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ABSTRACT

This paper takes a first step toward developing econometric models

for the structural analysis of labor force dynamics. Our analysis is

presented in continuous time, although most of the points raised here

can be applied to discrete time models. We show that in previous attempts

to estimate "structural" models of job search, a key source of information

necessary to identify certain structural parameters has been neglected.

We discuss the conditions under which structural search models can

be estimated. In particular, the wage offer distribution must be recoverable-­

i.e., it must be the case that the parameters of the untruncated wage

offer distribution be estimable from the truncated accepted wage distri­

bution. The wage offer distribution must be assumed to belong to a para­

metric family. Estimates of structural parameters are shown to be sensitive

to the distributional assumption made.

A partial equilibrium two state model of employment dynamics is

estimated, using data from the National Longitudinal Survey of Young

Men. We find employment and nonemployment rates implied by the structural

parameter estimates to be generally consistent with those observed for

the population of young males.
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New Methods for Analyzing Structural Models
of Labor Force Dynamics

This paper presents new econometric methods for the analysis of

labor force dynamics. The economic models we discuss assume that rational

agents make choices about their employment and labor force activity in

the face of uncertainty about key aspects of their labor market environ-

ment. A variety of such models has recently appeared in the literature

(e.g., Burdett and Mortensen, 1978 and 1980; Lucas and Prescott, 1974:

Wilson, 1980; Lippman and McCall, 1976a, b, 1981) and research in the

area continues to flourish. Theoretical results already in hand offer

possible explanations for frictional unemployment, on-the-job wage growth,

job turnover and wage dispersion.

To date there has been little systematic econometric analysis of

these models although qualitative implications obtained from these models

have sometimes been used as loose guides to interpreting unemployment

duration regressions. The few attempts at developing econometric pro-

cedures to estimate this class of models are direct transcriptions of

econometric models used to estimate reservation wages in the analysis

(1)
of female labor supply. A clear analysis of identification criteria

and estimation methods for models of labor force dynamics does not appear

in the literature.

This paper takes a first step toward developing econometric models

that implement and extend the new theory. A key feature of the class of

(l)For a survey of such models see Heckman and MaCurdy (1981).
also the discussion in Appendix C which makes precise the statement
text.

See
in the
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economic models that we consider is that they produce predictions about

the dynamics of individual behavior. With the recent wide-scale availa­

bility of longitudinal labor market data with repeated observations on

individuals it has become possible to test the implications of the new

microdynamic models using microdynamic data. The goal of this paper is

to develop procedures to enable analysts to apply the new theories to

the new data.

This paper makes three contributions. First, economic theory is

used to derive the appropriate econometric specification for three models

of labor force dynamics. They are (a) a continuous time single spell

model of search unemployment, (b) an equilibrium continuous time two

state model of employment and nonemployment, and (c) a three state model

of employment, unemployment and nonmarket activity.

Second, we present new identification criteria that must be satisfied

in order to estimate the structural parameters of the three models considered

in this paper. We distinguish structural parameters that can be estimated

using nonparametric procedures from structural parameters that can only

be identified if arbitrary functional forms are assumed. One identification

condition ("recoverability") applies to all econometric models for the

analysis of truncated data. An important conclusion of our analysis is

that most econometric models for the analysis of truncated data are non­

parametrically underidentified, and some are parametrically underidentified

as well.

Our third contribution recognizes that maximum likelihood estimators

for most of the models considered here are nonregular: We develop an
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appropriate asymptotic theory for the nonregular case that arises in

the economic models analyzed in this paper, and in other econometric

d 1 d . d f ... h (1)mo e s . er1ve rom optIm1zat1on t eory.

The plan of this paper is as follows. We first consider in detail

a model for a single spell of an unemployed worker's search from a known

distribution of wage offers. Most of the new econometric points that

arise in the analysis of the economically more interesting models that

follow also appear in the simpler setting of the one state model of

search.

The second part of the paper is devoted to analysis of a new equili-

brium two state model of employment and nonemployment. Empirical estimates

of this model are presented. An appendix presents a three state model

of labor force dynamics which introduces nonmarket activity into con-

ventional search models and prOVides a structural economic motivation

for the competing risks model widely used in social science.(2) The

paper concludes with a summary.

(l)For example, frontier production theory see, e.g., Aigner and Chu
(1968), Greene (1980) and Forsund, Lovell and Schmidt (1980).

(2)For much more extensive discussion of this model see (Coleman and
Heckman, 1981).
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1. Estimation of a One State Model of Search Unemployment

1.0 Introduction

In this section, we consider estimation of a single spell model of an

unemployed worker's search from a known distribution of wage offers using

longitudinal data on a random sample of agents. Despite the fact that this

model is widely cited as a justification for much empirical research on un-

employment and despite previous attempts at "structural estimation" in this

model, a number of important econometric aspects of this model have been

neglected.

We first present a continuous time economic model for a stationary environ-

ment. We compare the continuous time model to previous discrete time formu-

lations. We then consider issues of identification and estimation first under

the assumption of no interpersonal variation in parameters ("no heterogeneity")

and then with such variation ("heterogeneity"). In a concluding subsection,

we consider econometric issues for a nonstationary search model.

1.1 A One State Model of Search Unemployment

This model is well exposited in Lippman and McCall (1976a). Agents

are assumed to be income maximizers (here and in the rest of the paper).

If an instantaneous cost c is incurred, ~ob offers arrive from a Poisson

process with parameter A independent of the level of c (c ~ 0). The

probability of receiving a wage offer in time interval At is AAt + O(At).(l)

The probability of two or more job offers in interval At is thus negligible.(2)

is defined as a term such that
lim
At -+ 0

a (t. t)
t.t

-+ O.

(2)For one justification of the Poisson wage arrival assumption see,
~., Burdett and Mortensen (1978).
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Successive wage offers are independent realizations from a known

absolutely continuous wage distribution F(x) with finite mean that is

assumed to be common to all agents (until section 1.5). Once refused,

wage offers are no longer available. Jobs last forever and there is no

on the job search. Workers live forever. (But see the discussion

in Section 1.S.C.) The instantaneous rate of interest is r(>O).

"v" is the value of search. Using Bellman's optimality principle for

dynamic progr~ng (See, ~, Ross (1970)) V may be decomposed into three

components plus a negligible component (of order o(~t)).

(1.1) v = - cLl.t + (l-A~t) V + A~t E max [1£
l+r~t l+r~t l+r~t r

for V > 0

= 0 otherwise

v ] + a (~t)

The first term on the right of (1.1) is the discounted cost of search

in interval At. The second term is the probability of not receiving an

offer (l-A~t) times the discounted value of search at the end of interval

~t. The third term is the probability of receiving a wage offer (A~t)

times the discounted value of the expected value (computed with respect

to F(x)) of the maximum of the two options confronting the agent who

receives a wage offer: to take the offer (with present value x/r) or to

continue searching (with present value V). Note that equation

(1.1) is defined only for V>O. If V =" 0, we may define the agent as

out of the labor force (See Lippman and McCall, 1976a). ~rom stationarity,

once out the agent is always out. Sufficient to ensure the existence of
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an optimal reservation wage policy in this model is E(lx!) <~ (Robbins, 1970).

Collecting terms in (1.1) and pa~sing to the limit, we reach the

familiar formula (Lippman and McCall, 1976a)
A CX)

(1. 2) c + rV = - I (x-rV) dF (x) for v>o.
r rV

"rV" is the reservation wage. It is implicitly determined from (1. 2) •

For any offered wage x ~ rV, the agent accepts the offer. The probability

that an offer is unacceptable is F(rV).

If r=O, an optimal policy still exists if E(I~I)< CX) where ~ is the

lump sum value of the job offer over the infinite horizon. A reservation

value R exists. It is determined as the solution to

(1. 2) , c =

CX)

A f
R

(g,.-R) dG a) if R>O

where G(i) is the cdf of ~ .

To calculate the probability that an unemployment spell Tu exceeds

t , two ingredients are required. First, we must compute the probabilityu

that j offers

(1.3)

We next need to

are received in time interval t u ' By assumption this is

I j -1tProb(j offers t) = (1t) e u, (~> 0).
u u

j !
compute the probability that none of the j offers is

acceptable. This is [F(rV) ] j . Assuming independence of arrival times

and wage offers, the survivor function peT > t ) is the product of these
u u

two probabilities summed over all j,~,

CD (At )j "'At
[F(rV)]jpeT > t ) I u u

(1.4) :II . , e
u u J.

j=O

-1..(1- F(rV») t (1)
u

:II e

(1) (The power series expansion definition of the exponential is used
in the final step.)
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f(t ) = A(l_F(rV))e-A(l-F(rV))tu
u

Accepted wages are truncated random variables with rV as the

lower point of truncation. The density of accepted wages is

(1. 5) f(xlx>rV) = f(x)
l-F(rV)

x?.rV.

Thus the one spell search model has the same statistical structure for

accepted wages as other models of se1f~se1ection in labor economics

(Lewis, 1974; Heckman, 1974 and Heckman and MaCurdy, 1981).

From the assumption that wages are distributed independently of

wage arrival times, the joint density of duration times t and
1.1

accepted wages (x) is the product of the density of each random variable.

m(tu'x) = {A(l - F(rV))exp - A(l - F(rV))tu} l~~(~V)

= (A ~~p -A(l - F(rV))t )f(x), x ~ rV.
u

The stationary search model generates a duration model with a constant

hazard rate h (t ) whereu u

(1. 6)
d 2n peT > t )

h(tu) = - dt u u = A(l - F(rV)).
u

'"

Higher values of the hazard are associated with more rapid exit from

the unemployment state. A model with a constant hazard is said to
dh(t )

exhibit no duration dependence ( u = 0).
dt

u

Differentiation of (1. 2) (and integration by parts) reveals that

the reservation wage increases with positive translations of

the wage offer distribution, decreases in the cost of search, increases

in the rate of wage arrivals (A), and decreases in the rate of interest.

The hazard rate (h(tu)) increases with increases in the cost of search,

increases in the rate of interest, and with positive translations of the

wage offer distribution. The effect of increases in the rate of job

-- .._. _._-----.--_.._----_._-_._----. - . -------_.._---------_._----_ - .._------------------_ .._---_ _.. -_._.- _- ---- - _._.--.__.__._-.
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offer arrivals and increases in the variance of the wage offer distribution

on the hazard rate is ambiguous. Thus, ceteris paribus, increases in the

cost of search, the rate of interest and positive translations of the

wage offer distribution decrease the mean length of u~employment and

result in unemployment duration distributions that are stochastically

dominated by the predisplacement distributions.

If r = 0, straightforward manipulation of (1. 2)' reproduces all of

the preceding propositions except those for r and translations of the

wage offer distribution. It is well known that if r = ° unit translations

of the wage offer distribution lead to unit increases in reservation wages.

Thus translations of the wage offer distribution in this case produce no

change in the hazard rate.

1. 2 Relationship to Previous Discrete Time Models of Discrete Choice

Previous work in deterministic labor supply theory (~' Heckman

and Willis, 1977; Heckman and MaCurdy; 1980, Heckman, 1981) estimates

a discrete time analogue of the model described above. For

a single spell of nonemployment, the decision to remain nonemployed is

made by comparing a market wage offer X to reservation wage rV although

a different theory is used to derive the reservation wage. Kiefer and

Neumann (1979) have applied discrete time econometric models developed in

the deterministic labor supply literature to the search unemployment

problem.

The assumption used in previous work is that new wage offers (or in

the labor supply theory, reservation wages, or both) arrive each time period.

To focus on essential aspects of the comparison we assume that the

reservation wage is nonstochastic, and the cdf of the independent

wage offers is F(X). Previous models produce the probability that
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a nonemployment spell terminates after j periods as

PU) (F(rV))j-l (1 - F(rV)).

Accepted wages are truncated from below by rV so that (1.5) is the

density of these offers. Thus the joint density of duration times and

accepted wages is

k(j,x) = [F(rv)]j-l f(x) x ~ rV.

tt:"l'

This approach is somewhat arbitrary because it is time unit dependent.

To use it one must assume that wage offers come in at the rate of exactly

one per period. (This is a crucial assumption in the Kiefer-Neumann

analysis. See Appendix C.) The model developed in this paper assumes

that wage offers arrive at random times. The cost of this generality

is the introduction of parameters of the wage arrival function (A).

1.3 Identification(l)

We assume the analyst has access to longitudinal data on N independent

spells of unemployment. At this point we assume that all individuals have

common structural parameters. The sampling frame is a fixed known time

(l)Kiefer and Neumann (1979) have indirectly addressed this problem
for the case of log normally distributed X in a discrete time search model
with one wage offer received each period. They address the problem of
identification in these models using standard sample selection bias methods.
The analysis considered in this section is more general because it permits
wage offers to arrive randomly, it is not specific to a log normal wage
offer distribution, and because it utilizes crucial information overlooked
in their analysis. For example, their analysis apparently implies that
r > 0 is a necessary condition for identification. From their analysis
it would appear that adding a wage arrival parameter A to the model could
make the model unidentified, especially if r = O. Their analysis is mis­
leading on important points.

--------._._---._----------~---_._-------------------------------
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frame of length T. Some spells may be censored (so t = T). At theu. u u

end of the sampling period an unemployment spell may still be in progress.

Thus for certain episodes we do not observe an accepted wage.

Our approach to identification is somewhat unusual in that it is

nonparametric. We produce consistent estimators of the reservation

wage and the distribution functions of accepted wages (x) and durations

(t). We also ask under what conditions we can solve from conditional
u

empirical distribution functions (which are pointwise consistently

estimated except at points of discontinuity see, ~) Billingsley,

1968) and the estimated reservation wage for the underlying structural

parameters and distributions of interest. A crucial identification

condition is a recoverabi1ity condition, not always satisfied, which

enables the analyst to recover an untruncated distribution from a trun-

cated distribution.

From a random sample of unemployment durations, possibly censored,

it is possible to use a Kaplan-Meier estimator (see Kalbfleisch and Prentice,

1980, pp. 10-16) to consistently estimate the integrated hazard and hence

the hazard (eq. (1.6». It is thus possible to consistently estimate

h = A(l-F(rV». A variety of alternative estimators could be used. (1) From

duration data alone, it is not possible to separate A from (l-F(rV».

From data on accepted wage offers it is possible to directly estimate

the reservation wage. (2) The density of accepted wage offers is given in

(l)We note that there are better behaved estimators for the hazard
than the one mentioned here. We use the estimator in our identification
analysis only to indicate that in principle it is possible to estimate
h non-parametrically. See the discussion in Section 1.4.

(2)ThiS obvious and essential point has not hitherto been noted in
the literature.
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eq. (1.5). The smallest accepted wage (X . ) in a sample o~ size N has
mJ.n

density

(1. 7) q (x . ) = NmJ.n [f(2)nin) ] [l_F('lCmin)]N-l
[1- F(rV) [1- F(rV) J

10'

rV < x. < co.- mJ.n-

The limiting distribution of x. (obtained by letting N + co) places-"tnJ.n

point mass at x. = rV. "A' • If is a strongly consistent estimator of
,ilJ.n ·lnJ.n

reservation wage rV. There are obviously many other strongly consistent

estimators of rV (~ the second smallest accepted wage, etc.) The

fact that the range of X depends On a:parameter (rV) meanS that a

standard regularity assumption is violated. We develop this point in the

next section where specific estimation strategies for parametric models

are discussed.

The empirical cdf of accepted wages converges pointwise (at all points

of continuity) to the population cdf of accepted wages

F(x\x2rV) = F(x) - F(rV), x>rV.
1 - E(rV)

In light of the discussion in the preceding paragraph, rV can be

consistently estimated. Provided that it is possible to recover the

untruncated distribution F(x) from the ~runcated distribution knowing

the point of truncation, it is possible to estimate F(x) from an estimate

of F(x!x>rV) and rV.

We define a distribution F(x) to be recoverable from a truncated

distribution with known point of truncation (rV) if knowledge

of F(xlx>rV) and rV implies that F(x) is uniquely determined.

---- - -- ---- -- -- --- " - -~ -~~-~- ---~-- -- ~---_.~._. -.---~------------
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Provided that F(x) is recoverable, all of the parameters in equation

(1.2) are identified provided that r is known. Thus if F(x) and rV are

known, from the estimated hazard A is known. (See eq. (1.6». With A

known, F and rV can be inserted in (1.2) to estimate c. (1)

F(x) is not recoverable without maintaining some functional form

assumption, and it is not recoverable for all functional forms. Two

absolutely continuous distributions that produce the same truncated

distribution with the same known points of truncation have densities

that differ"only by a linear transformation. If densities f(x) and

f*(x) both generate the same truncated cdf, then f*(x) = bf(x) for

x ~ rV.

To show this note that if

F*(xlx > rV) F*(x) -F*(rV)
= l-F*(rV)

= .:;.F-:;-.(x-=):'I-~F~(r_V.:..)__ = F(x Ix > rV)
l-F(rV)

for all x > rV, then from absolute continuity

f*(x)
l-F*(rV)

f(x)
= l-F(rV) for all x ~ rV

so the densities must be proportional at all points of continuity of the

l-F*(rV)
distributions, i.e., f* = bf for x ~ rV where b = l-IltrV) - • Thus the

(2)
distribution functions are related by F*(x) = a + bF(x) where a = 1 - b.

(l)If c is known a priori, it is possible (with known F and rV) to
estimate r.

(2)In a discrete time search model with one wage offer assumed to arrive
each period, we can estimate F(rV). In this case we can uniquely determine
F (for F absolutely continuous) using the additional information that

F(rV) = k

where k and rV are known constants. Since we know the denominator of the
conditional density, we can uniquely determine F and hence f. This is an
essential feature in the Kiefer-Neumann analysis (see Appendix C).
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Without imposing a parametric structure on f(x), it is not possible

to determine the shape of f(x) for values of x below rV. It is possible

to determine the shape of f(x) for x ~ rV (up to a scalar multiplication)

'but not the mass above rV.

Without further information it is not possible to solve from the

truncated distribution and the known point of truncation for a unique'

untruncated distribution. There are obviously many untruncated distri­

butions which can produce the same truncated distribution at a given

point of truncation. For this reason, a completely nonparametric approach

to identification is impossible. Unless a recoverability condition is

imposed, the structural duration model is not identified. (Precisely

the same statement holds for all econometric models for the analysis

of truncated data.)

It is sometimes possible to achieve recoverability by restricting

the true distribution F(x) to be a member of a certain class of parametric

families. Thus if we require F(x) and F*(x) to be normal distributions,

F(x) = F*(x) (a = 0 and b = 1). (This restriction does not deny that

some nonnormal F* may also fit the truncated data.) Identification

through the use of functional form is not always possible.

We present an example in which the recoverability condition is

not met even if we impose the assumption that wage offers come from a

distribution with known functional form. Let wages be Pareto distributed

.. -_...........----.. ----- -------_.--._-----_..._._.--- ..._---_..... ...._- ----- ----_. ---- -- -----_._--_..---------- .. -- -------_ .....--_ ...•_---~--.--.---------._.._..- ----------_._-_...._...... --..'
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dF(x) = cPx6dx, c2 < x ~ co, 6 < -2

cP = -(6+1)
(c

Z
)6+l

so

F(x!x > rV) = -(B+l)x6

(rV) 13+1

The parameter cP (or c2) cannot be identified. Thus there are many Pareto

distributions that fit the truncated wage data equally well.

To explore the consequences of the lack of recoverability in the Pareto

case on the remaining parameters of the model, write (1.2) for the Pareto

case as

The hazard is

c + rV = (
A<P) ( (rV) 6+2 )
~ r(l3+l) (6+2)

h = A(l-F(rV)) = -A<p (rV)I3+l.
(6+1)

"rV" is identified and so are 6, A<P, and c. But obviously <p and A

cannot be separately identified (we can use the inequality rV ~ c2 to

produce an upper bound on c2, an upper bound on q, and hence a lower bound

on A).

The fact that identification hinges on the functional form of the wage
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offer distribution is an unsettling result but accords with economic

intuition. Without some restrictions imposed, it should not be possible

to distinguish a model with a lot of the mass in the wage offer distri-

bution near zero from a model with a low arrival rate for job offers,

and with little mass in the wage offer distribution near zero. This

point is discussed further in Section 2.

If wages are nDrmally distributed, the recoverability condition

is satisfied. This fact is implicitly utilized in Amemiya (1973) and

Pearson (1903). The condition is also satisfied for many commonly utilized

distributions such as the exponential and log normal distributions.(l)

It is possible to test the concordance of any assumed functional

form for F(x) with the data. Following Heckman (1976a) it is possible

to use a Kolmogorov-Smirnov test or chi-~quare test to test concordance

between the empirical counterpart of F(xlx ~ rV) and a particular para­

metric cdf. (2) Thus the selection of a particular functional form need

not be an entirely arbitrary p~ocess. But the fact that a given functional

form is statistically concordant with the data does not imply that it

(1) The identification analysis of Kiefer and Neumann (1979) based on a log
normal distribution for wage offers apparently requires r > O. Their model
satisfies the recoverability condition. The assumption r > 0 is not needed
to achieve model identification. Provided that R (in equation (1. 2) ') is
non-negative, it is possible to repeat the analysis in the text for r = O.
Replacing rV in the text equations with R, it is possible to use accepted
wage data to consistently estimate R using the minimum value of X in the
sample. From the data on accepted wages it is possible to estimate the accepted
wage distribution. Given the point of truncation, and satisfaction of the re­
coverability condition, it is possible to estimate F(X), hence F(R), and
A. Using equation (1.2)' it is possible to consistently estimate c. For more
discussion of the .Kiefer-Neumann analysis see Appendix C.

(2)The KS test must be modified' to correct for parameter estimation.
See Durbin (1973) pp. 53-54.

•
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is the only functional form consistent with the data. There is no

statistical test for recoverability that can be based on the data

generated by the model.

1.4 Estimation

• The preceding section generates identification criteria by way

of producing consistent nonparametric estimators. No claim was made

there about the efficiency or asymptotic distribution of those estimators.

These topics are more readily addressed in a parametric framework. In

this section we examine the maximum likelihood estimator of the one

spell search model in a parametric setting, and derive the appropriate

asymptotic distribution.

Two new points arise. First, as is evident from equation (107),

estimation is being considered in a non-regular setting because the lower

limit of the accepted wage offer distribution depends on a parameter of

the model (rV). Thus standard asymptotic distribution arguments will not

apply (Cox and Hinkley, 1974, p. 112). Second, because we utilize a

parametric framework, it becomes essential to explicitly account for

censoring of duration spells. (1) If the sampling plan of the longitudinal

data is such that spells of length greater than t are not observed,. the
u

density of t and x conditional on t £ t is
u u u

(1) The nonparametric Kaplan-Meier estimator can be applied to
censored or uncensored data.
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= fA (l-F (rV» exp-A (l-F (rV» t u]

1 -exp -A(l-F(rV)t )
u

[f(x) 1
~-F(rV)J

where the denominator of the first term in brackets is the probability

that . t < t .
u - u

Let d denote an indicator function with

d = 1 if t < tu- u

d = 0 otherwise.

Then the joint density of d, t and X is
u

met , x, d) = [f(x)A exp -A(i-F(rV»)t Jd[exp -A(l-F(rV»t ]l-d. (1)
u u u

The full economic model for r > 0 implies the following restrictions:

x Z. rV Z. 0(1. 8)

rV + c = A
r

r (x-rV) dF(x).

Jv
In the remainder of this section we write the distribution function of wage

offers as F(xle) to explicitly demonstrate the dependence of F(xje) on

a finite dimensional vector of bounded par~eters ce). We assume that F (x Ie) is

recoverable (in the sense of section 1.3) and hence that. e is identified.

We assume that r is known.

(l)In forming this density we use the fact that the probability

d=O is the same as the probability that t exceeds t (=exp-(l-F(rV» t ) •
u u u

The probability that t is less than t is (l-exp-(l-F(rV»t ).
u u u

(2)
The second constraint for the case r = 0 is equation (1.2) '.

In that notation, the first constraint is ,x ~ R ~ O.
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The sample log likelihood function (with individual subscripts

1 . d' 1 Ie of N ;ndependent individualssuppressed) for a ong~tu ~na samp •

is

(1.9) =

=

l: In m(t , x, d)
u

(l:d)ln A + l:dln.f(x!e) - A(l-F(rVle» l:tu

where t = t for the censored observations.
u u

Structural estimation of the model requires maximizing (1.9)

incorporating the economic restrictions in (1.8). There are many possible

parameterizations of the likelihood function. The most analytically

convenient one treats rV as an explicit parameter along with S and A

using (1.8) to solve for c. This parameterization does not force c to

be positive and so provides a test of the model. Note that for the model

to make statistical sense, it is required that A > O. This constraint

is automatically imposed in the estimation as we demonstrate below.

The maximum likelihood estimator has a simple structure. Denoting
A

the maximum likelihood estimator by II All , rV = x . where x. is the
m~n m~n

minimum accepted wage observed in the sample of job takers (for whom

d=l). That this is the mle estimator is verified by noting that £ is

monotonically increasing in rV so that the first constraint in (1.8) is

always effective at the upper limit.

This estimator is strongly consistent. Producing the asymptotic

distribution theory for the estimator is a more delicate matter. As is

well known (See Galambos, 1978, p. 71) for a given F(xIS) there may exist

no norming factors such that a(nl)X
min

+ b(nl ) converges to a distribution

where a(nl ) and b(nl ) are functions of nl(=rd). If such factors exist,

the asymptotic distribution is one of two possible functional
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forms (See Galambos, pp. 56_57).(1) The existence and functional

form of the limiting distribution of x .
m~n

is critically dependent

on the functional form of F(xl 8) although the strong consistency

of the estimator does not depend on this functional form.

The following theorem establishes a general condition under which

IN (Xmill -rV) has a degenerate distribution.

for z > 0,

Thm. 1.

(1.10)

Define z = iN (~. -rV). If and only if
"m~n

lim rl-.F(rv~l~N-> 0

~ Ll-F(rV I8) J
z = IN (X. -rV) has a degenerate distribution at z = o.

mJ.n

Proof. From (1.7) and integration

F(x.. ) =
mJ.n

1- [ .1 ~F(XminJ6)]:N
. 1- F(rVle)

Thus the cdf of z say K( z) is

K(z) = 1-

[

1-
1-

z
F(rV+ IN I 8.) ]N.
F(rVIS)

lim

Then, we have lim K( z) = 1, :z>O if and only if
z

[1- F(rV+ 7N 1.8) IN +
[1- F(rvje) a , z > o.

QED.

(l)The forms for the cdfs are (See Galambos)

or

L = 1 - exp(-x Y)2
x>O

For the relevant discussion see Galambos (1978), where the a(n
l
) and b(n

l
)

functions are produced for specific functional forms.

. .._-~~_. _._._.._..__._~-~_ .._--'
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I -exFor example, if F(x e) = 1 - e ,8>0, the limit in (1.10)

is achieved so ~hat IN (X. -rV) has a degenerate asymptotic
m~n

distribution. In fact N(X. -rV) ~ 1 - e-e(Xmln -rV) and
m~n

~onvergence in distribution is at rate N.

Violation of condition (1.10) is unusual as demonstrated in the

next theorem.

Theorem 2. F'(rVle) = 0 =f(rVle) is a necessary condition for (1.10)

to be violated for F at least twice continuously differentiable with a

bounded second derivative.

Proof:
N In

[
1- F(rV +~I 6)j
1- F(rVleY-

N[1 - f(~.YJ~ ~ + 1
l-F(rVf6) vN 2

If f (rV 16) = 0

f '(rV 6)
l-F(rV e)

lim
N~

N[1- F(rV + ~ Ie)] = 1
vi' 2:

1- F(rVI6)

f' (rV e) l
l-F(rV 6)

so condition (1.10) is violated. QED.

The condition f(rVI6) = 0 is not likely to be satisfied for most

standard distributions.

The thrust of the two theorems is that in cases that are likely

to arise in applied work, IN (X . -rV) has a degenerate distributiori.
m:ln
'"This, in turn, implies that if rV is inserted in likelihood (1.9) we
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may treat rV as if it is rV in determining the (IN) asymptotic distri-

- (1)
butions of the remaining parameters.

A

Conditional on rV, the likelihood equation for A is

(l:d)
C = -A- - (1- F(rVle»l:t

u

Cl:d)
(1- F(ivle»(l:t )

u

'"A =so

The equation for e is

which can be simplified to

+
(l:d) Fe (rV I§)

1- F(rVI§)

\ is always nonnegative. '"Conditional on rV, the estimators are

consistent and asymptotically normally distributed provided that the

information matrix is of full-rank. Proofs of the assertions are trivial

and hence are deleted.

We state without proof.

(l)In a valuable paper on frontier production theory, Greene (1980)
invokes conditions that ensure that (1.10) is violated and that standard
asymptotic theory can be applied. He demonstrates that standard regularity
conditions need not be satisfied in order to produce standard asymptotic
distribution results. His results, while very useful in his context, are
not of direct use here because to satisfy his conditions we would have to
assume f(x!e) = 0 over the economically interesting interval for x.

-._-~.----- -~----- _._---~.
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If condition (1.10) is met,

IN (~-'A\
e-e)

where

where

I (iV) = - E 3 2 £(rV) = -E
31}J3i/i T

lP =

With estimates of rV, e and A, we may solve for c from the

second equation of (1.8). We may use the delta method to obtain

the sampling distribution for c (Bishop, Fienberg and Holland, 1975, p. 486).

IN
A

Assuming that (x.. • -rV) is degenerate, rV contributes only to
mJ.n

the mean of the sampling distribution of c. Thus
co

A

J
A

dF(xle)
A

A 1- (x-rV) -rVc = r
A

rV

and IN (c - c) - N(O, cr~)

where cr 2 is obtained by the usual Taylor series development and the
c

covariance of v'N (c - c) with the other parameters is obtained in

the usual way.

A simple example will help to clarify ideas. Suppose the sampling

frame is such that there are no censored observations (t = 00). Suppose
u

further that wages are exponentiably distributed so

(1.11)
I -exdF (.X I 8) = 6e <ix, e > o.

With a zero rate of interest and Poisson arrival parameter A, simple

substitution in (1.2) T confirms that the reservation wage R satisfies
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(1.12) R = (~1) In(~e).

to be economically meaningfUl we require R > 0 so

11
.. (1)

are a pos1t1ve.

For the search problem

ce .
that T < 1 since e, A and C

In a sample of size N, the density of the minimum accepted wage

offer X. ism1n

(1.13) ( . ) _ Ne -N fum,in - R) e Rq x. - e ,x. >mm. ~n-

with mean

NeR+ 1 1
E(X . ) = = R + --lI1J.n Ne Ne •

Thus X . is an upward biased but consistent estimator for R.m1n

The log likelihood function (1.9) with Ld = N is

£. = N ln 6 -6Lx + N ln A -6R-Ae Lt.

The maximum likelihood estimators are achieved from the following

the concentrated likelihood function

procedure. First estimate R by x .mJ.n
. (R = x . ) Then maximize1I11n .

-6"lr- .
£. (R) = N 1n 6A -6L:x -Ae --mJ.nL:t.

where x. is substituted for R in the previous expression. The rootsm1n .

of the conditional maximum likelihood equations obtained from £ (x ). min

are 1 LX + x 0@- =N min
"-

1 Lt -6x = O.
I- e min

N

eand ~ are consistent for 6 and A respectively, and both are biased.

The exact bias of 1/§ for 1/6 can be computed since

(l)Note that x is interpreted as a lump sum undiscounted value of the
job.
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III
E(e) "i+Ne"

The bias is of order N- l • It can also be shown that the bias of

l/~ for 111.. is of order liN. (1)

A consistent estimator of c is obtained by substituting x. for RmJ.n
" "-and c and e for c and e respectively in (1.12). Thus

" ~c =-
6

"-ex.e mJ.n

A norming factor of N is required to produce a nondegenerate

asymptotic distribution for x .•mJ.n With this factor

-e1JJ
N(x.m.n - R) tV ee ,1JJ'::' 0

Because IN 0.: . -R) is a degenerate random variable,
mJ.n

(~ -e)
IN ~ -A ...

=

(1)
An unbiased

1
A=
"e

estimator of
LX

N(- - x . )N mJ.n
N-l

lie is

so that

112(2N-l)(7:/i) '" X with Z(N-I) degrees of freedom.
e
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Thus eand ~ are asymptotically positively correlated. The information

matrix may be consistently estimated replacing parameters with maximum

likelihood estimates. The asymptotic distribution for IN (c-c)

can be derived from the delta method using the joint asymptotic

distribution for e and \ and the fact that IN (x. -R) is degenerate. Cll
mJ.n

For a comparison between the approach to structural estimation based on

maximum likelihood which we use and other approaches, see Appendix C.

1.5. Accounting for Population Dispersion in the Pa~ameters of the Model

We have thus far assumed that all agents in our samples

have identical values of A, c, rand e. There are plausible reasons why

values of those parameters might vary among members of the population.

In many economic models of equilibrium price distributions, dispersion in c (or

some other parameter) is required to produce equilibrium. Failure to account for

such dispersion can produce badly biased estimates of the-parameters

of structural duration models (Siicock, 1954; Blumen, Kogan and McCarthy,

1955). This is the problem of "heterogeneity."

In principle, each parameter of the one state search model can be

written as a function of observed and unobserved variables. The parameters

(1) An estimator such as .;V that is based on an extreme observation
in a sample is obviously quite sensitive to measurement error in the
x data. Since any fixed number of extreme observations (say the first
up to the kth) are consistent estimators for rV, a consistent estimator
for rV that is less sensitive (in an imprecisely defined way) to measure­
ment error is an average of the lowest k observations. Greene's
estimator (1980) in a related problem is also worthy of exploration:
compute rV from adjacent values of the lowest observations of x that
are "close". See the discussion of measurement error in Section 1.5B below.
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associated with the observed variables in these functions can be estimated.

Unobserved variables can be integrated out using distributions whose param­

eters can be estimated. This approach is used in many studies of labor

force dynamics (Heckman and Willis, 1975, 1977; Nickell, 1979; Heckman,

1981. )

A practical problem with this solution is the selection of narticu1ar

functional forms for use in estimation. Except for occasional quali-

tative guidelines, economic theory offers little guidance. It is silent on

the topic of the correct specification of functional forms for the distri­

butions of unobservab1es.

This would not be a serious problem if estimates of key parameters

of the model were "relatively" insensitive to assumptions made about spe­

-cific functional forms. In fact, the available evidence (Heckman and Singer,

1981a, b) suggests the opposite. Estimates of key parameters are very sen­

sitive to the choice of particular functional forms.

The situation is not entirely hopeless. Heckman and Singer (1981,

1982) present a computationally feasible nonparametric estimator for the

distribution functions of unobservables, so that at least one aspect of

arbitrariness in model specification can be eliminated with their methods.

Nonetheless, a considerable amount of arbitrariness remains, and this

arbitrariness vitally affects the inference from the structural models.

These problems are more troublesome than recent analyses indicate

is the case. In this subsection we make a first attempt at clarifying

the issues that must be addressed in order to account for population dis­

persion in parameters. We also offer some solutions. What follows is only

the first and (we hope) not the last word on these problems.
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It is analytically useful to distinguish two cases. (1) The case

in which population heterogeneity arises solely from dispersion in observed

variables and (2) the case in which the heterogeneity arises from unobserved

variables. We treat these two cases, starting with the first. In both

cases we assume a parametric distribution of wage offers F(Xle) that satis-

fies the recoverabi1ity condition. A fully general analysis of both cases

is not attempted, but we indicate the gaps that remain to be filled (of

which we are aware).

1.5.A. Observed Heterogeneity

We first write A = A(Z).,SA) ; ·e = e(ZeSe) and c = c(ZcSc) to indicate

the dependence of )." e and c on explanatory variables. From equatio.n (1. 8) ,

rV is a function of Z and all the S vectors. The density for t , X and d
u

(1.14) met , x, dlz) = [f(x/e)A]dexp-[A(l-F(rvle))t ]
u u

where

(1.15) x ~ rv ~ 0 for each value of Z

and

co

(1.16) AJeX - rV)dF(X/8) - rV,c = r
'P

rV.

where it is understood that A, 8 and c are functions of exogenous variables,

I
I

I

I
I

----- - ~ ~i

and t u denotes the duration of a11'measured spells including the censored

spells. r is assumed to be known.
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From equation (1.16) we may solve for. rV as a function of c, A, r

and e,

The reservation wage is monotonic in the cost of search c (=c (z 13 )).
c c

Using the inequalities in (1.15) that must be satisfied for each observation,

the log likelihood is (suppressing subscripts)

(1.17) £, = 2:d 1n A + 2:d 1n F(x!e) - L\.(l-F(rV!e))t
u

+ 2:]1(x-rV(A,e,c,r)) + 2:q,(rV(A,e,c,r))

where

]1

A = A(ZASA) and c = c(ZcSc)

are defined for each observation. (1)

and where the multipliers

The final two sets of con-

straints arise as a consequence of inequality (1.15) that must be satisfied for

each observation. These constraints are a vital source of identification in

this model and cannot be ignored in securing structural estimates.

Provided that the multipliers are well defined (see the footnote below) the

first order conditions for Se' a areIJ c

(l)The existence of these multipliers and the quasi-saddle point characteri-,
zation of the optimum used in the text follows if rV and x - rV as functions
of (3 satisfy the Arrow-Hurwicz-Uzawa conditions (see Takayama, 1974, pp. '93-"94).
Their rank condition is likely to be satisfied in "large enough" samples. We
have not investigated the restrictions these conditions place on our choice of
c, A and e functions although this would be a potentially fruitful topic.
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(l.18a) £ = 0 = Lj(d a In :e(XI~2} A(aF~~~~ arV + aF(.rV'~ ) t
Se ae ae u

+ (¢ - ) arV t ae
II as, aS

e

(l.18b) £S = 0 = l:lt- (l-F(rvle»tu
+ \ aF(rV I.§l arV + (~- ) arVIB-arV- . a\ II a\ as\

\

(l.18c) £ l: IAaF(rVw..t + (~- )} arV ac= 0 = ass arV u II ac
c c

A critical feature of this optimization problem is revealed in condition

(1.18c).Note that

aF (rV liL arV
arV ac

is always nonpositive and for mostt parametric problems is n~gative. (1) If

constraint (1.15) is ignored in solving for Sc (so we assume ¢ = II = 0),

the likelihood function possesses no interior maximum with respect to Sc

unless we impose an arbitrary nonlinearity that guarantees that c is not

monotonic in Sc and that bounds c from below. For example, if c is a

constant, a maximum likelihood estimator of c that ignores (1.15) sets c

at its lowest possible value.

A general analysis of identification and distribution theory is a task

for the future. We make some progress by assuming that the number of distinct

Z vectors is finite and equal to K and that the population covariance matrix

of Z is of full rank. This is consistent with "fixed in repeated samples"

sampling schemes or with the Z vectors selected by a finite K state

is positive, aF(rVliL
arV is nonnegative and arV

3C is negative. The

last assertion can be proved by differentiating (1.16) with respect to c .

...... . ----_.~._. __._- _._-----_....- .._'
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irreducible Markov chain so that all states are recurrent. This assumption is

critical in the ensuing analysis. If it is not invoked, we are unable to

produce consistent estimators for the model although we speculate below

on how this might be done. We denote the population proportion of the

exogenous variables of type k by Pk , 0 < Pk < 1.

By analogy with the analysis in Section 1.4 we may estimate rV
k

for each k = 1, ••• ,K. For N ~ ~ so PkN ~~, these estimators are

strongly consistent. Insert these estimators into

£ = ~d(ln A + In f(xle)) - ~ A(l - F(rVle~~u

A

in place of rV (associating rVk with observations of type .k) and

maximize with respect to 6e and SA' Provided the matrix of second

partials of £ (with respect to SA and Se) is nonsingular, these

equations may be solved uniquely for 6A and 6e and provided condition

(1.10) is met for each k

-1
~ N(O,I )

where I -1 is minus the inverse matrix of the expectation of the second par-

tials of the log likelihood. Estimates of Sc are obtained by solving ck

from equation (l.l~ and estimating a nonlinear regression of the ck on

If the model is of full rank (the Z covariance matrix is positivec

definite) Sc is identified and its asymptotic distribution can be produced

by generating the asymptotic distribution of ck by the delta method, as

before.
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The key requirement is that the matrix of second partials of ~

with respect to SA and Sa be of full rank. Verifying this condition

in practice requires a case by case analysis for each choice of f(xl a) .

For the sake of specificity assume that f(xle) = ee-eX. We ~dopt the

specification of the example presented in Section 1.4 with r = O. As is done

there, we ignore censored observations. We further assume that

(1.19) c = exp(Z S )c c

This parameterization imposes the required positivity for these parameters.

The log likelihood for this model is

(1. 20)

where

~ = td(ZASA) + td(ZeSe - exp(ZeSe)x)

ZeSe
- t exp(ZASA) (exp(-rVk e )tu)'

(1..21)
-x S

= -e e e(Z S + Ze Se
ck C k

and where Z , Ze and ZA are values of the Z vectors for population type k.
ck. k Ie

For each type k we estimate the reservation wage by

N
V . { } k h . the ~th observation on accepted wages forr k = m~n x· k · 1 were x' k ~s· ~

~ ~= ~

type k. These estimators are strongly consistent for rVk and

lim~ (rv - rV
k

) is a degenerate random variable.
N-+oa k k ~

The roots of ~with respect to Se and

- - ----------_._--.~------ ---~---_.._---
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As N-+<x>, the expectation of these first partials is zero at the true ?aram­

eter values.

Conditional on rvk , minus the expectation of the matrix of second

partials of the log likelihood is (letting S = (SeSA))

(1. 22) I

Note that ZcSc + ZeSe - ZASA ~ 0 since rV > 0 (see equation (1.15)).

Even if Ze = ZA = Zc = Z, this matrix is nonsingular provided that

L ii' is nonsingular. This follows from the matrix Cauchy-

Schwartz inequality. Thus, even if the same variables appear in the c, A

and e functions, it is possible to identify SA' Se and Sc.

"To estimate Sc' take the estimated Se' SA and rVk and form the

left-hand side of the function

= Z (3 •
c c

The distribution of the left-hand side can be derived from the delta method.

Use GLS to estimate S . To identify Sc uniquely, it is required that the
c

rank of E Z Z' exceed the number of elements in (3 • A necessary conditionc c c

is that K not be less than the number of elements in f3 •c
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Note that this procedure does not in general maximize the likelihood

(1.17). Moreover it is wasteful in information. If the number of parameters

in Sc is less than K, in general fewer than K of the estimated reserva-

tion wages are required to estimate S •c

A second round iteration of the procedure just presented produces

estimators with a covariance matrix no longer than the one produced by the

method just presented.

The proposed iteration sequence operates by taking estimates of Sc' SA

and Se from the first round procedure and forming rVk for e~ch type k

using equation (1.16). For each k, use the minimum of rVk so formed

and rvk· Insert these values into £ and obtain estimates of SA

and Se as before. Using the second round estimated reservation wages

and the estimates of SA and Ss obtained on the second round, repeat

the nonlinear regression procedure to estimate S •
c

Continue iteration

until convergence. In the case in which the number of parameters in Sc

is the same as K, in general the itera.tion cycle just described will

produce the same final estimates of S as used in the initial estimates

because none of the reservation wage information is redundant.

For the case of a general distribution of Z, the likelihood and

its roots are given in (1.17) and (1.18). The derivation of the asynptotic

properties of the maximum likelihood estimator in the general case is a

task for the future. We offer some conjectures on this problem in Appendix

A where we make some progress on the problem for certain cases of interest.

--------------~-------~----- ---- ~------------------



34

1 5 b d H
. (1)

••B. Uno serve eterogene~ty

Extending the analysis to a case in which population heterogeneity

also arises from unobserved variables is in principle straightforward.

When the models are identified the appropriate asymptotic distribution

theory is much simpler than in the models of the preceding subsection.

The practical problem is to decide where in the model to introduce the

population heterogeneity. In principle we should allow for such hetero-

geneity in the c, A and e functions so c = C(ZCSC,EC), A = A(ZASA,EA),

e = e(ZeSe,Ee) where E = (Ec,EA,E e) is a vector of random variables

with cdf G(Eln) where n is a vector of parameters. For simplicity we

assume that c, A and e are monotone increasing functions of Ec,EA, and

Ee respectively.

The reservation wage function is defined as

rV = rV(c,e,A,r)

where c, A,e are functions of E
C

' EA and Ee respectively. In the ensuing

analysis it is convenient to work with a normalized cdf

=~
....~~

{E/rv>O}

where {Eln ~ O} is the set of values of E such that the agent participates

in the labor force. The probability that a spell lasts more than t periods
u

conditional on c, A, e is

(l)Conversations with T. Coleman and B. Payner clarified the analysis
presented in this section.
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peT > t Ic,A,e) = exp -A[l - F(rvle)]tu u u

Integrating out E = (E
C

' EA, £e)' using the information that rV > 0, yields

(1.24) peT > t) =
u u

! exp -A[ 1 - F(rV/e)]t dG*(Eln)
{ElrV>O} u

To reduce notational complexity N'C cupprcsD the conditioning set of

exogenous variables. The density of accepted wages conditional on c,

A, e is

f(x e)
1-F(rV e) x ~ rV

Integrating out E, the density of accepted wages is

(1. 25) ! f(x e) dG*(Eln)
{Elx~rV~O} 1-F(rV e)

The joint density of x, t u given d 1 and c, A, 8 is, ~or a Damplin~

frame of length t
u

met ,xld = 1)
u =

Af(xle) exp -A[l-F(rVle)]t
u

1-P(T <1: Ic,A,e)u u

Integrating out E, the joint density of x and t given d = 1 is
u

(1. 26) m*(t ,xld = 1)
uu

! f(x/e) exp - [l-F(rVle)]t dG*(Eln)
= _Wx~rV~O} . u

1-P(T <t )
u u

Using (1.24) and (1.26) the joint density of t , x and d is
u

(1.27) m*(t ,x,d) =
u

j ! H(xle) exp -A[l:"'F(rVle)]t dG*(E)}dt {Elx~rV~O} u

{ }

1-d
. ! exp -A(l-F(rV»t dG*(Eln)

{E'rV~O} u
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The likelihood function for duration of unemployment and accepted

wages is defined as the product of densities (1.27). (1) Provided the

model is identified, maximum likelihood estimators of Sand n are con-

sistent and asymptotically normally distributed provided standard con-

ditions on the regressors (Z) are assumed (see~. Jennrich, 1969).

Because "rV" is a random variable, the appropriate asymptotic distri-

bution theory is much simpler than the distribution theory required to

analyze the models presented in previous sections of this paper. This

is so because in the present model the range of the random variable X

does not depend on a parameter of the model.

The crucial identifying role played in the preceding section by

the restriction that X must exceed the deterministic reservation wage

(equation (1.21» is played in the current model by a restriction on the

range of unobservables

(1. 28) {c/o ~ rV(c,A,e,r) S x}

that must be satisfied for all observations for which a completed unemploy-

ment spell and accepted wage are observed.

To demonstrate how (1.28) is used to achieve identification, assume

= o. Further assume c = c(Z S + E ) •
C C C

Denote by G*(E In ) the
c c c

cdf of E which depends on parameter vector n. To simplify the argument
c c

(1) Note that we could in principle exploit the information that individua:s.
are out of the labor force. Density (1.27) is conditional on labor force part~c~­

pation. The modification of the analysis to incorporate information on non-parti­
cipants is straightforward. Obviously, use of the addttional information will
improve the efficiency of the estimators.
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assume the sampling frame is long enough that there are no censored

observations (d = 1).

The log likelihood for the model is

. (1. 29) £ = ~ f Af(xle) exp -A(l-F(rVle))t dG*(E In ) .
{Eclx~rV~O} u c c c

Lhe likelihood is not monotonic in Z S. This is confirmed by
c c

direct differentiation of (1.29). The intuition underlying this result

is given here rather than the direct formal argument which is both tedious

and unilluminating. The key idea is that Sc shifts both rV and the

admiss ible range of the unobservable E: •
C

The kernel of the integral in (1.29) is monotone decreasing in Z S
c c

because rV is monotone decreasing in c (and hence Z S ) and because the
c c

kernel is monotone increasing in rV. For each value of x, A, 6 and n
c

'

(1.28) defines an admissible region of E:. In general, both the location
c

and length of the admissible region change as Z (3 and the other parameters
c c

are varied. For the special functional form assumed here(c = c(Z (3 + E: ))
C C C

for each x (and for fixed values of 6 and A) the admissible region for

E:c is connected and of the same length for different values of Z (3 •
c c

However, the position of the interval varies as Z (3 varies, shifting to
c c

the left as Z (3 increases. For fixed values of the other parameters
c c

(including n ), increasing Z (3 shifts the admissible e: interval to the
c c c c

--------------..__.----------_.~------
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left. As Z S increases the likelihood must eventually decrease. In the
c c

limit as Z S +~, holding the other parameters fixed, the likelihood
c c

diverges to minus infinity as the integrals inside the logarithms of

(1.29) vanish. A parallel argument demonstrates that Z S + -~ is
c c

another inadmissible value of the maximum likelihood estimator.(l)

The key point to extract from this heuristic discussion is that

changing a parameter in S alters the likelihood function in two ways:
c

directly through its effect on rV and indirectly through its effect on

the range of the unobservable E. It is the second effect which sub­
c

stitutes for the identifying information achieved from the other statistics

in the models presented in the preceding sections.

A more concrete example may prove helpful. Assume the sampling frame

is such that d = 1. Let f(xIS) = Se-SX. Assume c is a constant and let

ln A be

ln A = ].I + E: A

2
where E

A
is a mean zero normal random variable with variance cr. The

reservation wage is (see equation (1.12))

1 ln c8) > 0R = - (In A -8
The probability that a person engages in search is

e: > ln c8-]l l1-ln c8 )
peR > 0) = P( ..2 ) = ep( .

(J (J (J

where ~ is the cdf of a unit normal distribution.

(1) This argument is only a heuristic interpretation of first and
second order conditions which the reader can supply. It is predicated
on the assumption that the likelihood is not a monotonic function of nc '
and that n can be identified.

c
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In this example, the restriction on the unobservable E
A

(1.28) is

Suhstituting InA = J1 + E A produces ,a more explicit

Of. admissible EA,{EAIO ~ ~ (~+ EA - In ce) ~ x}.

(substituting for R in (1.27) assuming d = 1)

restriction on the set

The density for x, t
u

is

(1.30) m**(x t ), u = e -eX -cety ~ eX+lnce-g E,/cr 1,e e e f a ell.
-- e

In ce - ~ lnc6-J1 I2'7f
~( cr ) a

1 EA 2
-(- )
2 cr

= ee-eXe-cetue ).l+a
2

l2 [_~_(_eX_-_~_+_1...;;.~_c_e__cr_2__) ~_(_ln_c_e...::;:....~ cr_2_) ]

~( In ce-]..l )
cr

The second line follows from standard results on the moment generating

function of truncated normal random variables. Direct differentiation

of the likelihood formed from (1.30) reveals that 6, c, J1 and a are

identified. (1) Moreover standard asymptotic theory can be used to derive

(l)An informal approach to identification notes that the hazard for exit to
employment (h) is independent of A. Thus h = ceo Thus from the duration data,
it is possible to estimate ce. The density of accepted wages is (see (1. 25»

2 [~( eX-]..l+ln ce-cr2 ) -~( In ce-]..l-cr
2 )J

1 -ex ~+cr /2 cr cr- e e .
cctl( In ce-]..l )

a
Heuristically we can estimate e from the linear term in x of a regression of the
log empirical density of accepted wages. Departures from linearity in x identify
e/a and hence a. From the intercept it is possible to identify ll. Since ce is
known, e is known a.nd hence c is known. Note that there is additional information
available from knowledge that a person is a labor force participant (which occurs

with probability ~( In ~e-ll ».

Note further that little modification of the analysis in the text is required
if we cannot distinguish individuals who are unemployed from those out of the
labor force. Just note that the probability that a spell exceeds t is

P(T
u

> 1J = ~(ll-l~ ce ) + e-(ce)tu~( In ~e-~ )

so now there is duration dependence in the survivor function. (This is an example
of the mover-stayer problem). From the survivor data it is clearly possible to
estimate c6 and we can proceed with identification as is done above.

------~-~-- --- ---
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the asymptotic distribution theory of the maximum likelihood estimators.

A complete analysis of identification in a model with unobserved

heterogeneity requires knowledge of the functional forms for G(€ln) and

c, A and e. A nonparametric identification analysis of this model is

impossible and for this reason the model is nonparametrically under­

identif ied . (1)

Even when specific parametric functional forms are assumed, identi-

fication analysis is difficult for high dim~nsional G. Moreover, the

analysis of Heckman and Singer (1981, 1982) demonstrates that parameter

estimates obtained from nonlinear models of the sort described here are

very sensitive to choices of functional forms for the distribution of

unobservables, and so it is necessary to try a variety of functional

forms for G to be sure that estimates and inferences are robust to changes

in the assumed functional form of the distribution of unobservables.

Because of computational cost, high dimensional G distributions are

unlikely to be used in practice. Selecting which sources of hetero­

geneity to model and which to ignore injects a further source of arbi-

trariness into the empirical procedure. For these reasons we claim that

the greater simplicity in the asymptotic distribution theory for this

model is offset by the arbitrariness inherent in "controlling for" unob-

served heterogeneity.

We note that a procedure analogous to (but not identical to) the

one presented in this section is appro~riate if x is measured with ~rror.

(l)This conclusion is not special to a continuous time search model.
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x + L where L is mean zero measurement error, and if

E:
C

0, the range of L is defined implicitly by

In place of (1.27) the density of *x , t and d is
u

m**(t x* d)u' ,
I d

f H(X*-Tle)exp-A(l-F(rVle))t dG(T) \'
{ulrVSx*-T} u

/'

for rV ~ 0, where G(L) is the cdf of L. The likelihood is formed in the

usual way. Assuming the model is identified, maximum likelihood estimators

are consistent and asymptotically normally distributed.

1. S.C. Nonstationarity

There are many interesting and empirically relevant factors that

produce a nonstationary model; finite lives for individuals (DeGroot,

1970), unemployment insurance available for a limited duration, etc.

Nonstationarity raises two difficult problems. (A) The econometrician

must be much more careful about the initial conditions of the process

than has been reqUired in the models analyzed up to this point (Flinn

and Heckman, 1982). (B) Properly controlling for nonstationarity raises

formidable computational problems (Heckman and Singer, 1982).

2. An Equilibrium Model of Sequential Search

2.0 Introduction

The one state model of sequential search analyzed in Section One

is widely cited as the theoretical basis for empirical analysis of
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unemployment durations. Its value as a guide to data has been questioned

because without modification it does not support a nondegenerate equili­

brium wage distribution (Diamond, 1971, Rothschild, 1973). This now

widely echoed objection has caused many applied economists to reject

search theory as an interesting source of hypotheses on unemployment

durations. Many would argue that developing the econometrics of an

economically uninteresting model puts the cart before the horse.

In this section we develop an equilibrium two state model of sequential

search. The model is closely related to recent work on matching equilibria

by Diamond and Maskin (1979). We demonstrate that the econometric frame­

work presented in Section One can be applied, with minor modification,

to the equilibrium model analyzed here.

The simplicity of the model proposed and estimated here may offend

the sensibilities of readers accustomed to regression analysis with

numerous "control variables." The simplicity of our model is charac­

teristic of the theory on which we draw. As discussed in Heckman and

Singer (1982) small departures from the stationary search model affect

the predictions from these models, the existence of optimal solutions

and the nature of the appropriate econometric model. For these reasons

we are reluctant to "throw in" numerous control variables in performing

our empirical analysis, especially variables that control for nonstationarity.

2.1 An Equilibrium Sequential Search Model

Labor market equilibrium is interpreted as the outcome of a steady

state sorting and matching process. Pools of unattached risk neutral workers
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and firms are in the market seeking to form partnerships to perform tasks. Before

a worker and firm meet they do not know the potential rate of productivity

of a match. Thus ex ante all firms look alike to all workers and all workers

look alike to all firms. Upon encounter the 9roductivity rate is perfectly

revealed. The time required to complete a task is an exponential random vari-

able. The distribution of the completion time of a task is beyond the control

of either party. Each member of a potential partnership gets half of the

total productivity of the match if it is consummated. There is a distribution

of match productivity rates in the popuLation known to both workers and firms.

Values of potential matches are djstributed independently across workers and

firms and are distributed independently across potential matches for the same

workers and firms. The outcome of one match is of no value in predicting the

outcome of another.

The probability that a worker meets a firm in a small time interval &t

is less than one and the probability of two or more such encounters is negligible.

The probability of encountering a potential partner is assumed to follow the

Poisson probability law. The Poisson parameter of encounters depends on the

number of firms searching in the market. For simplicity we assume equal

numbers of unattached firms and workers (L) and that the rate of arrivals

to a given worker or firm is the same linear function of L. The symmetry of

the position of workers.and firms is one possible justification for .the 50-50

splitting rule assumed here.

Each party to an encounter has two options: (a) to accept the offered

terms of the match or (b) to continue searching. The task production tech-

nology is characterized by extreme indivisibilities such ·that partners can-

not search while working. If the prospective partners continue search they

incur an instantaneous flow rate o~ts of c.
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Search is with recall. If two prospective partners decide to continue

searching they can consummate their match at a later time. However it is

known from the theory of search in stationary environments (Lippman and

McCall, 1976a) that they never consummate their match if they ever reject

it. The intuitive reason for this result is that since the environment is

stationary the attractiveness of any forsaken ontion is the same tomorrow

as it is today.

This model generates equilibrium sequential search which is supported by

a nondegenerate equilibrium wage distribution. It shares many features in

common with the discrete outcome model of Diamond and Maskin although our

interpretation differs somewhat from theirs. (1)

Each potential match has two characteristics: a flow rate of output 2x

and a rate of termination o. Distribution F(x) is assumed to be absolute-

ly continuous with finite absolute first moments. The value of a job to a

worker who receives flow rate x (by virtue of the sharing assumption) is

defined as V (x).e

It is determined by the following calculation.

(2.1)

(Terms oLoE.~~r o(L~t) ..ar~ ignored~) The first term is the (discounted) value of

(l)An alternative model not estimated here is one due to Telser. His model
generates the functional form of the equilibrium wage offer distribution but
there is no search in equilibrium.
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the flnw x over the interval ~t. The second term is the (discounted)

value of keeping the job times the probability of keeping the job (1- cr~t).

The third term is the (discounted) value of becoming unemployed (V )
u

times

'" the probability of becoming une~ployed. Collec~ing terms and passing to the

limit we reach

(2.2) V (x'e )

x+crV
u= r+cr

As a consequence of F(x) haV:ing finite absolute first moments V
u

finite. V (x) is increasing in x and has bounded expectation. The
e

agent is indifferent between a match that yields an x* such that V (x*) = Ve u

and unemployment. For any x 2= x* the agent earns a rent with value

V (x) - V. x* is the reservation wage and it is defined as that ~alue ofe u

x* such that

so

V (x*)
e = Vu

x*+crV
u

= r+cr

entiable.

x* = rV.
u

The rate of arrival of encounters is A = geL) assumed to be differ-

The more participants that are searching in the market (i.e.,

the higher L) the more rapid is the rate of arrival of encounters.

g(O) = O. g'(L) > 0 for all L ~ O.
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The value of unemployment is

(2.3) v = - c~t + (l-A~t) V + A~t E max[V (x) tV ] .
u l+r~t l+r~t u l+r~t e u

(Terms of o(~t) are ignored.) The first term on the right is the discounted

direct cost of search. The second term is the discounted value of remaining

unemployed times the probability that no potential match is encountered

(1 - A~t). The third term is the probability of encountering a potential

match (A~t) times the discounted expected value of the two options that con-

front the agent: to take the match (with value to him of V (x)) or to remain
e

unemployed (with value

the distribution F(x).

V ).
u

The expectation is computed with respect to

Since the model possesses the reservation wage property, passing to the limit

we may write (2.3) for V > 0
u

as

(2.4) rV + c
u =

00

A I (V (x) - V )dF(x)e u
rV

u

= ~J
rV

u

(x - rV ) dF (x) •
u

To assure that V > 0 it is required that
u

(2.5) c < 2­
r+cr

co

J (1)
xdF(x).

o

(l)The proof is immediate from (2.3).
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Note that A = (g(L» must be sufficiently large to support search behavior.

thus in small markets (~ rural areas) search may not be undertaken.

The rate of exit from unemployment is

(2.6) h(t) = A(l - F(~V »
u u

while the rate of exit from employment is

(2.7) h(t) = cr.e

In steady state equilibrium, the"number of individuals exiting unemploy-

ment must equal the number entering unemployment. Thus letting P be the

total market size and L the total stock of unemployed, steady state equili-

brium requires that

A(l - F(rV »L = ·cr(P - L)
u

where P - L is the total stock of the employed. Thus

(2.8) g(L) (1 - F (rV »L + crL = crP.
u

Condition (2.8) imposes further constraints on the problem. In particu-

1ar for given values of the parameters there may be no value of L that

solves (2.8) or there may be several. The minimum size of the unemployment

pool that is required to support an equilibrium with search is (from condition



48

(2.5) using >.. = geL) and the monotonicity of g(L) ,

. 00

where ~x = ~ xdF(x). Thus the higher the cost of search, the rate of

interest and the rate of match termination and the lower the mean of the

productivity distribution, the higher the unemployment pool must be to

support a search unemployment equilibrium. Determination of the uniqueness

of the equilibrium hinges on the functional form of the match distribution.

For example, if F(x) is exponential there is at most one equilibrium and

there is always one for a large enough population P. (1)

Assuming a unique equilibrium 1 the unemployment rate is

L*
= P

The higher the cost of search and the lower the interest rate, the lower

the equilibrium rate of unemployment. The effect of an increase in cr is

ambiguous. Positive translations of the match productivity distribution

reduce the equilibrium unemployment rate.

Condition (2.8) may be used in several ways in performing empirical

work. It provides a check on estimates of th~ model because the aggregate

unemployment rate ~ should equal

~ = cr
cr+>"(l-F(rV )

u

(l)TO prove thiS, differentiate the left-hand side of (2.8) with resnect
to L and notice that it is monotone increasing in L.
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It may also be used to eliminate one parameter from the estimation procedure.

2.2. Econometrics of the Two State Model

The statistical structure of the two state model so closely resembles

that of the one state model that a lengthy discussion is unnecessary. Here

we only explicitly consider the case of a homogeneous population.

The density of accepted wages is

(2.9) f(xlx > rV )
u = f(x)

l-F(rV ) ,
u

x > rV .
u

The density of duration time spent in unemployment

if a spell is uncensored and 0 otherwise) is

(t )
u

is (defining d = 1
u

(2.10)
d

{A(l - F(rV ))} u exp -{A(l - F(rV ))t }u u u

where t is the measured length of a spell. Thus the joint density of
u

accepted wages and duration t
u

is

(2.11)
d

m(t ,x,d) = {Af(x)} u exp -{A(l -F(rV ))t }.u u u

The density of match duration t is (defining de = 1 if a spell ise

uncensored and zero otherwise)

d
(2.12) g(t ) (cr)

e
-{crt }.= expe e

-- -- - -~~--------- ------------- - ---- - --------~~._~---,._._._-----_.._-------~----_._--_.__._._.----._---,_._-
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These equations together with equation (2.4), inequality (2.5) and the re-

quirement that accepted wages exceed reservation wages

(2.13) x > rV
u

define the full econometric model.

As in the one state model, inequality (2.13) is essential in securing

structural estimates of the c and A functions. Satisfaction of inequal-

ity (2.5) is essential to make the model economically meaningful. As in the

one state model, the minimum of accepted wages (or any fixed order statistic)

is a consistent estimator of rV. A recoverability condition for f(x) is essen­
u

tial. If met we can estimate f(~). From the hazard rate for leaving unemployment,

A may be consistently estimated and from the hazard rate for leaving employment

a may be consistently estimated. Provided condition (1.10) is met for F, we may

condition on
A

rV
u

in the concentrated likelihood to secure IN asymptotically

normally distributed and consistent estimators of the structural parameters.

As a consequence of the homogeneity assumption spells may be pooled in

the log likelihood function £. Thus we may define

£= i:[d (In A f(x)) - A(l-F(rV ))t + d (In a) - at ].u u u e e

The concentrated likelihood can be written as

£. =
A

i:[d (In A f(x)) - A(l-F(rV))t + d ln a-at] .
u u e e
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For the case of exponential matches

f(x)

we may write

-ex= ee

(2.14) ""£=
-e';v

i:[d (In A + ln e - ex) - Ae u t + d ln a - at ].u u e e

The maximum likelihood estimators of A, e and a are, respectively,

(2.l5a)

(2.l5b)

(2.l5c)

erV
(l:d ) e u

"-

A u= i:tu

"-
1

e = A

l:d (x - rV )
u u

"-
l:dea = r:t

e

Since condition (1.10) is satisfied

is normally distributed with mean zero and a covariance matrix that can be

estimated by minus the inverse of the matrix of second partials. of the log

likelihood. A consistent estimator of search cost c may be obtained by solving

from (2.4), and its standard error c'an be derived from the delta -method.
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2.3 Estimates of the Two State Model

This section reports maximum likelihood estimates of the parameters

of two specifications of the two state equilibrium model. The first speci-

ficat~on assumes that (firm or worker) match values are exponentially dis-

tributed; the second assumes that they are normally distributed. Both sets

of estimates are derived under the assumption of homogeneity although we

attempt to control for heterogeneity by estimating the model for one demo-

graphic group: young (20-24) white male high school graduates not attending

school, sampled from the National Longitudinal Surveys in 1971. A more

complete description of these data is given below (Table 1). To make th~

model empirically operational we define the unemployment state more broadly

than is usually done to include unempLoyment as conventionally defined plus

nonparticipation in the market.

The parameter estimates for the two models arc presented in Table 1.

The estimated reservation wage is $1.50 (stated as an hourly rate). The

mean length of a job (.!) is 28 months. For both models viabIlity condition
(J

(2.5) is satisfied.

Table 2 records some of the more interesting features of these esti-

mates. The first two rows record estimates of the cost of search (c)

secured from equation (2.4). These estimates are obviously quite sensitive

to the choice of interest rate r and the assumed functional form for the

distribution of match productivities. The exit rate from the nonemployed

("search") state h
u

is 1.21 which implies a mean length of nonemployme~t

of 8.3 months. Given cr and h the implied equilibrium nonemployment
u

rate is 22.5% which compares closely with the actual nonemployment rate



"

53

Table 1

*Estimates of the Two State Equilibrium Search Model

(Standard errors in parentheses)

A rV e M 0-
2

0-
u

(rate of (reservation (parameter of (mean of (variance of (rate of
arrival of wage) exponential normal normal match termination
job offers) $/hr match match dis tribution) of jobs)

distribution) distribution)

Exponential Model

.201
(.008)

.1318
(.004)

1.5

1.5

.339
( . 038)

Normal Model

3.325
(.34)

1. 709
( .16)

.035
(.035)

.035
(.035)

The mean of the accepted wage offer distribution is x = 3.45 and the variance is 1.464.

*The data are taken from the National Longitudinal Survey of Young Men, the first
wave of which was collected in 1966. White, not enrolled in full time schooling- (in
1971), hourly workers (determined by their current employment status) were used. The
final requirement was made to eliminate the need to compute hourly wage rates for
workers not paid on an hourly basis. We use data on lengths of employment and non­
employment spells occurring in 1971. We use data on accepted wages to estimate the
parameters of the wage distribution. Information from 231 complete and in~omplete

unemployment spells and 2915 complete and incomplete nonemployment spells is used.
The data are available from the authors on request.

-----------_~_----------------------------------------------------------------------------- '
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Table 2

Implications of the Estimates

(Standard errors in parentheses)

c - Implied cost of search

Implied Exit Rate from
"Unemployment"~

h (=A(l-F(rV ))
u u

Exponential Match Normal Match

r = .05 1.139 .327
(.616) ( .148)

r = .10 2.692 1.4547
(1. 80) (.643)

1. 21 1.21

Implied Equilibrium
"Unemployment Rate"

L* cr
(~ = p ) = cr+h

u

Actual "Unemployment*
Rate" (1971)

.225

.245

.225

.245

Probability of encountering no match .30 .45
in the next six months

Probability of en"Countering one match .36 .36
in the next six months

Probability of encountering two or .34 .19
more matches in the next six months**.

Probability that a potential match
will be accepted

00

(= r~ dF(x))
u

.60 .92

(At)je-At
the Poisson law P(j) = . I

J.

and
*This is the CPS nonemployment rate for the group

Training Report of the President, 1976.

**Computed from

taken from Employment
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of 24.5%.

As discussed in Section One, est~ates of the rate of job offer or match

arrivals are quite sensitive to the assumed functional form of the offer dis-

tribution. This is dramatically illustrated in panels four and five of Table 2.

If an exponential model is assumed the estimated mean length of time between

offers is five months and the probability of receiving no offer in

the next six months is only .3. The probability of accepting a match that

is offered is .6. Thus the exponential model implies a relatively rapid

rate of arrivals of offers and a relatively frequent rate of rejection of

those offers.

If a normal model is assumed, the story changes. In this case the mean

length of time between offers is 7.5 months and the probability of receiving

no offer in the next six months is .45. However, the probability of ac-

cepting a match that is offered rises to .92. Thus in the normal model,

job arrivals are a relatively rare event and most workers accept the first

job offer they receive.

In this particular case, the choice of model is clear. The accepted

wage data are not exponentially distributed and an eyeball test indicates

that the implied truncated normal distribution fits the data better. Before

taking much comfort from this point, it is important to recall the point made

in Section One. In order to estimate A it is necessary to assume that

the match offer distribution is recoverable. This requires

making an arbitrary parametric assumption about the functional form of the

productivity match distribution and the choice of this functional form will

critically affect estimates of certain parameters of the model. Although we

--------- ------ ---- - ---------- - ------~
--~ ----- -------
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can check the plausibility of any assumed functional form (assuming recovera­

bility) by inspecting accepted wage distributions, the power of such a test

is low. The recoverability condition cannot be tested.

Appendix B presents a three state model of labor force dynamics. Two

new points are made there. (A) Nonanticipated shocks in nonmarket time are

introduced. (B) A structural economic interpretation of the competing risks

model widely used in social science is provided. Point A is particularly im­

portant because it provides a good economic reason, not provided in this section,

for matches between workers and firms to dissolve. A worker (or entrepreneur)

may terminate a match in the model of Appendix B because of an unanticipated

increase in the value of nonmarket time. More general models of this type

are presented.in Coleman and Heckman (1981).
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Summary and Conclusions

This paper takes a first step toward developing rigorous structural

econometric models for the empirical analysis of labor force dynamics.

The analysis is presented in continuous time although most of the new

points raised here.apply with full force to discrete time models. Rigorous

structural estimation requires the solution of new problems that have not

been addressed in previous work. We identify those problems and offer

some solutions. We have also stated certain unsolved problems in the

belief that their clear statement will focus attention on the relevant

issues that should be addressed in subsequent econometric research on

structural models of labor force dynamics.

A key condition required in our analysis is a recoverability con-

dition that is implicit in all econometric analyses of truncated data

of which structural models for the analysis of labor force dynamics are

a special case. This condition must be satisfied in order to recover an

untruncated distribution from a truncated distribution with a known point

of truncation. A major conclusion of our analysis is that a recoverability

condition will only be satisfied if the untruncated distribution is _assumed

to belong to a parametric family. It is not satisfied for-all parametric
----------,---- - -------

families. Recoverability is not a testable proposition.

The implications of this analysis are far~ranging. Economic theory
• li

is rarely so specific as to predict the functional forms of untruncated

distributions. (I) Thus, at its foundation, structural estimation in all

---- - - - - -------.-_._---------------_.... __._---------------------------- --------------------._-_.- _._-------------
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truncated data models involves an intrinsically arbitrary decomposition

of reduced form parameters into structural components. Both formally,

and by way of empirical examples, we have demonstrated that estimates of

structural parameters are very sensitive to arbitrary choices made about

functional forms required to empirically implement structural models.

Put more succinctly, consistent non-parametric estimation of the parameters

of most structural duration (and truncated data) models is impossible.

The arbitrariness inherent in structural estimation is essential.

Granting the satisfaction of a recoverability condition (as the

entire literatux:e on the econometrics of truncated data has done) we

have also demonstrated that structural estimation in a gBneral class

of dynamic labor force models requires the utilization of inequality

constraints on accepted wage offers. Unless these constraints are used,

the structural parameters of the model are not identified. Previous

analysts have not noted this essential feature of these models.

Incorporation of the identifying inequality constraints into an

estimation procedure raises certain nonstandard statistical problems.

Conventional regularity conditions are violated so that the standard

theory of maximum likelihood estimation does not apply. We develop

the appropriate statistical theory for certain cases likely to be of

interest in applications but we have not developed the general case in

this paper, although we indicate how this might be done.

(l)A notable exception is the analysis of Telser on equilibrium
price and wage distributions.
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We also formulate a structural two state equilibrium matching model

of unemployment and estimate a simple version of it. Previous empirical

research on labor force dynamics has been conducted within the framework

of partial equilibrium search models which are not internally consistent

because they imply degenerate equilibrium wage distributions. The model

developed in this paper produces a nondegenerate equilibrium wage offer

distribution.

Empirical results obtained from this model provide an economically

meaningful decomposition of the parameters of reduced form exit rates

from unemployment. However, we demonstrate that the estimated structural

parameters are very sensitive to arbitrary assumptions about functional

forms of estimating equations. We demonstrate that two different behavioral

models are broadly consistent with the same data.

Our initial enthusiasm for structural estimation has'been tempered

somewhat by the analytical and computational problems reported in this

paper. The econometric analysis of structural duration models is still

in its infancy. We are confident that subsequent analysis will solve

some of the problems left unsolved here.

Nonetheless, because much analysis of structural models remains

to be done, because basic facts on labor force dynamiCS remain to be

collated and analyzed and because of the inherent arbitrariness of the

identifying assumptions used to secure structural estimates (and the

sensitivity of estimates of structural parameters to such assumptions),

we also feel that a reduced form approach to analyzing labor force models

-_._._--~----_.__ ..._..._---,,_.__ . --_... _-------'
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may be a useful complement to the structural approach presented in this

paper. A companion paper (Flinn and Heckman, 1982) develops a reduced

form approach to the empirical analysis of labor force dyn~ics.
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Appendix A

The Maximum Likelihood Estimator

In the Case of More General Distributions for Z

A complete analysis for the case of a general distribution for Z is a

task for the future. Here we analyze the exponential example with no cen-

soring for a case in which A and c are positive constants and

e(z) = exp(ZeSe). Analysis of this example serves as a prototype for the

more general case.

The model is that of equations (1.19), (1.20) and (1.21) in the text with
SA Sc

A = e and c = e The sampling frame is assumed to be sufficiently long

that d = 1. The log likelihood is

with constraints for each observation·

c

(A-1) x 2:

A,c > O.

A critical aspect of this problem is that £., is monotonically increasing in

A and decreasing in c and hence monotonically increasing in A/c. The

constraints are thus always effective in securing determinate solutions for
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A and c. It is useful to rewrite the firse constraint as

(A-2) > AIn ­c

As a consequence of the fact that £. is monotone increasing in AI c

(for fixed S), the maximum likelihood estimator of A and c is derived

by choosing A/c so that

(A-3)

where the right hand side term is the minimum sample value of the term inside

the braces. Exponentiating both sides, and substitutirtg for c in ~ we

reach a concentrated likelihood

-£. =

Maximum likelihood estimators of A and Se are achieved by m~~imizing this

function. c can be solved from (1.16).

The estimation strategy in this model is thus analogous to that presented

in Section (1.4) except now we require an order statistic of a nonlinear func-

tion of x and Ze to secure estimates.
ZeSe

Define 11 = xe + ZeSe' For Ze tid the density f (.) of M = m can

be shown
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f(m)

. so the density of min {M} is

Assuming bounded parameters and bounded Z, min{M} is strongly consistent

for In(A/c) and we conjecture that weak consistency of the mle estimators for

A, c and l3 a is an almost immediate consequence (assuming the populati.on

covariance of Za is of full rank) and that the estimators for A and l3 a can be

shown to be asymptotically normal (with norming factor IN).

(l)For a given value of

h(ZeSe)' The density of x

( A-2) is

Se and a density for

conditional on ZeSe

ZeSe has a density

satisfying constraint

A
ZeSe -ZeSe A

f (xl ZeSe)
-e x

ZeSe)'= -e x > e (In - -
.C - c

The joint density of x and ZeSe is

A
ZeSe -ZeSe A-(e x)

h(ZeSe) Z",88) .g(x,ZeSe) = e x > e (In - -
c c c:

('
Use the definition of m given in ·the text, and applying standard change of
variable methods

f (m)
A -m

• - fe· h(Ze6e)d(Ze6e)c

A -m= e·c
m > In(\/c).

The fact that f (m) does not depend on the parameters of the Z:::.
'-

distribution

and on is an artifact of the exponential a~ample.
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The argument can be extended to permit' A and c to depend on exogenous

variables. For specificity ,we write A, c, e as in (1.19). KA is the

number of parameters in and Kc
is the number of parameters in 6 •c

Inequality (A-l) which must be satisfied for each observation may be

written as

(A-4) >

For any set of K values on the left hand side there are associated
c

Zc

and ZA vectors. We define the units of

K· vectors of Z is positive.c c

Z so that any submatrix of
c

Array the N values of the left hand side of (A-4) into a N x 1

vector S. Define [Zc1 and [ZA 1 as the data matrices for the associated

N values of Zc and ZAo. Tne vector of inequalities (A-4) may be written

as

(A-S)

For the special but plausible case in which Zc = ZA' this vector ine­

quality can be written as

(A-6) S > [Z H6, - 6 ).
C 1\ C

From the assumed positivity of z ,
C

the likelihood can be increased by



sending. each element in Sc to minus infinity and each element of SA to

plus infinity. Constraint (A-6) defines a region which is the intersection

of the hyperplanes defined by each inequality in the vector of inequalities

(A-6). To find the boundary of the intersection region solve the following

linear programming problem.

Define P a positive vector conformable with SA - Sc' Let ~ = (SA - Sc)'

Then find ~ that solves the programming problem

Ma."C <p Ip

Subj ect to

s ~ [2 ]~c

The values of <p expressed as a function of P trace out a ~ frontier.

The maximum likelihood estimator selects a point on this frontier. (11 There

are as many edges on the frontier as elements in SA - Sc (i.e., Kc = KA)-.

For any given value of and for given values of Ze' and Z,
c

the

simplex algorithm may be used to solve for the frontier.

In an iteration cycle, for fixed Se and SA' it is thus possible·, .in general,

to solve out for Sc as a function of SA'
., and Se' The likelihood...

function is then maximized with respect to SA and Se and new values of

the frontier are solved out, etc.

Estimation in the more general case (A-5) proceeds along similar lines

replacing S in the preceding paragraph with S - [ZAJSA and ~ with

-6. Establishing the statistical properties of these estimators is a taskc

left for the future.

(l)This is so because the function is max~ized by choosing the largest
possible value of ~ given any selected set of ratios in the P vector.

--_._-_._ _ _ _ -_ -
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Appendix B

A Multistate Model of Labor Force Dynamics (1)

This appendix presents a prototypical model of labor force dynamics. With

the exception of pioneering work by Toikka (1976), there are few examples of mul­

tis tate structural models of labor force dynamics. The multistate models esti­

mated by Marston (1976) were not given a structural interpretation.

Agents have linear utility functions and they are assumed to live forever.

There is stochastic variation in the (monetary) value of nonmarket time in addi­

tion to stochastic variation in the wage offers received by agents. Variation

in nonmarket time can arise because of variation in the demand for home time caused

by children, illness, and the like. Considering such sources of unanticipated

stochastic fluctuation in the value of non-market time (not known to the agent)

enables us to produce a tractable economic model of labor force partici~ation

and job turnover that is especially helpful in explaining the lahor force rn.O"\Tel'llI?Tlts

of women. Variation in the value of nonmarket time provides one motivation: not

provided in Section 2, for termination of matches between workers and firms.

We permit wage offers to ~rrive while individuals are employed. Wage growth

occurs over the life cycle as individuals take repeated drawings from common wage

distributions. Burdett's model of on the job search (1978) ignores nonmarket parti­

cipation and so his theory produces a life cycle theory of the growth of wages

with age. Our model produces a theory of the growth of wages with work experience.

Thus an individual who withdraws from the work force because of a high value of

household time will forfeit his wage growth. That wages grow with work experience

and not, primarily, with age, is the key finding of Mincer (1974) so that our model

is more in accord with the facts than Burdett's and is especially suited to explain

the wage growth of women. By permitting employed workers to receive job offers

we also produce a simple model of job turnover.

(l)This material is based on Coleman and Heckman (1981),
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Our model also departs from previous work by permitting individuals who are

not in the labor force to receive wage offers. Our model thus predicts that it

is possible to observe individuals who transit from being out of the labor force

to the employed state who never report themselves as being unemployed, as in fact

is observed in the data. The labor market state "unemployed" is defined as that

state in which the rate of arrival of job offers is higher than in the other labor

force states. Individuals may choose to become unemployed if the rate of job ~ffer ar­

rivals in the state is sufficiently high. The cost of being unemployed is a direct

money cost as well as the value of household time foregone. In order to make the

unemployed state an economically viable option, the rate of arrival of job offers

while unemployed must exceed the rate in the out of the labor force state. (1)

There are many other ways to model unemployment which we do not pursue here.

Unemployment may simply be a nonrnarket state in which individuals collect unemp1oy-

ment payments and consume nonrnarket time. Given the fixed duration of most unem-

p10yment benefit programs, such a model would be inherently nonstationary although

analytically tractable (i.e., it delivers qualitative results).

Our model is similar to one developed by Toikka. Both models consider search in

an environment in which the value of household time changes randomly. uur model.

is more general in that (a) wage offers and changes in the value of nonmarket time

are not c9nstrained to arrive one per period as in his discrete time model and (b) we

do not assume the arbitrary sequential ordering of decisions that he imposes

in his model. The rate of ti~e preference is p.

The distribution of wage offers F(x) is assumed to be absolutely continuous with

finite absolute moments. Successive wage offers are statistically independent.

The value of nonrnarket time is a random variable with distribution function G(n)

(1)
This insight is the basis of a test of search theo!,,~r. <:!ee be101;v.
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with finite absolute moments. Successive values of nonmarket time are statistically

independent. In all states the arrivals of new values of n are governed by a Poisson

process with parameter 4. The probability of receiving a new value of n in the

interval ~t is ~~t + o(~t).

In the employed state, wage offers arrive by a Poisson process with parameter

A. In the nonmarket labor state, wage offers arrive by a Poisson processe

with parameter A. In the unemployed state wage offers arrive by a Poisson process
n

with parameter A , and to satisfy viability A > A and A > A .u u n u e

Employed workers may leave their current job for two reasons. (1) They may leave

if a new value of household time n is drawn that is sufficiently high. They also

may leave if they receive a wage offer elsewhere that is sufficiently high. To

simplify the presentation we ignore any transaction costs in movement among these states,

although the framework developed can readily be extended to accommodate such costs.

The value of a job that pays instantaneous wage x when a household opportunity

n is available is V(x). It is determined by computing the expected value of all

the outcomes that can occur to an individual who holds such a job.

There are three possibilities. First, in a small interval of time, no wage

offer may be received and there may be no change in the value of nonmarket time.

If it is optimal to hold a job at the beginning of the interval it is also optimal

to hold it at the end. Second, the agent may receive a new nonmarket value of time

n. (This could be due to birth of children or the like.) In this event he compares

the value of staying on the job with the value of the nonmarket state defined here

as Sen). The expected value of the maximum of these two options is computed at

the beginning of the interval At and is a component of Vex). Third, the agent

may receive a new market wage offer x' in time interval At. If this event occurs,

he compares the value of the current job to the value of the offered job. Because

of the Poisson assumption, the probability of receiving both a new wage and a new

(l)Coleman and Heckman (1981) consider a more general model with exogenous
terminations. In addition, they permit wage offers and nonmarket time offers to
be correlated contemporaneously and over time.
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nonmarket value in interval 6t is negligibly small. (1)

Thus Vex) is defined as

(B-1) Vex) =
x6t

1+p6t +

(1- (A +11) llt)
e V( ) + (]..l6t)

1+P6t x 1+p6t E max{V(x),S(n')}
n'

(\ 6t)
+ 1:P6t E max{V(x), V(x')} + 0 (tit)

x'

The first term is the present value of wages x received over the next small inter-

val of time 6t. The second term is the present value of the value of a job (V(x))

time~ the probability that no new wage offer is received (1-\ 6t) times the probabil­
e

ity that no new market offers arrive (l-]..lllt). Neglecting terms of order smaller

than o(6t), (1-(\ +]..l)llt) is the probability of no new nonmarket offers, and no
e

job termination. If this event occurs, the optimal policy is to continue working

at wage x because no new information has arrived to change the agent's optimal

decision, and because the op·timal policy is stationary (because of the infinite

life assumption).

The third term is the probability of receiving a new nonmarket draw (]..l6t)

times the discounted expected value of the maximum of two options that exist if

he receives' such a draw: to continue to work at wage x (V(x)) or to switch to

nonmarket activity with value Sen). The expectation is computed with respect to

the distribution of the value of nonmarket time G(n).

The fourth term is the probability of receiving a new wage offer (\ 6t) timese

the discounted expected value of the maximum of two options that exist if he re-

ceives a wage offer: to continue to work at wage x (V(x)) or to switch to a new

job which pays wage x' with value Vex'). The expectation is computed with respect

to the distribution of wage offers F(x).

(l)Note that if we permit exogenous iob terminations, the value of nonmarket
time is not irrelevant in valuing a job. In the more general case considered in
Coleman and Heckman', when an individual is terminated,he may be forced to accept
an option that he rejected, including previously foresaken nonmarket opportunities.

-'~~~-----'------~'---"--- - - - _.._'-"'----------_._--~- --_._------..._--------~_._--~--_._ ..---_.. _--- --~_.__.._-
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Sen) is the value of household activity given nonmarket draw n. Its deriva-

tion is analogous to that given for Vex). Three things can happen to a person

engaged in household activity at the beginning of interval 6t. (f) No new nonmarket

This event occurs with probability (1-(1.. +~)6t).
n

In this case, the individual continues to stay out of the workforce. (2) A new

nonmarket draw arrives. This event occurs with probability ~At. If it does

occur, the individual chooses the labor force option that gives the maximum of the

new Sen) or the value of search Q. If he chooses to search, the individual is

unemployed. (3) A market wage offer may arrive. This event occurs with probability

A 6t. If it does occur, the individual chooses the option with the highest value: hen

either continues on in the nonmarket state or takes the job offer. As before, the

simultaneous arrival of a wage offer and fresh nonmarket draw is of negligible

probability.

Defining Q as the value of search, we ~ay write Sen)

(B-2) Sen) =
(1- (A +~)6t)

n6t + _~~n,-:-__ Sen) + 1(+~6p~)t E max[S(n') ,Q]
1+p6t 1+p6t ti n'

A6t
+ 1:P6t ~, max[V(x'),S(n)] + o(6t) •

Q is derived by an analogous argument. A searching individual is assumed

to consume no nonmarket time (an assumption that can easily be relaxed) and to

incur instantaneous costs of search c.

(B-3) Q

Thus we write

A 6t
+ n

E max [1+p6t x'

+ ~6t
E max [1+p6t n'

Q. Vex')]

Q, Sen')] + o(6t) .

An unemployed individual may transit to employment or to the nonmarket participa-

tion state.

Formal properties of this model (and more general models) are established

in Coleman and Heckman. A standard contraction mapping argument establishes the

existence and uniqueness of an optimal policy under the stated conditions. The
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model has the reservation wage property. (For a proof, see Coleman and Heckman.)

Define R as the reservation wage value of n that makes an employed individualen

who has just received a new nonmarket value of n indifferent between going to the

nonmarket state and continuing to work at wage x. R is the reservation valueee
I' of x' that makes an employed individual indifferent between his current job with

wage x and an offered job. In the absence of transactions costs, R = x. Ree nu

is the reservation value of n that makes a nonmarket participant with a new vaiue

of n indifferent between staying on in the nonmarket state and switching to unem-

ployment. It is implicitly defined by S(R ) = Q.nu
R is the reservation

ne

market wage that makes a nonparticipating individual with nonmarket value n indif-

ferent between continuing in the nonmarket state and accepting a job. It is im-

plicitly defined by VCR ) = Sen). R is the reservation wage for an unemployedne ue

person and it is solved from VCR ) = Q.ue R is the reservation nonmarket drawun

that makes an unemployed individual indifferent between unemployment and nonmarket

participation. It is implicitly defined by solving S(R ) = Q.un
The reservation wages are thus defined by the following equations:

Collecting terms and pressing to the limit

(B-4a)

(B-4c)

(B-4e)

(B-3) Vex)

Vex) = S(R (x)) (B-4b)en

S(R ) = Q (B-4d)nu

VCR ) = Q (B-4f)ue

= ~ + ]1 foo (S(n') -V(x))dG(n')
P P Ren

Vex) = VCR ) so R = xee ee

VCR (n» = Sen)ne

S(R ) = Qun

(6.t -+- 0), equations (B-l-B-3) become

A
+~ foo (V(x') -V(x)dF(x)

P Ree

(B-6) Sen) n + ]1 foo= P+]1 P+]1 R
nu

A
(S(n') - Q)dG(n') + P:]1 f;

ne
(V(x') - S(n»)dF(x')+ +Q

. P ]1

(B-7) Q
A

= .:..£ + ~ foo (V(x') -Q)dF(x') + ~ foo (S(n') - Q)dG(n')
P P Rue P Run

Q

This three equation system can be solved for the functionals Vex), Sen) and

in terms of c, ]1, A , A ,A and the parameters of dG(n) and dF(x). Using
u en·

the reservation wage functions defined above, these three equations produce re-

strictions across the parameters of the transition matrix governing transitions

._~._.._~..-._~----~--------~----~_.~-~.----------- .._-------~~--~-..-.



..","-

among the three states. (For more details, see Coleman and Heckman, 1981.)

The densities of duration times in each labor force state have a simple re-

presentation in terms of the reservation wages and arrival rates of offers. The

econometric model produced by the theory is a competing risks model of the sort

widely used in the duration analysis literature. (See Kalbfleisch and Prentice, 1980.)

We establish the analogy by briefly reviewing that model using terminology from

the biostatistics literature.

A patient can die from many causes that are assumed to operate independently.

Suppose that there are two diseases, each of which is fatal. The time to death

from disease one is t l , if it is the only disease afflicting the patient, while

the time to death from disease two is t z' if disease two is the only one afflicting

the patient. In the presence of both diseases, the time to death is min(tl,tZ).

t l and t z are clearly only hypothetical random variables each of which would

characterize time to death if the other disease is not at work. '

Suppose that each disease considered in isolation produces an exponential

time to death. Thus

f (t
l

) hIe
-hltl=

f (t
Z

) hZe
-hZtZ=

Direct calculation reveals that the time to death (t = min(tl,tZ» has the density

-(hI + hZ)t
f(t) = (hI + hZ)e

The probability that the patient dies from disease one is Pl defined as

PI
hI ! 00 ! 00

-hltl -hZtZ
Zdtl= = hIe hZe dthI +hZ o t l

The competing risks model can be applied to the three state model of labor force

dynamics. For example, an employed individual is subject to two risks: (a) get-

ting a higher wage on another job and (b) getting a nonmarket draw that causes

him to terminate his current job. Whichever risk occurs first causes him to exit

his current job. Define t as the hypothetical duration of employment in the
ee
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current job if the only possible exit is to another job. t is the hypotheticalen

duration of employment if the only possible exit is to the nonmarket state. Each

random variable has an exponential distribution as a consequence of the time sta-

tionary Markovian process produced by the theory. The hazard rate for the density

of t isee

" (B-8) h = A (1 - F(x))ee e

where x is the current wage in the employed state and the hazard for the density

of t isen

(B-9) h = ~(l - G(R (x))). (1)
en en

By the preceding argument, the density of the observed employment spell t
e

is the density of min(t ,t )ee en

(B-10) f(t) = (h + h ) exp -(h + h )te ee en ee en e

Using methods exposited in Flinn and Heckman (198Z)", or Kalbfleisch and Prentice

(1980), it is possible to use duration data to consistently estimate h
ee

and h for each x. The probability that an individualen

leaves his current job to take another job, P ,is
ee

(B-ll) Pee- =

hee
h +hee en

For exponential market and nonmarket wages with parameters 61 and 6Z this model

is a logit in reservation wages and the current wage x:

1P =
ee a +6 l x-6 ZR (x)

;-7",-,---------------------~l='" e e en

where a = In(]JIA). Note that direct estimation of transition probabilities
e e

enables us to estimate 6
1

(provided we solve for R (x) from equations B-4 - B-7).en

The density of accepted wage offers for individuals who quit one job with

wage x to get another with wage Xl is

(l)The analogy to competing risks model is somewhat strained because the reser­
vation wage rules for exit to one state would change if the other state were elim­
inated from this model. We ignore this point in constructing our analogy.
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X' > x .

Given knowledge of x and x', and an assumed functional form for F, it is possible

to estimate consistently the parameters of F as the number of observed e to e

transitions becomes large. Consistent estimates of this density are not possible

without imposing a recoverability condition. Thus the model is nonparametrically

underidentified but parametrically identified. Since it is possible to use dura-

tion data to consistently estimate h ,assuming recoverability is satisfied, Aee e

can be consistently estimated (see B-8).

A parallel argument may be developed for transitions from other states. Thus

the duration to time spent in an unemployment spell has density

(B-12)

where

(B-13)

(B-14)

f(t) = (h + h ) exp -(h + h )tu ue un ue un u

h = A (1 - F(R »ue u ue

h = ~(l - G(R »un un

From duration by destination data it is possible to estimate consistently handue

h (See Flinn and Heckman, 1982).
un

The probabilities of exiting to e and n from u are

h
p ue=ue h +hun ue
p = 1 - P

un ue

For exponential market and nonmarket wages

p =
ue

where a = In(~/A ).
u n

1

The density of accepted wage offers for individuals who exit from unemploy-

ment to employment is

f(x)
l-F(R )ue

x ~ Rue
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From a sample of accepted wages for unemployed individuals it is possible to use

the minimum accepted wage to estimate consistently R . Hence it is possible toue

estimate consistently A (from equation B~13), since it is possible to use the
u

duration data to estimate consistently h .ue

The density of time spent in a nonmarket spell is

(B-15)

where

(B-16)

(B-17)

f(t) = (h + h ) exp -(h + h )tn ne ·uu ne nu n

hne = An(l - F(Rne(n»)

h = ~ G(R ) .nu nu

As before, it is possible to use the duration by destination data to

consistently estimate :..hne and hnu To simplify the exposition we assume

that n is known. (1) The probabilities of exit to e and u from n are

h
p ne=ne h +hne nu

p = 1 - Pnu ne

For exponential market and nonmarket wage

p =
ne

where a = In(~/A ).
n n

1

From data on accepted wages in the n to e transitions it is possible to

consistently estimate the reservation wage R
ne

as the number of such transitions

becomes large. Hence (from B-16) it is possible to estimate consistently A ,
n

since it is possible to use the duration data to estimate consistently hne

Using (B-14) and (B-17) one can estimate ~ (simply sum the two hazards).

If n is observed, R can be consistently estimated by the smallest n
nn

(l)This is an enormous simplification. Some data sets ask respondents questions
which can be used to·infer n. An analysis of the more general case in which
n is unknown to the econometrician is presented in Coleman and Heckman (1981).
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observed in the nonmarket state. Assuming recoverability, G(n) can be

consistently estimated.

Thus under the assumptions made, it is possible to consistently estimate

A , A , A , F(x),~, G(n), R , R , R =R , Rand R • The asymptotic
e n u ue en nu un ne ue

distribution theory for these estimators is produced by an analysis similar to

that given in the text, Part 1. For more detail see Coleman and Heckman (1981).

In order to use the theory to secure structural estimates of the parameters of

the model it is necessary to solve (B-4) - (B-7) iteratively to compute the

reservation wage values needed to form the sample likelihood function. See

Coleman and Heckman (1981).

The distinguishing feature of this model is that the theory imposes cross

transition restrictions. These restrictions have not been noted or imposed in

previous empirical work on labor force turnover. (See,~ Tuma and Robbins,

1980.) These restrictions aid in model identification and provide tests of the

theory. We have already noted that the model predicts wage growth as a function

of experience. By parameterizing nonmarket distributions we are able to produce

a rich class of turnover models which enable us to introduce economic analysis

from household economics into turnover models. Children, nonmarket income,

health status and the like determine the value of nonmarket time.

Tests of hypotheses A > A and A > A provide indirect evidence on
u e u n

the empirical validity of search models. If, for example, A < A , considerable
u n

doubt would be cast on the standard search model. This hypothesis can be tested

assuming that a recoverability condition is satisfied. For further analysis of

this model and more general models see Coleman and Heckman (1981) .

•
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Appendix C: The Kiefer-Neumann Procedure
•. '.. $. , . 4 ,

,-,

This Appendix discusses the relationship between the analysis in Section 1

of the text and the Kiefer-Neumann analysis of search unemployment (1979, 1981).

We demonstrate that the Kiefer-Neumann analysis is critically dependent on the

assumption that agents receive one offer per period (however the period is defined).

We also note that even under their assumptions, their estimator is less

efficient than the one presented in the text because they overlook a critical piece

of information which we exploit. We further demonstrate that their inefficient

estimation approach does not generalize to a continuous time setting and so cannot

be used as a substitute for the analysis of the more general model given in the text.

The Kiefer and Neumann approach is a direct application of statistical results

developed in the sample selection bias literature (see Heckman, 1976b and 1979 and

Heckman and MaCurdy, 1981) and in the literature on female labor supply (see Smith, .

1980). F(x) is a log normal distribution so ln X is normally distributed with'

Q d . 2mean z"" an varJ.ance (J • Wage offers arrive one. per "period". F~llowing Lippman

and McCall (1976) the reservation wage.rV is defined as the solution to

=(C-l)

for rV ~ O. (1)

c + rV

We may solve for.

1 00

- LV (x - rV) dF (x)r r

R* = rV (for r assumed known)

(C-2) R* = R*(c,zS,r).

Properties of R* have already been established'in the text (just fix A = 1 in the

analysis of section 1.1). Given their log normality assumption, it is convenient

to work with

(C-3) R = ln R* = R(c,zS,r).

Conditional on z, the probability that an unemployment spell terminates at

period j is (see section 1.2)

(l)Kiefer and Neumann ignore this restriction in derivin~ their est~~ates.

(C-4) P (j) = (i(R*))j-l (1 - F(R*)) .
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Invoking log normality for X

(C-5) P(j) = [~( R(c,zS,r)-zS )]j-l ~( zS-R(c,zS,r) )
o 0

where ~ is the unit normal cdf. The density of accepted wages is

(C-6) f(xl X > R) = f(x)
l-F(R)

2
(2

2)-1/2 1 (lnx-zS)
'11"0 exp--

2 02
=f(lnxllnX> R)(C-7)

~( zS-R(c,zS,r) )
o

Using standard sample selection bias formulae (~., Heckman, 1976)

For the log normal case,

(C-8) E (lnx/lnX > R) = zS + OA( zS-R(c,zS,r) )
o

where

(C-9) A(n) =
-1/2 1 2

(2'11") exp--n
2

~(-n)

The joint density of date to termination and accepted wages is

(C-10)

(C-ll)

P(j) f(xlX > R)

x

= [F(R*) ]j-l f(x)

R* .

Exactly as in the analysis of sections 1.3-1.5, the likelihood function formed from

the joint density is monotonic in c and constraint C-ll is always satisfied as an

equality for at least one observation.

Kiefer and Neumann ~o not maximize the likelihood for their model. Instead,

they use an indirect two stage approach patterned exactly after previous models

estimated in the female labor supply literature. They first use data on unemploy-

. R(c zS r)-zB
ment duration in a likelihood formed from (C-5) to est1mate 'd
as a reduced form index. (This stage corresponds to estimating an equation

determining whether or not a woman works.) Using this eRtimated :i.nde,c, they then

follow previous econ.ometric T'iork in fetTle.le labor Ell1!,ply end est.j.mate ). (see

equations (C-9) and (C-IO». From-a regression of accented wages on z and

estimated A it is possible (under conditions set forth in Heckman (197q) to

consistently estimate B and cr.
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From the estimated Sand g it is possible to solve from the estimated index

R(c,z8,r)-z8a for ~ach observation, to estimate

R(c,zS,r)

for each observation. Using a nonlinear procedure, it is possible to consistently

estimate c using the restriction implied in (C-l). Kiefer and Neumann:, (1981)

use an iterated variant of this procedure.

The estimates derived from this procedure are not efficient because they do

not exploit all the information in the sample (i.e., they are not derived from the

likelihood function). (1) Moreover, the two stage procedure is critically dependent

on the assumption that agents receive one offer per "period." In that case, the

per period probability of accepting a job (l-F(R)) is also the denominator of the

conditional den~ity of wage offers. (See (C-6).) From the duration probit, it

is possible to estimate the selection index ( zS-R(c,z8, r) ) and so it is possible to
a

correct for' truncation bias in the estimated accepted wage offer distribution. In the

more general case in which the probability of receiving an offer is less than one,

the per period probability of accepting a job is not the denominator of C-6. (For

a continuous time example see equations (1.4) and (1.5) in the text; the point

applies to either a continuous time or discrete time model.) Thus in the more

general case, if the rate of arrival of job offers is not known, it is not

possible to estimate the selectivity variable (A in equation (C-8)) from the

duration data alone; thus ·the two stage procedure outlined above breaks ,down.

Structural estimation requires utilization of the inequality restrictions

exploited in Section 1.

Another point not noted by Kiefer and Neumann is that under the assumption

. that' agents receive one wage offer per period, it is always possible to recover

(1) One offsetting advantage is that their estimators are less sensitive to
measurement error because they do not use extreme value observations while '\
the estimators in the text are based on extreme observations. The efficiency
comparison made in the text is rather stark. !N(e-c) obtained from maximizing the
likelihood has zero large sample yariance:
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the untruncated wage offer distribution (above the truncation point) from the

truncated distribution precisely because the denominator of the truncated

distribution is known (see the discussion in section 1.3, especially on pages

10-11 and footnote 1 on page 11). Thus, provided that the reservation wage

is estimated in the manner we suggest in the text, the untruncated distribution

of wage offers is always recoverable from the sample truncated distribution if

agents receive one wage offer per period. Thus it is not necessary to impose

a functional form for accepted wages onto the data. Under their assumptions

all the structural parameters of the model are nonparametrically identified.

Adding unobserved heterogeneity to the model in the fashion of Heckman

and Willis (1977) or Kiefer and Neumann (1981) does not alter OllT conclnsions

in this Appendix in any fundamental way. For the sake of brevity, .we refrain

from extending our analysis to include this case.
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