence of two types of persons. In the present paper,

'the mover-stayer model is generalized to permit a continuous

"distribution of persons by rate of mobility. The model is illus­

trated with simulated data and then applied to an analysis of

iriter-regiona1 migration.
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1. I~TRODUCTION

Applications of Markov processes to the ,study of social mobility

have commonly concluded with the observation that individuals differ in

their transition behavior. Although required by the 11arkov model, transi-

tions from a state of origin do not conform to the assumption of popula-

tion homogeneity. Some persons simply move more often, or differently,

from others. This has been found with industrial mobility data (Blumen,

Kogan, and McCarthy 1955), with inter-generational and intra-generational

occupational mobility (Hodge 1966; Lieberson and Fuguitt 1967), and with

geographic migration (Rogers 1966; Tarver and Gurley 1965).

The main difficulty derives from the Markov model having been con-

structed with state changes by a single object in mind. In the analysis

of social mobility, however, the movements by an entire population are at

issue. 'If this population is heterogeneous in its transition behavior,

then, even if each individual were to satisfy the central assumption of a

first order Markov process, namely that his probabilities of making par-

~icular transitions are determined solely by his present state and are inde­
. (

pendent of past history, the population-level process would not be Markovian.

,;' Attempts to relax the homogeneity requirement while retaining the

essential Markov framework have led to research in two directions. In one

,approach, interest has focussed on the construction of subpopulation

matrices, and on ways for categorizing individuals that would permit the
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"within-category" variation in transition behavior to be reduced. Opera­

tionally, this has usually meant disaggregating the population on attri-

butes which are expected, either from theoretical considerations or empir-

ical investigation, to relate to mobility and constructing a separate tran­

sition matrix for each subpopulation. For example, Rogers (1966) and

Tarver and Gurley (1965), analyzing geographic migration, disaggregate the

population·to produce transition arrays by age categories and race. In the

spirit of this approach McFarland (1970) has reported on an· analytic method

for combining subpopulation or individual-level transition matrices and pro­

jecting from these to the k-step population matrix, and Spilerman (in press) has

presented a regression procedure for disaggregating the population matrix in

order to obtain the individual-level transition arrays.

The above strategy casts the problem of heterogeneity into a framework

in which each person is viewed as making a single transition during a unit

time interval, but following a matrix relevant to the sub population with

his particular attributes. A conceptually different approach to heterogeneity

is embodied in an alternative assumption, namely that all individuals move

according to an identical transition matrix when they move, but differ in

their rates of mobility. (See Spilerman, in press, for a discussion of the con­

vergence of these two perspectives.) Work in this direction has led to the

development of the "mover-stayer" model (Blumen, Kogan, and McCarthy 1955).

Under the ppecifications of this process, heterogeneity is contended with

,by postulating two types of individuals--stayers, who remain permanently in

their· states of origin, and movers, who are homogeneous in their transition

behavior and therefore follow a Markov process with a common transition

matrix. Several estimation methods for the parameters of the mover-stayer

model have been developed by Goodman (1961).

1 '
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Aside from the novel conceptual perspective provided by this model,

which seems appropriate to the analysis of geographic migration or intra­

generational occupational mobility where repeated moves can be made by a

person, it has the advantage of not requiring individual-level attribute

data (although parameter estimation can be improved if such information on

the waiting time to transitions are available [Goodman 1961]). Since. much

of our mobility data lack significant detail at the individual level, the

mover-stayer model can be applied where the construction of subpopulation

transition matrices is not possible.

Although the mover-stayer model postulates two types of persons, this

is done out of necessity for keeping the process mathematically tractable

not because the authors genuinely believed that instances of heterogeneity

can generally be attributed to two types of persons. In fact, in their con­

cluding chapter BKM (Blumen, Kogan, and McCarthy 1955) discuss strategies

for exten~ing the mover-stayer model to incorporate a wider range of hetero­

geneity in the rate of transition, although they do not develop such a

generalization. An extension of the mover-stayer model in which the rate

of individual mobility is specified by a continuous distribution is con­

structed in this paper. Following the mathematical presentation the exten­

sion is applied to regional migration data.

2. THE MOVER-STAYER MODEL AND BKM'S COM~1ENTS ON .AN EXTENSION

The mover-stayer model. In their study of industrial mobility BKM

(1955) report that calculations of k-step transition matrices from a Markov

chain consistently underpredict the main diagonal elements of the observed

k-step matrix. That is, if
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pel) =

is the observed one-step transition matrix and if

P(k) =

is the observed k-step transition matrix, then the k-step matrix predicted
A k

from a stationary Markov process, P(k) = pel) , will have main diagonal

A (k) A (k) A (k) < (k)
elements (Pll "'Pmm ) which commonly have the property that Pii Pii

fo r i = 1, ... , m.

Although one might suspect that overtime change in the p .. elements
J.J

of pel) are responsible for this result, this is generally not the case.

For example, Hodge (1966) reports similar findings with occupational mobility

data even though the pel) matrices he uses are time dependent. More formally,

HOdge's analysis shows that if Pt(l) for t = 1, ... , k are observed one-
A

A

step transition matrices for successive time intervals, and if P(k) is the

predicted k-step array,

::: k
P(k) = II Pt(l)

t=l

A

A

then the relationship between the main diagonal ~lements of P(k) and P(k)

can have the same structure as that described between P(k) and P(k). The
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problem is not one of the p .. elements of Pt (l) changing ~vertime for the
~J .

population, but rather that some persons are less apt to move than others

in each time interval.

To contend with this situation BKM suggest decomposing the population

into movers and stayers,

P(l) = S + (I-S)M (1)

where 8.is a diagonal matrix containing as entries the proportion of per-

sons in each origin state who remain there permanently, 1-8 is a diagonal

matrix which indicates the proportion in a state who are potentially mobile,

.and M is the ~ransition matrix for mobile individuals. The assumptions of

the mover-stayer model, then, are (a) a proportion of the population in

each state never moves, and (b) the population which is mobile is homogeneous

in its pattern of movement and follows a Markov process. We therefore have

for the predicted k-step matrix,

P(k) = S + (I-S)M
k

Follow-up work on this model (Goodman 1961) has been concerned primarily

with deriving consistent estimators for the parameters 8 and M, and testing

hypotheses relating to the mover-stayer process. Conceptually, however,

there is a need to develop models which incorporate a greater ~ange of

heterogeneity. Instead of two types of persons we should like a process

which handles several types and, ideally, a continuous range of individual

differences in the rate of movement.

-- .----~'._--~.~-_..-.~~--_._._--_._-----~_._----
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BKM address this problem in their concluding chapter (1955:138-146).

Since the extension developed here proceeds from their suggestion, I

first present their remarks.

BKM's comments on extending the mover-stayer model. Instead of

requiring each person to make'a fixed number of transitions in each time

1interval, we assume that transitions are random occurrences and that the

rate of movement by an individual refers to his expected number of transi~

tions, not to the actual number. This is reasonable since an individual

with rate equal to, say, three moves per unit time interval will not

necessarily make this number of transitions in every time unit. He may

make zero or one moves in some intervals, four or five in others. Over a

long time period he will nevertheless average three moves/time unit. A formal

way of stating this is to assume that individuals move in accordance with

P ' 2 'h 1 ( db f )' 3a o~sson process w~t parameter va ue expecte num er 0 moves A = •

Consider for the moment only individuals with a fixed rate of movement

equal to A. The P(l) matrix would then be given by

P(l) (2)

where rk(l) is a Poisson probability, rk(l)
k -At

(At) e (f 1) d' d'k! or t= , an ~n~-

cates the proportion of individuals who are expected to make k transitions

during t = 0-1 from among those having a rate equal to A, and M is the transi-

tion matrix followed at each move. For equation (2) to hold it is necessary

to also assume that the rk(t) values are the same for persons in all states

of the process.

I

I
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With the above specification it is easy to show3 that P(l) = e-At[I-M],

for t = 1 and any matrix M. This result is important because the k-step

transition matrix P(k) is now given by

P(k) = -Ak(I-M)e = =
k

~(l~

Therefore, assuming that individuals are homogenous in their rates of transi-

tion, the Markov requirement will be satisfied. Thus, the fact that transi-

tions occur according to a Poisson process does not violate the.Markov

4property.

Now assume that we have g types of persons who differ in their rates of

mobility. Each individual, however, follows the same M matrix when making a

transition. If a proportion of the population ql moves with rate Al , a pro­

portion q2 moves with rate A2, etc., we could write separate equations, identi-

cal to equation (2), for each subpopulation. Alternatively, let rk(t) equal

the expected proportion of the total population who make k transitions

during O-t, irrespective of the individual mobility rates. Then, combining

the coefficients of Mk from the separate processes, we have

for t=l (3)

If we generalize this result from g types of persons to a sample drawn

from a continuous distribution f(A) we obtain

for t=l (4)
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Equation (4) says that the expected proportion of individuals who make k

transitions in the unit time interval equals the sum of the products of

two quantities: (a) the proportion of individuals with rate equal to A,
"-

and (bY the probability that an individual with rate A will make k transi-

tions. The summation is taken over all possible values of A, which is

assumed to have a continuous density function.

BKM develop the generalization of the mover-stayer model to this point

(as does Bartholomew 1967:27-37 in a recent review of mobility models). In

the next section we present a solution to the proposed extension, provide

an estimation procedure for the parameters of the model, and discuss the

conditions under which the assumptions necessary for the extention to apply

will be met.

3. AN EXTENSION OF THE BASIC MODEL

Assumptions and the derivation. In order to extend the mover-stayer

model it is necessary to specify the form of f(A) in equation (4). Since

we have little a priori knowledge about this distribution, we assume a very

general family of curves and use the observed data to estimate parameters

for the specific distribution. We do, however, restrict ~(A) to be either

unimodal or decline exponentially. This seems reasonable since several

studies of mobility (Goldstein 1964; Lipset and Bendix 1959:158; Palmer 1954:50;

Taeuber et al. 1968:46) "report distributions of persons by number of moves

which have these forms.

Specifically, we assume that f(A) can be approximated by a gamma density,

f(A) = A>O, 0.>0, (3)0 " (5)

- _.__.-----._------~ ." --_._--- ---~--_._---._----- - -----------.----------_.._--------
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00

where f(a) !ya-le- ydy . The gamma distribution is a very general family
o

of unimodal functions and is often assumed where the shape of the actual

curve is unknown.

With ~his assumption regarding f(>") we obtain from equations, (4) ,and

(5) (see Chiang 1968:49 for details on the integration)--

00

!
o

(>..t)k e->"t~ >..a-le-S>"d>..

k! f(a)

f(k+a) Satk(S+t)-(k+a)
k! f(a) for t=l (6)

Using the relation f(a) = (a-l)f(a-l), this result becomes

for t=l (7)

which is a negative binomial distribution. Thus, under the assumption that

each individual's transitions follow a Poisson process with the individual

rates of mobility specified by a gamma density, the proportion of the popu-

lation making k-moves will satisfy a negative binomial distribution.

Substituting this result into equation (2) yields for the one-step transi-

tion matrix,

P(l) =
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"'. r

= a
[p(t) ] ~ (k

k=O
+ a ­

k
(8)

(3
where p(t) ='~"'--

(3 + t '
q(t) = t

(3 + and t=l.
t ,

Conditions for a closed form solution to P(l). Recall that for S, a

-ascalar, and any real number a, (l-S) has the binomial expansion

= 1 + as + a(a+l)s2 + a(a+l) (a+2)s3
2! 3! +.... = + a

k

~here the condition for convergence of the infinite sum is /SI<l. By exten-

sion, we write for the infinite sum of matrices in equation (8),

00

L:
k=O
f+: - 1) [q(t)M]k =

-a
[I - q (t)M] (10)

where I is the identity matrix. We now discuss the conditions for convergence

of equation (10) and the meaning of the right side when a is an arbitrary

real number, not necessarily integer-valued.

Analogous to the condition on S in the scalar case (equation 9), the

requirement for convergence of the infinite matrix. sum is that all eigenvalues

of q(t)M are less than one in absolute value. Since M is a transition matrix

it is stochastic and its largest eigenvalue equals one.
t

However, q(t) = ~<l

for finite t (since (3)0), in particular for t=l, and this ensures that the

eigenvalues of q(l)M will be strictly less than one.
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A second consideration relates to the meaning of [I _q(t)M]-a when

a is an arbitrary real number. 5 For an integer k and a non-singular matrix

A, the matrix power Akalways exists. For an arbitrary real number a we

define Aa to ,be

alogA
e

which will hold for non-singular A (Gantmacher 1959:240).

If the eigenvectors of A are linearly independent (which will be the

case if A has distinct eigenvalues) then we can diagonalize A,

A = HDH-l (11)

where D is a diagonal matrix with the eigenvalues of A as entries, and H

. 6
is a matrix containing the eigenvectors of A as columns. In this circum-

-a 7stance A can be written as

e-alogA = He-alogD H-l = (12)

where D-a is a diagonal matrix with elements of the form ~-a.

Now, substituting the result of equation (10) into equation (8)~ we

o1;>tain for P (1) ,

pel) = [p(t)]a [I - q(t)M]-a for t=l (13)

: \ '.

By the preceding discussion, this result will hold for q(t) t
= (3 + t <1,
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and in particular for q(l). In practice, letting [I-q(l)M] = A, P(l) can

be found from M by the diagonalization procedure of equation (12).

Obtaining the M matrix from P(l). Equation (13) shows how we can obtain

the population transition matrix if we know M, the individual level transi-

tion matrix, and a and S, the parameters of f(A).
f,~

Unfortunately, our prob-
I '

,'.

lem is generally the reverse' of this situation: Given an obser.ved popufL1:\tion"
, ! , '

transition matrix P~l), and estimates of a and S from the empirical distri-

bution of the number of moves by an individual, we wish to obtain M so that

equation (13) may be' used to project to P (t)· for so~e t > 1.

FortunatelY"no difficulty arises in solving equation (13) for,M so'

long as P(l) is non-singular. We obtain

M = q~l) (r -P(l)[P(l)]-lla) (14)

Although there is no guarantee that an observed P(l) matrix will be non-
, I

singular, this condition is unlikely to be violated in practice. The only

in$tance where a singular P(l) matrix is likely to occur is when ,the unit

time interval is very long with respect to the behavior of the process, 'so'

that one's destination state no longer depends upon his origin and the rOfs

of P(l) are therefore identical. 8 In this case, however, p(t)=P(l) for all

valu~s of t and the process is not problematic.

In the more common situation where'P(l) is non-singular, M is obtained

by diagonalizing P(l) ,in the manner discussed previously:

[P(l)]-l/a Ke-(l/a)logQK-l -l/CL-lKQ K

"
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where Q is the eigenvalue matrix of pel) and the columns of K are the corre-

sponding eigenvectors. Equation (14) therefore provides a method for esti-

mating M from the population transition matrix pel),. under the assumption

that population heterogeneity in the rate of movement can be specified by a

gamma density.

The remaining parameters of the model, a and S of the gamma distribution,

can be estimated directly from observed data on the number of moves by an

individual.
- 2

If k and Sk are the sample mean and variance of this variable,

then estimates of a and S can be obtained in terms of these values from the

mean and variance formulas for a negative binomial (Chiang 1968:50). This yields

k

A A

(15)

Projection. Having computed M, we can project forward in time to .

find pet), the t-step transition matrix:

pet) = (16)

This result will hold for finite t. For very large t, q(t)zl and [I-q(t)M]~[I-M],

which is singular since M is stochastic. Equation (16) is not defined in this

. circumstance but other considerations (see Appendix 1) suggest that limP(t)=M(oo),

9the equilibrium matrix for M, which may be found by the usual Markov methods.
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If we view the process as embedded in continuous tiine so that n.on­

integer values of t are meaningful, these can·a1so be used with equation

(16). We are not restricted to multiples of the initial time period since

it is the distribution of the population with respect to the expected num­

ber of transitions that is changing and this change is continuous. By any

time t, of course, each person will have made an integer number of transi­

tions. Likewise, no mathematical difficulty is presented with projecting

backwards in time. Starting with P(l), for example, we can find P(1/2).

This flexibility is useful because we can often obtain better estimates

for a and S after a' sizable number of moves have been made. The projections

of the model could then be compared with transition matrices for shorter

time intervals.

Testing the model. At the outset we assumed that the matrix P(t)

could be written in the form presented in equation (2), and consequently

that rk(t), the proportion of the population expected to make k transitions

by time t, is .the same for all system states. BKM (1955: 139) also make

this assumption in their comments on extending the basic mover-stayer model.

A necessary condition for this requirement to be satisfied is that the indi­

vidual rates of transition not be a function of the state an individual is

in. The assumption can be tested directly by computing the r k (l) distri­

bution separately for individuals originating in each of the system states

and co~paring these distributions.

There are two other basic assumptions of the model which can be

test~d--that individuals move in accordance with a Poisson process, and
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that the gamma density provides a reasonable approximation to the distri­

bution of mobility rates in the population. To test one of these we must,

however, assume the validity of the other. If we assume that transitions

are Poisson events, we can test the gamma specification by comparing the

fit of the negative binomial estimates from equation (7) with the actual

distribution of the number of moves. If the fit is poor then the gamma

assumption for f(A) in equation (4) should be altered and the Poisson

compounded with a different curve. Alternatively, repair work can be done

on the ganmla distribution (see discussion on the spiked gamma in the fol­

lowing section).

There are direct tests for whether the occurrence of events conforms

to a Poisson process, such as on the inter-arrival times, but they assume an

absence of heterogeneity. If a large number of inter-arrival times were

available for each person we could test the Poisson assumptions separately

for each individual, without concern for the distribution of A in the popu­

lation. Most social data are not so rich in detail; consequently it is neces­

sary to assume the correctness of f(A) in order to test the Poisson assump­

tion. Therefore, if we believe f(A) to be gamma, then the comparison between

the actual distribution of moves and the negative binomial estimates would

provide a test of the Poisson specification. In practice, the form of f(A)

would seem to be more problematic and the more interesting question.

4. AN EXAMPLE USING SIMULATED DATA

The advantage of illustrating the model with constructed data is that

we have full knowledge of the actual mobility characteristics of the population.

We will assume an individual-level transition matrix and a population
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distribution by rate of movement as presented in Table 1. In practice, this

information would usually not be available.

Table 1 about here

We further assume that the six types of persons in the population

(Panel B of Table 1) move in accordance with a Poisson process which is

specified by the indicated A value for each subpopulation. Consequently, the

Poi,sson distribution was used to generate an expected proportion of each sub-

population who make k = 0, 1, 2, .•. moves during to-tl . These values, mul­

tiplied by the respective subpopulation proportions in the total population,

were aggregated to produce a distribution of the total population by number

of moves. This distribution is presented as column (1) of Table 2. Each of

the rk(l) values has been multiplied by 1000 so we can refer to the number

of persons making a specified number of moves. These "observed" data were

then used with the equation

10
pel) = ~ rk(l)~

k=O

to generate an "observed" transition matrix P(1).
10

This process was repeated

for t = 3 and t = 6, so we have three observed transition matrices: pel), P(3),

and P(6). The matrices produced by this construction are presented in Table 3.

Normally, these transition arrays and the distribution of the population by

number of moves (column 1 of Table 2) are the kinds of data which can be col­

IIlected. We assume now that only this information is available.



Table 1. Structure of the Simulated Data

(a) Individual-level
transition matrix

(b) Distribution of the population
by rate of mobility

M ==
(

.600

.150

.100

.050

.200

.700

.100

.050

.100 .100 )

.100 .050

.750 .. 050

.100 .800

At (t=l)

0.1

1.0

2.0

3.0

4.0

5.0

Proportion of the
population with
this A value

.25

.35

.20

.10

.06

.04
-'-1.00
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Tables 2 and 3 about here

Projections from a stationary Markov chain require that the observed

pel) matrix be raised to the requisite power. Markov estimates of P(3),

;(3) = [P(1)]3 and of P(6), ;(6) = [P(1)]6 are presente'd in Table 4. As

a result of the heterogeneity which was built into the data the main diagonal
I

elements from this projection are,as expected, consistently smaller than the

corresponding observed values reported in Table 3. Moreover, the discrepancy

increases over time.

Table 4 about here

Turning to the model proposed in this paper, k and s~ (from column 1

of Table 2) were first used ,with equation (15) to estimate a and S, a = 1.371,

S = 0.915. Having estimates of these parameters, the negative binomial formula

(equation 7) can be used to generate a predicted distribution of moves.

This distribution is presented as column 2 of Table 2, alongside the observed

,values. While there are some sizable deviations between expected and observed

values,this method will usually produce a superior fit to simply dichotomizing

12the population into stayers and movers, especially when the heterogeneity

is considerable.

The estimates of,a and S, together with the observed ~(l) matrix from

Table 3 allow the M matrix to be derived using equation (14),

M =
.613
.144,
.097
.050

.191

.707

.099

.050

.099

.099

.754

.099

.098

.050

.050

.801



Table 2. Distribution of Number of Moves
from Observed (Simulated) Data and from

Negative Binomial Estimates

(1) (2)

A

k [1000 rk(l)] [1000 rk(l)]

Number of persons with
Number of persons k moves (calculated

with k moves from negative binomial
Number of.moves I (observed data) a=1.37l, S=.9l5)

a 388 363

1 226 260

2 153 161

3 97 94

4 59 54

5 34 30

6 19 17

7 11 9

8 6 5

9 2 3

10 1 1
--

. 1000 ~ r k (1) 996 997

. I k 1.498

3.133

_~_._-2_- ·_- _



Table 3. 'Observed Transition Matrices
for to - t 1 , to - t 3, and to - t 6

P(l)

P(3)

= (:~i~
.090
.056

= (:i:.~.143
.110

.156

.719

.102,.

.064

.218

.529

.177

.135

.101

.101

. 747

.101

.178

.178

.555

.178

.093).063

.061
,.779

.155).128,

.125

.577

(365 .235 .215 .184 )
P(6) .177 .441 '.215 .166

= .164 .462 .164.210
.141 .181 .215 ,.463



" Table 4. Predicted Population Transition Matrices
. 'Using a Stationary Markov Process

."
P(l) = P(l) = (:~i~

.090

.056

.155

.719

.102

.064

.101

.101

.747

.101

.09.3).063

.061

.779

"
P(3) = [P(1)]3 = (:t~~

.170

.126

.261

.446

.209

.154

.209

.209

.478

.209

.183 ).147

.143

.511

(

,231
.211
.200
.174

.280

.317

.260

.224

.264

.264

.337

.264

.224).207

.203

.336
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This array is an e~tima~e of the individual-level transition matrix

M which, by the assumptipns of th~ ~ode~, is the same for all persons. M,
A A

ct) and e'· can now be useq with equation (16) to project to P(t) for any

value of t. Estimates for r<l)~l?(3), ~ndP(6) are presented in Table 5 •

. i ' ,

A comparison of. these ~r~di~teg ar~ays with the observed transition

matrices (Table 3) and w~thtp.e M4rkoVP~ojections (Table 4) reveals the
': .... ", .

superiority'of the pre.$e~tmodel.T~e~aindiagonal entries, in particular,

decline less rapidly th~n ~nthe M~r~oy projections. The deviations from

o~served values, incidental~y, c~n~ot be attributed to any inadequacy with

the Poisson assumptions, ~~\lce these W~l;'~ used to genel;'ate the data. Rather,

the deviations result fJ:'o.ma!l inClb.ili~y, Qi;' the gamma density to fit perfectly
, 'i

the constructed distribution of' Avalu~s in the population, although the

discrepancy is not severe. (Compare th~. negative binomial estimates with

the observed distribution of mpves in Table 2.) In fact, using the computed

values of ct and 13, the gamma d~~ll;i,.~~ ;EO.) for this population can be drawn

directly from equation (5). Thi/il gJ;'aph is presented in Figure 1. Super-

imposed on the curve aJ:'e ver~iAal lines Which indicate the points of con­

centration of the simulated data (from faJ1!,el B of Table 1). It is apparent

that the heterogeneity~n th~popu,lat!.~o1i is reasonably well represented by

this gamma density, although many re~l sQ~ial processes will actually permit

a better fit than the arpitrary di.stl;'ibution constructed here (cf. Spilerman

],.970).

,. i t

figu+,e 1 about here
... f, "I

i
.1



Table 5. Predicted Population Transition Matrices
Using the Generalized Mover-Stayer

. Mode1a

(0650 .156 .101 0093 ),. .118 .719 .101. P(l) .063
= .102 .747 .061.090

.056 .064 .101 .• 779

,.
P(3) =

,.
P(6) =

(

.423

.175

.150

.113

(

.319

.193

.176

.148

.232

.510

.184

.138

.256

.404

.224

.187

.184

.184

.539

.184

.229

.229

.428

.229

.162).131

.127
•'565

.197 ).174

.171

.434

a
Estimates from equation 16.



figure 1. Distribution of the Population by t:xpected Rate

of Hovernent, From Simulated Data

t(~)
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Spiked gamma. If the comparison between the negatiye binomial

estimates and the actual distribution of moves is less than satisfactory

2
(as judged, for example, by a X test), the best recourse would be to com-

pound the Poisson with a different family of curves which might allow a

more adequate fit to £(1..). Howeve'r, if the gannna assumption fails in the

way it is most likely to, by a very heavy concentration of non-movers,

this defect can be repaired by use of the "spiked gamma."

The spiked gamma is a direct generalization of the mover-stayer model

since, unlike the previous extension, the presence of genuine stayers

(1..=0 persons) is permitted. It is an extension of the mover-stayer model

in that heterogeneity is allowed among the movers, who are assumed to be

distributed according to a gamma density.13 One procedure for estimating

the parameters of this process would be to first apply a mover-stayer

method to separate out stayers from the remainder of the population, then

treat movers according to the present model. In fact, having removed

stayers, a quick test of the need to even use the model of this paper,

rather than the simpler mover-stayer methods, can be obtained by comparing

the mean and variance of the distribution of movers. For a Poisson distri-

bution, var(k) = E(k), while if heterogeneity is present in the distribution

- 2
of A, var(k) > E(k). Thus, by comparing k and Sk for movers the likely

adequacy of a Poisson (mover-stayer) assumption for the movers can be

ascertained. (See Spi1erman 1970 for a lengthier discussion and application

of this point.)

An alternate procedure for estimating the size of the spike would be '

to assume that a gamma density provides the correct distribution of movers,

and choose that division of the population who fail to move which minimizes
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the deviations of the observed values from the expected distribution of

movers. Thus, we would use the gamma to estimate the number of movers

who happen to make zero transitions during to - t l • The advantage of this

. approach is that it will 8:l1ow a "best fit" of the gamma to the distribu-

tion of movers who make k > 1 moves to be obtained, since the term for

k = 0 does not influence the parameter estimates.

The procedure here is to fit a negative binomial to the observed

distribution of moves (Panel A of Table 2) except that information about

the k = 0 term is not used. The "truncated" negative binomial14 must be

employed to estimate a and S when the zero term of the observed distribu~

tion is missing. This probability distribution is defined by the equation~5

= 1
a

1 - p
for k > 1 (17)

where the two independent parameters a and q are estimated by (see Appendix Z),

A

q =

A

In these formulas, k and 2 ·mean and variance (with the k = 0Sk are the sample

observation deleted from the computations) and Rl is the proportion of the

observed population with k > 1 moves who make a single transition. S, the
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remaining parameter of the gamma distribution, may be calculated from

Aq--

A

1= A-I
q

These estimates of a and S are now used with the regular negative

binomial formula (equation 7) to estimate the number of ·movers who failed

to move during t o- t l . The difference between these observed and calculated

numbers,appropriately standardized,16 provides an estimate for the size of

the spike at A = O. The calculations using the alternate method were

carried out for the data in column 1 of Table 2. The results are presented

in column 2 of Table 6 alongside the observed distribution. Because of the

added degree of freedom in estimating the spiked distribution, the estimates

are clearly superior to those obtained from the regular negative binomial.

Table 6 about here

With the size of the spike estimated by either method, we have a division

of the population into stayers and movers and may project to pet):

P (t) (18)

In this equation S is a diagonal matrix containing as entries the proportion

f h . . . 1 1" h 17 IS' d'o t e 1n1t1a popu at10n 1n a state w 0 are stayers, - 1S a correspon 1ng

matrix for movers, and the remaining parameters are estimated as before, but



Table 6. Distribution of Number of ~oves

from Observed Data and from Negative Binomial)
with Parameters Estimated from Truncated Negative Binomial

(1) (2)

k [1000 r k (l)] [1000 ~k (1) ]

Number of persons with
Number of persons k moves (a=2.231, S=1.251

with k moves calculated from truncated
Number of moves (observed data) , negative· binomial)

0 388 38Sa

1 226 224

2 153 160

3 97 101

4 59 58

5 34 32

6 19 17

7 11 9

8' 6 5

9 2 2

10 1 1

1000 L r k (l) 996 997

k

aThis value includes 162 persons in the spike.

bk = 0 observation is excluded from the calculation.
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using now only information on movers. The improved predictions for P(t),

using equation 18, are presented in Table 7.

Table 7 about here

5., GEOGRAPHIC MIGRATION
1 :

Using data made available by Karl Taeuber from his analysis of residen-
,

tial mobility in the United States (Taeuber et al., 1968), the model of

this paper was applied to inter-regional transitions by males. The Taeuber

data were collected in 1958 from retrospective reports about prior residences

and are described in detail elsewhere (Taeuber et al., 1968). ,For the pur-

pose of this study four geographic regions were defined as states of the

process: (1) Northeast, (2) North Central, (3) South, and (4) West. The time

points that were used. are to = 1937, t l = 1944, t 2 = 1951 and t 3 = 1958.
! '

",

"

I'

These were selected to provide residence histories for the adult years of

this cohort.

The data proved to be less than ideal for illustrating the versatility

of th~s 'mod~l to in.corporate a wide range of heterogeneity. One difficulty

. w.asth~t the. histories were collected only for the four most recent resi-
. • ,i".'

deuce-sof an individual and for his residence at birth. Persons who have
~. (

" ,"
".' .

had more', th,an five residences therefore have gaps in their residence histories

ail.d 'had 'to .be excluded from the analysis. Unfortunately, this meant that

. .
persons with high rates, of mobility were deleted and consequently that the

heterogeneity in proneness to move was being artificially reduced.

, A second difficulty with these data stems from the little inter-regional

'migration which appears to take place (see Panel A of Table 8). In part,

, '.. ~

'j"



Table 7. Predicted Transition Matrices
Using the Spiked Gamma Mode1a

r50 .156 .102 .093),., :.118 .718 .102 .063P(l) = .090 .103 .746 .061
.056 .0,64 .102 .778

" ,

I

"C4~'
,.219 .179 .156 ),., ,'" .166 .'529 .178 ;' .128Pq) = : ' ,~144 .177 .555 .124

" :,~1~1 ' .135 ' .177 .577
. '., ,.

:

:. , ..
"

f , I:: "

'.,

I,

J
(371 ,.,232 .215 ".183,.,

, ,·A48 .213 .165P(6) , , '.17,5'
= .163: .207 .468, .162,

.142 .180 .211 .468

, '

, I

'I,...'

.' ~

'a " "
"E~~~~ates~rom 'equation 18.

:' ,f.•

. f .

"
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this derives from the truncation of the distribution at k = 4 moves since

the individuals with many residence ch~nges are most likely to have some

regional migration experience. However, it is also a consequence of the

phenomenon we are examining. Apparently, persons do not change geographic

region very frequently during a seven-year interval; indeed, only one out

of five residence changes r~su1ted in a move to a diffe~ent region, using

this four-category definition of region.

Table 8 about here

Table 8 presents the observed transition matrix for the population

during 1937-44 (P8:ne1 A) and the observed and predicted distributions of

the popu~ation by number of moves for this period (Panel B). In light of

t~e above comments, these data pertain only to persons who made four or

fewer residence changes during 19~7-58. Comparing the observed distribu-

tion. of moves (column 1 of Panel B) with the distribution predicted from

the negative binomial (column 2), it is evident that the fit is reasonably

good, except at the tail end of the distribution. The difficulty at the

tail probably results from a tendency to underreport moves when many were

made. Remember that we are dealing here with recollections in 1958 of

residences during 1937-44.

Using the P(1) matrix from 1937-44 together with a and S from column

(2) of Table 8, M, the estimate of the individual-level transition matrix,

was constructed using equation 14--

M =
.891
.026
.042
.009

.035

.799

.109

.057

.046

.059

.763
.. 065

.028

.116

.085

.869



Table 8. Observed Population Transition Matrix
and Distribution of Moves for Geographic

Migration Data, Together with Distribution
Predi~ted From Negative Binomial

(a) Observed Population Transition Matrix (1937-44)

P(l) =
(

.970

.007

.011

.003

.010

.947

.028

.015

.012

.015

.938

.017

.008).030

.023

.966

n
k

3437
4160
4110
1341

(b) Distribution of the Population by Number of Moves
during 1937-44

(k)

Number of moves

o
1

2

3

4

5

aNumber not available.

(1)

Number of
persons with

k moves

10120

2328

507

93

a

13048

.278

.321

(2)

Number of persons with
k moves (calculated from

negative binomial,
a=1.771, S=6.382)

10082

2419

454

77

12

1

13045
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, I

M therefore indicates how individuals transfer each time they move. It

shows, in ,particular, that the Northeast is most ,successful in retaining

its residents when they move, the South least successful. Using the

estimates of a, S, 'and M, we can now project to P(t) for any time, t.' Ordi-,. ':

nari1y, equation (16) would be used for this purpose. However, to compen-

sate for the effect of truncating the distribution, projection was accom-

plished by using equation (8) with the upper limit of the sum set to four,

the maximum number of moves by an individual retained for analysis. As a

result, negative binomial predictions of five or more moves have been

~eleted from the estimation of P(t). The observed data, and projections

obtained by using a,Markov chain, as well as those by the present method,

are presented in Table 9 for the periods 1937-51 and 1937-58.

Table 9 about here

By comparing the main diagonal entries, especially for the 1937-58

matrices, it is evident that the model of this paper produces a superior fit

to the data than is obtained from the Markov projection, although the latter

estimates are themselves not very poor. One reason, incidentally, why the pre­

dictions from both models are 'not' even better is because the stationari~y

requirement is violated. We, are dealing here with a cohort through a 2l-year

period and extrapolating to a terminal year in which the population is 14

years older than at termination of the period used for parameter estimation.

Thus, if age has an effect on migration behavior, as it 'surely does (e.g.,

Morrison 1967:558-559), we have a transition matrix which is changing over

time. BKM,' by comparison, did not have this concern since, their data covered

~~ly a three year-period.



Table 9. Observed and Predicted'Transition
Matrices for 1937-51 and 1951-58

P(2) -- (1937-51) P(3) -- (1937-58)

C
47 .015 .019 001)

C
34 .017 .025 002~). Observed .008 .923 .018 .050 .009 ~908 .020 .063

Matrices .018 .045 .907 .030 .020 .052 .890 .038
.004 .023 .019 .954 .004 .024 .018 .954

C
42 .019 .023 0016) C15 .028 .034 002)Projection .014 .898 .030 .059 .020 .853 .043 .085

from Markov .021 .053 .881 .044 .031 .076 .829 .064
process .005 .029 .032 .933 .008 .043 .047 .904

[pet) = P(l)t]

C4

6

.017 .021 0016)
C

24 .024 .028 002)Projection .009 .926 .023 ·.042 .012 .897 .032 .059
from present .018 .033 .912 .037 .024 .046 .878 .052
mode1a •008 .036. .023 .932 .001 .050 .032 .906
(a=1.771,
(3=6.382)

4" k
= ,L r(t)M

k=O
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While the geographic data preclude our demonstrating the suitability

of this model insituati6ns of considerable population heterogeneity, we

can investigate the reason why the Markov estimates are reasonably good.
2 . .

Comparing k and Sk from Table 8 we see that the difference between these

values, equal to .043, is not very large. For a Poisson process in which

A, the parameter of the distribution, is varying, an estimate of the

variance of A is given by

= k = .043

Thus, primarily because of the deletion of individuals with more than four

moves, little heterogeneity is present in the. population, and the. Harkov

chain model, which .formally requires all persons to have an identical param­
·1

eter value, now provides reasonably good projections. In fact, hkving esti-

mated a and S we can graph f(A) to ascertain the appearance of the hetero-

geneity in A. This graph is presented as Figure 2. Note that the scale

unit on the Y-axis is one-half the size of the corr~sponding unit in Figure 1.

It is therefore evident that the population is indeed highly concentrated

over a narrow range of A values.

Figure 2 about here

6., CONCLUSIONS
1

The extensions developed in this paper, like the original mov~r-stayer

I
model, cast the burden of explaining the heterogeneity onto variat~ons in

the rate of mobility since, by assumption, all persons follow an identical
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r'igure 2. Distribution of the Population by Expected Rate of

of Uovement, from Geographic Higration Data

gamma (0( "'" 1.. n, (3 =: 6.38)
/
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transition matrix at each move. If individual-level data on social charac-

teristics are available they can be used to determine the components of

heterogeneity. Elsewhere (Spilerman 1970) I have argued that a regression

methodology, in which the number of moves made by an individual is the

dependent variable, is both consistent with this formulation and provides

an approximation to analyzing the A values themselves in terms of the inde-

pendent variables.

While the emphasis here has been on the analysis of a stationary process,
I

these methods will also shed light on the structure of time-varying processes.

Data at two consecutive time points are required for parameter estimation in

this model. Therefo're, if the parameters are recalculated for adjacent time

intervals of a time-varying process we can ascertain whether the non-stationarity
\ .

is a~tributable primarily ~to changes in the M matrix, which would suggest

a change in the manner of selection of destination states at a transition, or. .' .
,', . ' ',' .

to alter~tions in the gamm~ distribution, which would be indicative of a
,

change i~ the rate at wBich individuals are making transitions.

It is' well known that\the.negative binomial distribution can be derived

fro~ an ~ssumption of positive' reinforcement (Coleman 1964:300) as well as
I . , •

from this hete~ogeneity 'model. In the context of geographic migration,

reinforcement would mean that, with' each move, :an individual's probability

of making a subsequent transition is increased. Although this conceptuali-

zation seems forced, it becomes more plausible in an alternate formulation.

Making a statement about the process by which moves occur is equivalent to

making an assumption about the distribution of durations between the moves.

Viewed from the latter perspective, reinforcement would suggest that the

longer an individual resides at a particular location, the higher his proba-

bility of remaining. Thus, the reinforcement hypothesis is recognizable as

the "Axiom of Cumulative Inertia" in the Cornell Mobility Model (McGinnis 1968).
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How do we dist~nguish between heterogeneity and reinforcement? Con­

ceptually, one or the other is likely to be more appropriate to a particu~

lar phenomenon. For example, as McFarland (1970) has pointed out, the

Cissumption that attachments grow over time seems more reasonable for geo­

graphic mobility than for occupational mobility. Analytically, it may be

possible to distinguish between these alternative processes by examining

the over-time change in the distribution of moves in successive time units .

.. The reinforcement model suggests that the variance of this distribution

shpuld increase over time for a cohort as some individuals become increasingly

prone to move. By contrast, the heterogeneity explanation suggests that the

variance should remain constant. Nevertheless, in many social processes both

pheno~ena probably occur and individual-level data would seem necessary in

order tp disentangle their separate effects.
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APPENDIX 1. lim P(t) = M(oo) , THE EQUILIBRIUM MATRIX FOR M
t -+ 00

Let t be variable in~quation (8). Taking the limit as·t -+ 00 we

have

lim p(t)
t -+ 00

=

For every finite k,

(a \k-l) fs \k
,

\i
t

,
f3 .. ex

I

lim rk(t) = 'lim + t; ;(3 + t I
I \ Jt -+ 00

= = a

sinqe f3 ~ t -+ O. However, rk(t) is a probability distribution for all
00

t and therefore kgO r k = 1. This implies that the non-zero values of the

00

distribution are concentrated at k = 00 and consequently k~L r k = 1 for

Larbitrarily large L. Choose L sufficiently large so that M = M(oo) to

any desired degree of accuracy. We then have lim P(t) = k~L rkM
k =~ rrkt -+ 00

M(oo) .
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APPENDIX 2. THE TRUNCATED NEGATIVE BINOMIAL DISTRIBUTION

Let Pk be the negative binomial probability f~r k events: \

Pk • ~+ : - 0qk pO

co co
For any positive integer~valued distribution we have I = ~ P = P + E Pk ,

o k 0 I
1

and therefore l-P
o

This is a truncated distribution in that

the P term is lacking. For the negative binomial distribution we obtain
0

Rk
I Pk

1 (a+k-0 ka k>l (A2-2)= = q p ,I-P l-pa. . k. .0

which is the truncated negative binomial distribution. Note for

reference that

~ = a..+ k - I R ,
-K k q-l.<-l

To obtain ct.

co co

~ =Ek~=RI+~k~
I 2

co

= Rl + E (a. + k - l)q ~-l
2

co

= RI + q E (a. + k)~

I

= Rl + qa. + q~

and a. = ! (~p - R )
q I

(by AZ-3)

(A2-3)



. A3 .

To obtain q, 13.

var(k)
00 2

= L (k - ll) ~
1

. 2 eo 2
= R1 - II + L k ~.

. 2 .

Usin~ (A2-3) we obtain for the last term,

Substituting this value into the expression for var(k) and using (A2-4)

to simplify yields,

(1 ~ q) var(k) = II (1 - R1)

II (1 - R1)
. and q = 1 - var (k)

Finally, since q = S~l (from the definition of q(t), equation (8) in text),

we Qbtain for 13, 113=--1.
q
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NOTES

1A transition from i + i would be considered movement in this ter-

·mino1ogy. For example, if the states of the system were geographic

regions, an i + i transition would represent intra-regional movement.

Alternatively, we might speak of the expected number of exposures to

movement as do BKM (1955:139), but allow an individual to not move

(an i + i transition) at an exposure.

2A precise specification of the (time-homogeneous) Poisson process

is given by the ·fol1owing four assumptions:

(i) A is constant over time.

(ii) In an infinitesimal time interval ~t at most one event can occur.

(iii) The probability of an event in ~t equals Mt, the probability

of no event in ~t equals 1- A~t.

(iv) The occurrence of an event during t, t+~t is independent of

the past behavior of the process.

The derivation of the Poisson distribution from these assumptions

is a straightforward procedure (see Feller 1957:400).

3 k (At)ke-At k00 00

P(t) =k~O r
k

(t)M = . L k! M
0

00 (AtM)k
-At [I-M]-At l: k!

-At AtM= e 0 = e e = e

The convergence of the infinite sum toe
AtM

will hold for an arbitrary

matrixM.



2

. 4In fact, the assumption that the occurrence of transitions follows

a Poisson process leads to a continuous-time Markov formulation.

5Since [I - q(t)M]-a.= ([I - q(t)M]-l)a and an inverse is defined

only for a non-singular array, this matrix power is defined only if the

term in brackets is non-singular. This condition, however, will be

satisfied for q(t) < 1, that is for finite t.

6If A does not have linearly independent eigenvectors equal in number

to its order (which may be the case if the eigenvalues are not distinct)

then A cannot be diagonalized. It can, however, be put in Jordon form

(Bellman 1960:191) which creates computational difficulties but,

frequently, not theoretical ones. With real data it is rare that the

eigenvalues are not distinct, so only the case where [I - q(t)M] can be

diagonalized is considered in this paper.

JThe eigenvalues of D may be complex numbers, in which case log ~ =

logr + ie, -TI < e <TI where rand e are the polar form components of the

eigenvalue ~.

8ThiS statement assumes an absence of stayers (A=O individuals).

9This assumes an absence of A=O individuals. If stayers are present

then 1imP(t) is given by the mover-stayer formulation (BKM 1955:111-114),

limPet) = S +(I-S)M(oo).

10 .
The upper limit on the summation was set to 30 for t = 3, and to 60

for t = 6.

llwe also have available the distribution of rk(t) for t = 3, 6, anal-

ogous to column 1 of Table 2. This information will not be used in the

illustration, but a test of the Poisson assumptions could also be based

upon the over-time change in the distribution.



where Nk is the observed number of

3

12The inadequacy of the mover-stayer dichotomization for data

analysis can be less severe than would at first appear. As BKM(1955:

142) point out it is not the case that movers must each make a single

transition during a time unit, only that they follow a Poisson process

with a common A value. A direct generalization of this conceptua1iza-

.tion of the mover-stayer model is discussed shortly in conjunction with

the "spiked gamma" (with vodka, please).

13In the mover-stayer model, this gamma specification for movers is

replaced by the more restrictive assumption that they are concentrated

at a single A point.

14An analogous procedure, using the truncated Poisson distribution

(Coleman 1964:366), may be used to estimate the parameters of the mover-

stayer model.

15Equation (17) is not written as a function of time since only the

values for t=l are considered.

16The negative binomial estimates are standardized by forcing EN
k

=
1

persons making k transitions

17Estimates of the proportion of stayers in each state are obtained

directly when the mover-stayer estimation procedures are used. With

the alternate method one assumes that stayers constitute an identical

proportion of the nonmovers in each state.
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