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ABSTRACT

The LISREL model, recently developed by Joreskog and his colleagues,
is of great importance to students of aging and human development.
Essentially, LISREL unites factor analysis and structural equation
modeling. It is extremely general, permitting a wide variety of nonre-
cursive structural equation models while also permitting complex models
involving measurement error. Thus, LISREL speaks to the psychometric
concerns of those who measure the same variable over time and to the
modeling concerns of those who wish to allow for lagged effects, feedback
loops, and the like. This paper describes the LISREL model in nontech-
nical terms, points the reader to the more technical literature, and pro-—
vides an extended example of a three—wave, two~variable model, with and
without additional exogenous and endogenous variables. The example shows

how causal effects can be estimated and how these estimates are affected

by assumptions regarding measurement error.




Analyzing Panel Data in Studies of Aging: Applications of the
LISREL Model

INTRODUCTION

Research on aging frequently involves repeated measures on the same
sample of individuals. The panel design, in which measures are obtained
at fixed intervals, with retrospective measures of intervening events, has
become commonplace in gerontology. Perhaps the most familiar example for
gerontologists is the Longitudinal Retirement History Survey (LRHS), now
being conducted by the Social Security Administration (Irelan, 1972). It
consists of 5 waves of measurement taken biennially between 1969 and 1978,
from more than 10,000 persons. There are several other similar national
panel surveys, including the National Longitudinal Surveys of Labor Force
Participation (Parnes, 1975), the Panel Study of Income Dynamics (Morgan
et al., 1972) and numerous other more local studies. All of the surveys
just mentioned, and many others of a similar nature, are in the public
domain and easily accessible to researchers in gerontology.

_ Despite the plenitude of data, it is fair to say that the number of
published analyses which make use of more than two waves of data is
extremely small. Most researchers, even those with a fair amount of sta-
tistical sophistication, have found the analysis of multiwave panel data
to be a formidable challenge, and rightly so. Until recently, easily
accessible techniques for handling multiwave data have not been
available. Researchers trained in psychology, as many gerontologists
are, have had the advantage of the conceptual power to be found in the
analysis of variance paradigm. Multiwave data can be seen as a problem
in repeated measures, and recent developments in the applibation of

multivariate analysis of variance (MANOVA) to repeated measures (Bock,




1979), particularly growth curve approaches, have been helpful. Using
this approach one could, for example, look at changes in measured
intelligence over time, comparing curves across such groups as those
defined by sex and cohort. Although MANOVA is most commonly applied to
physiological or cognitive variables, there is no statistical reason why
it cannot be applied to, say, changes in income levels over time or to
other similar measures.

However, as Baltes and Nesselroade (1979) note, "non-normative”
events——i.e., those which do not follow a blological or social time
clock—-become increasingly important in the determination of life-course
phenomena late in the 1life span. Thus, education follows a generally
predictable time course, and income levels early in the career generally
follow carefully defined schedules corresponding to increasing education
and experience. Later in life, however, social variables such as marital
status and income level or psychological variables such as life satisfac~—
tion respond to a host of non~normative events——illnesses, marital
disruption, migration, and other unpredictable influences. Analytically,
this requires us to pay attention to the intervening variables which
might cause fluctuation in the time path of a variable. For example,
yearly panel data on life satisfaction are not particularly informative
unless wé know what happened between the waves of measurement; did the
subject become a widow or widower, did that person leave the labor force,
or enter the empty-nest phase, or undergo other change? If so, the ana-
lysis should take this into account. Note that the events occur at
varying points in time, and occur for some individuals but not for others.

The MANOVA approach is not particularly good at handling this kind of

problem, but intervening variables are rather easily handled within



another analytic tradition——-path analysis. The remainder of this paper
provides a nontechnical introduction to advanced causal modeling tech-
niques for panel data, based on path analytic and factor amalytic con-
cepts. Readers who are at least broadly familiar with these concepts
should be able to read the exposition with little difficulty; others may
wish to read introductory material first. A good place to start, par-

ticularly for those with a background 1in psychology, is Kenny's

Correlation and Causality (1979). The SPSS Manual (Nie et al., 1975)

also contains adequate descriptive information.l

PATH ANALYSIS OF PANEL DATA

Two-Wave Models

Researchers trained in path analysis have little difficulty with the
problem of intervening variables, but, as we shall see, they face other
equally serious problems. In the simplest case of two waves of measure-
ment, shown in Figure 1, the path analytic approach is clearly effective.
In this generic diagram, Tl and T2 are repeated measures of an unspe-
cified attitudinal variable. The letter I indicates an intervening
variable, assumed to occur between the waves of measurement and ascertained
on a recall basis during the T2 interview. The diagram follows the usual
conventions of path analysis; the single—headed unidirectional arrows spe-—
cify causal effects. The path from Tl to T2 specifies that we expect Tl to
have a causal impact on T2, and the arrow from I to T2 implies that I has
an Impact oun T2 as wellf The variables u and v are residual variables
introduced to account for all variance in I and T2 not accounted for by

their measured determinants. Thils approach, in agreement with the




FIGURE 1

A SIMPLE TWO-WAVE MODEL
WITH AN INTERVENING VARIABLE
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perspective advanced by Cronbach and Furby (1972), avoids the direct
calculation of a change score, instead concentrating on the regression or
path coefficient linking T2 with Tl. This coefficient 1is estimated net
of (controlling for) the intervening variable. The path analysis
approach allows us to estimate the stability of the dependent variable
over time, the extent to which change in the dependent variable is a
function of the intervening variable, and the degree to which changes in
Tl are transmitted to the dependent wvariable via the intervening
variable.2

This basic approach to two~wave models has been used in a variety of
applications, with extenslions to multiple intervening variables, multiple
controls, and more causal structures involving the (retrospectively
measured) intervening variables. The path analytic approach, while ex—
tremely useful and informative, is not without problems, however, even in
the simple two-wave case. In using the technique one 1s making two
important assumptions in additlon to those made in any regression analy-
sis (Hanushek and Jackson, 1977, pp. 45-59); both assumptions are almost
certainly violated. The first assumptilon 1s fhat the variables are
measured perfectly. Errors in exogenous variables (i.e., those with
reliabilities of less than one) will bias coefficients in path models.
Thus, 1f both Tl and T2 are subject to random error, the estimate of sta=
bility is almost certainly blased downward, as 1s the estimate of R2.
The se;ond assumption is that errors in variables are not correlated over
time. For example, if respondents tend systematically.to underestimate
Tl and do the same on T2, the errors of measurement at Tl and T2 will be

correlated, and the estimated stability will be biased.3




Three-Wave Models

Disregarding these problems for a moment, let us look at the path
analysis of a three-wave model. Figure 2 shows a generic three-wave,
two—~variable model. The notation follows the conventions of Figure 1.

Tl, T2, and T3 represent a specific variable measured at three points in
time, I1 and I2 represent another variable that is taken to intervene
between Tl and T2 and between T2 and T3 respectively. Cl and C2 are con-
trol variables. Note that we assume that the effect of Tl on T3 is indirect,
via T2, I1, and I2--that is, there is no path from Tl éo T3. Similarly, we
assume that Cl and C2 affect T2 and T3 only through their correlation

with Tl or via Il and I2. Finally, note the curved arrow connecting the
residuals at T2 and T3, indicating that we expect correlated errors in
equations. Correlated error will come about if (a) the same causal
variables are omitted from both equations, or (b) measurement phenomena,
such as similar biases in question wording, occur at both time points.

Both of these problems are likely to occur in longitudinal data.

In the case of simple path analysis one obtains a solutlon to recur—
sive models by solving a set of regression equations. In Figure 1, for
example, the solution was obtained by first regressing I on Tl and then
regressing T2 on I and Tl. In the more complex case, it can be shown that,
in the presence of correlated errors in equations, simple regression analy-
sis will result in biased and inconsistent coefficients, that is, the
sample estimates will not converge to the population parameter as N
increases. Moreover, if the omitted paths (such as that from Tl to T3)
are in fact not zero, the estimates will be biased even if there 1is not

correlated error. On the other hand, if we try to estimate the path from



FIGURE 2

A MORE COMPLEX
THREE-WAVE MODEL




Tl to T3 we will encounter other statistical problems because Tl, T2, and
T3 are, in all likelihood, highly correlated.

What we need is a statistical approach that lets us take correlated
error explicitly into account while retaining the capability of setting
particular coefficients to zero (or perhaps requiring that the estimates of
two coefficients be equal). There are statistical solutions available for
these problems (and for others eﬁgendered by longitudinal data), but they
have not been of a general nature; each has required a separate, and
typically complex, algebraic attack. Within the past few years, however,
there has emerged an approach to structural equation models which has
many desirable characteristics when applied to longitudinal data, which is
quite general, and which also is comparatively simple to use. Developed
by Rarl Joreskog and his students, (Joreskog, 1969, 1970, 1979; Joreskog
and Sorbom, 1978) the baslc approach is referred to as LISREL (Linear
Structural Relationships). LISREL refers both to a particular statistical
technique and to the computer program used to generate estimates.

All baslc statistical references along with references to numerous
applications of LISREL can be found in the user's manual (Version IV,
Joreskog and Sorbom, 1978). An exzcellent introduction to the use of
LISREL for longitudinal data analysis, from which the present paper draws
heavily, is Wheaton et al. (1977). A broader discussion of LISREL in the
context of other approachs to the analysis of longitudinal data can be
found in Schaie and Herzog (in press).

In the remalnder of this paper we discuss the approach in some
detail, attempting to show how it 1s applicable to the model shown in
Figure 2 and to a wide varilety of other models. LISREL deals with models

of this kind at the same time that it permits one to deal with problems



of measurement error in a statistically appropriate way. The LISREL
program produces estimates of the various coefficients in the model,
computes thelr standard errors, and calculates a goodness—of-fit statistic
between the varilance—covariance matrix implied by the model and that
observed in the sample.

Within a period of ten years LISREL has emerged as a standard ana-
lytic technique for structural equation models. Unfortunately, much of the
literature which presents the model is quite technical. The purpose of
this paper is to show the power of the LISREL approach for the analysis
of longitudinal data while avoilding much of the technical detall. We do
not mean to imply that this detall is unnecessary for applications of the
model, it is indeed necessary. LISREL is perhaps more subject to misappli-
cation than many other statistical techniques, and fhe reader 1s cautioned
that this paper cannot serve as the sole basis for its successful use. At
the same time, we have found that many researchers are overwhelmed by
LISREL's generality and 1ts rather difficult notation. Our basic goal in
this paper is to provide a conceptual overview of what LISREL does and how
it does it. With this material in hand, we hope that the reader will find
the more advanced presentations somewhat easler to follow.

In order to demonstrate the advantages of the LISREL perspective and
to develop it within a framework that 1s intelligible to gerontologists,
we present an analysis of the determinants of income satisfaction and
changes therein using three waves of data from the LRHS. We begin with a
very simple model, one which'looks only at the stability of income satis-
faction (measured with two indicators) over time. Although we restrict
ourselves to three waves of data in this example, there is no reason why

we could not extend the model to four, five, or more measurement points.
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After discussing the simple model of stability, we turn to a more complex

model which looks at the determinants of change in income satisfaction,

using information from the LRHS on health status (measured with three
indicators); we also use self-reported income at wave 1 (one indicator),
and the number of times the respondent was hospitalized in 1970 (one
indicator, referring to the time intervening between waves one and two)-.
Thus, wé have two variables, income satisfaction and health, in parallel
over time, a base line variable (actual income), and an intervening
variable (times hospitalized). We do not intend the analysis to be a
full and complete substantive analysis of changes in health and income
satisfaction—-—other variables would have to be included and many more
models would have to be explored——but the analysis is sufficiently close
to actual practice so that the full flavor of the technique can be

appreciated.

A THREE-WAVE MODEL FOR INCOME SATISFACTION

Causal Models and Confirmatory Factor Analysis

Figure 3 presents a path diagram relating the three measures of
income satisfaction over time. Although this model is of no great
substantive interest, it has the advantage of being simple while.
demonstrating a number of LISREL characteristics. Note first that the
income satisfaction measure, represented by the boxes, is taken to be an
unmeasured construct with observable indicators. The two indicators are
"satisfaction with the way one is living”™ (SAT) and "ability to get along
on income” (GET). The model assumes that these indicators are related to

the underlying construct, that is, that the variances and covariances of



Note:

A -SIMPLE THREE-WAVE REPEATED MEASUREMENT MODEL

FIGURE 3
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the indicators are due to theilr common (unmeasured) cause. In other
words, we are assuming that the indicators have a particular factor
structure. In fact, LISREL is a special case of confirmatory factor ana—-
lysis (CFA). In CFA, one posits a specific factor structure and tests to
see 1f that structure is congruent with the observed data. LISREL

extends this one step further to allow for a causal structure on the
factors.* The CFA model was developed by Joreskog (1969) and was rapidly
extended to the more complete causal formulation just described (1970,
1979).

Since this concept is cruclal to understand what follows, it bears
repeating in another way. We can think of the six measures of income
satisfaction as indicators of three underlying factors. The three fac—
tors are simply the unmeasured construct “income satisfaction”™ at each of
the three time points. We assume, of course, that these three constructs
are nonindependent~-i.e., that there is some stability in the ordering
of individuals on the dimension of income satisfaction. If we were doing
conventional factor analysis we would want an oblique (correlated)
structure. An oblique solution would produce a matrix of factor
intercorrelations, and that matrix, like any correlation matrix, could be
subjected to causal analysis. LISREL performs these two tasks simul-~
taneously; that 1s, 1t determines ;he appropriate estimates of rela-
tionships between observables and factors and then determines the esti-
mates of causal relationships among the factors, given the user's specifi-
cation of a model.?

Measurement models and causal models. In thinking about this dual

aspect of the LISREL model, it will be useful to distinguish between the

measurement part of the model and the causal or structural equation part.
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The measurement model 1s indicated by the arrows leading from boxes in
Figure 3 to the observable variables; the causal aspects are indicated by
the arrows linking the boxes. Actually, the measurement part of the
model also involves a causal hypothesils common to all factor analytic and
classical test—score models. The arrow leading from "factor”™ to obser-
vable indicates the assumption that the variances and covariances among
the observed variables are due to their common sources in unmeasured
constructs. The coefficients linking the observables to comstructs are
therefore regression coefficlents of observables on true scores.® The
relationships between observables and factors or constructs is not
perfect, however, and the arrow leading to each observable from below
indicates variance in observables not accounted for by the factor. In
classical factor analytic terms, this is equivalent to specific or unique
variance, not accounted for by the factor(s), plus variance due to

measurement error.

Covariance vs. correlation matrix. The numbers in Figure 3 will

surely give many readers pause, since paths leading from factors to obser-
vables are greater than 1. The reason is that these are unstandardized
coefficients obtained from a covariance matrix solution. Analyzing the
covariance matrix allows one to depart from the artificial constraint

that all variables have the same variance. In panel data, it is not
uncommon to see the variance of variables increasing or decreasing over
time in predictable ways. To ignore this phenomenon throws away useful
information. Consequently, most LISREL analyses, whether of panel data

or not, analyze the covariance matrix, though it is certainly possible to
analyze the correlation matrix. Although correlational analyses would be

more familiar to many readers, it would then be more difficult to turn to
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the primary literature, which emphasizes covariance solutions; hence we
will use the unstandardized approach. (For a discussion of tﬂose issues
see Heise, 1969; Wiley and Wiley, 1970.)

In conventional factor analyses, one typically assumes that the fac~-
tors are standardized to a mean of zero and varlance of one. This same
convention could be followed in LISREL even if one were analyzing a
covariance rather than a correlation matrix. However, since the metric
of the factors is arbitrary, the factor loadings are only estimable up to
a constant of proportionality. We can fix the variance of the factors, or
we can deal with this problem by fixing one of the loadings to a specific
value, thus forcing the program to estimate all other loadings on that
factor relative to the fixed variable. For example, in Figure 3 the path
coefficient linking SAT69 to its factor is fixed to 1.0 and the other
variable on that factor (GET69) is free to vary relative to the fixed
coefficient. The estimated coefficient is 1.742. Alternatively, we
might have fixed the variance of the factor to a specific value, say 1.
Had that been done in this case, the factor loadings would have been .448
and .780, reflecting the same relative values, since .780/.448 = 1.741.

The measurement model. With these preliminaries in hand, we can exam—

ine the measurement model in Figure 3 more closely. The error terms at
the bottom of the figure show the variance unaccounted for in each
obsérvable. This can be converted to a proportion by simply calculating
the ratio of unexplained variance to total observed variance for the
variable. For "Satisfied with Living in 1969" this is .271/.471 = .575,
and for the "Get Along on Income" variable the corresponding figure is
«296/.905 = .327. Thus 42.5% of the variance (1 = unexplained/total) in

the first variable and 67.3% of the variance in the second is explained by
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the model.” These figures are interpretable as reliability coefficlents
for the items. (See Alwin and Jackson, 1980, for a complete discussion of
the relationships between factor analytic and classical true score models.)

The structural model. In this simple model, the structural equations

represent the stability of the construct over time. The unstandardized
coefficients are approximately .86 for the equation linking T2 to Tl and
in the T3-T2 equation. Explained variance in both ca;es is quite high.
These coefficlents indicate that the relative order of the respondents omn
the composite of the two observables is stable. This does not mean that
the average value of all respondents has remained the same; there may well
' have been a constant shift in the mean. LISREL can be used to analyze
changes in means over time by including an intercept (Jdreskog, 1979), but
for ease of presentation we will assume that all variables have a mean of

zero, i.e., that they have been deviated from their means.

Obtaining Estimates of Coefficients

LISREL estimates the various coefficients in the model using the
method of maximum likelihood estimation (MLE)f MLE methods are fairly
complex, and a complete explanation is substantially beyond the scope of
this paper. Wonnocott‘and Wonnocott (1977) give an excellent introduc-
tion to the topic, but the following verbal sketch may give some feél for
the problem.

A LISREL model is, in effect, a rather complex set of hypotheses
about the causal parameters which give rise to an observed set of vari-
ances and covariances. Readers familiar with path analytic concepts will

be aware of the rules which generate the observed variances and covari-
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ances as a function of the causal estimates in a path diagram. For
example, in Figure 3, the covariance between SAT69 and GET69 is the
product of the two loadings times the variance of the factor. Thus, the
observed covariance of SAT69 and GET69 is 1.0 x 1.742 x .201 (the
varlance of the factor obtained from the solution) = .350 (the observed
covarlance of SAT69 and GET69).

In LISREL, as in any path analysis, it is possible to estimate the
observed variances and covariances from the causal model. In fact, if
one thinks about it, it is the underlying causal process which generates
the observed variances and covariances, rather than the reverse. I1f the
posited factor model accounted for the data completely, the loadings and
error variances (uniquenesses) could be used to account for the observed
variances and covariances exactly. To the extent that the model does not
account for the data, the variance—covariance mafrix implied by the model
will depart from the observed matrix. In MLE, one searches for that set
of coefficients that.is most likely to have generated the observed
variance~covariance matrix, given the hypothesized model.

For example, suppose the model in Figure 3 were expanded to include
four indicators of income satisfaction at each of the three points in
time. 1If the hypothesis of a single factor at each time point were
correct, the coefficients estimated by LISREL should reproduce the
observed varilances and covariances within reasonable limits. On the
other hand, if a two—factor model were appropriate, LISREL would still
produce a set of coefficients, but they would produce a bad approximation
to the observed variance-covariance matrix. The coefficients chosen
would be those which would make the estimated matrix of observed vari-

ances and covariances most likely given the model. This procedure is
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analogous to that followed in the simple chi-square test of independence
in a two-by-two table. In that case, one tests for independence by com-
puting expected cell frequencies, gi?en the marginal distributions and

the hypothesis of independence. These estimated cell frequencles are, in -
fact, MLE, in the sense that they are the most likely values

corresponding to the hypothesis, given the marginal distributions on the
rows and columns on the table. The usual chi-square test in this case
compares the expected frequencles to the observed, and leads us to reject
the null hypothesis of independence if the expected and observed do not

match within the limits of sampling error.

- Test Statistics and Degrees of Freedom

Ig LISREL we are interested in comparing thé observed matrix of
variances and covariénces to the estimated matrix generated by the model
and askiﬁg if théy "match" in the same sense that we compare observed and
expected frequencies in a simple tést of independence. The 1ike11hood
ratio statistic (see Joreskog and Sdrbom, 1978, p. 14), whicb is distri-
buted as chi-square, tells us how likely it is that the observed
variance—covariance matrix could have been generated by the hyﬁofhesized
model. Iﬁ the model, the coefficients are estimates of population para-
meters, as is the vériance-covariance matrix it implies. We wish to know
if the sémple (observed) variance-covariance matrix is a good fit to the
model;

| fhe chi-square test can‘be evaluated after ;he_degrees‘of freedom are
computed. fo'get the degreeé of freedom for a particular model, one first
counts the number of varlances and covariances and then subtracts the

number of estimated parameters. For any variance—covariance matrix, the
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number of unique entries is simply p(p + 1)/2, where p iS“fhé“numbeﬁfOﬁwwﬁpwdmﬁwmm
variables. In the present case, p is 6 and 6(6 + 1)/2 = 21. We are
fitting 14 parametéis as follows: '1 error term for each observed -
variable (6 df), the variance of the exbgenoué unmeasured variable (1
df), 1 fdctotr loading for each factor (since one of the 1dadings is . fixed
to a value of 1 in each case) (3 df), stabllity coefficients from Tl to
T2 and from T2 to~T3 (2 df) and two errors Iin equatlons, one for the T2
factor and one for T3 (2 df). The df are tﬁen 21 - 14, or 7. For the = =
model in Figure 3, the chi-square value is 492 which, on 7 df, has a |,
probability substantlally less than .0001. Hence we have to reject the
hypothesis that the model could have generated the observed variance-
covariance matrix. Note that we want the model to fit the data, that is,
we want a low value of chi square and a high probability value. Thus,
the chi-square;test 1is.not particularly informative, since it indicates
| ﬁhat the model’dbes not fit the data, but 1s silent on how this . model

might compare to other plausible models.

Modification of the Model

If the chi-square test says tha; the model does not fit the data, how
might we modify the model? There are several possibilities. We might
assume that the Tl measure has a direct effect on T3. We might assume
that there are, in fact, two factors at each time point. This would be
equivalent to assuming that each factor was represented by -one item. In .
both cases, we would be relaxing assumptions about coefficients pre-
viously thought to be zero.

A third class of hypotheses concerns correlated errors. In Figure 3,

we explicitly assumed that the errors in variables were unrelated. In



19

survey data, particularly in longitudinal surveys, this may be an
unreasonable agsumption. It is quite likely that individuals who under-
or over-report their score on a particular item will tend to do so again,
or that other types of errors, such as misunderstood wofds or errors
caused by the 1ayout'of the items, will replicate. These systematic
sources of error will cause the correlations among the items to be arti-
ficially inflated, and we might want to try to account for correiated

errors of measurement with our model.

In_addition to errors in variables, Figure 3 also allows for errors
in equations, that is, for sourées of variance in the predicted outcomes
at T2 and T3 which are not due to thejindependent variables in the model.
Again, with panel data, it is pot'unreasbnable to assume that these
erroré are- correlated. If the variénce explained is not 1007, because of
our omission of a particular explanatory variable, it 1s likely that the
same variable 1s operating at both points in time. If this is the case,

the -errors in equations should be correlated.

A Correlated Error Model

Figure 4 introduces a model in whicﬁ there are béth correlated errors
in variab1es (measurement errors) and correlaﬁed errors in equations.
Specifically, the model allows the errors on the "Satisifed with Living”
item to be corpelated over time (but not those on the "Get Along on
Income" item) and it allows for the errors in equations to be correlated.
We hasten to note that many other assumptions might have been made, and
that these are not necessarily the most desirable_assumﬁtions to make,
substantively speaking. For example, we might have assumed fhat there is

a T1-T2-T3 correlated error (but no T1-T3) for both of the indicators.




FIGURE & _
A THREE-WAVE REPEATED MEASUREMENT MODEL
WITH ITEM-SPECIFIC CORRELATED ERRORS
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In any case, this model fits the data extremely well; with 3 df, the
chi-square value of .4977 has a probability greater than .9. Note that
the four additional parameters estimated are subtracted from the df,

ioe-, 7 —4=3-

Comparing Models

We see here that LISREL is most effective when models are compared.
What we need to do is fit a series of models under various assumptions.
and note how the’assumptions lead to increments or decrgments in the fit
between the estimated variance-covariance matrix under the model and the
observed data. There is a precise but simple statistical test for the
incremént or decrement in chl square from one model £o another. In the
present gése, éhi square was 492 with 7 df in Figure 3; it declined to
.50 with 3 df for the model in Figure 4. If the additional parameters
involving correlated errors must all equal to zero, we would assume
that the correlated error model would not fit the data any better than a
model without such correlations, and that chl square would remain
approximately the same . However, if the additional paraméters do lead to
a better fit, the reduction in chi square should be "significant.”
Statistically, the difference betweén two chi squarebvalues {likelihood
ratio statistics) is itself distributed as chi squére with degrees of
freedom equal to the difference in df between the two models. Fbr the
present case, the reduction of 491.5 in ﬁhe value of chi-square was
accomplished on a reduction in df to 3; the value of 491.5 on 3 df is
clearly significant at well beyond the .0001 level. Indeed, the first
model did not fit at all and the second fits the data almost perfectly.

Such situations are extremely rare in actual practice, of course.
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‘The test just .described is only appropriate i{ff -one model ‘is a subset
of, or'“nesteﬂ",withln, another. ZThis?imﬁlies:that,‘Lnlthg-seconalmadélib
parametens.wﬂich wene-fixed;to sémenva;ue (gsually zero’) ‘have been
relaxed, but that no parameter which was fixed in ‘the second model ‘has
‘been ertimated in the ‘first. If that were the case, the models would
not be mnested and .the chi*square.test for “increment in fit ‘(which s ana-
logous in many ways to a test of increment of R2 in.regressipn) would not
be appropriate. An example of non—nested models appears in .the mext

section.,

Introducing ;-Carre;l.»-at‘efd ‘E-r;:or‘:s

Figure 4, like Figure 3, reports. unstandardized values. .;Hvo.weav:._erf, the
numbers on.tﬁe.cutved.arrows'have been converted to correlation
coefficlents. We find that .the erfOPS'in@equations are correlated at
-.278 and that the correlated errors of measurement range from .16 to
.24, Although these are small correlatlons, they are not zero. More
important, the estimates of the other coefficients in the model are not
independent of these. In Statiéticaluhargon, MLE is a full information
procedure, that 1s, each parameter estimate depends on every other
estimate.

Introduciqg this new set of assumptions has fairly serious ilmplica-
tions for the remainder‘of the model. First, the .stability coefficients
decline, and R? declines as well. Second, the.estimatedferfer variance in
GET69 decreases, but the estimated error in SAT69 increases after allowing
for correlated errors of measurement. None of these changes is
spectacular, but it is necessary to understand that assumptiomns about

measurement error are in fact ilmportant for our estimates. Thus, in
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simﬁle regression ;nalysis, where one 1s making implicit assumptions to the
effect that all variables are measured perfectly and tha; errors 1in
equations (in the caée of simple path analysis) are.uncorrelated, the
results do in fact depend on those assumptions. LISREL, in many cases,

allows one to check the assumptions, and the results are not always

comforting.

MORE COMPLEX MODELS

Figure 5 introduces a LISREL model of the kind tﬁgt frequently occurs
in the analys;s of panel data. Essentlally the model contains two
variaﬁles, health and income satisfaction; at three points in time, along
with a baseline measure of family income and an intervening variable
indicating number of hospitalizations between the 1969 survey and the one
in 1971. The model treats the 1969 variables as exogenous and assumes that
the measurement errors in these variables are uncorrelated with measure-
ment errors in the same variables in 1971 and 1973. Errors in equations
are allowea to be corrélated when no causal linkage 1s specified among
variables measured contemporaneously, e.g., 1971 health and 1971 income
satisf#ction. Certain causal linkages have been a priofi set to zero.
For example, we assume no path from "Income” in 1969 to "Times in
Hospital” nor is there a path from "Sat Inc 69" to its counterpart in
1973; we assume instead a causal chain vlia the 1971 measure.

The assumptlions made in setting this model up are somewhat
unrealistic (certainly we should expect correlated measurement errors),

and the high chi-square value of 3138 reflects this lack of empirical



FIGURE 5
A THREE-WAVE MODEL
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See Appendix A and
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reality. Still, the results are rather interesting, and we need to
discuss them to facilitate comparison with a more realistic model.

Again, the figures on the paths are unstandardized cdefficiénts. The coef-
ficients relating the indicators of income satisfaction to the unmeasured
variable have the same iInterpretation as before: they show how ﬁuch‘of
the variability in the observed variable 1s due to the unobserved
construct, and permit the calculation of reliability coefficients for
each item. Similarly, the paths leéding from Sat Inc 69 to its 1971
counterpart, and the path from the.1971 measure to the 1973 measure, can
be interpreted as gtability coefficients. 'Interestingly, despite the
addition of a large number of variables to the model, the stability esti-
mates are about the same: ..856 and .846.

At the bottom of the diégram a similar structure appears, relating
three indicators of health to an unmeasured construct at parallel points
in time. Both the coefficients linking observables to factors and the
stability paths can be interpreted as they were in the case of income.
Here we find substantially less stability‘over time, meaning that a
person's health stétus at a given survey is not well predicted‘by‘pre—
vious status. This would suggest that incidents of 111 health occur more
or less at random to persons who were préviously healthy, although those
seriously 111 at a particular éurvey are not likely to be 1in excellent
health at the following data collection point. We also note that the
effect of 1969 health status on 1970 hospltalizations is minimal, but
that income satisfaction has a fairly large effect on the health measure
at the next survey. For exa%ple, a one—unit increment in incoﬁe satis-

faction (scaled as SAT69; see Appendix A) leads to a .117 increment in
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quality of health net of health at'time one.. That:is; those who-are

satisfied with tHeir ‘income 'in 1969 tended: to: be healthier.

Addition of Correlated Errors

Fi ure 6 shows. a model in which item-specific disturbance terms. have
been allowed to correlate  over time in the: same' manner as: Figure 4. TFor
example, errors’on LIM69 (LIM indicates effect of health on work; see
Appendix A) have been allowed to correlate with errors on. LIM71 and
LIM73% Simiiarly, the. errors on GET69, GET71, and GET73 have been
allowed to correlate mutually. The estimates of this' model appear, on
the surface, to ﬁe-quite'good; the' resulting: chi-square value of 1173
indicates a substantial improvement in fit with the: expenditure of rela-
tively few degrees of freedom. A reduction of almost exactly 2000 in. the
value of chi square was obtained by estimating 15 error correlations.
However, close examination of the estimated parameters. {(not shown here)
reveals a few anomalies; the estimated error variance of LIM69 is nega-
tive, and correlations among error terms approach .9 in some cases.

Aficionados of classical factor analysis will recognize these patho-
logical results as a form of the "Heywood case” (Harman, 1967). The
Heywood case occurs when one or more error estimates- are less than zero,
implying. that the factor structure accounts for more than 100% of: the
varianceé ia the observable. The standard "fix" for this situation is- to
obtaln a factor solution’in which the offending error variance is set to
zero. This constraint is easily incorporated into .a LISREL
specification;, and a model which restricts the error variance on LIM69 to
zero while allowing for error variance on LIM71 and LIM73 as well as
correlations between those errors produces a chi-square value of 1613

with 87 df. Unfortunately, it too results in estimated correl .tlons
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FIGURE 6

A THREE—WAVE MODEL WITH CORRELATED ERROK
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among error ‘terms of .9 or more--clearly pathological results. Thus we
see that LISREL models do not automatically yield interpretable results.
It is quite possible .to .get "results"” which make no sense.

Given these problems, the ‘task then becomes one of finding. a model
thc; fits the data reasonably well while producing plausible results.
Since the results for the income satisfaction measures are écceptable,
‘there isvno‘need to change that part of the model specification. The
nine items dinvolving the health measures, however;_allow for a wide
variety of alternate specifications. For example, one could set.the
error variance of LIM69 to zero and leave the remainder of the modei
alone. Other alternatives involve equality constraints on érror vari-
.ances and covariances, constréiuts on error variances only, covariances
oﬁly, etc. ‘For example, a model which assumes -that each error variance
‘is equal over time:(that LIM69 = LIM71 = LIM73) and that the item-

specific covariances are equal (that cov LIM69, LIM71 = cov LIM69, LIM73

= cov LIM71l, LIM73, etc.), thus producing equal error correla#ions, fits
the data reasonably well (xz = 1279), but again, the estimates ofvthe
.correlations among errors involving LIM are all greater than .9.

The many models which wére_fitted to the data will not fe summarized
here; however, we‘mention-two things that became obvious. First, very
minor changes in model specification produce very large changes in chi
square, and second, the estimates of the c§g$gl\section of the model
change wvary .little, no matter ﬁhaﬁ is done -to the error structure. For
example, the stability of the heélth construct between 1969 and 1971
varied from .462 to .503, depending on the specification of the error
structure involving the variances and covariance of LIM, PUB, and OUT,

even though the chi-square statistic varied from 1173 to °037. Put
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differently, although chi square nearly doubled from one model to
another, the parameter estimate changed by less than 10%.

Specification of the final model. The final model has been estimated

under the following assumptions concerning errors in variables:

l. For the two indicators of income satisfaction, GET and SAT,
cross—time, item—specific errors have been allowed; for example,
errors of measurement on GET69 have been allowed to correlate
with errors on GET61l and GET73.

2. LIM, the first indicator for the health construct, has been
forced to zero error variance at all three time points.

3. Errors in OUT and PUB, the two remaining indicaﬁors of.the health
construct, have been allowed to correlate in the same manner as
the'indicators of income satisfaction, but in addition we assume
thét error ‘variances and covariances are equal over time. For
examplé, we assume that the proportion of udexplained variance in
PUB is the same in 1969, 1971, and 1973, and that the covariances
of PUB are the same for (69,71), (69,73), and (71,73); Note that
if we assumed equal covafiances'but ﬁnequal variances it would
not be the case that the correlations would be equal over time.
Thus thg model, as estimated, is a'slight variant of thatlshown

in Figure 6.

Results

The model yields a chi-square value of 2037 with 99 df, one degree
fewer than the model shown in Figure 5. It may seem strange that after
estimating several correlated errors in variables we have only spent one

degree of freedom, but thils is because three error variances on LIM were
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set to zero and only 2 rather than 6 df were required to estimate the error
variances of OUT aﬁd PUB, giveﬁ the equality-éonstraiﬁts. Thus, aithoﬁgh 8
additional ?arameters involving error covarianp;s were‘estiméted, the net
loss of 4f is one.

No e that these models afe not nested; some pafame;efs which wefé'
free In the‘first\model‘(eug., the variances of LIM) have now been
constrained, whilg other parameters which were fixed in the first wmodel
(e.gs, the covariances of SAT) have now been rglaxed. Thus, the-chi-
square test of model differences cannot be used to evaluaté the decrement
in chi square assoclated with the move from the model of Figure 5 to that
of Figure 6.

Results for the structural equation model. In order to leave Figure

6 as legible as possible, resul;s for this analysis afe présented in
Table 1. The top panel shows the coeffiéients for the structural
equation part of the model im both metric and standardizéd form. The
middle panel shows the correlated errors in equations with R2 statistics
on, the diagondl. Finally; the bottom panel shows the measurement model
with correlations among the‘errors oﬁ measgrement shown as small sub-
matrices on the right.sz

Because this paper is‘primarily_didaétic in nature ratherlthan
substantive, we will not Interpret these resulﬁs atllepgth,‘but several
features of the analysis are worth noting. First, the income satis-
faction construct is clearly more stable than the health measure;
paralleling the pesultg 1@ Figure 5. The s;andardized“stability para-
meter for incomevsapisfaction;is substantially larger than the |
.corresponéigngalpe for health--.754_vs. a495 from Time 1 to Time 2 with

similar rgsulﬁs_for‘Time‘Z’t0~Time 3..



Table 1

Results Pertaining to Figure 6

A. Structural Equatlon Model

Dependent Varliables

.SAT AINC HggP HER%TH SAT“7INC' HERETH
1971 1970 1971 1973 1973

Independent Varlables M8 sa M S M S M s . M S
Sat Inc 69 1 756 754 L1237 ,116

Income 69 np 038 .092 .008 .018

Health 69 nj .039 .041 -.10’ -.104 503 .495 -.005 ~.003

Sat Inc 71 ny .803 .831 . .176 .162
Times in Hospital .

70 ng -.002 =-.002 ~.048 -.047
Health 71 ng ' -.003 .004 443 432
B. Errors in Equatiousb

ns 672
ns .097 .013
ng .180 .163 2309
ny .689
ng .187 .275
C. Measurement Model
Error
"Factor Loadings"¢ Structured
ny ng- n3 ng ns ng ny ng
SAT69 1.00% «433
SAT71 1.00* .186 . 406
SAT73 1.00% .125 .169 <396
GET6Y  1.71 - 656
GET71 1.67 198 .633
GET73 1.67 .193 .148 -646
LIM69 1.00% 1.0
‘LIM71 1.00% . 0 1.0
LIM73 1.00 0 0 1.0
ouT69 1.02 .793
oUT71 .69 294 791
ouT73 .93 .194 <194 -755
PUB69 .87 664
PUB71 .89 .126 +697
PUB73 .88 126 126 2712
BOSP70 1.00% '
INC69 2.00%

NOTE: x2 = 2036.65; df =~ 99
& M = metric, S = standardized (8 and T matrices).

b vartables defined above. Entrfes on dlagonal are r2 statistice; off-diagonal entries are corre-

lated errors i{n equations.

¢ Cocfficlents for regression of observables on unmeasured variables. Asterlsk indicates fixed

coefficient (Ay matrix).

d sce text, page 33, for explanatioﬁ of these entrics.
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Turning to the effects of health on income satisfaction, we find a”
small biut significant eéffect of 1969 health on 1971 inédme satisfaction
and a much swaller lagged effect from 1969 to 19736 The 1971 heaith
measdre &ffect on 1973 income satisfaction 1§ also negligibis. On the
other 1and, ineome satisfactlon has a reasonably large effect on health,
both in the 1969-71 period and in 1971=73. Does the fact that income
gsatisfdction has a pbsitive effect on self-reported health indicate that
social and psychologic¢al well-being has an impact on hedalth, of have we
perhaps misspecified the model 1i some way? We will not pursue this issue
v here, except to note that we might try many other SPécificétioﬂé of the
modél inVoiving just thésé variables, to say nothing of other variaﬁlés
in the survey that refleéct events and states eatlier in the 1life cyele.

Looking at the ieasure of times Hospitalized, we find that it 18 only
marginally ptedictea by the 1969 health measure, that it has essentially
no effect on 1973 income satisfactison, and that it is very weakly related
to health in 1973. We have only a single indicator of hospitalization,
and previous research has shown self-treports in this area to be
notériocusly unreliable (Cannell and Kahn, 1968). Perhdps the minimal
effects are due to measuremient error, but even with more reliable
heasures it is uﬁlikeiy that we would find large effects.
| Panel B of Table 1 shows the error structure.of the causal part of the
models RZ for each équation 1s shown on the diagéﬁal of the matrix and the
off~diagonal élements are the correlations of disturbance terms for each
equationa Thé speclfication of correlated errors in this case 1is quite
simple; we have assumed that variables iot causally related (e.g.; Sat Inc

71 and Health 71) have correlated ertors (lnterprfetable as partial
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correlations between the two variables, net of exogenous variables), but we
have not Introduced correlated errors between, say, Health 69 and Health
71. To do so would reduce the estimated stability of the construct, but
since parallel.restrictions on Sat Inc 69 and Sat Inc 71 would probably
reduce 1its stabilility proportionally, there is no advantage in doing so. In
other words, correlated errors would add little substantive information,
gsince 1t 1s the relative stability of the constructs that interésts us.

The measurement model. Finally, Panel C of Table 1 shows the "factor

structure” of the measures. This matrix has been arrénged so that the
items indexing a particular construct are in adjacent rows. To the.right
of the factor matrix, under the heading “error ét;ucture," the error
correlations and item reliabilities of each block of indicators are
shown. Note that even though error variance of LIM, PUB, and OUT are
restricted to equality over time, the iteﬁ reliabiiities are not equal,
since the observed variance changes over time and reliability is defined

as true variance/observed variance.

SOME CAUTIONARY NOTES

Statistical Assumptions

The LISREL.model is extremely powerful, and as with most things in
statistics, one does not get something for nothing. In order to use the
model it is necessary to make an important statistical assumptilon, ﬁamely
that the data have a multivariate normai distribution—-éhét is, that
the joint distribution of the variables is normal. This assumption may be

relaxed in some cases, but they are beyond the scope of this paper. The



34

. ed8t of violating the assumption of multivariate normality is niot yet
known; thete is very little information on the fobustness of LISREL. For

the moment, one must be very eareful with skewed distfibutions.

Ident? fication

In LISREL 1t is possible to get solutions that are not unlgue; that
is, an entirely different set of parameters (indeed an infinite set)
‘might lead to the same estimates of the variance-covariance matrix of
observed variables. Such a model is sald to be underidentified. For
examplé, the clagsical factor andlysis model 1s utideridentified because
the solution may be rotated to a different set of loadings that implies
exactly tﬁe same set of interitem correlations. In CFA, one specifies
certain coefficlents to be zero, and undér certain conditiond these
restrictions are sufficient to identify the modeél s6 that it is not
rotatable: Any rotation would result in a different set 6f estimates and
a different fit of the model to the data, 1.e., a different value of
chli squares As Joreskog and Sorbom (1978) note, general rules for iden-
tification are extremely difficult to give. There are several carefully
worked out examples in the LISREL manual, but one needs to develop a feel
for the problem. LISREL checks for identification and will print a
message wheﬁ the model is underidentified, bdt the fdet that a solidtion
is reached is not an absolﬁte guarantee that the model is identifted.?
The identification problem"ig particilarly acute whén one is trying to
estimate feedback loops and/or correlated errors in equations, and névice

users should not attempt these specifications.



35

Starting Values

LISREL requires the user to provide a set of starting values, one for
each of the parameters to be estimated. 1In theory, the program should
reach a solution from any set of starting values; however, the transla-
tion from mathematical theory to actuallapplication requires particular
computing algorithms énd on occasion the program may "blow up” because of
bad starting values. In general, the program is more efficient the;
closer the 1nitial solution (i.e., the set of start values) is to the
actual estimates. Bad start values can lead to very costly and unsuc-
cessful attemnpts to fit models. In some cases,-the program will be
ﬁnable to proceed to a solutilon éiven the initial estimates. On occa-
sion, the initial estimates may lead the program to print a message indi-
cating that the.model is underidentified when in fact this is not fhe
case. Choosing good start values requires a clear understanding of the
various parameters estimated by the program and an intimate knowledge of
one's data. On rare occaslons the program may reach a "local”™ rather than
a "global"™ minimum in its attempt to reach a solution. As a precaution,

one should always reestimate final models using somewhat different starting

values.

Sample Size and Statistical Power

Our results for model 6 showed that -even with a fairly complex error

structure the model did not at all fit the data in the statistical sense
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(xz = 2037, df = 99). For any reasonably large sample size this will
almost always be the case. That is, it is almost impossible to find a
model which fits the data well, in fhe statistical sense, without intro-
ducing many more parametefs than are appropriate from.tﬁe standpoint of
par: imony and simplicity.lo Several authors have advanced criteria other
than chi square for asseésing the fit of the model, e.g., the ratio of
chi square to df (Wheaton et al., 1977), or examination of residuals. . As
Jbreskog has pointed out in numerous puﬁlications (e.g., Jaréskog, 1979),
it is the relative fit of models with which one 1s most concermed, that
is, changes in chi square from one model to another.r The likelihood
ratio (chi-square) statistic is extremely powerful and, particularly‘with
large samplé sizes, will detect even small departures from an exacf fit’
to the observed data. Thus, the analyst must be appreciative of the role
of sample size in éssessing the model. This problem is not unique to
LISREL, however; it is endemic in the social sciences, as Cohen (1969)

_has pointéd out.

SUMMARY

The purpose of this paper has been to aid researchers in the analysis
of longitudinal data, an issue especially pertinent to those engaged in
the study of aging. The LISREL model haé been presented as a par- |
ticularly powerful analytical tool. To summarize, it has allowed us to
theoretically order our medel to incorporate intervening variables, to
fix certain paths at zero, and to estimate the effect of this on the
model. An important point is that we are not forced to make the
assumptions that the vari;bles are measured perfectly, or that the errors

in wvariables are not correlated over time.
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Substantively, the relative agsessment of income shows a fair amount
of stability across time. However, this is not true of good health, and
leaves open to further investigation the question of the‘predictors of |
good health in old age. One of these factors appears to be concern over
income, as expressed by the relationship of relative income to health at
each time period. This appears to'incréase with the passaée of time.

The technique presented in the paper'should help researchers further
to test hypotheses about the effects of variables on one another through

time, thus disentangling to some extent the process of aging.
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NOTES

YIn addition to the réferences cited in the text, good iﬁtroductiops
to path analysis can be found in Duncan (1975), Kerlinger and Pedhazur
(1973), and Asher (1976). There are numerous Introductions to factor analy-
sis. Jne of the best is Rummel (1967). For an application of simple path

analysis to a problem in gerontology, see Henretta and Campbell (1976).

2The intervening variable could, of course, be treated as a time one
variable; that is, 1t could be simply correlated with Tl, rather than

causally related to. it.

3Corre1ated measurement errors can be seen as a speclal case of an

onitted variable.

4y factor may be defined by one and only one indicator; that i1s, the

"unmeasured variable"” is taken to be equal to the observable indicator.

5Many readers trained in classical factor analysis will be uncomfor-
table with the assumption that a factor can be defined by one or two
variables, adhering instead to the "rule"” that a factor must be defined
by at least three variables. There is no such "requirement” in CFA; the
only question is whether the model fits the data, an assessment which can

be made using techniques discussed below.

6These should not be confused with factor score coefficients, which

allow predictlon of the factors from observables.

7It may appear that something has been obtained here for nothing.
There are only two variables on the factor and one observable covariance
from which we have estimated two factor loadings and the corresponding

unique variance. This is possible only because we actually have six
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variables and three factors, from which we are estimating 14 parameters
on the basis of 21 entries in the observed variance—covariance matrix.

A more complete explanation appears below.

8These standardized values are not provided by the program and are
obtained by hand from the variances-covarlance matrix of errors in
variables. Before reporting LISREL's standardized results, be sufe to
check the formulae given for standardization in the LISREL manual because

in some cases they differ from conventional standardizations.

9For mathematical reasons too complex to go into here, the iden-
tification check 1s almost certainly accurate. Although the program will
catch all underidentified models, it will, on occasion, report that a
model 1s underidentified when In fact it is not, due t0'§térting values

(see next section of text, "Starting Values").

10This'phenomenon is by no means unique to the LISREL model. Social
sclentists rarely acknowledge the role of statistical power in their
decision-making. See Cohen (1969) for an excellent discussion.of this

polnt.
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APPENDEL A

- Observable Variables dand Unmeagured Constructs

Satisfaction with Incoiie is an uniieasured comstruct with two fndicators:
1. SAT69, SAT7I, SAT73
Aré you satisfied with the way you are living?
= More than satisfied
- Satisfled

Leéss than satisfied
Very unsatisfied

S SRS
||

Ability td:get alorig on iricoiiie

Always have money left over

= Have enough with a Iittle Ieft over sometimes
- Have just énough, no Mere

Cad't ake ends meet

- i

I8

Health 1s¢ an unnédsured construct with three {rdicators:
i, wLiMeY, LIM71,; LIM73
Does Health limit the kind of work you do?

No
Yés

'S

2
1
2; OUT69, OUT7i, OUT73

A¥e you able t6 léave the house without help?

3 = No Iidifitdtion
2 = Yes, though health limits work, can leave house without help
1 = No

3. PUB69, PUB7l, PUE73
Are you able to use public transportation without help?

No limitation

Yes, though health limits work, can use public tranSporta~
tion without help

No

3
2

(.t

1

Nunber of times in hospital (HOS70) is measured with a single indicator.

1969 household income (INC69) is a single indicator of log income
from all sourcés
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Table A.l. Variables, Means, Standard Deviations, Variances, and Correlations

SAT69
GET69
INC69
LIM69
oUT69
PUB69
SAT71
GET71
HOS70
LIM71
oUT71
PUB71
SAT73
GET73
LIM73
0UT73
PUB73
Mean

SD
Variance

SAT69

1.000

0.535

0.327

0.282

0.213
.0.221
0.445
0.419
-0.039
0.238
0.160
0.175
0.361
0.374
0.199
0.122
0.128
2.781

0.687
0.472

GET69

1.000
0.436
0.298
0.229
0.237
0.411
0.590

~0.041
0.244
0.171
0.177
0.363
0.521
0.237
0.146
0.153
2.451

0.951
0.904

INC69

1.000
0.236
0.201
0.211
0.290
0.401

-0.020

0.195

0.153
0.159
0.233
0.356
0.168
0.126
0.128
8.531

1.086
1.179

LIM69

1.000
0.882
0.833
0.229
0.262

-0.102
0.543
0.419
0.413
0.196
0.245
0.459
0.313
0.308
1.661

0.473
0.224

0UT69 PUB69 SAT71 GET71 HOS70 LIM71 OUT71 PUB71 SAT73 GET73 LIM73 OUT73 PUB/3

1.000
0.741
0.173
0.208

-0.074
0.462
0.393
0.375
0.166
0.198
0.392
0.292
0.279
2.663

1 0.534
0.285

1.000
0.185
0.211
-0.079
0.449
0.367
0.379
0.158
0.207
0.390
0.279
0.284
2.710

0.485
0.235

1.000

0.522

-0.077

0.263

0.196

0.198

0.428

0.408

0.214

0.141

0.143

2.803

0.715
0.511

1.000
-0.070
'0.276
0.216
0.217
0.412
0.582
0.236
0.159
0.160
2.508

0.961
0.924

1,000
-0.191
-0.158
-0.162
~0.049
~0.069
-0.144
-0.111
-0.104
0.156

0.487
0.237

1.000
0.888
0.833
0.216
0.233
0.502
0.385
0.376
1.636

0.481
0.231

1.000

0.779

0.170

0.185

0.428

0.382

0.366

2.679

0.513
0.263

1.000

0.172

0.186

0.418
0.370
0.3i1
2.699

0.511
0.261

1.000

0.507

0.246

0.195

0.189

2.780

0.698
0.487

1.000
0.277
0.215
0.214
2.465

0.925
0.856

1.000

0.886

0.833

1.578

0.494
0.244

1.000

0.807

2.660

0.512

0.262

1.000
2.672

0.523
0.273

%
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APPENDIX B

A Primer on LISREL Notation

Mﬁnyfotherwise well-motivated readers of the LISREL literature are -
put off by its complex notation. All told, there are eight separate |
mét:ices'to Kéep track of, each with its own Greek letter, and severalv
other‘Greek letters 'are used for other purposes. The purpose of this
appendix is to try to organize this notation so as to make it easier to
Iear&. |

1. .The notation diétinguishes between exogenous and endogenous

variables on: the one hand, and between unobserved constructs and °
observable variables on the other. The tabulation below showst

the notation-.

Observed Variables Unobserved Variables
Exogenous X £ (xi)
Endogenous Y- n (eta)

In Figure 5, the unmeasured: income satisfaction measure at time 1
(Sat Inc'69X‘would thus norﬁally be' designated by § (xi), aé would
Health 6?. The measured indicators of these variables would be |
~designated withathélletter X to indicate that these variables are
exogenous——that is, no paths lead to xi+ from other variables in
the modél. ~Income 69 has a1single:indiCat6r.';Nonetheless, we
_disginguishubet§Een the%unmeasufedxCOnStruét () and its indica-
tor (X)-. Sat‘ihc 73, being;endogenous, would be designated by n

(eta) and its indicators by Y.
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The notation distinguishes between the causal or structural
equation part of the model and the measurement part. The causal
part describes the relationships among the unmeasured variables;
the measurement part concerns the relationship of the unobserved
variables to the observables.

A. The Measurement Model

Ay (lambda Y) and A, (lambda X) contain the coefficients linking
the observable y's and x's to the unobservable n (eta) and
£ (Xi) respectively. These are regression coefficients in the
sense that they give a predicted value of Y or X from the unob-
served factor. Fach column of the matrix is for an unmeasure&l
variable, eaéh row for a measured variable.

0. (theta epsilon) and Og (theta delta) contain the errors of
measurement for predicting the observables from the factors for
éndogenous and exogenous observables respectively. Each matrix
has as many rows and columns as there are observables.

B. The Structural Equation Model

P‘(gamma) contains the effects of exogenous unmeasured (&) (xi)

.variables on the endogenous (n) (eta) variables. Each row of the

matrix corresponds to an equation and each column to an exogenous

variable.

B (beta) contains the effects of endogenous unmeasured (n) (eta)
variables on other unmeasured endogenous variables. There is one
row for each equation and one column for each unmeasured endoge-

nous variable.
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-® (phi) contains the covariances of the unmeasured exogenous
variables. It has rows and columns equal to the number of such
variables.

¥ (psi) contains variances and covariances of errors in equations
or the amount of variance unexplained by the causal model. There
is one row and column in this matrix for each equation.

Note: With one exceptiom, the individual éntries:im a particular
matrix are designated by thelfr lowercase coumterpart; e.g.,
an entry in I d4s v. The exceptiom ds ¥, where specific
entries are designated ¢ (zeta).

3. The "ail YY" model |

LISREL allows correlated errors at measureément among X and ¥
(exogenaus and endogenous) variables, but not between them; e.g.,
it requires that ®¢ and Oy are independént. One can avoid this
restrictiion by defining am "all Y, no X".model, which was done. here
for figures 5 and 6, thus permitting correlated errors at

measurement between exogenous and endogenous comstructs.
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