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ABSTRACT

A major drawback to the traditional Markov formulation is

" that it assumes population homogeneity with respect to transi-

tion behavior. This assumption, clearly, is violated in most

instances of social mobility. In an attempt to relax the homo~-

~geneity requirement and still retain the essential character of

a Markov process, Blumen, Kogan, and McCarthy (1955) developed
the "mover-stayer' model, in which heterogeneity is attributed
to the presence of two types of persons. In the present paper,

‘the mover-stayer model is generalized to permit a continuous

~distribution of persons by rate of mobility. The model is illus-

trated with simulated data and then applied to an analysis of

inter-regional migration.
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;. INTRODUCTION
Applications of Markov processes to the 'study of social mobility
have commonly.concluded wiﬁh the observation that individuals differ in
their transition behavior. ' Although required by the Markov model, transi-
tions from a state of origin do not conform to the assumptioﬁ of popula-
tion homogeneity. Some personé simply move more often, or differently,
from others. This has been found with industrial mébility data (Blumen,
Kogan, and McCarthy 1955), with intef—generational and intra-generational
occupational mobility (Hodge 1966; Lieberson and Fuguitt 1967), and with
geographic migration (Rogers 1966; Tarver and Gurley 1965).
The main difficulty derives from the Markov model having been con-
structed with state changes by a single dbject in mind. In the analysis
of social mobility, however, the movements by an entire population are at
issue."If this population is heterogeneous in its transition behavior,
lthen, even if each individual were to satisfy the central aésumption of a . :
first 6rder Markov process, namely that his probabilities of making par-
;f@icular transitions are determined solely by his present state and are inde-
Efpendént of past history, the population-level process would not be Markovian.

Attempts to relax the homogeneity requirement while retaining the

- essential Markov framework have led to research in two directions. 1In one

-approach, interest has focussed on the construction of subpopulation

'matfices,'and on ways for categorizing individuals that would permit the




"within-category" variation in tramsition behavior to be reduced. Opera-
tionally, this has usually meant disaggregating the population on attri-
butes which are expected, either from theoretical considerations or empir-
ical investigation, to reiate to mobility and constructing a separate tran-
sition matrix for each subpopulafion. For example, Rogers (1966) and
Tarver and Gurley (1965), énalyzing'geographié migration, disaggregate the
population to produce transition arrays by age categories and race. 1In fhe
spifit of this approach McFarland (1970) has reported on an-analytic method
for combining subpopulation or individual-level transition matrices and pro-
jgcting from these to the k-step population.matrix, and Spilerman (in press) has
presented a regression procedure for disaggregating the population matrix in
order to obtain the individual-level transition arrays.

The above strategy casts the problem of heterogeneity into a framework
in which each person 1s viewed as making a single transition during a unit
time interval, but following a matrix relevant to the subpopulation with
his particular attributes. A conceptually different approach to heterogeneity
is embodied in én alternative assumption, namely that all individuals move
according to an identical transition matrix when théy move, but differ in
their rates of mobility. (See Spilerman, in press, for a discussion of the con-
‘vergence of these two perspectives.) Work in this direction has led to the
‘deveippment of the "mover-stayer" model (Blumen, Kogan, and McCarthy 1955).
‘Under the specifications of this process, heterogeneity is éontended &iﬁh
by postulating two types of individuals~--stayers, who remain permanently in
their states of oriéin, and movers, who are homogeneous in their tramsition
.behavior and therefore follow a Markov process with a common transitién

matrix. Several estimation methods for the parameters of the mover-stayer

‘model have been developed by Goodman (1961).




Aside from the novel conceptual perspective provided by this model,
which seems appropriate to the analysis of geographic migration or intra-
generationai occupational mobility where repeated moves can be made by a
person, it has the advantage of not requiring individual-level attribute
data (although parameter estimation can be improved if such information on
the waiting time to transitions are available [Goodman 1961]). Since much
ot our mobility déta lack significant detail at the individual level, the
mover-stayer model can be appliéd where the construction of subpopulation
transition matrices is not possible.

| Although the mover-stayer model postulates two types of persons, this
is done out of necessity for keeping the process mathematically tractable
not because the authors genuinely believed that instances of heterogeneity
can generally be attributed to two types of persons. In fast, in their con-
cluding chapter BKM (Blumen, Kogan, and McCarthy 1955) discuss strategies
for extending the mover-stayer model to incorporate a wider range of hetero-
geneity in the rate of transition, although they do not develop such a
generalization. An extension of the mover-stayer model in which the rate
of individual mobility is specified by a continuous distribution is con;
structed in this paper. Following the mathematical presentation the exten-

sion is applied to regional migration data.

2. THE MOVER-STAYER MODEL AND BKM'S COMMENTS ON AN EXTENSION

The mover-stayer model,. In their study of industrial mobility BKM

(1955) report that calculations of k-step transition matrices from a Markov
chain consistently underpredict the main diagonal elements of the observed

k-step matrix. That is, if
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is the observed one-step transition matrix and if

(k) (k)
P11 = Pig
P(k) = . L
(k) (k)
Pn1 " P
. N
is the observed k-step transition matrix, then the k-step matrix predicted

N

from a stationary Markov process, P(k) = P(l)k, will have main diagonal
) . (K
P11 i Pig

fori=1, ..., m

elements ( (k)...pmék)) which commonly have the property that 1

Although one might suspect that overtime change in the pij elements
~of P(l) are responsible for this result, this is generally not the case.
For example, Hodge (1966) reports similar findings with occupational mobilify
data even though the P(l) matrices he uses are time dependent. More formally,

Hodge's aﬁalysis shows that if Pt(l) fort =1, ..., k are observed one- .

N
A

step transition matrices for successive time intervals, and if P(k) is the

predicted k-step array,b

A k
P(k) =1 Pt(l)
t=

N
A

then the relationship between the main diagonal elements of P(k) and P(k)

A

can have the same structure as that described between P(k) and P(k). The



problem is not one of the pij elements of ?t(l) changing overtime for the
population, but rather that some persons are less apt to move than others
in each time interval. |

To contend with this situation BKM suggest decomposing the population

into movers and stayers,
P(1l) = S + (I-S)M ' . (1)

where S .is a diagonal matrix containing as entries the proportion of per-
éons in each‘origin state who remain there permanently, I-S is a diagonal
matrix which indicates the proportion in a state who are potentially mobile,
.and M is the transition matrix for mobile individuals. The assumptions of
the mover-stayer model, then, are (a) a proportion of the population in

each state never moves, and (b) the population which is mobile is homogeneous
in its pattern of movement and follows a Markov process. We therefore have

for the predicted k-step matrix,
- k
P(k) = S + (I-S)M

Follow-up work on this model (Goodman 1961) has been concerned primarily
- with deriving consistent estimators for the parameters S and M, and testing
hypotheses relating to the mover-stayer process. Conceptually, however,
fhere is a need to develop models which incorporate a greater range of
heterogeneity. Instead of two types of persons we should like a process
which handles several types and, ideally, a continuous range of individual

differences in the rate of movement.




BKM address this problem in their concluding chapter (1955:138-146).
Since the extension developed here proceeds from their suggestion, I

first present their remarks.

BKM's comments on extending the mover-stayer model. Instead of

requiring each person to make a fixed number of transitions in each time

. L. 1
interval, we assume that transitions are random occurrences™ and that the

rate of movement by an individual refers to his expected number of transi-
tions, not tobthe actual nﬁmber. This is reasonable since an individual
with rate equal to, say, three moves per unit time interval will not
necessarily make this number of transitions in every time unit. He may
make zero or one moves in some intervals, four or five in others. Over a

long time period he will nevertheless average three moves/time unit. A formal
way of stating this is to assume that individuals move in accordance with

2 with parameter value (expected number of moves) A = 3.

a Poisson process

Consider for the moment only individuals with a fixed rate of movement

equal to A. The P(1) matrix would then be given by

[oe]
K ,
P(1) = I r, ()M (2)
k=0
(M)ke—m
where rk(l) is a Poisson probability, rk(l) = ~——ET————-(for t=1), and indi-

cates the proportion of individuals who are expected to make k transitions

during t = 0-1 from among those having a rate equal to A, and M is the transi-

tion matrix followed at each move. For equation (2) to hold it is necessary

to also assume that the rk(t) values are the same for persons in all states

of the process.



With the above specification it is easy to show3 that P(l) = e_xt[I_M],

for t = 1 and any matrix M. This result is important because the k-step

transition matrix P(k) is now given by

P(k) = e"Ak(I‘ﬁ) - [?»"A(I'M)Jk - [P(li[k |

Therefore, assuming that individuals are homogenous in their rates of transi-

tion, the Markov requirement will be satisfied. Thus, the fact that transi-

- tions occur according to a Poisson process does not violate the Markov

property.4

Now assume that we have g types of persons who differ in their rates of
mobility. Each individual, however, follows the same M'matrix when making a
transition. If a proportion of the population qq moves with rate Al’ a pro-
portion q, moves with rate Az, etc., we could write separate equations, identi-
cal to equation (2), for each subpopulation. Alternatively? let rk(t) equal
the expected proportion of the total population who make k transitions
during 0-t, irrespective of the individual mobility rates. Then, combining

- k
the coefficients of M from the separate processes, we have

g O ofe™
rk(l) = 'Z R for t=1 (3)

If we generalize this result from g types of persons to a sample drawn

from a continuous distribution f(A) we obtain

0 k -At ' :
/ LAE%fE——— £(A) dA for t=1 (4)
5 !

rk(l)




Equation (4) says that thé expected proportion of individuals who make k
transitions in the unit time interval equals the sum of the products of
twp quantities: (a) the proportion of individuals with rate'equal to A,
and (g) the ﬁrobability that an individual with rate A will make k transi-
tions. The summation is taken over all possible values of A, which is
assumed to ha&e a continuous density function.

BKM develop the generalization of the mover-stayer model to this point
(as does Bartholomew 1967:27-37 in a recent review of mobility models). In
the next section we present a solution to the proposed extension, provide
an estimation procedure for the parameters of the model, and discuss the

conditions under which the assumptions necessary for the extention to apply

will be met.

3. AN EXTENSION OF THE BASIC MODEL

Assumptions and the derivation. In order to extend the mover-stayer

model it is necessary to specify the form of f(A) in equation (4). Since

we have little a priori knowledge about this distribution, we assume a very
general family of curves and use the obse;ve&‘data to estimate parameters

for the specific distribution. We do, however, restrict f£(A) to be either
unimodal or decline exponentially. This seems reasonable since several

studies of mobility (Goldstein 1964; Lipset and Bendix 1959:158; Palmer 1954:50;

Taeuber et al. 1968:46) report distributions of persons by number of moves

which have these forms.

Specifically, we assume that f(A) can be approximated by a gamma density,

£y = g% A%TeP A>0, 050, B0 (5)




[eo]

where F(a)'4= fya~le_ydy. The gamma distribution is a very general family
o .

of unimodal functions and is often assumed where the shape of the actual

curve is unknown.

With this assumption regarding f(A) we obtain from equationsv(4)land
(5) (see Chiang 1968:49 for details on the integration)--
At L0 }\oc—le—BAdk

T ooof e g
o - k! T(a)

r, (1)

I (ete) B% 5 (B+e) ~ K+

T T(0) for t=1 6

Using the relation I'(0) (0~1)T(0~1), this result becomes .

- k a
rk(l) = éq- -1 Bt+ - \é6+ T for t=1 (7

~ =

which is a negative binomial distribution. Thus, under the assumption that
each individual's transitions follow a Poisson process with the individual
rates of mobility specified by a gamma density, the proportion of the popu-
lation making k-moves will satisfy a negative binomial distribution.
Substituting this result into equation (2) yields for the one-step transi-

tion matrix, )

P(l) = Zrk(l)Mk
k=0
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= p)I* £ [k+a-1]faeu\ o (8)

where p(t) =.

Cgpditioﬁs for a closed form solution to P(1l). Recall that for S, a

scalar, and any real number «, (l—S)_a has the binomial expansion

0.
(15" = 1+0a5+ uz(?ﬂ)sz + O‘(“;P 0+2)¢3 4....= sk +;‘ B R )
. . ¢ o

where the condition for convergence of the infinite sum is IS|<1. By exten-

sion, we write for the infinite sum of matrices in equation (8),

(e Y em® = 11 - o™ (10)

k=0 \ k

where I is the identity matrix. We now discuss the conditions for convergence
of equafion (10) and the meaning'of the righ£ side when o is an arbitrary
real number, not necessarily integer-valued.

Analogous to the condition on S in the scalar case (equation 9), the
requirement for convergence of the infinite matfix,sum is that all eigenvalues

of q(t)M are less than one in absolute value. Since M is a transition matrix

ce s s , . : t
it is stochastic and its largest eigenvalue equals one. However, q(t) = B+ t<l
for finite t (since B>0), in particular for t=l, and this ensures that the

eigenvalues of q(1)M will be strictly less than one.



11

A second consideration relates to the meaning of [Iv-q(t)M]_a when
a is anvarbitrary real number.5 For an integer k and a non-singular matrix
" A, the matrix power Ak'always exists. For an arbitrary real number o we

define Aa tofbe

o _ eOl,logA

which will hold for non-singular A (Gantmacher 1959:240).

Ifithe eigenvectors of A are linearly independent (which will be the
case if A has distinct eigenvalues) then we can diagonalize A,

A = HDH . (11)

where D is a diagonal matrix with the eigenvalues of A as entries, and H
is a matrix containing the eigenvectors of A as columns.6 In this circum-

: -0 . 7
stance A can be written as

A—a - e—alogA - HefalogD H—l - HD—aH-l ‘ (12)

where D—a is a diagonal matrix with elements of the form u—a.
Now, substituting the result of equation (10) into equation (8), we

obtain for P(1),

P() = [p(®)]1% [T - q&)M]™ for t=1 (13)

By the préceding discussion, this result will hold for q(t) = 3t+ T <1,
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and in particular for q(1). In practice, letting [I-q(1)M] = A, P(1) can:
be found from M by the diagonalizatioﬁ procedure of equation (12).

Obtaining the M matrix from P(1l). Equation (13) shows how we can obtain

the pbpulation transition matrix if we know M, the individual level transi- '
. . . [ !

tion matrix, and o and B, the parameters of f(A). Unfortunately, our Rrob— SR

lem is generally the reverse of this sifuation: Given an observed popuiationf ;

( L : ,

transition matrix P(1), and estimates of o and B from the empirical distri- )

bution of the number of moves by an individual, we wish to obtain M so thaf‘

equatlon (13) may be used to prOJect to P(t) for some t > 1.

Fortunately,'no difficulty arises in solving equation (13) for M so- - R

long as P(l) is non-singular. We obtain

1 . -1/a , ? '
M = PTED) I-pMEpMW] o (14?

Although there is no guarantée that an observed P(l) matrix will be non~-
singuiar, this conditioﬁ is ﬁnlikely to be violéted in practiée. The only
instance where a singular P(1) matrix is likely to occur is when~the unit
time intervai is very long with respect to the behavior of the proces;,'so
that one's destination state no iongér depends upon his origin and the‘rows
of P(l) are therefore identical.8 In this case, however, P(t)=P(i) fof ail
values of t and the process is not problematic. : |

In the more cbmmon situation where‘P(l) is non—singular,.M is.obtained
by diagonalizing P(1) in the manner discussed previously:

[P(l)]—l/a _ Ke—(l{a)logQK—l _ KQ—l/aK—l
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where Q is the eigenvalue matrix of P(1l) and the columné of K are the corre-
sponding eigenvectors. FEquation (14) therefore provides a method for esti-
mating M from the populﬁtion transition matrix P(1l), under the assumption
that population heterogeneity in the rate of movement can be specified by a
gamma density. |

The remaining parameters of the model, o and B of the gamma distribution,
can be estimated directly from observed data on the number of moves by an
individual. If k and Si afe the sample mean and variance of this wvariable,
then estimates of o and B can be obtained in terms of these values from the

mean and variance formulas for a negative binomial (Chiang 1968:50). This yields

8 = X
si—E
(15)
% = %

Projection. Having computed M, we can project forward in time to

find P(t), the t-step transition matrix:

' a | -a
P(t) = (SBJr t> }II - (Bt+ t>M (16)

This result Will.hold for finite t. For very large t, q(t)=1 and [I-q(t)M]=[I-M],

which is singular since M is stochastic. Equation (16) is not defined in this
_circumstance but other considerations (see Appendix 1) suggest that limP(t)=M(*),

the equilibrium matrix for M, which may(be found by the usual Markoﬁ methods.
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If we view the process as embedded in continuous time so‘that non-
integer values of t are meaningful, these can also be used with equation
(16). We are not restricted to multiples of the initial time pefiod since
it is the distribution of‘the population with‘respect to the expected num-
ber of‘transiéions that is changing and thisAchange is cbntinuous. By any
time t, of course, eacﬁ person will have made an integer number of transi-
tions; Likewise, no mathematical difficulty is presented with projecting
backwards in time. Starting with P(l), for example, we can find P(1/2).
J'This flexibility is useful because we can often obtain better estimates
for o and B after a sizable number of moves have been made. The projections
'of the model could then be compared %ith transition matrices for shorter

time intervals.

Testing the model. At the outset we assumed that the matrix P(t)

could be written in the form presented in equation (2), and consequently
'-that rk(t), the proportion of the pobulation expected to make k transitions
by time t, is the same for. all system states.  BKM (1955:139)-also make
fhis'assumption in their comments on extending the basic mover-stayer model.
A necessary condition for this requirement to be satisfied is that the indi-
vidu?l rates of transition not be a function of the state an individual is
;ini ' The assumption can be tested directly by computing the rk(l) distri-
: bution separately for individuals originating in each of the system states
and-comparing these distributions.

There'are two other basic assumptions of the model which can be

. tested--that individuals move in accordance with a Poisson process, and
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that the gamma density provides a reasonable approximation to the distri-
bution of mobility rates in the population. To test one of these we must,
however, assume the validity of the other. If we assume that transitions

are Poisson events, we can test the gamma specification by comparing the

fit of the negative binomial estimates from equation (7) with the actual

distribution of the number of moves. If the fit is poor then the gamma
aSsumption for £(A) in équation (4) should be altered and the Poisson
compounded with a different curve. Alternatively, repalr work can be done
on the gamma distribution (see discussion on the spiked gamma in the fol-
lowing section).

There are direct tests for whether the occurrence of events conforms
to a Poisson process, such as on the inter-arrival times, but they assume an
absence of heterogeneity. If a large number of inter-arrival times were
available for each person we could test the Poisson ‘assumptions separately

for each individual, without concern for the distribution of A in the popu-

lation. Most social data are not so rich in detail; consequently it is neces-

sary to assume the correctness of £(A) in order to test the Poisson assump-

tion. Therefore, if we believe f()\) to be gamma, then the comparison between

the actual distribution of moves and the negative binomial estimates would

provide a test of the Poisson specification. In practice, the form of £(X)

- would seem to be more problematic and the more interesting question.

4. AN EXAMPLE USING SIMULATED DATA

The advantage of illustrating the model with constructed data is that

we have full knowledge of the actual mobility characteristics of the population.
g y

We will assume an individual-level transition matrix and a population



16

distribution by rate of movement as presented in Table 1. In practice, this

information would usually not be available.

Table 1 about here

'We further assume thaf the six types of persons in the population

. (Panel B of Table 1) move in accordance with a Poisson process which is
specified by the indicated A value for each éubpopulation. Consequently, the
Poisson distribution was used to generate an expected p;oportion of each sub-
population who make k = 0, 1, 2,... moves during to—tl. These values, mul-
tiplied by the respective subpopulation proportions in the total population,
were aggregated to produce a distribution of the total population by number
of moves. This distribution is presented as column (1)’of Table 2. Each of
| the rk(l) values has been multiplied by 1000 so we can refer to the number
of persons making a specified number of moves. These "observed" data were

then used with the equation

10
P(1) = I rk(l)Mk
k=0

to generate aﬁ ”obserﬁed" transition matrix P(l). This process was repeated
for t = 3 and t = 6, so we have three observed transition matrices: P(1), P(3),
and P(6). The matrices produced by this construction are presented in Table 3.
Normally, these transition arrays and the diétribution of the population by
number of moves (column 1 of Table 2) are the kinds of data which can be col-

lected.ll We assume now that only this information is available.




Table 1. Structure of the Simulated Data

(a) Individual-level (b) Distribution of the population
transition matrix by rate of mobility

Proportion of the

.600 .200 .100 .100 on of
.150 .700. ,100 .050 \e (t=1) pzﬁzia;nxlzzth
.100 .100 .750 ~.050 At (e=1)
.050 .050 .100 .800 o s

1.0 .35

2.0 | .20

3.0 .10

4.0 .06

5.0 .04
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Tables 2 and 3 about here

Projections from a stationary Markowv chain require that the observed
P(l)‘matrix ée raised to the requisite power. Markov estimates of P(3),
;(3) = tP(l)]3 and of P(6),>;(6) = [P(l)]6 are presented in Table 4. As
a result of the heterogeneiﬁy which was built info the data the main diagonal
elements from this projection are, as expected, cénsistently smaller than the
- corresponding observed values reported in Table 3. Moreover, the discrepancy

increases over time.

Table 4 about here

Turning to the model proposed in this paper; k and Sﬁ (from column 1

‘of Table 2) were first used with equation (15) té estimate o and B, 3 = 1,371,
g = 0.915. Having estimates of these parameters, the negative binomial formula
(equation 7) can be used to generate a predicted distribution of moves.
This distribution is presentéd as column 2 of Table 2, alongside the observed
.values. While there are some sizable deviations between expected and observéd
'values,-this method will usually produce a‘superior fit to simply dichotbmizing
" the population into stayers and movers,12 especially when the heterogeneity
is considerable.
" - The estimates of o and B, together with the observed P(1) maﬁrix from

Table.3 allow the M'matrix to be derived using equation (14),

613 .191 .099 .098

144 707 .099 .050

M =1 097 .099 .754 .050
.050  .050 .099 .80l



Table 2. Distribution of Number of Moves
from Observed (Simulated) Data and from
Negative Binomial Estimates

&) ' @
K 11000 £ (1)] [1000 Qk(l)]

Number of persons with

,TNumber of persons k moves (calculated
with k moves from negative binomial
Number of moves -~ - ' (observed data) a=1.371, B=.915)
0 388 363
1 226 ' 260
2 153 161
3 97 94
4 59 54
-5 34 : 30
6 19 17
7 11 9
8. 6 . 5
9 _ 2 3
10 S ' 1 1
1000 % r, (1) o 1996 ' 997
k - 1.498
2
Sk 3.133




Table 3. 'Observed Transition Matrices
- t3, and t0 -t

for t

0o~ t10 o

«650
.118

f<l), =1 .09

.056

. 448
p(3) = .165

.110

.365
177
.164
141

P(6) =

143

.156
.719

.102.

. 064

.218
.529
177
.135

.235

44l
.210
.181

.101
.101
747
.101

178

.178
.555
.178

.215

w215

462
.215

.093
.063
.061

779

.155

.128

.125
.577

.184
<166
.164

. 463



Table 4. Predicted Population Transition Matrices
~Using a Stationary Markov Process

.650

PA) = B() = |'gac

.056

. 346

@) = eI | 00

.126

.231

26 = (1% = 2

174

.155
.719
.102
. 064

«261
446
.209

154

.280
<317
.260
<224

.101
.101
747
<101

.209
.209
478
.209

264
.264
.337
.264

.093
.063
.061
779

.183
147
<143

L5111

.224
.207
.203
. 336




18 .

This array is an estimate of the individual-level tranmsition matrix

M which, by the assumptipns of the mddel, is the same for all persons. M,

A N

0,and B cah now be used w1th equatlon (16) to project to P(t) for any

.value of t. Estimates for P(l)ﬂ P(3), and P(6) are presented in Table 5.

.TableES_ahout here

T P )

A comperison of these predieted ;rrays with the observed transition
matrlces (Table 3) and with the Merkov progectlons (Table 4) reveals the
_superiority of the present model The main dlagonal entrles,.ln particular,
’vdecline less rapidly then'in'the‘Merkey'projections.. The deviations from
ohserved'values, inci&entelly,'cenpot_be attribﬁted to any inadequacy with

the Poisson assumptions,»SipCe these were used to generate’the data. Rather,

' the deviations result from an inablllty of ‘the gamma density to fit perfectly

‘ the constructed dlstrlbution of A values in the population, although the
discrepancy is not severe, ‘Compare the.negatlve binomial estimates with
the observed distribstien-of moves in Table 2 ) In fact' using the computed
| values of o and B, the gamma dens;ty f(A) for this population can be drawn
directly from equation (5). Thl$ graph is presented in Figure 1. Super—
imposed on the‘curve are vertlgal llnes-whlch indicate the.p01nts of con-
centratioﬁ of the simulated data (from Panel B of Table 1). It is apparent
thet the heteregeneity.;n the popuiatioﬁ is reasonably well represented by
this gamﬁa'density, althougﬁ'@any reei_sqeial processes will actually permit
a better fit than the arbitrarytdistribetion constrpcted.here (cf. Spilerman

1970).

v‘|‘ e
Figure 1 about here
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Table 5. Predicted Population Transition Matrices
Using the Generalized Mover-Stayer
Model? '

.650 .156 .101  .093

~ 118 .719  .101  .063
P = 2090 .102  .747  .061
‘ 056 .064  .101 " .779

]

.423 ,232  .184 .162

§(3) 175 .510 .184 .131
.150 .184  .539  .l127

’ 1 .113  .138 .184  .565

.319  .256 .229 .197
.193.  .404 .229 174
176 224,428  .171

P(6)
(148 .187  .229  .434

P
Estimates from equation 16,




Figure 1. Distribution of the Population by Expected Rate

of Movement, From Simulated Data
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Spiked gamma. If the comparison between the negative binomial

estimates and the actual distribution of moves is less than satisfactory
(as judged, for example, by a Xz test), the best recourse would be to com-
pound the Poisson with a different family of curves which might allow a
more adequate fit to f(A). However, if the gamma assumption fails in the
way it is most likely to, by a very heavy concentration of non-movers,

this defect can be repaired by use of the "spiked gamma."

The spiked gamma is a direct gene?alization of the mbver—stayer model

since, unlike the previous extension, the presence of genuine stayers

(A=0 persoms) is permitted. It is an extension of the mover-stayer model
in that heterogeneity is allowed among the movers, who are assumed to be
distributed according to a gamma density.l3 One procedure for estimating
the parameters of this process would be to first apply a mover-stayer
method to separate out stayers from the remaindér of the population, then
treat movers according to the present model. 1In fact, having removed
étayers, a quick test of the need to even use the model of this paper,
rather than the simpler mover-stayer methods, can be obtained by comparing
the mean and variance of the distribution of movers. For a Poisson distri-
"bution, var(k) = E(k), while if heterogeneity is present in the distribution
of A, var(k) > E(k). Thus, by comparing k and Si for movers the likely
adequacy of‘a Poisson (mover-stayer) assumption for the movers can be
" ascertained. (See Spilerman 1970 for a lengthier’discussion and application
of this point.)

An alternate procedure for estimating thé size of the spike would be -

Ato assume that a gamma density provides the correct distribution of movers,

and choose that division of the population who fail to move which minimizes
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the deviations of the observed values from the expected distribution of
movers. Thus, we would use the gamma to estimate the number of movers

who happen to make zero transitions during t0 - tl. The advantage of this

- approach is that it will allow a 'best fit" of the gamma to the distribu-

tion of movers who make k > 1 moves to be obtéined, since the term for
k = 0 does not influence the parameter estimates.

The procedure here is to fit a negative binomial to the observed
distribution of moves (Paﬁel A of Table 2) ekcept that information about
the k = 0 term is not used. The "truncated" negative binomial14 must be

employed to estimate o and B when the zero term of the observed distribu-

tion is missing. This probability distribution is defined by the equation%

R, = 2— (4T ETS v for k>1  (17)
1-p k

where the two independent parameters 0 and q are estimated by (see Appendix 2),

>

E(l—R1>
L B

2
k

>

(k[1-4]1-R))

o3
]
Nablh o

In these formulas, k and Si are the sample mean and variance (with the k = 0

observation deleted from the computations) and Rl is the proportion of the

observed population with k > 1 moves who make a single tramsition. £, the
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remaining parameter of the gamma distribution, may be calculated from

>
i
Nab
1
l—l

These estimates of 0 and B are now used with the regular negative
binomial formula (equation 7) to estimate the number of movers who failed

to move during t - t The difference between these observed and calculated

0 17
numbers, appropriately standardized,16 provides an estimate for the size of
the spike ;t A = 0. The calculations using the alternate method were
carried out for the data in colum 1 of Tablg 2. The results are presented
in column 2 of Table 6 alongside the observed distribution.. Because of the

added degree of freedom in estimating the spiked distribution, the estimates

are clearly superior to those obtained from the regular negative binomial.

Table 6 about here

With the size of the spike estimated by either method, we have a division

of the population into stayers and movers and may project to P(t):

e -0

- ' : N
P(t) = S+ (I-S) TS-%:'J I- <—B§L—E>M a®

In this equation S is a diagonal matrix containing as entries the proportion
e . . 1 . .
of the initial population in a state who are stayers, / I-S is a corresponding

matrix for movers, and the remaining parameters are estimated as before, but




;
Table 6. Distribution of Number of Moves
from Observed Data and from Negative Binomial,
"with Parameters Estimated from Truncated Negative Binomial

(1) v (2)
k , [1000 r, (1)] [1000 fk(l)]
: Number of persons with
Number of persons k moves (0=2.231, B=1.251
. . with k moves calculated from truncated
Number of moves (observed data) - negative binomial)
0 388 3882
1 226 - : - 224
2 153 » 160
3 97 101
4 59 58
5 34 : 32
6 19 17
7 11 9
8 6 5
9 2 2
10 1 1
1000 z rk(l) . 996 997
¥ 2.448°
2 b
Sk 2.776

8This value includes 162 persoﬁs in the spike.

bk = (0 observation is excluded from the calculation .
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A

using now only information on movers. The improved predictions for P(t),

using eéuation 18, are presented in Table 7.

Table 7 about here

¥

5., GEOGRAPHIC MIGRATION

[

Uéing data made available by Karl Taeuber from his analysis of residen-

tial mobility in the United States (Taeuber et al., 1968), the model of

this paper was applied to inter-regional transitions by males. The Taeuber

data were collected in 1958 from retrospective reports about prior residences

and are described in detail elsewhere (Taeuber et al., 1968). For the pur-

pose of this study four geographic regions were defined as states of the

procéss: (1) Northeast, (2) North Central, (3) South, and (4) West. The time

points that were used:are ty = 193?, ty f 1944, t, = 1951 and ty = 1958.
These were selected to provide residence histories for the adult years of
‘ﬁhis cohort.

: The data proved ‘to be less than ideal for illustrating the versatility
'  f ;': o%.th}s m§&él;£é inqprporate a wide range of heterogeneity. One difficulty
; f}‘ :ﬁéS'fiét the.hiéfories'were collected only for the four most recent resi-

@epcés-of_an individual and for his residence at birth. Persons who have

had mbréjthan five residences therefore have gaps in their residence histories

éﬁd.had'fo‘Be excluded from the analysis. Unfortunately, this meant that
ﬁefsons with high rates of mobility were deleted and consequently that the

heterogeneity in proneness to move was being artificially reduced.

n A‘second difficulty with these data stems from the little .inter-regional

‘migfétion which appears to take place (see Panel A of Table 8). In part,




i . Estimates from equation 18.

Table 7. Predicted Transition Matrices
Using the Spiked Gamma Model?

LA

‘650 .156
118 .718
.090 .103
.056 .064

P(L) =

e 232
o [1754as
B(6) =" | 163: .207
i 142 .180

KIS

.102
.102
<746
.102

179

.178,

555

177

0215 N

.213

468

.211

.093
.063
.061
.778

.156

.128

124
.577

183,

.165
.162 .
468
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this derives from the truncation of the distribution at k = 4 moves since

the individuals with many residence changes are most likely to have some

regional migration experience, However, it is also a consequence of the
phenomenon we are examiniﬁg. Apparently, persons do not change geographic
region very frequently during a seven-year interval; indeed, only one out
of five residence changes resulted in a move to a different region, using

this four-category definition of region.

Table 8 about here

Table 8 presents the observed transition matrix for the population
during 1937~44 (Panel A) and the observed and predicted distributions of

the population by number -of moves for this period (Panel B). In light of

~ the above comments, these data pertain only to persons who made four or

fewer residence changes during 1937-58. Comparing the observed distribu-~

‘tion. of moves (column 1 of Panel B) with the distribution predicted from

the negative binomial (column 2), it is evident that the fit is reasonably

good, except at the tail end of the distribution. The difficulty at the

tail probably results from a tendency to underreport moves when many were

made. Remember that we are dealing here with recollections in 1958 of

- residences during 1937-44.

Using the P(l) matrix from 1937-44 together with o and B from column

~

(2) of Table 8, M, the estimate of the individual-level transition matrix,

was constructed using equation 14--

.891  .035 .046 .028

& _ | -026 .799 .059  .116
.042  ,109 .763  .085

1.009 .057 .065 @ .869



Table 8. Observed Population Transition Matrix
and Distribution of Moves for Geographic
Migration Data, Together with Distribution

Predicted From Negative Binomial

(a) Observed Population Transition Matrix (1937-44)

I,

k

.970 .010 .012 .008 3437

P(l) = -.007 .947 .015 .030 4160
.011 .028 .938 .023 4110

.003 .015 .017 .966 1341

(b) Distribution of the Population by Number of Moves
' during 1937-44 ’

(L) (2)
(k) (n,) (n,)
Number of persons with
Number of k moves (calculated from
: persons with negative binomial,
Number of moves - k moves a=1.771, B=6.382)
0 10120 10082
1 2328 \ . 2419
2 507 454
3 93 77
4 12
5 ---2 1
an , 13048 13045
k - .278
2
.Sk : .321

aNumber not available.
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~

M therefore indicates how individuals transfer each time they move. It

'

shows, in particular, that the Northeast is most_successful in retaining

its residents when they move, the South least successful. Using the °

estimates of 0, B, and M, we can now project to P(t) for any time t. Ordi-.
narily, equation (i6) would be used for this purpose. However, to compen~
sate for the éffect of truncating the distribution, projection was accom-
pliéhed by using equation (8) with the upper limit of the sum set to-four,
ﬁheimaximum number of moves by an individual retained for analysis. As a
resuit, negative binomial-prediétions of five or moré-moves Havé been
deleted ffoﬁ the estimation of P(t). The obsefved data, and projections

~obtained by using a Markov chain, as well as those by the present method,

are presented in Table 9 for the periods 1937-51 and 1937-58.

Table 9 about here

By cémpafing the main diagonal entries, especially for the 1937-58

matrices, it is evidentrthat the model of this paper produces a supefior fit

to the data than is obtained from the Markov projection,-althéugh the latter

estimates are theﬁselves‘not very poor. One reason, incidentally, why the pre-
| dictions from both mgdels are'not.even better is because the stationariéy

requirement is violated. We are dealing here with a cohorﬁ through a 21-year

period and eiﬁrapolating to a terminal year in which the populatioﬂ is 14

years older thaﬁ at termination of the pefiod used for parameter estimation.

Thus, if age has an effect on migration behavior, as it surely does (e.g.,

Morrison 1967:558-559), we have a transition matrix whicﬁ is changing ovér

_time. BKM, by comparison, did not have this concern since. their data covered

only a three year-period.

'



Table 9. Observed and Predicted'Transition
Matrices for 1937-51 and 1951-58

P(2) -~ (1937-51) P(3) -- (1937-58)

.934 .017 .025 .022
.009 .908 .020 .063
.020 .052 .890 .038
.004 .024 .018 .954

. . 947 .015 .019 .019
. Observed .008 .923 .018 .050
Matrices .018 .045 .907 .030

. 004 .023 .019 .954

.942 .019 .023 .016 .028  .034 .024

Projection .014 .898 .030 .059 .853 .043 .085
from Markov .021 .053 .881 .044 .076 .829  .064
process .005 .029 .032 .933 .043  .047  .904

[B(t) = P)Y]

, . 946 .017 .021 .016 £.924 .024 .028 .023
Projection .009 .926 .023 -.042 .012 .897 .032 .059
from present .018 .033 .912 .037 .024 .046 .878 .052
model?d .008 .036 .023 .932 .001 .050 .032 .906
(a=1.771, .

B=6,382)
N 4 .
#p(t) = % £ (E)ME

=0
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Whilé the geographic data preclude our demonstrating the suitability
of this model in situations of éonsiderable population heterogeneity, we
‘can inQesfigate the‘feason why the Markov estimates are reasomably good.
Compar;ng k and Si from Table 8 wé see that the difference between these
va;@es, equal to .043, isvhot very ;érge. For a Poisson process in which
vk, éhe'parameter of the‘distribution, is varyiné, an estimate of the

variance of A is given by

Thqé, éfimarily becéuée<of the deletion of individuals with more than four
movés, litﬁle heterogeneity is present in the.population, and ;hexMarkov
chain model, Which.formally requires all persons to have an identical param-
eter value, now provides reasonably good projecfiqné. In fact, hLving esti-
mated o and B we can graph f(A) to ascertain the appearance of the hetero-
geneit& in A fhis graph is presented as Figure 2. Note that the scale

unit on the Y-axis is one-half the size of the corresponding unit in Figure 1.

It is therefore evident ﬁhat the population is indeed highly concentrated

over a narrow range of A values.

Figure 2 about here

)
v

6. CONCLUSIONS
The extensions deﬁeloped in this paper, like the originél mo%er-stayer

: !
model, cast the burden of explaining the heterogeneity onto Variations in

the rate of mobility since, by assumption, all persons follow an identical



Figure 2. Distiibution of the Fopulation by Expected Rate of

of Hovement, From Geographic Migration Data
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transition matrix af each move. If individual~level data on social charac~-
teristics are available they can be used to determine the components of
heterogeneity. Elsewhere (Spilerman 1970) I have argued that a regression
methodology,'in which the number of moves madelbyvan individual is the
depen&ent variable, is both consistent with this formulation and providés
an approximation to analyzing fhe A vaiues themselves in terms of the inde-
-pendent variables.

While the emphasis here has been on the analysis of a stationary process,

: i

these methods will also shed light on the structure of time-varying processes.
Daté at two.conseCutive~time points are required for parameter estimation in
this model. Therefore, if the parameters are recalculated for adjacent time
. intervals of a time—varyiﬁg process we can ascertain whether the non-stationarity
is attributable primarily:to change$ in the M matrix, which would suggest
a change in fhé manner df.éeléééion of destination states at a tramsition, or
gd alterations in the gamﬁé.d;%#ribution, which would be indicative of a

change in the rate at wﬂich individuals are making transitions.

If iS'well known that*thé_negative binomial distribution can be derived
froﬁ an gssumption of positivéireinforcement (Coleman 1964:300) as well as
ffom this heterogeneitylmddel;; In the ﬁontext:of geographic migration,
feiﬁforcémeﬁtlwoﬁld mean thét, with each move,?an individual's probability
 vof making a sﬁbséquentvfranéition'is increased. Although this conceptuali-
zation seems forced, it Eecomes more plausible in an alternate formulation.
Making é statement about the process by which moves occur is equivalent to
making an assumption about‘the'distribution of durations between the moves.
.Viewed from the latter perspective, reinforcement would suggest that the
~longer an indi&idual resides at a particular location, the higher his proba-
1bility of remaining. Thus, the reinforcement hypothesis is recognizable as

the "Axiom of Cumulative Inertia" in the Cornell Mobility Model (McGinnis 1968).
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" How do we distinguish between heterogeneity and reinforcement? Con-

ceptually, one or the other is likely to be more appropriate to a particu-

lar phenomenon. For example, as McFarland (1970) has pointed out, the

assumption that attachments grow over time seems more reasonable for geo-

graphic mobility than for occupational mobility. Analytically, it may be

possible to distinguish between these alternative processes by examining

the over-~time change in the distribution of moves in successive time units.

" The reinforcement model suggests.that the variance of this distribution

should increase over time for a cohort as some individuals become increasingly

- prone to move, By coﬁtrast, the heterogeneity explanation suggests that the

variance should remain constant. Nevertheless, in many social processes both

' - phenomena ﬁrobably occur and individual-level data would seem necessary in

order to disentangle their separate effects.
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 APPENDIX 1. lim P(t) = M(~), THE EQUILIBRIUM MATRIX FOR M
t >

Let t be variable in equation (8). Taking the limit as t + ® we

have

ilf z(t) = lim k O r (t)Mk

For every finite k,

k /' \a

o+ k-1)(_t i B E

lim rk(t) = lim k B+¢t! B+t !

, I\ /

t > o
= rk = 0
since E—%—E'+ 0. However, rk(t) is a probability distribution for all
t and therefore kZO K = 1. This implies that the non-zero wvalues of the

. distribution are concentrated at k = © and consequently kZL Kk = 1 for
arbitrarily large L. Choose L sufficiently large so that ML = M(m) to

any desired degree of accuracy. We then have lim P(t) = M; Zr = M(*®).
_ t 5 o k L
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APPENDIX 2. THE TRUNCATED NEGATIVE BINOMIAL DISTRIBUTION

Let P be the negative binomial probability for k events:

Q* k- 1> k=0,1,2,...  (A2-1)

For any positive integer—valued distribution we have 1 = b Pk = Po + 5 Pk’
o 1
and therefore 1_; b Pk = 1. This is a truncated distribution in that
o 1 ' '

the P0 term is lacking. For the negative binomial distribution we obtain

1 _ 1 o+k-1} k o _
k B 1-p Pk - ]_—pa X q P E) kzl (A2 2)

which is the truncated negative binomial distribution. Note for

reference that
_ot+k-1 _
R = — qu_l- (A2-3)

To obtain d.

Ho= Z k Rk R + 3k Rk
2

R, + g (@+k-1qRr_; (by A2-3)

R1+qi (oc-i-k)R.k

Ry + qa + qu (AZ-4)

-1
and o = 1 (up - Rl)



A3 .

To obtaiﬁ q, 8.

. o 5
var (k) T (k -y
vare) = £ %

2, @2

R

- Using (A?2-3) we obtain for the last term,

® . 2 '_9._
g k Rk g [opn + o+ u + Rll

Substituting this value into the expression for var(k) and using (A2-~4)
to simplify yields,

(1 -4q) var(k) = u (L -Ry)

, u( - Rl)

Finally, since q = E%i-(from the definition of q(t), equation (8) in text),

- 1.

Nal i

we obtain for B, B =



NOTES

lA transition from i + i would be considered movement in this ter-
'minology.A For example, if the states of the system were geographic
regions, én i + i transition would represent iggzgfregiohal movement.,
:: Aiternatively, we might speak of the expected number of exposures to
movement as do BKM (1955:139), but allow an individual to not move

(an i » i transition) at an exposure.

2A precise specification of the (time-homogeneous) Poisson process
is given by the following four assumptions:

(1) A is comstant over time,

(ii) In an infinitesimal time interval At at most one event can occur.

(ii1) The probability of an event in At equals AAt, the probability

of no event in At equals 1- AAt.

(iv) The occurrence of an event during t, t+At is independent of

the past behavior of the process.

The derivation of the Poisson distribution from these assumptions

is a straightforward proceduré (see Feller 1957:400).

k_-At
e

@ kK = (Ot K
pe) = fp ron = F Lele
. |
e § AL At AEM _ =At[I-M]
= e c ki e e = e

The convergence of the infinite sum to eAtM will hold for an arbitrary

matrix M.



eigenvalue u.

4 . ,
- In fact, the assumption that the occurrence of transitions follows

a Poisson process leads to a continuous-time Markov formulation.

5Since [T - q(t)M]—a»= ([I - q(t)M]—l)a and an inverse is defined
only for a non-singular array, this matrix power is defined only if the
term in brackets is non-singular. This condition, however, will be
satisfied for q(t) < 1, that is for finite t.

6If A does not have linearly independent eigenvectors equal in number

to its order (which may be the case if the eigenvalues are not distinct)
then A cannot be diagonalized. It can, however, be put in Jordon form
(Bellman 1960:191) which creates computational &ifficulties but,
frequently, not theoretical ones. With real data it is rare that the
elgenvalues are not distinct, so only the case where [I - q(t)M] can be

diagonalized is considered in this paper.

7The eigenvalues of D may be complex numbers, in which case log p =

logr + i6, -7 < © <m where r and 6 are the polar form components of the

i

8This statement assumes an absence of stayers (A=0 individuals).

9This assumes an absence of A=0 individuals. If stayers are present
then 1imP(t) is given by the mover-stayer formulation (BKM 1955:111-114),
limP(t) = S +(I-S)M(=).

lOThe upper limit on the summation was set to 30 for t = 3, and to 60

for t = 6.

llWe also have available the distribution of rk(t) for t = 3, 6, anal-

ogous to column 1 of Table 2. This information will not be used in the

illustration, but a test of the Poisson assumptions could also be based

upon the over-time change in the distribution.



12The inadequacy of the mover-stayer dichotomization for data
“analysis can be less severe than would at first appear. As BKM(1955:
142) point out it is not the case that movers must each make a single
transition during a time unit, only that they follow a Poisson process
with a common A\ value. A direct generalization of this conceptualiza-
tion of the mover-stayer model is discussed shortly in conjunction with
the "spiked gamma" (with vodka, please);

13In the mover-stayer model, this gamma specification for movers is

replaced by the more restrictive assumption that they are concentrated
at a single X paint.

14An analogous procedure, using the truncated Poisson distribution
(Coleman 1964:366), may be used to estimate the parameters of the mover-

stayer model.,

15Equation (17) is not written as a function of time since only the

values for t=1 are considered.

~

16The negative binomial estimates are standardized by forcing b Nk =
1

bt Nk’ where Nk is the observed number of persons making k transitions

1
during tO - tl.

17Estimates of the proportion of stayers in each state are obtained
directly when the mover-stayer estimation procedures are used. With
the alternate method one assumes that stayers constitute an identical

proportion of the nonmovers in each state.



REFERENCES

Bartholomew, D.J.
1967 Stochastic Models for Social Processes. New York: Wiley.
Bellman, Richard E.
1966 Introduction to Matrix Analysis. New York: McG;aw—Hill.
Blumen, I., M. Kogan and P.J. McCarthy.
1955 The Industrial Mobility of LaBor as a Probability Process.
Cornell Studies of Industrial and Labor Relations, vol. 6.
Ithaca, New York: Cornmell University.
Chiang, Chin L.
1968 Introduction té Stochastic Processes in Biostatistics. New
York: Wiley.
Coleman, James S.
1964 Introduction to Mathematical Sociology. New York: Free Press.
Feller, William
1957 An Introduction to Probability Theory and Its Applications.
New York: Wiley.
Gantmacher, F.R.
1959 The Theory of Matrices, vol. 1. New York: Chelsea,
Goldstein, Sidney
1964 V"The extent of repeated migration: An analysis based on the

Danish population register." Journal of the American Statistical

-Association 59:1121-1132.

Goodman, L.A.

1961 * "Statistical methods for the mover-stayer model," Journal of

the American Statistical Association 56:841-868.




Hodge, R.W.
1966 '"Occupational mobility as a probability process." Demography
3:19-34. |
Lieberson, S. and G.V. Fuguitt.
1967 '"Negro-white occupational differenéeé in the absence of

discrimination.'" American Journal of Sociology 73:188-200.

Lipset, Seymour M. and R. Bendix
1959 Social Mobility in Industrial Society. Berkeley: University
of California Press.
McFarland, David D.
1970 "Intra-generational social mobility as a Markov process:
Including a time-stationary Markovian model that explains
observed declines in mobility rates over time.” American

Sociological Review 35:463-476.

McGinnis, R.

1968 "A stochastic model of social mobility.'" Americal Sociological

Review 33:712-722.
Morrison, Peter A.
1967 '"Duration of residence and prospective migration: The

evaluatioﬁ of a stochastic model." Demography 4:553-561.

Palmer, Gladys L.

1954 Labor Mobility in Six Cities. New York: Social Science

Research Council.




Rogers, Andrei

1966 "A Markovian analysis of migration differentials.'

Proceedings

American Statistical Association, Social Science Section.

Spilerman, Seymour

1970 '"The causes of racial disturbances: A comparison of alternative

explanations.' American Sociological.ReVieW, 35:627-649.

In
Press '"'The analysis of mobility processes by the introduction of

independent variables into a Markov chain." Submitted to

American Sociological Review.

Taeuber, Karl E., L. Chiazze, Jr., and W. Haenszel
1968 Migration in the United States. Washington, D.C.:U.S. Government
Printing Office.
Tarver, James D. and William R. Gurley
1965 "A stochastic analysis of geographic mobility and population

projections of the census divisions in the United States."

Demography 2:134-139.




