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ABSTRACT

The LISREL model, recently developed by Joreskog and his colleagues,

is of great importance to students of aging and human development.

Essentially, LISREL unites factor analysis and structural equation

modeling. It is extremely general, permitting a wide variety of nonre­

cursive structural equation models while also permitting complex models

involving measurement error. Thus, LISREL speaks to the psychometric

concerns of those who measure the same variable over time and to the

modeling concerns of those who wish to allow for lagged effects, feedback

loops, and the like. This paper describes the LISREL model in nontech­

nical terms, points the reader to the more technical literature, and pro­

vides an extended example of a three-wave, two-variable model, with and

without additional exogenous and endogenous variables. The example shows

how causal effects can be estimated and how these estimates are affected

by assumptions regarding measurement error.

- ---------------- --- -------- ------ - -------- ----------- ------ -------~-



Analyzing Panel Data in Studies of Aging: Applications of the
LISREL Model

INTRODUCTION

Research on aging frequently involves repeated measures on the same

sample of individuals. The panel design, in which measures are obtained

at fixed intervals, with retrospective measures of intervening events, has

become commonplace in gerontology. Perhaps the most familiar example for

gerontologists is the Longitudinal Retirement History Survey (LRHS), now

being conducted by the Social Security Administration (Irelan, 1972). It

consists of 5 waves of measurement taken biennially between 1969 and 1978,

from more than 10,000 persons. There are several other similar national

panel surveys, including the National Longitudinal Surveys of Labor Force

Participation (Parnes, 1975), the Panel Study of Income Dynamics (Morgan

et al., 1972) and numerous other more local studies. All of the surveys

just mentioned, and many others of a similar nature, are in the public

domain and easily accessible to researchers in gerontology.

, Despite the plenitude of data, it is fair to say that the number of

published analyses which make use of more than two waves of data is

extremely small. Most researchers, even those with a fair amount of sta-

tistica1 sophistication, have found the analysis of multiwave panel data

to be a formidable challenge, and rightly so. Until recently, easily

accessible techniques for handling multiwave data have not been

available. Researchers trained in psychology, as many gerontologists

are, have had the advantage of the conceptual power to be found in the

analysis of variance paradigm. Multiwave data can be seen as a problem

in repeated measures, and recent developments in the application of

multivariate analysis of variance (MANOVA) to repeated measures (Bock,
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1979), particularly growth curve approaches, have been helpful. Using

this approach one could, for example, look at changes in measured

intelligence over time, comparing curves across such groups as those

defined by sex and cohort. Although MANOVA is most commonly applied to

physiological or cognitive variables, there is no statistical reason why

it cannot be applied to, say, changes in income levels over time or to

other similar measures.

However, as Baltes and Nesselroade (1979) note, "non-normative"

events--i.e., those which do not follow a biological or social time

clock--become increasingly important in the determination of life-course

phenomena late in the life span. Thus, education follows a generally

predictable time course, and income levels early in the career generally

follow carefully defined schedules corresponding to increasing education

and experience. Later in life, however, social variables such as marital

status and income level or psychological variables such as life satisfac­

tion respond to a host of non-normative events--illnesses, marital

disruption, migration, and other unpredictable influences. Analytically,

this requires us to pay attention to the intervening variables which

might cause fluctuation in the time path of a variable. For example,

yearly panel data on life satisfaction are not particularly informative

unless we know what happened between the waves of measurement; did the

subject become a widow or widower, did that person leave the labor force,

or enter the empty-nest phase, or undergo other change? If so, the ana­

lysis should take this into account. Note that the events occur at

varying points in time, and occur for some individuals but not for others.

The MANOVA approach is not particularly good at handling this kind of

problem, but intervening variables are rather easily handled within
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another analytic tradition--path analysis. The remainder of this paper

provides a nontechnical introduction to advanced causal modeling tech-

niques for panel data, based on path analytic and factor analytic con-

cepts. .Readers who are at least broadly familiar with these concepts

should be able to read the exposition with little difficultYj others may

wish to read introductory material first. A good place to start, par-

ticularly for those with a background in psychology, is Kenny's

Correlation and Causality (1979). The SPSS Manual (Nie et al., 1975)

also contains adequate descriptive information. l

PATH ANALYSIS OF PANEL DATA

Two-Wave Models

Researchers trained in path analysis have little difficulty with the

problem of intervening variables, but, as we shall see, they face other

equally serious problems. In the simplest case of two waves of measure-

ment, shown in Figure 1, the path analytic approach is clearly effective.

In this generic diagram, Tl and T2 are repeated measures of an unspe-

cified attitudinal variable. The letter I indicates an intervening

variable, assumed to occur between the waves of measurement and ascertained

on a recall basis during the T2 interview. The diagram follows the usual

conventions of path analysis; the single-headed unidirectional arrows spe-

cify causal effects. The path from Tl to T2 specifies that we expect Tl to

have a causal impact on T2, and the arrow from I to T2 implies that I has

an impact on T2 as well~ The variables u and v are residual variables

introduced to account for all variance in I and T2 not accounted for by

their measured determinants. This approach, in agreement with the

~--'_.._---------------._------------_ .. _-,_.__.~_.- --_.~---,--.-
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FIGURE 1

A SIMPLE TWO-WAVE MODEL
WITH AN INTERVENING VARIABLE
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perspective advanced by Cronbach and Furby (1972), avoids the direct

calculation of a change score, instead concentrating on the regression or

path coefficient linking T2 with Tl. This coefficient is estimated net

of (controlling for) the intervening variable. The path analysis

approach allows us to estimate the stability of the dependent variable

over time, the extent to which change in the dependent variable is a

function of the intervening variable, and the degree to which changes in

Tl are transmitted to the dependent variable via the intervening

variable.2

This basic approach to two-wave models has been used in a variety of

applications, with extensions to multiple intervening variables, multiple

controls, and more causal structures involving the (retrospectively

measured) intervening variables. The path analytic approach, while ex­

tremely useful and informative, is not without problems, however, even in

the simple two-wave case. In using the technique one is making two

important assumptions in addition to those made in any regression analy­

sis (Hanushek and Jackson, 1977, pp. 45-59); both assumptions are almost

certainly violated. The first assumption is that the variables are

measured perfectly. Errors in exogenous variables (i.e., those with

reliabilities of less than one) will bias coefficients in path models.

Thus, if both Tl and T2 are subject to random error, the estimate of sta­

bility is almost certainly biased downward, as is the estimate of R2.

The second assumption is that errors in variables are not correlated over

time. For example, if respondents tend systematically to underestimate

Tl and do the same on T2, the errors of measurement at Tl and T2 will be

correlated, and the estimated stability will be biased. 3
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Three-Wave Models

Disregarding these problems for a moment, let us look at the path

analysis of a three-wave model. Figure 2 shows a generic three-wave,

two-variable model. The notation follows the conventions of Figure 1.

Tl, T2, and T3 represent a specific variable measured at three points in

time, II and 12 represent another variable that is taken to intervene

between Tl and T2 and between T2 and T3 respectively. Cl and C2 are con­

trol variables. Note that we assume that the effect of Tl on T3 is indirect,

via T2, II, and I2--that is, there is no path from Tl to T3. Similarly, we

assume that C1 and C2 affect T2 and T3 only through their correlation

with Tl or via 11 and 12. Finally, note the curved arrow ~onnecting the

residuals at T2 and T3, indicating that we expect correlated errors in

equations. Correlated error will come about if (a) the same causal

variables are omitted from both equations, or (b) measurement phenomena,

such as similar biases in question wording, occur at both time points.

Both of these problems are likely to occur in longitudinal data.

In the case of simple path analysis one obtains a solution to recur­

sive models by solving a set of regression equations. In Figure 1, for

example, the solution was obtained by first regressing I on T1 and then

regressing T2 on I and Tl. In the more complex case, it can be shown that,

in the presence of correlated errors in equations, simple regression analy­

sis will result in biased and inconsistent coefficients, that is, the

sample estimates will not converge to the population parameter as N

increases. Moreover, if the omitted paths (such as that from Tl to T3)

are in fact not zero, the estimates will be biased even if there is not

correlated error. On the other hand, if we try to estimate the path from
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FIGURE 2

A MORE COMPLEX
THREE-WAVE MODEL
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Tl to T3 we will encounter other statistical problems because TIp T2, and

T3 are, in all likelihood, highly correlated.

What we need is a statistical approach that lets us take correlated

error explicitly into account while retaining the capability of setting

particular coefficients to zero (or perhaps requiring that the estimates of

two coefficients be equal). There are statistical solutions available for

these problems (and for others engendered by longitudinal data), but they

have not been of a general nature; each has required a separate, and

typically complex, algebraic attack. Within the past few years, however,

there has emerged an approach to structural equation models which has

many desirable characteristics when applied to longitudinal data, which is

quite general, and which also is comparatively simple to use. Developed

by Karl Joreskog and his students, (Joreskog, 1969, 1970, 1979; Joreskog

and Sorbom, 1978) the basic approach is referred to as LISREL (Linear

Structural Relationships). LISREL refers both to a particular statistical

technique and to the computer program used to generate estimates.

All basic statistical references along with references to numerous

applications of LISREL can be found in the user's manual (Version IV,

Joreskog and Sorbom, 1978). An excellent introduction to the use of

LISREL for longitudinal data analysis, from which the present paper draws

heavily, is Wheaton et ale (1977). A broader discussion of LISREL in the

context of other approachs to the analysis of longitudinal data can be

found in Schaie and Herzog (in press).

In the remainder of this paper we discuss the approach in some

detail, attempting to show how it is applicable to the model shown in

Figure 2 and to a wide variety of other models. LISREL deals with models

of this kind at the same time that it permits one to deal with problems
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of measurement error in a statistically appropriate way. The LISREL

program produces estimates of the various coefficients in the model,

computes their standard errors, and calculates a goodness-of-fit statistic

between the variance-covariance matrix implied by the model and that

observed in the sample.

Within a period of ten years LISREL has emerged as a standard ana­

lytic technique for structural equation models. Unfortunately, much of the

literature which presents the model is quite technical. The purpose of

this paper is to show the power of the LISREL approach for the analysis

of longitudinal data while avoiding much of the technical detail. We do

not mean to imply that this detail is unnecessary for applications of the

model, it is indeed necessary. LISREL is perhaps more subject to misappli­

cation than many other statistical techniques, and the reader is cautioned

that this paper cannot serve as the" sole basis for its successful use. At

the same time, we have found that many researchers are overwhelmed by

LISREL's generality and its rather difficult notation. Our basic goal in

this paper is to provide a conceptual overview of what LISREL does and how

it does it. With this material in hand, we hope that the reader will find

the more advanced presentations somewhat easier to follow.

In order to demonstrate the advantages of the LISREL perspective and

to develop it within a framework that is intelligible to gerontologists,

we present an analysis of the determinants of income satisfaction and

changes therein using three waves of data from the LRaS. We begin with a

very simple model, one which looks only at the stability of income satis­

faction (measured with two indicators) over time. Although we restrict

ourselves to three waves of data in this example, there is no reason why

we could not extend the model to four, five, or more measurement points.

--_._-------_._~----_.~-_._----_. -----..__.---_ ..._--~
----~~-_._._-------~-------. __ .
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After discussing the simple model of stability, we turn to a mor~ complex

model which looks at the determinants of change in income satisfaction,

using information from the LRHS on health status (measured with three

indicators); we also use self-reported income at wave 1 (one indicator),

and the number of times the respondent was hospitalized in 1970 (one

indicator, referring to the time intervening between waves one and two).

Thus, we have two variables, income satisfaction and health, in parallel

over time, a base line variable (actual income), and an intervening

variable (times hospitalized). We do not intend the analysis to be a

full and complete substantive analysis of changes in health and income

satisfaction--other variables would have to be included and many more

models would have to be explored--but the analysis is sufficiently close

to actual practice so that the full flavor of the technique can be

appreciated.

A THREE-WAVE MODEL FOR INCOME SATISFACTION

Causal Models and Confirmatory Factor Analysis

Figure 3 presents a path diagram relating the three measures of

income satisfaction over time. Although this model is of no great

substantive interest, it has the advantage of being simple while

demonstrating a number of LISREL characteristics. Note first that the

income satisfaction measure, represented by the boxes, is taken to be an

unmeasured construct with observable indicators. The two indicators are

"satisfaction with the way one is living" (SAT) and "ability to get along

on income" (GET). The model assumes that these indicators are related to

the underlying construct, that is, that the variances and covariances of
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FIGURE 3

A·SIMPLE THREE-WAVE REPEATED MEASUREMENT MODEL
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the indicators are due to their common (unmeasured) cause. In other

words, we are assuming that the indicators have a particular factor

structure. In fact, LISREL is a special case of confirmatory factor ana­

lysis (CFA). In CFA, one posits a specific factor structure and tests to

see if that structure is congruent with the observed data. LISREL

extends this one step further to allow for a causal structure on the

factors. 4 The CFA model was developed by Joreskog (1969) and was rapidly

extended to the more complete causal formulation just described (1970,

1979).

Since this concept is crucial to understand what follows, it bears

repeating in another way. We can think of the six measures of income

satisfaction as indicators of three underlying factors. The three fac­

tors are simply the unmeasured construct ~income satisfaction~ at each of

the three time points. We assume, of course, that these three constructs

are nonindependent--i.e., that there is some stability in the ordering

of individuals on the dimension of income satisfaction. If we were doing

conventional factor analysis we would want an oblique (correlated)

structure. An oblique solution would produce a matrix of factor

intercorrelations, and that matrix, like any correlation matrix, could be

subjected to causal analysis. LISREL performs these two tasks simul­

taneously; that is, it determines the appropriate estimates of rela­

tionships between observables and factors and then determines the esti­

mates of causal relationships among the factors, given the useris specifi­

cation of a model. 5

Measurement models and causal models. In thinking about this dual

aspect of the LISREL model, it will be useful to distinguish between the

measurement part of the model and the causal or structural equation part.
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The measurement model is indicated by the arrows leading from boxes in

Figure 3 to the observable variables; the causal aspects are indicated by

the arrows linking the boxes. Actually, the measurement part of the

model also involves a causal hypothesis common to all factor analytic and

classical test-score models. The arrow leading from "factor" to obser­

vable indicates the assumption that the variances and covariances among

the observed variables are due to their common sources in unmeasured

constructs. The coefficients linking the observables to constructs are

therefore regression coefficients of observables on true scores.6 The

relationships between observables and factors or constructs is not

perfect, however, and the arrow leading to each observable from below

indicates variance in observables not accounted for by the factor. In

classical factor analytic terms, this is equivalent to specific or unique

variance, not accounted for by the factor(s), plus variance due to

measurement error.

Covariance vs. correlation matrix. The numbers in Figure 3 will

surely give many readers pause, since paths leading from factors to obser­

vables are greater than 1. The reason is that these are unstandardized

coefficients obtained from a covariance matrix solution. Analyzing the

covariance matrix allows one to depart from the artificial constraint

that all variables have the same variance. In panel data, it is not

uncommon to see the variance of variables inc~easing or decreasing over

time in predictable ways. To ignore this phenomenon throws away useful

information. Consequently, most LISREL analyses, whether of panel data

or not, analyze the covariance matrix, though it is certainly possible to

analyze the correlation matrix. Although correlational analyses would be

more familiar to many readers, it would then be more difficult to turn to
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the primary literature, which emphasizes covariance solutions; hence we

will use the unstandardized approach. (For a discussion of those issues

see Heise, 1969; Wiley and Wiley, 1970.)

In conventional factor analyses, one typically assumes that the fac­

tors are standardized to a mean of zero and variance of one. This same

convention could be followed in LISREL even if one were analyzing a

covariance rather than a correlation matrix. However, since the metric

of the factors is arbitrary, the factor loadings are only estimable up to

a constant of proportionality. We can fix the variance of the factors, or

we can deal with this problem by fixing one of the loadings to a specific

value, thus forcing the program to estimate all other loadings on that

factor relative to the fixed variable. For example, in Figure 3 the path

coefficient linking SAT69 to its factor is fixed to 1.0 and the other

variable on that factor (GET69) is free to vary relative to the fixed

coefficient. The estimated coefficient is 1.742. Alternatively, we

might have fixed the variance of the factor to a specific value, say 1.

Had that been done in this case, the factor loadings would have been .448

and .780, reflecting the same relative values, since .780/.448 = 1.741.

The measurement model. With these preliminaries in hand, we can exam­

ine the measurement model in Figure 3 more closely. The error terms at

the bottom of the figure show the variance unaccounted for in each

observable. This can be converted to a proportion by simply calculating

the ratio of unexplained variance to total observed variance for the

variable. For "Satisfied with Living in 1969" this is .271/ .471 = .575,

and for the "Get Along on Income" variable the corresponding figure is

.296/.905 = .327. Thus 42.5% of the variance (1 - unexplained/total) in

the first variable and 67.3% of the variance in the second is explained by
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the model. 7 These figures are interpretable as reliability coefficients

for the items. (See Alwin and Jackson, 1980, for a complete discussion of

the relationships between factor analytic and classical true score models.)

The structural model. In this simple model, the structural equations

represent the stability of the construct over time. The unstandardized

coefficients are approximately .86 for the equation linking T2 to T1 and

in the T3-T2 equation. Explained variance in both cases is quite high.

These coefficients indicate that the relative order of the respondents on

the composite of the two observables is stable. This does not mean that

the average value of all respondents has remained the same; there may well

have been a constant shift in the mean. LISREL can be used to analyze

changes in means over time by including an intercept (JBreskog, 1979), but

for ease of presentation·we will assume that all variables have a mean of

zero, i.e., that they have been deviated from their means.

Obtaining Estimates of Coefficients

LISREL estimates the various coefficients in the model using the

method of maximum likelihood estimation (MLE). MLE methods are fairly

complex, and a complete explanation is substantially beyond the scope of

this paper. Wonnocott and Wonnocott (1977) give an excellent introduc-
,

tion to the topic, but the following verbal sketch may give some feel for

the problem.

A LISREL model is, in effect, a rather complex set of hypotheses

about the causal parameters which give rise to an observed set of vari-

ances and covariances. Readers familiar with path analytic concepts will

be aware of the rules which generate the observed variances and covari-
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ances as a function of the causal estimates in a path diagram. For

example, in Figure 3, the covariance between SAT69 and GET69 is the

product of the two loadings times the variance of the factor. Thus, the

observed covariance of SAT69 and GET69 is 1.0 x 1.742 x .201 (the

variance of the factor obtained from the solution) = .350 (the observed

covariance of SAT69 and GET69).

In LISREL, as in any path analysis, it is possible to estimate the

observed variances and covariances from the causal model. In fact, if

one thinks about it, it is the underlying causal process which generates

the observed variances and covariances, rather than the reverse. If the

posited factor model accounted for the data completely, the loadings and

error variances (uniquenesses) could be used to account for the observed

variances and covariances exactly. To the extent that the model does not

account for the data, the variance-covariance matrix implied by the model

will depart from the observed matrix. In MLE, one searches for that set

of coefficients that is most likely to have generated the observed

variance-covariance matrix, given the hypothesized model.

For example, suppose the model in Figure 3 were expanded to include

four indicators of income satisfaction at each of the three points in

time. If the hypothesis of a single factor at each time point were

correct, the coefficients estimated by LISREL should reproduce the

observed variances and covariances within reasonable limits. On the

other hand, if a two-factor model were appropriate, LISREL would still

produce a set of coefficients, but they would produce a bad approximation

to the observed variance-covariance matrix. The coefficients chosen

would be those which would make the estimated matrix of observed vari­

ances and covariances most likely given the model. This procedure is
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analogous to that followed in the simple chi-square test of independence

in a two-by-two table. In that case, one tests for independence by com­

puting expected cell frequencies, given the marginal distributiorts and

the hypothesis of independence. These estimated cell frequencies are, in

fact, MLE, in the sense that they are the most likely values

corresponding to the hypothesis, given the marginal distributions on the

rows and columns on the table. The usual chi-square test in this case

compares the expected frequencies to the observed, and leads us to reject

the null hypothesis of independence if the expected and observed do not

match within the limits of sampling error.

Test Statistics and Degrees of Freedom

In LISREL we are interested in comparing the observed matrix of

variances and covariances to the estimated matrix generated by the"model

and asking if they "match" in the same sense that we compare observed and

expected frequencies in a simple test of independence. The likelihood

ratio statistic (see Joreskog and S~rbom, 1978, p. 14), which isdistri­

buted as chi-square, tells us how likely it is that the observed

variance-covariance matrix could have been generated by the hypothesized

model. In the model, the coefficients are estimates of population para­

meters, as is the variance-covariance matrix it implies. We wish to know

if the sample (observed) variance-covariance matrix is a good fit to the

model.

The chi-square test can be evaluated after the degrees of freedom are

computed. To get the degrees of freedom for a particular model, one first

counts the number of variances and covariances and then subtracts the

number of estimated parameters. For any variance-covariance matrix, the

-------------
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number of unique entries is simply p( p + 1) /2, whe",re, p is 'thE'!' ·numbe1.!~of,,,·,,;;,,.t,,~,L,,, '"
t ".,;.

variables. In the present case, p is 6 and 6(6 + 1)/2 = 21. We are

fitting 14 parameters as follows: 1 error term for each observed

variable (6 df), the variance of the exogenous unmeasured variable (1

df), '1 factor loading for each factor (since one of the load-ingai,s, fixed

to a value of 1 in each case) (3 df), stability coefficients from T1 to

T2 and from T2 to T3 (2 df) and two errors in equations, one for the T2

factor and one for T3 (2 df). The df are then 21 - 14, or 7. For the ~,

model in Figure 3, the chi-square value is 492 which, on 7 df, has a

probability substantially less than .0001. Hence we have to reject the

hypothesis that the model could have generated the observed variance-

covariance matrix. Note that we want the model to fit the data, that is,

we want a low value of chi square and a high probability value. Thus,

the chi-squareY~ltest is, not particularly informative, since it indicates

that the model does not fit the data, but is silent on how this model

might compare to other plausible models.

Modification of the Model

If the chi-square test says that the model does not fit the data, how

might we modify the model? There are several possibilities. We might

assume that the T1 measure has a direct effect on T3. We might assume

that there are, in fact, two factors at each time point. This would be

equivalent to assuming that each factor was represented by' 'one it'em.. In",,"

both cases, we would be relaxing assumptions about coefficients pre-

vious1y thought to be zero.

A third class of hypotheses concerns correlated errors. In Figure 3,

we explicitly assumed that the errors in variables were unrelated. In
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survey data. particularly in longitudinal surveys. this may be an

unreasonable assumption. It is quite likely that individuals who under-

or over-report their score on a particular item will tend to do so again.

or that other types of errors. such as misunderstood words or errors

caused by the layout of theit~ms. will replicate. These systematic

sources of error will cause the correlations among the items to be arti-

ficially inflated. and we might want to try to account for correlated

errors of measurement with our model.

In addition to errors in variables. Figure 3 also allows for errors

in equations. that is. for sources of variance in the predicted outcomes

at T2 and T3 which are not due to the independent variables in the model~

Again. with panel data, it is not'unreasonable to assume that these

errors are correlated. If the variance explained is not 100%, because of

our omission of a particular explanatory variable. it is likely that the

same variable is operating at both PQints in time. If this is the case,

the errors in equations should be correlated.

A Correlated Error Model

Figure 4 introduces a model in which there are both correlated errors

in variables (measurement errors) and correlated errors in equations.

Specifically, the model allows the errors on the "Satisifed with Living"

item to be correlated over time (but not those on the "Get Along on

Income" item) and it allows for the errors in equations to be correlated.

We hasten to note that many other assumptions might have been made, and

that these are not necessarily the most desirable, assumptions to lnake,

substantively speaking. For example, we might have assumed that there is

a Tl-T2-T3 correlated error (but no TI-T3) for both of the indicators.

. I
,



FIGURE 4
A THREE-WAVE REPEATED MEASUREMENT MODEL

WITH ITEM-SPECIFIC CORRELATED ERRORS
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In any case, this model fits the data extremely well; with 3 df, the

chi-square value of .4977 has a probability greater than .9. Nqte that

the four additional parameters estimated are subtracted from the df,

i.e., 7 - 4 = 3.

Comparing Models

We see here that LISREL is most effective when models are compared.

What we need to do is fit a series. of models under various assumptions

and note how the assumptions lead to increments or decrements in the fit·

between the estimated variance-covariance matrix under the model and the

observed dat~. There is a precise but simple statistical test for the

increment or decrement in chi square from one model to another. In the

present case, chi square was 492 with 7 df in Figure 3; it declined to

.50 with 3 df for the model in Figure 4. If the additional parameters

involving correlated errors must all equal to zero, we would assume

that the correlated error model would not fit the data any better than a

model without such correlat~ons, and that chi square would remain

approximately the same. However, if the additional parameters do lead to

abetter fit, the reduction in chi square should be "significant~"

Statistically, the difference between two chi square values (likelihood

ratio statistics) is itself distributed as chi square with degrees of

freedom equal to the difference in df between the two models. For the

present case, the reduction of 491.5 in the value of chi-square was

accomplished on a reduction in df to 3; the value of 491.5 on 3 df is

clearly significant at well beyond the .0001 level. Indeed, the first

model did not fit at all and the second fits the data almost perfectly.

Such situations are extremely rare in actual practice. of course.
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'rhetest,j~~t ,,:desc,tihedis on+y~ppr,qptj;a,t,eliff'o:Q.e 'lUo'del:isa, 's.l.ibset

of, ,or "nested" ,withitl"another,.1'his ;implies ·that, i:1n,thesecondmo.de]"J.

paranieter,swlY:l.ch well'.eflxeditosomeva,lue (usua:nyze:r.<:i') :have 'been

relaxeq,out tha.tnopa.rameter ,wh:1chwasfi~e!:i in the second model has

been ee timatedin the first • If that were ,the case"the models would

not be nested and the chi-square ,test for 'increment in 'fit'{which;isana""

10gou8 In lllany ways to ,a test of increment ofR2 in regression) would not

be appr;oprd;a~e,. !uexarqple of non-nested 'models CiPpe.ars In ,the next

section.

'Fi;gure4,' like Fi,gure3,re,ports "unstand'ar'd;i:zed ,values. However" the

numberSQ,il ,the ,cuTved,arrows have been conve:rted to correlation

coeffic:tents. We findtha.t ,the errors in'equations arecorrelat:ed at

-.278 and th,at the correlated errors of measurement 'ra1;lge from .16 to

.2'4. Al th04gh these a're small correlations, they are no't zero. More

important, the estimates of the other ,coefficients in :the model are not

independent of these. Instat'!I.stical jargon,MLE isa full information

procedure, that is, each parameter estimate depends on every otl1er

estimate.

IntroduciT!-g this new set of assumptions has fairly serious implica­

tions fo.r the ,remainder of the model. First ,thestability coeffif;cients

decline"and R2 declines a.swell. Second, the estimated error variance in

GET69 decreases, but the estimated error in SAT69 increases after allowing

forcorrela!:ederrors of measurement. None of these changes is

spectacular, but it is necessary to understand that assumptions about

measurerneRt error ar.e in fact important forour.estimates • Thus, in
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simple regression analysis, where one is making implicit assumptions to the

effect that all variables are measured perfectly and that errors in

equations (in the case of simple path analysis) are uncorrelated, the

results do in fact depend on those assumptions. LISREL, in many cases,

allows one to check the assumptions, and the results are not always

comforting.

MORE COMPLEX MODELS

Figure 5 introduces a LISREL model of the kind that frequently occurs

in the analysis of panel data. Essentially the model contains two

variables, health and income satisfaction) at three points in time, along

with a baseline measure of family income and an intervening variable

indicating number of hospitalizations between the 1969 survey and the one

in 1971. The model treats the 1969 variables as exogenous and assumes that

the measurement errors in these variables are uncorrelated with measure­

ment errors in the same variables in 1971 and 1973. Errors in equations

are allowed to be correlated when no causal linkage is specified among

variables measured contemporaneously, e.g.) 1971 health and 1971 income

satisfaction. Certain causal linkages have been a priori set to zero.

For example, we assume no path from "Income" in 1969 to "Times in

Hospital" nor is there a path from "Sat Inc 69" to its counterpart in

1973; we assume instead a causal chain via the 1971 measure.

The assumptions made in setting this model up are somewhat

unrealistic (certainly we should expect correlated measurement errors),

and the high chi-square value of 3138 reflects this lack of empirical



FIGURE 5

A THREE-WAVE MODEL
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X = 3137.8; df = 100.
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reality. Still, the results are rather interesting, and we need to

discuss them to facilitate comparison with a more realistic model.

Again, the figures on the paths are unstandardized coefficients. The coef­

ficients relating the indicators of income satisfaction to the unmeasured

variable have the ~ame interpretation as before: they show how much of

the variability in the observed variable is due to the unobserved

construct, and permit the calculation of reliability coefficients for

each item. Similarly, the paths leading from Sat Inc 69 to its 1971

counterpart, and the path from the 1971 measure to the 1973 measure, can

be interpreted as stability coefficients. Interestingly, despite the

addition of a large number of variables to the model, the stability esti­

mates are about the same: .856 and .846.

At the bottom of the diagram a similar structure appears, relating

three indicators of health to an unmeasured construct at parallel points

in time. Both the coefficients linking observables to factors and the

stability paths can be interpreted as they were in the case of income.

Here we find substantially less stability over time, meaning that a

person's health status at a given survey is not well predicted by pre­

vious status. This would suggest that 'incidents of ill health occur more

or less at random to persons who were previously healthy, although those

seriously ill at a particular survey are not likely to be in excellent

he~lth at the following data collection point. We also note that the

effect of 1969 health status on 1970 hospitalizations is minimal, but

that income satisfaction has a fairly large effect on the health measure

at the next survey. For example, a one-unit increment in income satis­

faction (scaled as SAT69; see Appendix A) leads to a .117 increment in
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quality of heal,th net of he'a1th at til11eone. TIiatis;, those who are

satis·fiedwith tHeir: ~incomein 1969 tended' to' be healthier.

Addit.ion of Correlated Errors

Fi ure6 shows a model in'which item"-speciffc disturbance terms have

been allowed to correlate over. time in, the' same' manner as Figure 4. For

example,.errors'onLIM69 (LIM indicates effect of health on work; see

Appendix A) have been allowed to correlate' with errors on.LIM71 and

LIM73. Similarly, the. errors on GET69, GEif7L" and GET73 have been

allowed to correlate mutually~. THe estimates, of this' model appear, on

the surface, to be quite good; the resultirrg' chi-square value' of 1173

indicates a substantial improvement in fit with the'expenditure of rela­

tively few degrees of freedom. A reduction of almost exactly 2000 in· the

value of chi square was obtained by estimating 15 error correlations.

However, close examination of the estimated parameters (not shown here)

reveals a few anomalies; the estimated error variance of LIM69 is nega­

tive, and correlations among error terms approach .9 in some cases.

Aficionados of classical factor analysis will recognize these patho­

logical results as a form of the "Heywood case" (Harman, 1967). The

Heywood case occurs when one or more error estimates are less than zero,

implying. that the factor structure accounts for more than 100% of- the

variance in the observable. The standard "fix" for this situation is to

obtain a factor solution in which the offending e.rror variance is set to

zero. Thi'sconstraint is easily incorporated into a LISREL

specification; and a model which restrict.s the error variance on LIM69 to

zero while allowing for error variance on LIM7l and LIM73 as well as

correlations between those errors produces a chi-square value of 1613

with 87 df. Unfortunately, it too results in estimated correl ,( Lons
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FIGURE 6

A THREE-WAVE MODEL WITH CORRELATED ERROR
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See Appendix A for definitions of
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among error terms of.9 ormore"'-cl,e'arlyp;:lt;ho:logic;a;l r;esu.lts. Thus .we

see that LISREL 'models do not automati¢a;;Lly yield interpretable ;results.

It is quite poss.ible to get "results" which mak,e no sense,.

Given the:seproblems, the task then becomes one of finding, a model

whic 1 fits the data reasonably well while producingp1i3J1s:ible re.EH1lts.

Since the resultsfo,l' the income satisfaGt:tx>Il measqres are acceptable,

there is no need to ,change that pa~t of the model specification. The

nine itemsinvolving the health measures, however, allow for a wide

variety of alternate specifications. For e:xample, one could set the

el:;ror variance of .LIM6'9 to zero and leave t:he remainder of the model

alone. 0ther alternatives involve equality. constraints on error vari­

ances and covariances, constraints on error variances only, covariances

only, etc. For example , a model which assumes that each err.or variance

is equal over.time· (that LIM69 = LIM7l = LI}173) and that the item­

specific covariances are equal (that cov LIM69, LIM7l = covLIM69, LIM73

= cov LIM7l, LIMi3, etc.), thus producing equal error correlations, fits

the data reasonably,well (X2 = 1279), but again, the estimates of the

correlations among errors involving LIM are all greater than .9.

The many models which were fitted to the data will .not be summarized

here; however, we mention ·two things that became obvious. First, very

minor changes in model specification produce very large changes in chi

square ,and' second, the estimates of the c,,!.usalsection of the model

change vary ,little, no matter what is done to the error structure. For

example,the stability of the health construct between 1969 and 1971

varied from .462 to .503, depending on the specification of the error

structure involving the variances and covariance of LIM, PUB, and OUT,

even though the chi"'square statistic varied from 1173 to ~037. Put
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differently, although chi square nearly doubled from one model to

another, the parameter estimate changed by less than 10%.

Specification of the final model. The final model has been estimated

under the following assumptions concerning errors in variables:

1. For the two indicators of income satisfaction, GET and SAT,

cross-time, item-specific errors have been allowed; for example,

errors of measurement on GET69 have been allowed to correlate

with errors on GET61 and GET73.

2. LIM, the first indicator for the health construct, has been

forced to zero error variance at all three time points.

3. Errors in OUT and PUB, the two remaining indicators of the health

construct, have been allowed to correlate in the same manner as

the indicators of income satisfaction, but in addition we assume

that error 'variances and covariances are equal over time. For

example, we assume that the proportion of unexplained variance in

PUB is the same in 1969, 1971, and 1973, and that the covariances

of PUB are the same for (69,71), (69,73), and (71,73). Note that

if we assumed equal covariances but unequal variances it would

not be the case that the correlations ,would be eq'ual over time.

Thus the model, as estimated, is a slight variant of that shown

in Figure 6.

Results

The model yields a chi-square value of 2037 with 99 df, one degree

fewer than the model shown in Figure 5. It may seem strange that after

estimating several correlated errors in variables we have only spent one

degree of freedom, but this is because three error variances on LIM were
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set to zero .and only 2 rather than 6 d·f were required to estimate theerrot

variances of OUT and PUB, given the equality constraints. thus, although 8

additional parameters involving error covariances were. e~timated, the net

loss of df is one.

No' e that these models are not nested; some parameters which were

free in the, firs t ,model (e.g., the variaI).cesof LIM) have now been

constrained, while other parameters which were fixed in the first m.odel

(e.g., the covariances of SAT) have now been relaxed. Thus, the~hi­

s;quare test of model differences cannot be used to evaluate the decrement

in ~hi square associated with the move from the model of Figure 5 to that

of Figure 6.

Results fo.r the s.truttural equation model. In order to leave Figure

6 as legible as possible, results for this analysis are presented in

Table 1. The top panel shows the coefficients for the structural

equation part of the model in both metric and standardized form. The

middle panel shows the correlated errors in equations with R2 statistics

on. the diagonal. Fina~l:y, the bottom panel shows the measurement model

with correlations among the errors of measurement shown as small sub­

matrices on the rlght. 8

aecause this paper is primarily didactic in nature rather than

substantive, we will not interpret these results at length, but several

features of the analysis are worth noting. First, the income satis­

faction construct is clearly more stable than the health measure,

parallelil'l:g the results in Figure'S. The standardized stability para­

meter for income satisfaction,is substantially larger than the

correspondin"g .,val,1,le for health--. 754vs. .495 from Time Ito Time 2 with

similar result's. for" Time' 2 to Tiine 3.,



Tal>J.~ 1

Results Pertaining to Figure 6

A. Structural F.qu"t lOll Hodel

Dependent V"riables

114
SAT INC

1971
Independent Variab1e~ Ha Sa

115
HOSP
1970

K S

116
HEALTH

1971
~

117
SAT INC'

1973
M S

118
HEALTH

1973
M S

Sat Inc 69 III .756 .754

Income 69 112 .038 .el92
Health 69 113 .039 .041 -.107 -.104

Sat Inc 71 114

Times in Hospital
70 115

Health 71 116

.123' .116

.008 .018

.503 .495 -.005 -.003

.803 .831

-.002 -.002

-.003 .004

.176 .162

-.048 -.047

.443 .432

B. Errors in Equationsb

"4 .672

115 .097 .013

116 .180 .163 .309

117 .689

118 .187 .275

C. Measurem~nt Model

Error
·Pactor Loadings"C Structured

III 112' 113 114 115 116 117 118

SAT69 1.00* .433

SAT71 1.00* .186 .406

SAT73 1.00* .125 .169 .396

GET69 1.71 .656

GRT71 1.67 .198 .633

GET73 1.67 .193 .148 .646

LIM69 1.00* 1.0

LIM7l 1.00* 0 1.0

LIM73 1.00 0 0 1.0

OUT69 1.02 .793

OUT7l .69 .194 .791

OUT73 .93 .194 .194 .755

PUB69 .87 .664

PUB71 .89 .126 .697

PUB73 .88 .126 .126 .712

BOSP70 1.00*

INC69 2.00*

NOTE: X2 • 2036.65; df • 99

aM· metric, S • standardized (8 alld r matrices).

b Variab1en defined above. Entries 0[1 diagonal are R2 stat1stics; off-diacona1 entrics· ore corre-
lated errors In e~lIat1on••

c Coefficient. for rey,ression of obsenables on unmeasured variab1"8' Asterisk indicstes fi ,,,,<I
coefficient (A y U18,trlx).

d Sec tC"xt. page 33. for explanation of these entrlea.



'i'urning td the effects of he-aUh on :tnhbril~ saH§faction, we 'find a

small but significant effect of 1969 health on 1971 income satIsfaction

and a much smaller lagged eHe'ctft'ofu 1969 to 1913. The 1971 health

measure effect ort 1913 income satiSfaction is also negligible. On the

other land, income satisfaction has a.reasonabiy large effect dn health,

both in the 1969~71 peridd and :tn 1911~7j. Ooes the fact that income

satisfaction has a positive effect on seif-reported health indicate that

social and psychological weii~beirtg has an impact on health, or have we

perhaps m:lsspecif1ed the model :Lit some 'Way? We will not pursue this issue

here. except to riote that:. we might: try many other speciHcatiotisOf the

11lodel involving just these variables. to say hOthing of other variables

in the survey that reflect events ahd st.ates eariiet iii the Hfecyc.1e.

Looking at the measure of Hfites hospitaliZed, we f:l.ntl that it is only

marginally pfel1ic.ted by the i96~ health measlire, that it has essentially

no effect On 1973 ihcome satisfaction, and that it is very ~eakly related

to health in 1973. We have otliy a 131tlgie indicator' of hospitaHzatiotl;

and previous research has shOWtl self"""reports itl thiS area to he

notoriously unreliable (Cannell and Kahn, 1968). Perhaps the minimal

effects ate due to ~easutement error, bUt even with mote reliable

measures it is uiilikely that we would find large effects.

Panel B of Table 1 shdwS the error structuteof the causal part of the

model. R2 for each equation is shown on the diagdrtal of the matrix and the

off"""diagonal elements are the correlations of di~turbartce terms fot each

equation. The specification of correlated errors in this case is,qUite

simple; we have assUmed that variables notcaUi3ally related (e.go, Sat Inc

71 and Health 71) have cdttelated ertdrs (interpretable as. partial
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correlations between the two variables, net of exogenous variables), but we

have not introduced correlated errors between, say, Health 69 and Health

71. To do so would reduce the estimated stability of the construct, but.

since parallel restrictions on Sat Inc 69 and Sat Inc 71 would probably

reduce its stability proportionally, there is no advantage in doing so. In

other words, correlated errors would add little substantive information,

since it is the relative stability of the constructs that interests us.

The measurement model. Finally, Panel C of Table 1 shows the "factor

structure" of the measures. This matrix has been arranged so that the

items indexing a particular construct are in adjacent rows. To the right

of the factor matrix, under the heading "error structure," the error

correlations and item reliabilities of each block of indicators are

shown. Note that even though error variance of LIM, PUB, and OUT are

restricted to equality over time, the item reliabilities are not equal,

since the observed variance changes over time and reliability is defined

as true variance/observed variance.

SOME CAUTIONARY NOTES

Statistical Assumptions

The LISREL model is extremely powerful, and as with most things in

statistics, one does not get something for nothing. In order to use the

model it is necessary to make an important statistical assumption, namely

that the data have a multivariate normal distribution--that is, that

the joint distribution of the variables is normal. This assumption may be

relaxed in. some cases, but they are beyond the scope of this paper. The



castor vi6111t:trigtheasstimpti6fiorm\iitivarlab~fibrmailtyIs nbtyet

known; there is very little informati.bti6ntltetdb\H:;tness ,df tISREL. For

themomertt,orte mtist be very careful wl'th skewed distrlbut:ii6'tl:S.

lfiLtS)lEL :ttis posSible to get soli.it:tbns that are Mt unique; that

is, an entirely d:tffetenl: set of 'parameters (indeed an infinite set)

might lead to the same estitnatesof th'e vllr:l.ance"""covatiancemattix 6f

observed Vllr:1.ables. Stich a niodel :is said to be titid1!fldetitiHed. For

eXllmple, the c1assiclll factbranalys1.s futidei is uiideridentH:i.ed because

the solutlonllia.y be toblltedl:b adHferent set of loadirigs that :implies

eXlldlythe same set of lntetitem cortelations;; In CFA, one specifies

certain coefficients to be zero, alid under certaincortdit:1.bJis these

restrictions are sufficient to' identify theinodel s6 that it is not

rotatable. Any rotation would resuit in a different set of estimateS and

a different fit of the model to the datll; i.e., a different vatue ·of

chi square. As Joreskog and Sorbom (1978) note, general rules for iden­

tification are extremely difficult to give. There are several carefully

worked but examples in the LISR~L manual; but one needs to develop a feel

for the problem. LISREL checks for identification and will print a

messllge when the model is undetidentHied, but the fact that a solution

is. reached is notlln absolute gua.rantee that the model is tdetitifj,ed. 9

The identification problem is particularly acute when: 6fie is trying to

est:inillte f.~edback loopsllndldt: correlated errors itl equations, and novIce

users should not attempt these specifications.
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Starting Values

LISREL requires the user to provide a set of starting values, one for

each of the parameters to be estimated. In theory, the program should

reach a solution from any set of starting values; however, the transla­

tion from mathematical theory to actual application requires particular

computing algorithms and on occasion the program may "blow up" because of

bad starting values. In general, the program is more efficient the

closer the initial solution (i.e., the set of start values) is to the

actual estimates. Bad start values can lead to very costly and unsuc­

cessful attempts to fit models. In some cases, the program will be

unable to proceed to a solution given the initial estimates. On occa­

sion, the initial estimates may lead the program to print a messageindi­

eating that the model is underidentified w.hen in fact this is not the

case. Choosing good start values requires a clear understanding of the

various parameters estimated by the program and an intimate knowledge of

one's data. On rare occasions the program may reach a "local" rather than

a "global" minimum in its attempt to reach a solution. As a precaution,

one should always reestimate final models using somewhat different starting

values.

Sample Size and Statistical Power

Our results for model 6 showed that'even with a fairly complex error

structure the model did not at all fit the data in the statistical sense
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(x2 = 2037, df = 99). For any reasonably large sample s:I,2;e this will

almost always be the case. That is, it is almost impossible to find a

model w~ich fits the data well, in the statistical sense, without intro­

ducing many more parameters than are appropriate from the standpoint of

part imony and simp1icity.10 Several authors have advanced criteria other

than chi square for assessing the fit of the model, e.g., the ratio of

chi square to df (Wheaton et a1., 1977), or examination of residuals. As

J~reskog has pointed out in numerous publications (e.g., Joreskog, 1979),

it is the relative fit of models with which one is most concerned, that

is, changes in chi square from one model to another. The likelihood

ratio (chi-square) statistic is extremely powerful and, particularly with

large sample sizes, will detect even small departures from an exact fit

to the observed data. Thus, the analyst must be appreciative of the role

of sample size in assessing the model. This problem is not unique to

LISREL, however; it is endemic in the social sciences, as Cohen (1969)

has pointed out.

SUMM,ARY

The purpose of this paper has been to aid researchers in the analysis

of longitudinal data, an issue especially pertinent to those engaged in

the study of aging. The LISREL model has been presented as a par­

ticularly powerful analytical tool. To summarize, it has allowed us to

theoretically order our model to incorporate intervening variables) to

fix certain paths at zero, and to estimate the effect of this on the

model. An important point is that we are not forced to make the

assumptions that the variables are measured perfectly, or that the errors

in variables are not correlated over time.
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Substantively, the relative assessment of income shows a fair amount

of stability across time. However, this is not true of good health, and

leaves open to further investigation the question of the predictors of

good health in old age. One of these factors appears to be concern over

income, as expressed by the relationship of relative income to health at

each time period. This appears to "increase with the passage of time.

The technique presented in the paper should help researchers further

to test hypotheses about the effects of variables on one another through

time, thus disentangling to some extent the process of aging.
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NOT~S

:J;In a.dd:LUot), t:Qt:h¢ !'¢:f~l:enG~$ cited in ·thg t~~t;, S9Qd. :intP9d\!ct::f,9j1e1

to P""t:h ari""lys:i.s can bg fo11nd :Ln DllJicanO·975),JC~rlinggr a.nd P~d!;lazur

(1973), ang A$h¢:t:" (J.976). rh~rrga:t:"enumgrow:; :tntroduCt:ion~ to factot:' a.naly""

s:f,/;. Jne of the bgst :I.;:; R11mmgl (1967). Fc:>ran applic{:!.tion of $imple path

cmalys:l,s to a problgjU in ggront;ology, sge Henrett"" and CampP.E:!ll (1976) ~

2r he i.ntE:!rvening variable could, of coun:le, be t:reated a$ a time one

vcll;iable; tlwt is, :it Gould bE:! $:I.mp1y correlated w:l:th l':J;, :rathE:!l;' tqan

causally rE:!lat;eg to. i t ~

3Correlated measurement errors can bE:! seen as a special case of an

omitted variable.

4A factor may be dE:!fined by one and only One indicator; that is, the

"unmE:!asured variable" is taken to be equal to the observable indicator.

SMany readers trained in classical factor analysis will be uncomfor­

table with the assumption that a factor Can bE:! defined by one or two

variables, adhering instead to thE:! "rule" that a factor must be defined

py at least three variabl~s. There is no such "requirement" in CFA; the

only question is whether the model fits the data, an assessment which can

be made using techniques discussed below.

6The~e should not be confused with factor score coefficients, which

allow prediction of thE:! factors from obsE:!rvables.

7It may appear that something has beE:!n obtained here for nothing.

There are only two variables on the factor and one observable covariance

from which we have estimated two factor loadings and the corresponding

unique variance. rhis is possible only becaUSE:! we actually haVE:! six
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variables and three factors, from which we are estimating 14 parameters

on the basis of 21 entries in the observed variance-covariance matrix.

A more complete explanation appears below.

8These standardized values are not provided by the program and are

obtained by hand from the variances-covariance matrix of errors in

variables. Before reporting LISREL's standardized results, be sure to

check the formulae given for standardization in the LISREL manual because

in some cases they differ from conventional standardizations.

9For mathematical reasons too complex to go into here, the iden­

tification check is almost certainly accurate. Although the program will

catch all underidentified models, it will, on occasion, report that a

model is underidentified when in fact it is not, due to starting values

(see next section of text, "Starting Values").

10Thisphenomenon is by no means unique to the LISREL model. Social

scientists rarely acknowledge the role of statistical power in their

decision-making. See Cohen-(1969) for an excellent discussion of this

point.
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Q'Ps~rV;:l.Jjie"_ Yar::fa,Jjl ~'s' _,~ri,'ci: ,Uti'riie?Ei~,r:E'!lf ,_G9J!$.:~tY::c.'ttS

R., S'atts£acttori.' W'ith., InCome' is an;urimeasure'd C'o'qsitt:ruct wiJtli\ tW'o' :l!rrd:1c'a,t'o-rs:

4· :£; Mote' than satisfh~'d'

3 =g'ati:iis'ffed
2: =tess' than sa,ttsfied
f :i:j" fiery uEisa-tis'Hed

If == Always' nave' nioney left. dver
3) == Itai\fe' eridug,h, wJlthi a fittle' ie;ft over som:etimes
:2 ==Rave' jiis;t ttiri6uglr" rio' mO'lt'e
f == CciriJ' t riial<~ ends meet

B. He~lth is an unmeasured construct. with three fridfeatots~

2 == No'
t == Yes

Are y6u able to ieave the house without help?

3 == No limitation
2 = Yes, though health limits work, can leave house without help
i == No

Are you able to use public transportation without help?

3 = No limitation
2 = Yes, though health limits work, can use public transporta­

tion without help
1 = No

C. Number of times in hospital (HOS70) is measured with a single indicator.

D. 1969 household income (INC69) is a single indicator of log income
froIll all sources



Table A.1. Variables, Means, Standard Deviations, Variances, and Correlations
"

SAT69 GET69 INC69 LIM69 OUT69 PUB69 SAT71 GET71 HOS70 LIM7l OUT71 PUB71 SAT73 GET73 LIM73 OUT73 PUB73

SAT69 1.000

GET69 0.535 1.000

INC69 0.327 0.436 1.000

LIM69 0.282 0.298 0.236 1.000

OUT69 0.213 0.229 0.201 0.882 1.000

PUB69 0.221 0.237 0.211 0.833 0.741 1.000

SAT71 0.445 0.411 0.290 0.229 0.173 0.185 1.000

GET71 0.419 0.590 0.401 0.262 0.208 0.211 0.522 1.000
~

HOS70 -0.039 -0.041 -0.020 -0.102 -0.074 -0.079 -0.077 -0.070 1.000
I-'

LIM71 0.238 0.244 0.195 0.543 0.462 0.449 0.2630.276 -0.191 1.000

OUT71 0.160 0.171 0.158 0.419 0.393 0.367 0.196 0.216 -0.158 0.888 1.000

PUB71 0.175 0.177 0.159 0.413 0.375 0.379 0.198 0.217 -0.162 0.833 0.779 1.000

SAT73 0.361 0.363 0.233 0.196 0.166 0.158 0.428 0.412 -0.049 0.216 0.170 0.172 1.000

GET73 0.374 0.521 0.356 0.245 0.198 0.207 0.408 0.582 -0.069 0.233 0.185 0.186 0.507 1.000

LIM73 0.199 0.237 0.168 0.459 0.392 0.390 0.214 0.236 -0.144 0.502 0.428 0.418 0.246 0.277 1.000

OUT73 0.122 0.146 0.126 0.313 0.292 0.279 0.141 0.159 -0.111 0.385 0.382 0.370 0.195 0.215 0.886 1.000

PUB73 0.128 0.153 0.128 0.308 0.279 0.284 0.143 0.160 -0.104 0.376 0.366 0.371 0.189 0.214 0.833 0.807 1.000

Mean 2.781 2.451 8.531 1.661 2.663 2.710 2.803 2.508 0.156 1.636 2.679 2.699 2.780 2.465 1.578 2.660 2.672

SD 0.687 0.951 1.086 0.473 0.534 0.485 0.715 0.961 0.487 0.481 0.513 0.511 0.698 0.925 0.494 0.512 0.523
Variance 0.472 0.904 1.179 0.224 0.285 0.235 0.511 0.924 0.237 0.231 0.263 0.261 0.487 0.856 0.244 0.262 0.273
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APPENDIX B

A Primer on LISREL Notation

~anyothe~wise well-motivated readers of the LISREL literature are'

Ptlt off by its complex notation. All told, there are eight separate

mqt:o:rces to keep track of, each with its own Greek letter, and several

other: Greek letters 'are used for other purposes. The purpose of this

appendix is to try to organize this notation so as to make it easier to'

learn.

1. The notation distinguishes between exogenous and endogenous

variaples o~, the on~ hand, and between unobserved constructs and'

obsepvabt'e variaples on the other. The tabulation below shows'

the notation.

Exogenous

Endogenous

Observed Variables

X

Unobserved Variables

~ (Xi)

n (eta)

In Figure 5, the unmeasured: income satisfaction measure at time I:

(Sat Inc 69X' would thus nor,mally be' designated by ~ (Xi), as would

Health 69. The measured indicators of these variables would be

designat;ed with, the' letter x: to indicate that these variables are

exogenous--that is, no paths lead to Xi; from other variables in

the model. Income 69 has a", single indicator. Nonetheless, we

dil;lt:,:ing1,iish between the"umileasured,',cons,tru¢:t (~) aIld its indica-

tor (X). Sat IIlc 73'·, being! endogenous, would be designated by n

(eta) and its indicators by Y.
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2. The notation distinguishes between the causal or structural

equation part of the model and the measurement part. The causal

part describes the relationships among the unmeasured variables;

the measurement part concerns the relationship of the unobserved

variables to the observables.

A. The Measurement Model

Ay (lambda Y) and Ax (lambda X) contain the coefficients linking

the observable y's and XIS to the unobservable 11 (eta) and

~ (Xi) respectively. These are regression coefficients in the

sense that they give a predicted value of Y or X from the unob­

served factor. Each column of the matrix is for an unmeasured

variable, each row for a measured variable.

0 E (theta epsilon) and 00 (theta delta) contain the errors of

measurement for predicting the observables from the factors for

endogenous and exogenous observables respectively. Each matrix

has as many rows and columns as there are observables.

B. The Structural Equation Model

r (gamma) contains the effects of exogenous unmeasured (~) (Xi)

variables on the endogenous (n) (eta) variables. Each row of the

matrix corresponds to an equation and each column to an exogenous

variable.

S (beta) contains the effects of endogenous unmeasured en) (eta)

variables on other unmeasured endogenous variables. There is one

row for each equation and one column for each unmeasured endoge­

nous variable.



.~ (phi) contains the covariances: of the unmeasur:,e'd exogenous,

variables.' I.t has rows a.nd columns eqll'al to, the number of suc'h

va:riables .'

'i' (psi) contains variancesandcova'ri'ances of errQcts in equations

or the- amount of varianc'e unexplained by' the causal model. There

is one row and cO.lumn in this ma.,tJ;ix for eac.heq~atj)Qn.

No:t.e: With one' exceptio,n',. the' indiv:id'ualen'tries i in a partilcular
ma,tliix'are'des;fgnated' 'by'the£.r lowerc'a.se c:ount:e.rpart ; e.g.,.
an entry in, Tis· y ~ The' exception\ is '¥'" where specific
entries are des,j:g,nated '7; (zeta).

3,., The "all Y'" ,m0clel

LISREL allows co,rrelated erro,rs at meastrremen,t aIn0ng X and Y

(exogenous and endogeno.us) variahle:s, but not betw.een them; e'.g.,_

it requires that 0e; and:e'cS are· indep·ende:nt. One· can avoid th:lls·

for figures 5 and 6, thus permitting corre'latederr'ors at

measurement be·tweenexogenous and endogenous COlls:tructs.
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