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ABSTRACT

Parallel preference structures are characterized by indifference
surfaces that.are identical in éhape and scale, each being a translation
of a basic surface along parallel income-consumption curves. The purpose
of this paper is to discuss the properties of parallel structures and
their potential usefulness in models of labor supply and commodity demand.
Limited applications in production analysis are also discussed but are

not the primary focus of the paper.




PARALLEL PREFERENCE STRUCTURES
IN LABOR SUPPLY AND COMMODITY DEMAND:
AN ADAPTATION OF THE GORMAN POLAR FORM

INTRODUCTTON

Parallel preference structures are characterized by indifferencé
surfaces that are identical in shape and scale, each being a translation
of a basic surface along parallel income-consumption curves. The purpose
of this paper is to discuss the propertieé of parallel structures and their
potential usefulnesé in models of labor supply and commodity demand. Limited
applications in production analysis are also discussed but are not the
primary focus of the paper.

In their most tractable form, with linear income-consumption curves,
parallel structures are a special case of the Gormap Polar Form [14, 15].l
A suitably parameterized cost or expenditure function for a linear parallel
structure provides a secon& order point approximation to .an érbitrary
general cost or expenditure function. By that criterion, a variety of
simple versions of the parallel structure are on roughly equal footing
with other flexible functional forms employed in recent demand, production,
and labor supply research (see, for instance, Christensen and Greene [5],
Christensen, Jorgenson, and Lau [6], Christensen, Jorgemsen, and Lau [7],
and Wales and Woodland [22]). Parallel structures are quite distinctive,
ﬁowever, in their global properties which render them potentially very
useful in some applications ana pateﬁtly inappropriate in others. Within
the domain of potentially suitable applications a variety of forms of the
parallel structure may'be employed to tailor the model to the requirements

of a particular problem.




The most distinctive global property of parallel structures is that
the substitution characteristics are the same, in absolute magnitude, at
all levels of utility or of production. 1In a production context, it is
unlikely that such a structure would accurately represent technology at
three units of output and at three million. By contrast, for a labor supply
model, in which the time endowment is fixed regardless of utility level,
the parallel model may provide a very good representation of income-leisure
preferences. Approximate versions of the linear parallel structure have in
fact been employed in two labor supply studies by Ashenfelter and Heckman
{1, 2]. The generally tenable results of those studies provide encouragement
for further implementation of parallel structures in labor supply research.
Interpretation of the Ashenfelter-Heckman models in terms of the parallel
model also indicates a need for slight revisions in their interpretation
of parameters and in the resulting estimation restrictions.

The constancy of absolute substitution characteristics is clearly a
restrictive feature of parallel structures, but it is a source of flexibility
~in other dimensions. The substitution characteristics are parameterized as
a separable portion of the functional form and can easily be adapted to the
needs of a particular problem. For this purpose, numerous second order -
parameterizations are available, each with different global substitution
properties. Yet more general functional forms may also be employed if
necessary. This flexibility in the parameterization of substitution effects
recommends the parallel model for applications in which there are large
variations in relative prices, a characteristic frequently encountered in

labor supply models.



In other applications, nonlinear versions of the parallel structure
can model.flexible income effects while maintaining independent flexibility
of substitution charactéristids. For example, nonlinear parallel structures
provide possible models for the study of demand for goods that are normal
and inferior in different income ranges.

The organization of the remainder of the paper is as follows. In
- section I, fhe fuﬁctional form of thé Géneral Parallel Séfucture is presented.
Linear parallel structures are presented as a special case and a variéty
of specific forms gre shown to be second order point approximationé to the
cost function for an arbitrar& structure. The mére extended substitution
characteristics of the alternative forms are discussed and compared.
Estimation forms for linear and nonlinear parallel structures are presented
in section II. The interpretation of the Ashenfelter-Heckman model in
terms of the parallel.model is presented in section III together with a
brief discuésion of applications of the parallel model té labor sgpply.

A brief summary and concluding remarks are presented in section IV.

I. PARAMETERIZATION OF PARALLEL STRUCTURES

A general parallel preference structure may be parameterized in terms
of its corresponding expenditure or cost function in the form
(1) C(u, p) = I p, £ (u) + A(p)
qo i 71
1=1
where u is a utility index and p is the N x 1 vector of prices, The cost
function must be concave and positively linear homogeneous (PLH) with respect
to prices and increasing in u.2 These conditions are alwvays: fulfilled if

A(p) 1s a concave PLH function, and the fi(u) are continuous positive non-




decreasging functions.3 Some of the fi(u) may be decreasing functions,
corresponding to inferior goods, but in such cases C(u,p) will be increasing

N

in u only in the price domaln for which L p fi(u) > 0, assuming that
i=1

the fi are differentiable.

The characteristics of parallel preference structures are more easily
visualized by considering the cofre3ponding vector of Hicksian demand
functions (or derived demand functions). As shown by Hicks [16] and noted

by Hotelling [17] in a production context, these functions are simply

the price derivatives of the cost function.
(2) X = &®u, p) = Vp Clu, p) = £(u) + ¥(p)

The gradient vector VPA(p) = ¥(p), with elements wi(p), defines the compén-
sated unit dem#nd functions that are identical at all levels of utility

but for systematic translation through consumption space. This set of
demand functioné may also be thought of as providing a parametric definition
of the basic indifference surface. The vector function f(u), with elements
fi(u), parametriéally defines the basic income-consumption curve (ICC)

that is the locus of reference points for successive sets of unit demand
functions, e.g., the ICC for prices p_ at thch W(po) = 0. The ICC for

any other set of prices is parallel to the base curve, displaced by the
vector ¥{p). A simple two-dimensional example is illustrated in ‘Figure 1.
Note that some (u, p) values may imply optimal consuniption poilnts outside
the positive orthant and thus correspond to corner solutions for one or
more goods. Discussion in this paper is limited to interior

solutions,



-
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FIGURE 1: A Parallel Structure




If deemed appropriate in a production context, the derived demand
functions (2), with output, Q, substituted for u, may be parameterized and
estimated dire.ctly.4 Further transformations are necessary if the nonlinear
parallel preference model 1s to be estimable in a consumption contéxt in

which u 1s not obgervable. We return to the latter case below after con-

o

sidering the more tractable linear form.

Linear parallel structures have linear income-consumption curves
parallel to a basic ICC defined by the functions fi(u) = Gih(u). The
expenditure/cost function has the form (3).

N
(3 G(u, P) = h(u) I &;p, + A(p)
- =1

This is a special case eof the cost function for the Gorman Polar Form (4).
(4) €(u, p) = h(u) N(p) + A(p)

The Gorman Polar Form (4), with II(p) taken to be any concave PLH
function, is the most general formulation of models having linear income-
consumption curves. It isalso the most general model of individual preferences
that yields a globally consistent aggregate preference function that is
independent of the distribution of income. Blackorby, Boyce, and Russell
[3] discuss several special cases of the Gorman Polar ¥Form. They
characterize linear parallel structures as "Homothetic to Minus Infinity,"

following Pollak [20} and Chipman [4].

The linear parallel expenditure function may easily be parameterized
to provide a second order approximation to an arbitrary general cost/
expenditure function. Such an approximation, in the Diewert sense of

matching first and second derivatives at the approximation point, follows



from the chqice of suitably flexible forms for A(p) and h(u). The
restriction that A(p) must be linearly homogeneous rules out direct use of
forms, such as the quadratic or transcendental logarithmic functions, that
are based on Taylor expansions.5 A convenient modificatipn that permits
the use of this class of flexible forms involves simple deflation and pre-
multiplication bf the price of a numeraire good. The deflated unit cost

function may then be expressed as a flexible nonhomogeneous function of

the remaining N~1 normalizéd prices, pi* = pi/pl, where the first good
is chosen as numeraire.

The general form for the normalized second order parameterization
of the Linear Parallel model, with the first good as numeraire, 1s shown
in Table 1 together with its first and second derivatives. The Ti(pi*)
represent increasing concave transformations of pi* with concinUOus
derivatives denoted.T% and Tii. (Arguments are omitted to conserve space.)
The Bij are symmetric parameters and the functional notation, ¢i(u, p)
and Sij(p)’ sefves to facilitate subsequent discussion of the Hicksian
demand functions and the substitution effects respectively. The general
costlfunction is PLH in nominal prices and is concave in thevdomain for
which thé Hessian matrix with respect to prices is negative semidefinite.

At any given approximation point a general cost function may have
arbitrary first partials (the price derivatives determining the level
under linear homogeneity) and afbitrary second partials involving u.
Homogeneity and symmetry restrictioﬁs leave N(N-1)/2 arbitrary second
partials with vegpect to price. The‘parameteriiation Tl.1l accommodates

any set of such values. The N+2 first and second partials involving u,




T1l.1

TL.2

T1.3

T1.5

T1.8

T1.9

T1.10

TABLE 1

NORMALIZED CENERAL TAYLOR SERTES PARAMETERIZATION
OF THE PARALLEL LINEAR MODEL

N N . N N -
Clu,p) = pyth(w 2 & ph+oy+ % o, T +1/2 & & Byy T 1)
1=1 1=2 1=2 §=2
N
3C/3u = h'(u) L §, p
TR
. N
s%c/ou? = 1" (W) L 8 b,
1=1
GZC/auapi = h'(u) 61 £ = 1....N
¢1( ) = 3C/ap, = hiu) §, + a Ti+§BT1TJ 1=2....N
u, P pi i i i j=2 ij i sev s
N N N
1 . . 1 * i \ E N UL T
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N
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N
- 2 2 - -1 *2 1 E ¥ *2 1 l ok " { .J
8,1(P) 3 C/Dpl Py [152 ey Tyt vz % l”.“(pt Ty Tty Py T, r.l”
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_deterﬁined as a budget résidual, ¢l =

together with equations T1.2-Tl.4 determipe the Gi and the slope and cur-

vature parameters for h(u). Equations T1.5-T1.7 and T1.8 for i1 < j then.

form a set of N(N+1)/2 linear equations for the determination of the N

parameters oy and the N(N-1)/2 independent Bij' This completes the approx-

imation since the second order derivatives with respect to the numeraire

(T1.9, T1.10) are fully determined by the above parameters. There is one

remaining degree of freedom that may be resolved by the choice of an initial

level for the utility index h(u).
The flexibility for point approximations of the normalized Taylor

‘series parameterization does not depend on the particular choice of

numeraire. The model is thus essentially equivalent in this respect to

other flexible forms, such as the Transcendental Logarithmic Cost function.
In contrast with many familiar flexible forms, however, most versions of
the parallel linear model exhibit global properties that are asymmetric

between the numeraire and the remaining goods. An intuitive interpre-

tation of this asymmetry is that N-1 of the Hicksian demand functions (T1.5)

are essentially freely parameterized, while that for the numeraire is

N ,
=1 (C- I pi¢1). Although the

p ‘o
asymmetry is mnot itself a selling ﬁoini of th;—;odel, it allows for
greater than uéual flexibility in parameterizing extended substitution
characteristics between specific pairs of goods. This flexibility may
prove pafticularly useful in empirical applications in which a subset of
prices displays broad yariation.

The~comparativefproperties of alternative parameterizations may

be illustrated by selected examples. Three straightforward normalized

parameterizations are the quadratic, with Ti(pi*)= pi*, the generalized
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linear, with Ti(pi*) =A(pi*)1/2, and a modification of the transcendental
logarithmic form with Ti(pi*) = ln(pi*).6 Perpetuating a tradition of
niﬁble nomenclature, we will refer to the latter form as the "Parallel
Linear Asymetric Transcendental Semilogarithmic" or !'PLATS" model, with

similar acronyms, "PLGL" and "PLAQ," for the generalized linear and asym-
metric quadratic models.-

Cost functions for the three representative parameterizations are
shown in Table 2 along with the Hicksian demand functions and substitution

effects for goods other than the numeraire. For simplicity of notation

and interpretation, p; is set to unity so that the functions are expressed
only in normalized prices, pi*. The contrasting properties of the three
parameterizations are most transparent in the forms of the cross substitution
effects with respect to normalized prices. For PLAQ, a given absolute
compensated change in pj‘results in a constant change, Sij’ in consumption
of good (i). Under PLATS the cross substitution effect is inversely
proportional to both Py and pj. A given proportional change in pj, with
Py and u constant, yields.a constant absolute change in Xgs with the
magnitude of the change also inversely proportional to the level of Py*

The PLGL form represents an intermediate case, with the cross substitution
effects proportional to the inverse square roots of the relevant normalized
prices,

The properties of the different forms are‘also evident from the
Hicksian demand functious, ¢i, viewed as parametric representations of
indifference surfaces. For this purpose we focus on the functions,
wi(p*) = ¢i(u, p*) - H(u)&i, the price sensitive components of the compen-
sated demand functions which are independeﬁt of the level of utility in a

parallel structure. Figure 2 shows representations of indifference surfaces



11

TABLE 2

REPRESENTATIVE FLEXTBLE PARAMETERIZATIONS OF THE
PARALLEL LINEAR MODEL

A, ASYMMETRIC QUADRATIC PARAMETERIZATION; "PLAQ"

N . N . N oW .
T2A.1  C(u, p*) =h(w) & $ p, +a, + L a,p, +1/2 £ £ s, p P
e St T S tm2 juz 13717

N

1 * * y * .
TZAiZ " (u, p) = BC/Bpi = h(u) 61 + ay 4 sz Sij pj i =2.,..N

* 2 kA
. =| B e 1, = 2.,
T2A ? sijgp ) = 3 c/apiapJ sij J N

B, GENERALIZED LINEAR PARAMETERIZATION; "PLGL"

N H N N
* * * \ * oxq
T28.1 Gu, p) = () Lo pyta + Lo pPel2 §ox By (e 7)) /2
ful 1=2 1=2 J=2

; N
* x *_1/2 *_1/2 *1[2
128.2  l(u, p') = 9c/3p; = h(w) §, + 1/2 a p 20002 8 Byy Py Py 1m2..,.N

i=2
) N
* 2. %2 *-3/2 *-3/2  *1/2
T28.3 s (p) = 37C/3p, " e - Uh(my p, T 4 j’jz Bygpg 7Py )
3
-1/2 1, = 2.00eny 1o

* 2, ko % Xk
T2B.4 Sij(p ) =3 L/apiapj 1/4 Bi] (Pi PJ)

C. ASYMMETRIC TRAMSCENDENTAL SEMILOGARITIMIC PARAMETERIZATION; “PLATS"

. * N » N * N N * X
T2C.1 C(u, p ) = h(u) ¥ 61 Py + @+ L ay in Pyt 1/2 T I Y, fn Py fn p
1=1 1=2 =2 juz 4 J
i * * *_]1 N *
T2C.2  ¢"(u, p ) = 3C/3p, = h(u) &, + p (o, + I vy, np,) 1 =2,.,.N
1 1 t Ly 3
12¢.3 . a2c/api2 *2 - n p 2
. sigp) ¢lopy T CTEEI O j;z iy *n pJ) . L= 2....0

* 2 XA .
T2C.4 Sij(p ) = 9 C/szapj ® Y“(p1 pJ) ! L, »2.00.N; 1 4}
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implied by each of the parameterizations for two cases of a three good
model. The models are matched in theilr point approximation properties
at the unit price equilibrium shown as the zero point of the figures.
The own substitution effects at the approximation point arc identical in

all cases with 522(1, 1) = -3 and s,,(1, 1) = -2, The cross substitution

33
effect, 373(1, 1), has values +1 and ~1 for cases 1 and 2 respectively.

The figures show projections on the x,, x. plane of indifference loci with

27 73
pz* variable and p3* constant at 1/4, 1, and 4 (dashed lines) and similar
loci with p3* varlable and pz*’fixed (solid lines).
| Under the PLAQ pgrameterization, the wi(p*) for 1 = 2....N are

simple linear functions of the normalized prices while wl(p*) is quadratic,
in keeping with the asymmetry noted earlier. The projections shown in
panel A are linear, while projections in the(xl, x2) or (xl, x3) planes
would be parabolic.7 This implies satiation effects for all goods other
than the numeraire. The finely dashed lines represent zero price indiffer-
ence loci marking satiation levels. Larger values of the own substitution
effects imply wore gradual curvature of the parabolic loci and more gradual
onset of satiety.

The normalized generalized linear parameterization, by contrast with

the others, is not asymmetric with respect to the numeraire. The unit cost

function of the PLGL form in nominal prices is in fact equivalent to the

8

symmetric Generalized Leontief form (Diewert [12]). The indifference

loci between any pair of goods are hyperbolae. When all cross substitution
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effects are positive, the GL structure is well behaved over a broad domain.
A zero price implies infinite consumption of that good, so there are no
éatiation effects. On the other hand, the absolute values of substitution
effects decline at high price levels so that there are asymptotic minima
for consumption of all goods at amy given utility level. The acceptable
domain of the GL structure is more limited if any of the cross substitution
effects are negative, representing complementarity of pairs of goods.

The boundary of the acceptable range of the GL Iundifference surface is

9

indicated by the dashed lines for p,* = 16 and p2* = 9 figure II B 2,

3
‘The indifference surfaces for PLATS are asymmetric, like those for
PLAQ, but are notably less simple. The inverse price proportionality in
the substitution effects 1is stronger than the CL ﬁodel and, as in that
model, rules out satiation effects and implies @inimumAconsumption levels

for any given utility level. The global characteristics are also dependent

on the positlon of the approximation point, with the a

1 and the Yii jointly

determining the position and the own substitution effects. The solution
shown, with 0, = 3, a, = 2, and Y22 = Y33 = 0 yields the simplest structure.
The acceptable domain is limited, whatever the signs of cross substitution
effects, with nonconcavity resulting from combinations of high prices

and negative Yij or low prices and positive Yij' The boundaries shown in
the figure are outer limits beyond which no combination of prices yields

a concave cost function. Combinations of finite prices yield nonconcavity
within the boundary as indicated in the figure by the intersection of

loci with pi* constant at different values. These properties indicate that

. 1
care is in order in the use of the PLATS parameterization. 0
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The general form of the asymmetric Taylor series expansion of the unit
cost function (7) permits mixing of transformations. For example, if satiation

effects are appropriate for some goods and asymptotic consumption minima for

others, the Ti(p:) can represent linear or square root terms as appropriate,
Clearly, a large number of alternétive transformations could be incorporated
iﬁstead. Selective additions to the Taylor series form also provide useful
flexibility. ¥or instance, the addition of linear terms in p;(ﬂnpz - 1) to

the PLAQ form introduces inverse price terms in the owﬁ substitution effects and
climinates satlation effects while maintaining the simple regﬁlarity of cross
substitution efﬁects that is characteristic of that form.

With the exception of the PLGL form, the parameterizations discussed above
have global properties that are asymmetric with reépeét to the numerailre. ‘Such
asymmetry is a disadvantage 1if one wishes to represent a complete and inherently
symmetric demand system, In frequent épplications, however, research attention
is focused on a specific set of related goods, and it may be appropriaté to treat
all chers as a'ﬁicksian composite.‘ In such cases the composite may be chosen
as numeraire, and relative changes in its consumption will often be smail

enough so that the global asymmetries are inconsequential.

IT. ESTIMATION FORMS FOR PARALLEL PREFERENCE STRUCTURES

Hicksian demand funcfions ére not empirically useful in a demand theory
context because utility is ﬁot.directly measurable. For the case of linear
parallel structures, ho&ever,‘conventional demand functions are easily derived
By way of indirect utility functions, using Roy's Identity (Roy.[21]). ‘Anbin—
direct utility index, V(ﬁ/y);'is obtained by simple inversion of the qost'fuhc_

tion in h(u), letting h(u) be the identity function and recalling that income, .y,
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equals expenditure, C.

(3 V'M = h) = L=20)
¥ X Gipi

Roy's 1dentity then vields the conventional demand functions (6).

2V/3(p, /) s,y - A1

g = &5/ = oy AG T T ey v i=1..0

(6)

The demand functions (6) are nonlincar but are reasonably tractdble as
estimation forms. Unfortunately, demand functions of this form cannot be de-
rived for nonlinear parallel structures because the cost function cannoﬁ be
inverted in u. For such cases we insteadvderive a set of demand relationships
in which the numeraire good provides the tasis for a real income index.

The real iucome index Is obtalned by ilnversion of the Hlcksian demand

function for the numeraire good, (2, 1 = l).]l

M u= £ g - 0 )

Substitution into the vewaining N-1 Hicksian demand functions then yields a

set of demand relationships in terms of the observables Xy and p.
-1 1 i
(8) g = Bz, p) o= £ E7 (xg -0 (p)>J + 7 (p)
1 i | ,
=g, (xy =~ 7)) + V) i=2....N

The modified Hicksian demand functions (8) have a particularly simple form in

the linear case, for which the gi(') = fi(fil(-)) are simple multiplicative

Sa
factors, gi(u) = /}51 u = Diu.
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9 % =clg, ) = DX - W) + i) L= 2N

The form (9) is linear in the endegenous variable, Xl’ but does involve cross
produc;s between tﬁe Di,and the substitution parameters in Wl(p). This form is
the basis for our discussion of the Ashenfelter-Heckman model in section III
and will be'referred to as the Generalized Ashenfelter Heckman (GAH)
estimation form.
In nonlinear parallel forms the functions gi(') may be pafameterized
to allow for tﬁe desired curvature of income-consumption curves. In d;der to
visuvalize this parameterization, it is useful to note that the argument of the
gi functions, (xl - wl(p)), may itself be interpgeted és'a real income or |
utility index. The index, U* = %X -IPl(p), orders succéssiVe indifference sur-
‘faces by thé level of the ﬁumeraire good at which each surfacg intefsects the
basic income—consumption curve, denotéd ICCO. The hasic curve corresponds to the
frice vector p_ at which all‘thelbi have value zero.12 The functions gi(U*)
for 1 = 2...N then brovlde a parametric description of ICCO and other curves are
parallel, displaced by the veétor Y(p) = [wl(p)]. |
The functions gi(U*) wmay be one-parameter transformations such as
kiﬁn(U*) oy ki/ﬁg, or they may inyo]ve as many parameters as are necessary
to allow for”the desired flexibility of income effects. Polyncmlals in
simple transformations appear to be good candidates, as do linear spline

functions. A number of other forms are suggested by Lau and Tamura [19].

III. THE ASHENFELTER-HECKMAN EMPIRICAL MODEL AS A PARALLEL STRUCTURE

The empirical labor supply models estimated by Ashenfelter and Heckman

([1,:2]) specify that each spouse's labor supply, (Ri’ for i=m, f), is a linear:
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function of wagg rates, W, and total family income, F. Family income, F, inter-
preted as a Hicksian composite of all market consumption,is the numeraire good

in the model and the other prices, Wos are deflated by the price of market

goods. The A~-H two-worker model (1974), translated from deviation form, is

shown in (15).

(10) Rir—-Ro+BIF+S+imwm+S+ w i=m,f

if °f

Superscripts, T, are added to the paramcters BT, and Sijf to indicate
that, while related, they are not generally equal to conventional income and
substitution effects as they were identified to be in the Ashenfelter-Heckman
analysis. As is charactervistic of labor supply models, the expected signs
of income and substitution parameters are réversed from those in demand mcdels
because labor is the additive complement of the good, leisure.

The labor supply relationships (15) have the same basic form as the
modified Hicksian demand functions (14). The parametric form of the func-—
tions is overly astere for a multigood model, however. If a parallel
structure were to have the A-H form, it would require that
¢+1.= (wi - Diwl) = rio + S:m wm + SIf Ve where wTi is defined for notational
simplification below, and i = m,f. The required equalities can hold over
a range of wage rates if rhe Di’ and hence the income effects, are equal
to zero. In this.special case w+i equals mi, and its derivatives S+

ij

interpretable as substitution effects. If income effects are not zero,

are

however, the Sij are not substitution effects, and the parameters must
satisfy other substantial restrictions‘if the inﬁerprétation‘in terms of
parallel structures is to be maintained.

The converse of the above interpretation may be established by solv~

ing the A-H supply relations (10) to obtain conventional supply functions.
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The budget constraint, F = W Rm + We Rf + y, is the additional equation

necessary to solve for thé Marshallian functions (1lla, b) with arguments

w , W, and exogenous nonwage income, y.
m

f

¥ | Jmn £
+1 B i wmlp + w fxp + y]
.l.

+ F
wo- Bf wf

1
<

(11a) Ri(wm, Ve y) = L5
mm

(11b) F(w 5 We, y) =

The income and substitution effects for labor suﬁply then follow by
direct differentiation of the supply function and application of the

Slutsky equation,

BRi _ ~ Br/(l _ B' _ B.,.w )
(12a) Ty T 4T et T TETE
aR Bt-(w ST. + W S'ri) i = m’f
y =g, (v, w.) =258, + i m mj £ f] .
(l2b) r)w | iJ m! f B ij I" + J _ m’f
. j u 1 —-Rw - By . |
: mm Ff

The substitution and income effects are, in gencral, functions of

f. and Bi as parameters. If the absolute income effect

wage rates with the SjJ

is very small, as, for instance, in demand applications to a small sector

of the budget, the difference between the functions and the parameters
nay be negligible. In the labor supply casc, however, the differences are

t 'and'ST

of the order of 30%. Furthermore, equality of the parameters § ¢ p
' S S ! n m

is not sufficient for satisfaction of the symmetry condition and global

symmetry is not generally possible.l
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The A-H parameterization can provide a good local approximation if
estimated under symmetry restrictions based on the eipressions (126)
evaluéted at mean wage values. The local properties of tﬁe model appear
to be appropriate to the Ashenfelter and Heckman empirical application to
aggregate data [2], and it is reasonable to expect that the generally

plausible nature of their results would be maintained under revision of

the symmetry restrictions.

F +

The A-ll parameterization for one worker, R = Ro +BF +S w; 1s

globally consistent with utility maximiz;ation.14 The substitution effect,
s(w) = ST/(l - B+w), varies slowly with the wage rate and in many appli-
cations is inconsequentially different from a constant. The A-ll para-
meterization has the virtue of a very simple estimation form while a model
with a strictly constant substitution effecé (PLAQ) would entail nonlinear
paramcter constraints. Additional flexibility of the extended substitution
propr:rtlies, without sacrifice ofrthe tfactable estimation form could be C
gained by substitution of a transformation T(w) for w in the A-Il one-worker

model. The substitutlon effect T'(w)/(1 - BTw) would then refllect the

essential characterlistics of T'(w).

The empirical results obtained by Ashenfe%ter and leckman for their
one-worker model are theoretically consistent and quite plausible. Theue
results generally support the applicability of the parallel
model, but the restrictions of the model are acéepted as untested assﬁmptions.
This author [8], [10] tests these assumptions usiné é one-worker médel
that allows for nonparallel ICCs and higher order flexibilit& iﬁ the
substitution properties. The results, for a select sample of prime-age

males in labor-supply equilibrium, are supportive of the general phrallel
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model and further suggest that the A~H parameterization of substitution
properties is as good as any alternative within the range of the:data.

The A-H form,»likeltﬁe PLAQ form, implies satiety with leisure at consump-
tlon levels not far removed from the mean equilibrium. While thase impli-
cations could not be rejectad for a select samplg from the_priﬁary labor,i
force, general acceptance of these implications should await the outcome
of more powerful tests. Overall, currently available evidence encourages

further estimation and testing of the parallel preference model in labor

supply applications.

IV, CONCLUDING REMARKS

In this puiper we have discussed the properties of parallel preference

and production structures. These struc;drcs are distinguished by indiffer-
ence surfaces or isoquants that are absolutely homothetic; that is, they
are the same shape and scale at all levels of utility or production. The
full structures arc generated by translation of these identical su;faccs
along paraliel income consumption curves (or.expansion'paths) which may be
either linear or nonlinear. Linear paralle; forms constitute a subclass

of the Gorman Polar Form and share the desirable aggregation properties

of ﬁhat form. Linear parallel forms also lend themselves to flexible'
ﬁarameterization in that they can provide a variety of second order point
approximations to an afbitrary general»étructure. The:nonlinear parallel
model allows for greater flexibility over a range of ifucome or output.

The nonlinear.model is directly estimable in a production context but

requires the endogenous GAH estimation form in utility applications.
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The absolute homotheticity of parallel structures, on the one

hand, is a significantly restrictive feature, but, on the other, it under-
lies the particular tractability of this flexible form. The substitution
characteristics and income responsiveness are specified as separéble
portions of the cost or expenditure function for a parallel form, and
the characteristics of each may easily be tailored to the demands of a
particular application. The independence of characteristics may also
make parallel forms useful as a pedagogical tool. In empirical appli-
cations, flexible parallel forms are likely to be more useful in small
systems where there is interest in the details of demand for interrelated
goods rather than in large systems defined over broad aggregates.

The restrictions implied by absolute homotheticity appear to be
quite appropriate for applications to models of individual and family labor

supply. These restrictions have been supporﬁed by statistical tests in

one study by this author. The two studies by Ashenfelter and Heckman [1, 2],
based on approximations of the parallel model, have also yielded plausible
fesults. A variety of applications, including testing of the multiworker
model, testing for curvilinear ICCs, and the incorporation of random
parameters, hold promise for future work.

A potentially useful property of the parallel model in a production
context 1s that the PLAQ parametecrization has an explicit dual in closed
form (Dickinson [11]). Thié provides a tool for testing of the cost
minimization assumptions that underlie estimation of derived demand systems.
However, the absolute honmotheticity of the model would limit the appli-

catinn to a small range of output unless the substitution effects are
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limited or nonexistent, as in the Lau and Tamura model [19]. As noted at the
outset, such limitations are characteristic of the parallel model, but

within the domain of suitable applications the model shows promise.
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NOTES

lW. M. Gorman [14, 15]. For a recent extensive discussion, see

Blackorby, Boyce, and Russell [3]. The relationship to the Gorman
ﬁodel, which markedly simplifies the presentation of the parallel model,
was pointed out to the author by Robert Pollak and by an anonymous
referee.

2Seé for instance, Diewert [13].

3For convenience of parameterization, the fi(u) may be negative if

offset by positive linear terms in A(p).

4Lau and Tamura [19] employed a model that may be interpreted as a

‘nonlinear parallel model with a Leontief fixed-proportions unit cost

function. I am grateful to avreferee for suggesting this reference.
5Any flexible form can provide a‘point approximation to a general
PLH function,_but approximationé that lose self-consistency away from the
approximation point are of less interest in this paper>given our conéern
with the more extended'prqperties of the functions.

6Lau [18] notes that these forms provide second order approximations
in a numerigal sense as well as in Diewert's differential senée. In
the present case, the numerical approximation applies to the unit cost
function but not necessarily to the linear parallel function defined
over a range of utility. |

7

; - . i . . S . ,
Solving any pair of the W functions to eliminate the variable price

yields the equation for one of the projected loci. For instance,

Lo 2 -
=2 2 = 3 8 - £ r s B - 8 * «:- )
Ry = Ky Giplus 2y = 1/s)ylsy) a3 8553y + (555533 = 553)03% + 5p3%)]

where X is measured from h(u)Gi, gives the (iz, ij) locus with p2*

i
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variable and p3* constant and
2= X (%] ) = (ckg Y [FE = 28,8 (5.8, .= 52Dt +a, = 28, 42, ]
Xy T ARGl P T S, Ly T SR T R592%23 7 %237F3 T2 T T2

gives the similar (il, §3) locus.

8Note that -
. N N N
: 1/2

pla, + T o (p,*) +1/2 5 L B, (p,* p,x)t/2

Py, 1 =2 jep 130T Py
N N

= I I b, (p p‘.)l/2 1f a, = b _; = 2b = 2k
g1 gep 171 Ps LT P @ T by and g = 2b,.

The derivatives of the latter form are clearly symmetric.

9It may be confirmed that the substitution matrix is singular &t those

prices for which (‘(x2 g + u2 823 pz*l/Z + a3 Bé3 p3*l/2

the parameter values of figure 2B2, the palcs of finite prices (p2*, pB*)

) = 0. TFor

that imply singularity range between (9, 0) and (0, 16). All these
yiold identical (xz, x3) values shown asg the Intersection polnt at the

lower left of the flgure.

10 s . “
Note that the properties illustrated are not those of the standard

translog structure for which the logarvithm of the cost function is
repraesanted as a Taylor expansion in logarithms, The tramnslog unit
cost Ffunction could be incorporated in the parallel model in-antilog

forw, but the resulting expression is essentially intractable.

llI . . , , .
t is assumed that fl is monotonically increasing; that is, that the

numeraire is everywhere a normal good.

12 . :
Note that there is a degree of freedom in determining the levels of

i
the ¥ aad the gy so that P, may be chosen to have a convenient value

for a particular parameterirzation.

13 . .
The A-H two-worker model can satisfy the svmmetry conditions over a
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range of wage rates only if the parameters satisfy the three restrictions

BA
gl
"

S AR SRR R i
mf Sfm T OOfF m/Bf'

Bg/Bi =8
Thﬂsg restrictions ace not plausible because they imply that the deter-
minznl, (Bmm Sep = smfz) is identically zero.

Strictly speaking, this discussion applies to a one~worker version of
the A-H two-worker model. Their 1973 parameterizafion [1] is actually a
hybrid with a transformation of a simple linear supply model because

they average the imputed family income variable, F, with a standard

income evaluated at a fixed level of labor supply.
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