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ABSTRACT

This paper describes methodological approaches and estimation

techniques that may be applied to the analysis of change in discrete

or categorical data •
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The Analysis of Change in Discrete Variables

1. INTRODUCTION

Longitudinal data are. analyzed using a variety of techniques. and

methods in the vari.ous social and behavioral sciences. Over-time data

1come in many forms--as panel data, time series, and event-histories.

Different disciplines have tended to focus on one particular type of

over-time data--econometricians on time series, demographers on a parti-

cu1ar form of event-histories, sociologists on panel data, psychometricians

on change scores. Further, different disciplines have specialized in

particular methodological prob1ems--econometricians in problems of

estimation, especially those related to problems of time dependent errors;

psychometricians in the reliability of change scores; and, in classical

panel analysis, sociologists have concentrated on developing measures of

causal influence. The result is that longitudinal methodology is a con-

fusing affair. Some problems have solutions, others equally important

do not, and it is often difficult to see the relevance of a technique for

a problem if the technique has been developed in another discipline with

a different research tradition.

There is, then, a need both for codification of existing longitudinal

methodology and for remedying some of the uneven development of longitudinal

methodology. One set of problems in particular need of attention .are those

problems encountered when analyzing change in discrete or categorical variables.

Though such variables are often employed by the softer social sciences,

there does not exist a readily available set of techniques. and methods

for the analysis of change.
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justified in terms of substantive consideration of the process under study;

thus they may be empirically 'and conceptually inadequate, which would cause

misleading inferences and limit our ability to fully understand the processes

being analyzed. On cross-sectional data there is very little that can be

done since the unfolding of the processes that generate observed relationships

among variables cannot be observed, whereas on over-time data it is possible

to study directly the change processes that generate observed outcomes.

However, when over-time variation is treated as cross-sectional variation,

the opportunity for obtaining a better understanding of how observed out­

comes are generated is missed. Direct study of change is needed.

This paper advocates such a direct approach to the study of change

in discrete variables. The first part of this paper, sections 2 and 3,

identifies the components of ·change. The second part of the paper, sections

4-7, then briefly outlines some strategies for the causal analysis of

these componen~s.

2. CONCEPTUALIZING CHANGE

The focus in longitudinal methodology is on the description and

analysis of variables that are functions of time. To identify the tasks

involved it is necessary to have a representation of the change process

that identifies the quantities that should be estimated in empirical

analysis. In ether words, a conceptualization of the change process

should be given a mathematical representation. The classic approach to

the mathematical analysis of change is the one represented by calculus.

It applies to variables that are continuous, i.e., variables that can be
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represented by real numbers. Though the emphasis in this paper is on

discrete variables, the continuous variable treatment serves as a model

and is briefly outlined.

It seems natural to represent change as the difference in values of

the variable of interest obtained over some time interval. Denote the

time dependent variable yet). The difference y(tZ) - y(tl) observed over

the interval t 2 - t
l

would be the quantity of interest. Presumably this

difference is brought about by some causal variables, possibly including

time, that act on yet) in a certain way. In descriptive analysis the

objective is to specify the resulting time variation in yet). In causal

analysis we go further and attempt to specify the various causal forces

acting on yet) and estililate their influence. In other words, for causal

analys,is it is necessary (1) to specify the mechanisms that bring about

change, and (Z) to assess the causal .influences transmitted by these mechan

Specifying the Mechanisms of Change

The specification of the change mechanisms depends first on the

timing of change. If yet) changes continuously in time so that it is

continuously differentiable with respect to time over the interval of

interest, relating y(tZ) - y(tl) to t z - t l presents the problem that

as yet) changes, so does t. The classic solution is to focus on the

change in yet) obtained in an infinitesimal interval of time (see Coleman,

1968, for further discussion). This conceptual abstraction makes it

possible to relate change to the value of time (and other variables)

rather than to intervals of time. Hence we focus on the quantity

dy(t)/dt, Le., the instantaneous rate of change in yet). The specificatio



5

of the dependency of yet) on time and other variables may then be carried

out in a differential equation:

dy(t) _
d - f(x(t), ~, t),

t -
(1)

where thevector;x(t) represents causal variables, possibly,including time

and yet) itself,.and the vector ~ represents a set of ;parameters.

The specification of f in the differential equation should represent

assumptions about how change is produced. So~e simple examples will illustrate

the strategy.

The simplest 'process is obtained assuming the yet) changes by a constant

amount in each small interval of time, or

dy(t) = k
dt • (2)

A slightly more complicated expression that is a useful representation of

s many processes assumes that change in yet) is dependent on yet):

dy(t) = k + by(t). (3)
dt

The quantity b represents a feedback, either positive or negative--in many

growth processes this feedback will be negative--and (3) describes a process

where yet) changes rapidly in the start of the process, but decreases as

yet) increases and eventually reaches zero at the equilibrium level of yet),

where dy(t)/dt is zero. Though stable processes will have this property,

there may be considera~le interest in processes with positive feedback where

the variables of interest will take an explosive course. One example is the

problem of arms races leading to wars, which is modeled by Richardson (1960)

in a simultaneous diff~rential equation model with basic properties like

(3), though mathematically more complicated.

l
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Since dy(t)/dt is a conceptual abstraction, differential equations

cannot be used directly with empirical data. In order to estimate parameters

and test the models it is necessary to solve the equations using methods

of integration. ~or example, the solution to equation (2) is

yet) = yen) + kt,

where yeO) is the value of yet) obtained at the start of the process, at

time O. The solution to (3) is

(4)

yet) =: (e
bt

'- 1) -+ yeO)
bte (5)

Expressions such as (4) and (5) may be used with empirical observations

on yet) and,y(O), either for a set of individuals (or whatever the unit of

analysis is) or through repeated observations on the same individual. These

formulations are necessary to test the models and estimate parameters, but

the conception of the change process is given by the differential equation,

from which the parameters derive their interpretation.

It is important to note that the solution (5) to (3) only holds if

the parameters k 'and b are assumed constant over time and identical for

all 'individuals. Failure of these assumptions of stationarity and homo-

geneity will result in models that do not describe the observed course of

processes adequately. Failure of the assumptions means that characteristics

of individuals and/or time periods cause variation in the .,components of

change. Such variation should be modeled. The specification of the sources

of variation provides the desired information on the causes of change, as

shown below.

The use of differential equations to mirror change processes depends

on the continuous clifferentiability of yet) with respect to time. If change

does not take place continuously, but only after certain intervals of time, .



of a model of change. This will usually dictate the continuous

of change" not the timing of observations, should govern the
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(6)

(7)

This will result in•.+ c x •
n n

. + c x •n n

. .k = c oi.e.,

behavior of the process and test the models, and the

calculus are not available for this purpose. Further,

in a differential equation model.

a set of independent variables. In equation (3), the

for example, be written as a linear function of a set of

are obtained at fixed intervals of time (e.g., at yearly intervals).

hand, difference equations still need to be solved.in 'order to

equation treating time as a discrete (integer) variable:

equations are, for example, often used in economics because

7

to note that if b < 0 and as t + m the solution to (7) will

causal variables is to express the parameters of the models

the Causes of Chan e

variables,

A d.ifference equation may be estimated directly, since the quantity

examples above are of models expressing the mechanisms of change

~y = f(x(n), a, n),- -

but not the dependency on other variables. One useful way of

is used to represent time, often trials or other discretely occurring

usually observable. This is sometimes seen as an advantage, and

to

ca<different formulation is necessary~ Change may then be modeled in a

+~"yP;~(;tne solution to (7) is parallel to (5), with the linear expansion of k. It
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(8)

Note that the derivation

are the observed coefficients

c
n

.. · - b xn •

The equilibrium formulation of (7) is thus the simple linear model for a

variable often used on cross-sectional data.
c

i
the quantities - ~ that

to the independent variables depend on the feedback term b. In other words,

from (7) shows that

starting out with the model of change, equation (3) results in a formulatior.

of the relationship among variables that may be observed in a cross-section

in terms of the fundamental quantities that govern change. Only over-time

data can identify these quantities, and only modeling change will directly

specify the components of change. Over-time analysis that treats over-time

variation as cross-sectional variation will not provide this information,

as it will amount to using models such as (7), with time as an independent
.'

variable; an inappropriate conception if (3) governs the change process.

For further implications of this and other results of modeling change

directly, see S~rensen (1978).

Writing parameters in simple change models as functions of causal

variables is only a .meaningful way of modeling the causes of change if it

can be assumed that the independen~ variables are unaffected by yet), i.e.,

tha.t there is no interdependence among yet) and the x. variables. If this
. 1

cannot be assumed, more complicated simultaneous differential equation

models· are needed to mirror the change process. These complications are

not discussed here.

The specification of the variation in quantity k of equation (3).in

terms of the xi variables should also make the model. more empirically adequa

since the heterogeneity in k is taken intd account. Further modification
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may allow for time dependency, though ~he resulting models are quite

complicated (see Coleman, 1968, for an example).

Causal analysis of change processes, th.en, demands first a specification

of the mechanisms of change in a differential or difference equation. The

causal variables may be introduced directly in the defining equation. In

many situations it is, however, simpler to see the causal variables as acting

on the parameters that govern change. This is the approach suggested for

the analysis of discrete variables discussed in the remainder of the paper.

3. CONCEPTUALIZING CHANGE IN DISCRETE VARIABLES

Analysis of change in continuous and in discrete variables differs in

one all important respect. Change cannot be-meaningfully represented as

differences in the values of variables when the variable is discrete. Hence

differential or difference equations cannot be used to represent the change

process, and calculus cannot be applied directly to the variables.

The. problem is sometimes solved by treating discrete variables as

though they have a stronger metric. It is, for example, common in sociology

to treat the standard measures of occupational prestige .as though they

possess interval. level metric, though they are ordinal measures. Similarly,

dichotomous variables are often treated in the same manner as continuous

variables in regression analysis. This solution is, however, often con­

ceptually unsatisfactory, and the obtained estimates have undesirable­

statistical properties. An alternative solution is to study change in

discrete variables by "proxy"--by mapping t1)e categories of the discrete

variables onto a probability distribu.tion. The probabilities provide the

--._-_.._.------~-------------------
----------
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desired metric, and change can be studied as change in probability d~s­

tributions over the, state space given by the categories of the discrete

variable. Probability theory (of course, often using a great deal of

calculus) becomes ,the relevant mathematical language for the study of

change, and the resulting models will be stochastic process models.

Change in continuous variables could also be studied by focussing

on change in probability distributions using stochastic process models

with continuous state space. However, the mathematical complications

are considerable. The complications often become serious with discrete

state models too. But the use of stochastic process models is the bnly

way of modeling change in discrete variables, and this,'rather than a

fundamental choice between a stochastic versus a deterministic conception

'of a p~'cess, seems to be the usual reason for the use of stochasti'c

process models with discrete variables, and deterministic models with

continuous variables.

As ~.Titb continuous variables, the timing of change determines whether

the defining equation is a differential or a difference equation, and as

described above, these equations have to be solved in order to estimate

parameters and test the models. However, solutions to stochastic process

models, except the very simplest, are usually quite complicated and in

fact 'Often impossible to obtain (see, for example~ the epidemiological

models presented by Bailey, 1957). On the other hand, because stochastic

process models permit a microscopic analysis of the process of change,

even very simple models may provide a weAlth ,of informa't ion for the analysis

of the various components of change.
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a move from state 1 to state Z in an interval of time, and the probability

(9)

(10)L qi,Pi(t) + L qjiPj(t), ..
i~j J j~i

= -
dPi(t)

dt

Suppose now the variable of interest is a dichotomous variable giving

differential equation model.

of analysis, sayan individual, is at a point in time, t; characterized by

rise to a two-state system. Label the two 1 and 2 respectively. A unit

Change in P1(t) will reflect movement in the state space. Movement

may either take place in one direction on1y--as when the two states refer

to life and death--or, there may be movement in both directions--as when

the states refer to a positive and a negative attitude. If movements in

the probability P1(t) of being in state 1, and P2(t) of being in state 2,

where P1(t) = 1 - P2(t). The objective is to formulate the mechanism for

change in P
1

(t)and by implication, Pz (t). If C'.hange occurs continuously,

a continuous time stochastic model is desired and should be' defined 'in a

both directions take place, change will be governed by the probability of

of a move from 2 to 1 in the same interval of time. Denote q12dt the

probability of moving from 1 to 2 in dt, and qZ1dt the probability of

moving from 2 to 1. Assume further that these quantities are constant

over time. Then the probability of an individual being in state 1 will

change in dt according to

easily generalized to cover a larger number of states:

where q1ZP1 (t) is the rate of movement from 1 to Z times the probability of

being in state 1, and qZ1PZ(t), similarly, the rate of moveme~t out of state

Z to state 1 times the probability of being in state 2. The expression is
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where the two parts of the rig~t hand side respectively govern the outflow

and the inflow from and to state i. For a k state system there will be k

such equations. Assuming the qij'S coristant, these equations can be solved

to give the expression needed for empirical analysis. It becomes, in

matrix notation,

(11)

where ~(t) is the vector of probabilities at time t, ~(O) the probability

distribution at time 0, and eQt the matrix analog to ea with. Q a matrix of

qij'S. This is the discrete state, continuous time Markov model. Its

application to social processes has been ,extensively discussed by Coleman

(1964).

The discrete time analog to (10) is obtained from quantities r ij that

are transition probabilities for moving from state i to state j on a trial.

The typical equation for the change in the probability of being in state i

on a trial will be

(12)

The solution to the set of different equations is, in matrix notation,

n
~(n) = ~(O)R ,

analog to (11). Though discrete time processes are most often met in

experimental situations, the discrete time Markov model is frequently

(13)

applied to continuous time processes. Its advantage is mathematical sim-

plicity. The distinction is often unimportant for prediction. However,

for analysis, the continuous time model seems ,the most appropriate frame-

work. One reason is that change can be further decomposed with continuous

time models.
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The quantities qij of the continuous time model give the rate of

movement from state i to state j, often conceived of as resulting from

the random occurrence of events in time, and the outcome of events. Thus,

i~ occupational mobility processes, a shift of occupation is the result

of a job shift with a certain outcome, i.e., a possible shift of occupation.

The occurrence of events and the outcome of events may be analyzed separately.

Formally this means that the quantities qij may be decomposed as

i :f j
(14)

i = j,

In the simple continuous time Markov Chain, the occurrence of events

equation

(16)

This means that the probability p (t)
o

The state space for the Poisson process is a count of the number of

With this decomposition, equation (11) can be written

~(t) = ~(O) eA(M-I)t (15)

where A governs the occurrence of events, and the mij's are the probabilities

of moving from i to j given that such an event occurs.

events. Thp. probability distribution corresponding to this state space is

as the matrix Q of (11) = M-I, where I is the identity matrix. This formu-

of no event occurring by time t will change according to the differential

lation has been extensively discussed by Singer and Spilerman (1974).

is governed by a Poisson process.

•,
li the Poisson distribution

-At (At)i
= e i! (17)

'..~.~..~.
.i~

i~1
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where Pi(t) is the probability that i event has occurred by time t. The

mean of the distribution is At, a property that may be used to estimate A.

Of considerable interest for analysis is the distribution of the time

intervals between events, or the waiting .time distribution. In ~ Poisson

process this distribution will be exponential, with probability density

f (s) = Ae-As, (18)

where s stands for the time interval between events. The meen of s is l/A,

a property that again can be used in analysis of the occurrence of events.

The continuous time Markov Chain and the associated Poisson process

for the occurrence of events are very simple. In fact, the Poisson process

is the analog to the simplest model for change in a continuous variable,

given as equation (2), with a constant increment in yet) in each interval

of time'; and the Markov Chain is the analog to equation (3), where change

is also assumed to depend on the current state of the system (in equation

(3) on the value of yet»~. These simple stochastic models may appear quite

unrealistic models for change in discrete variables. They do, however,

mirror the basic components of change in discrete variables. The distinctionl

between the occurrence of events and the outcome of events are particularly

important for analysis of change. Their appropriateness and one's wi11-

ingness to live with their simplicity depends to some extent on the objective

of the analysis of change, as the next section describes.

4. OBJECTIVES FOR THE ANALYSIS OF GHANGE

Models such as those described in the preceding section are introduced

because of a desir-e to model the behavior of a process. This desire may

•.. -_.~-~_---- ---~ __~_-~_-
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reflect an interest in predicting the future course of a process, in

formulating a theory of the process, or in providing a framework for a

causal analysis of the components of change. Ultimately these three

objectives Eay merge, but before they do, different criteria for the

usefulness of the~dels may be applied, depending on which objective

is emphasized.

If the objective is to predict or formulate a theory, the primary

, emphasis is on the modeling task. The analysis of empirical data on

change is carried out primarily to test the predictions from the model

and validate their assumptions, not because of an interest in observed
;

patterns of change and their empirical causes.

As a theory of a process, the simple Markov model is quite uninterest-

ing, and it has been repeatedly shown that the process does not, accurately

predict many ~ocial processes. Th~ model's failure may have numerous

causes, and an extensive literature exists on how to modify the simple

model in order to improve its empirical or theoretical adequacy. Much

of the literature on empirical adequacy addresses two problems: the

problem of nonstationarity--that is, the fact that parameters change

over time; and the problem of popula~ion heterogeneity--that is, that

parameters vary among individuals or whatever are the units of analysis

to which the model is applied. Both nonstationarity and population

heterogeneity will result in failure of the model to predict observed

processes. Numerous solutions have been suggested in the literature

that will improve the fit of the simple Markov model, but they are not

reviewed here.
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The preceding section has been discussed to provide a point of depa~ture

for empirical analysis of the causes of change. Such analysis focuses on

the sources of variation in the parameters that govern change, using con­

tinuous and discrete independent variables to account for this variation

in a manner analogous to the specification of equation (3) in equation (7).

The utility of the simple models, then, lies in their identification of

the components of change. Nonstationarity and heterogeneity are of interest

not because they are sources of failure of the models, but because they

are the phenomena we would like to account for by causal variables. They

are the objects of analysis, rather than something to get rid of.

5. FAl-:EL VERSUS EVENT-HISTORY DATA

The representation of the Markov model presented in equation (15)

suggests that analysis of change in discrete variables may focus on the

variation in what governs the occurrence of events, and on variation in

. the mij's that govern the outcome of events. However, the separate analysis

of the two components of change is only possible if the data provide the

necessary information. MoAt data on change in discrete variables in

sociology are obtained from panels, which are usually only observations

at two or three points in time on a group of respondents. Such data can

be used to estimate. transition probabilities and from these transition

rates may be computed.

However, since only a few observations are made on the process the

information of the components of change will be very fragmentary. The

resulting difficulties have recently been extensively analyzed by Singer

----~--~-
---_._-----~--~
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and Spilerman (1974, 1976). With a larger sample some analysis may be

performed of variation in transition rates among subgroups~ but individual

level analysis is impossible.

Event-history data are still rare, but are far superior to panel data

for the causal analysis of change. With continuous observations on a group

of respondents, waiting times between events may be directly observed in

order to study variation in A. Counts of the outcome of events may be used

to obtain information on the mij's. Event-history data thus provide much

richer possibilities for analysis than do panel data, particularly for the

analysis of the rate at which events occur. The suggestions that follow

for such analysis assume that life-history data are used.

6. f..NAI.YSIS OF THE OCCURRENCE OF EVENTS

Event-histories of the kind I am assuming provide information on

the 'timing of certain events and their outcomes.Th~histories may

pertain to individuals and the events may be acts carried out by them,

such as a change of job, or of residence; or, the event-histories may

pertain to societies, and events may be wars, or elections (if elections

can occur in any time interval). The purpose of the analysis would be

to study the causes of variation in the occurrence of events.

With the Poisson process as the framework there are two ways of

carrying out such an analysis. One is to rely on the Poisson distribution

and use counts of events to estimate the rate at which they occur; the

other is to rely on information on ,waiting times between events.

If counts of events are relied on, the rationale is that the pro-

babil'ity distributions' over the state space given :by the count, have a

, ...,---._._",-,----------
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mean that'is At. Since t is known, a count of the number of events that

have occurred to a person or a group of persons will provide the desired

estimate. More precisely we may, for example, carry out a count for each

respondent over a period of time to give separate estimates of A, say A'.,
J

for each person. These Aj's can then be used as dependent variables in

a causal analysis by relating their variation to characteristics of the

respondents or their situation.

Relying on counts of events is, however, often an inefficient use of

the information available in life-history data, and may in fact provide

misleading inferences. The basic assumption of the Poisson process is

that events occur with a constant probability in each interval of time.

Counts will have to take place over a time period, and with infrequent

events 'this period may be quite long. It is likely that the causal variables

relevant for the occurrence of events change over this period. This in-

formation is ignored when relying on counts. In other words, intraindividual

variation cannot be studied when counts of events are used to study rates.

Furthermore, the over-time variation in rates means that the counts do not

estimate means in Poisson distributions, so what is studied is not well

defined.

An exareple that illustrates this point occurred in an analysis of

job shifts that I did some years ago. One reasonable hypothesis about

the occurrence of job shifts is that they are more likely to occur the

larger the discrepancy between a person's occupational resources (education,

ability, etc.) and the returns obtained in the job in the form of status

and earnings. Such a hypothesis cannot be tested using counts of events

to estimate the rat,e of shifts, since the returns a person obtains from
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jobs will change over time as a r~sult of the very job shifts that are

analyzed. A different approach is needed, and it is offered by relying

on waiting times.

The rationale used for waiting times is that if the occurrence of

events is Poisson" 'waiting times will be exponentially distributed with

mean1/A. The assumptions of course are the same as for the Poisson

distribution. However, waiting times need not be summed over time as

in the case of counts of events; rather, each waiting time may be treated

as a unit of analysis. This means that if there are N individuals in,

the sample and k events for each individual, there will be Nxk units of

observation available for analysis. Each configuration of values of the

independent variables may be seen as defining a different Poisson process

with its associated exponential distribution, and the procedure of" treating

waiting ti~es as units will provide a set of means for these processes.

The procedure thus provides meaningful quantities also with within-

individual variation.

In the analysis of job shift each duration of a job was treated as

an observation of the dependent variable, and this variable was then

analyzed for its dependency on variables characterizing individuals and

their jobs. The aforementioned hypothesis was substantiated. Straight-

forward OLS regression was used. ,This was probably not the best choice

of estimation technique. A maxiroum likelihood procedure has been developed

by Tuma (1976) that has more desirable statistical properties and also

permits the use of independent variables such as age that vary continuously

over the period of observation.
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The proposed procedure is then to use observations on intervals of

time between events to estimate expressions of the form

(19)

and use estimates of the bi coefficients to make inferences on the causes

of variation in the occurrence of events. The linear specification may

seem a convenient choice. There is, however, one important reason for

choosing a different specification. What is analyzed are rates, and they

are nonnegative quantities.

may be a better choice.

Her.ce, for example,

(20)

The use of waiting times gives rise to a rather intriguing problem.

It vdll usually be the case that observations are terminated at an arbitrary

point in time in relation to the process. This means the last waiting time

until an event might be interrupted by, for example, the interview. The

problem is what to do with this interval. It can be shown that if all

other intervals of time are exponentially distributed the truncated

interval will be gamma distributed with a mean that is twice that of

other intervals. Intuitively the reason for this surprising result is

that longer intervals of time have a greater chance of capturing the

interruption than shorter intervals. The problem does affect estimation

(S16rensen, 1977b), but severa.l solutions are available. It j.B, incidentally,

not a solution to discard the truncated intervals, as serious bias may

result •.
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unit of analysis is the shift. If there are N respondents and k shifts,

the outcome of events when they are estimated from a continuous time process.

(21)

2There will be k such equations with k states or categories

The m, ,'s may be analyzed using an approach proposed by Spilerman
1J

there will be Nx(k-l) shifts available for analysis of the variation in

Spilerman proposed the procedure for the analysis of transition

data by counting the number of moves from each state of origin to each

state of departure on each event. Thus, jn an analysis of occupational

21

mobility using event-history data, each job shift will result in a move

from occupational category i to category j, where i may equal j. The

The conditional probabilities of moving- from state to state on the

7. ANALYZING OUTCOMES OF EVENTS

the m.. 's. The timing of shifts, and events in general, is of course
1J

irrelevant, and is analyzed using the approach described above.

discrete variable given that an event occurs, the mij's, may also be

.subj ectedto causal analysis. They can be estimated from event-history

(1972) 0 For each row and cell in the m
ij

matrix a variable Yij is defined

so that yij= 1 if there is an entry in the ij'th cell, and Yij = 0 other-

wise. For those outcomes originating in the i'th row a regression analysis

with Yij as the dependent variable is performed, i.e., the expression

Yij = ao + L aixi

is estimated.

of the discrete variable being analyzed.

probabilities in a discrete time Markov model, not for analysis of the

mij's. However, the discrete time transition probabilities estimated,

for example, from panel data confound the rate at which events occur with
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Though the abundance of panel data makes it tempting to treat event-history

data with techniques developed for panel data the result is an inefficient

use of the information contained in life-histories. Direct analysis of the

mij's that govern the outcome of events is preferable. Eq'Gation (21) is a

linear probability model, where the use of ordinary least squares is in-

efficient and the linear form probably a misspecification. LOB-linear

analysis of the mij's is preferable.

An interesting parallel between the continuous variable and the discrete

variable case should be noted. In the survey of models for change in

continuous variables it was pointed out that the equilibrium state of the

model for change with feedback is the simple linear model used in regression

analysis of cross-sectional data to establish the relationship among variables.

A similar result may be obtained for the discrete variable case, at least

in the two state situation.

The Markov Chain will result in an equilibrium distribution if certain

restrictions on the transition rates are fulfilled (corresponding to the

condition b < 0 for equation (7) to reach an equilibrium state). The

equilibrium distribution will reflect the mij's as the rate at which events

occur and will determine only the speed with which equilibrium is reached.

In the two state case the equilibrium distribution will be the vector ~ (~),

with elements Pl(oo) and P2(00).

can be written as

In terns of the m.. 's these two quantities
lJ

and m
2l

p (00) =-~--
2 ~2 + m2l •

(22)
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log-linear model (1972) for odds-ratios. Hence the log-linear model for

(23)

(24)

(25)

P (<Xl)
1 = exp [(b - c ) + 1: (b. - \ci)x~P2 (<Xl) o 0 i J.

or

p (<Xl)
1 (b - c ) + ~ (bi - ci)xi •log p (00) =

0 02

It fo11ows,inserting (23) into (22) and taking the ratio of P1 (<Xl) and P2(00)

,Now, let the mij's be log-linear functions of independent variables,

that is,

Equation (25) is the usual form of the logit model, and if ·the xi

variables are dummy variables then it is just a special case of Goodman's

model for change indiscrete variables, with an exponential decomposition

odds-ratios may be seen as the equilibrium formulation of the Markov Chain

of the m.. 's in terms of independent variables. The proof for the two­
J.J

state case has previously been given by Tuma, Hannan, and Groenve1d (1977),

who, however, rely on the transition rates, the qij'S of equation (11),

rather than the mij's. If the mij's are written as linear functions of

independent variables, it can be shown--s1ight1y modifying an approach

suggested by Coleman (1964)--that the linear probability model results.

As in the case. of continuous variables the ad hoc statistical models

that may be used to establish the relationships among discrete variables

can be seen as equilibrium states of the simplest models for change. It

follows conversely~ that if the m.j's are subject to log-linear analysis,
J. .

._--_._--------~ --~---~~-----------~-
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the mij's are in equilibrium o Thieassumption is, however, usually more

realistic than assuming that the state distribution is in equilibrium.

For example, in analysis of occupational mobility the occupational dis­

tribution of a cohort will usually change with the age of a cohort as

individuals form their occupational careers. Stable mij's are consistent

with such an outcome. These quantities govern the outcome of moves when

they occur and may be assumed to reflect the occupational structure and

be quite stable, whereas the rate of movement changes with age.

8. CONCLUSION

This paper has advocated an approach to the analysis of change in

discrete or'categorical variables where stochastic process models are used

to identify the components of change and causal analysis of the sources of

variation in these components is then carried out. The continuous time

Markov Chain has been suggested as the appropriate framework for such

analysis. With event-history data this framework can be utilized to

analyze the rate at which events occur and the outcomes of events as

functions of variables assumed to be relevant for change ,processes.

As mentioned above, the Markov Chain is not able to predict the

course of observed social processes very adequately. It may seem that

the choice of this model as a framework is unfortunate. Ilowever, the

failure of the model is often due to failure of the assumptions of sta­

tionarity and homogeneity. The analyses proposed here are directed at

identifying and accounting for variation in parameters over time and among

individuals, and thus remedy these problems with the Markov model.
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The choice of this model is in fact not any more unrealistic than choosing

the simple model for change with feedback as framework with the causal

analysis of change in continuous variables, and this model has the linear

equation, used so ~£ten in caus~l analysis, as its equilibrium state. It

has been shown that the Markov model, similarly, has well known statistical

models for analysis of relations among discrete variables as equilibrium

fa rmulat ions.

The alternative to the approach here is to use the ad hoc statistical

techniques on change data and treat the over-time variation in the same

manner as the cross-sectional variation. TM.s approach has merit, but if

the appropriate data on change are available--event-history data--these

techniques do not make efficient use of the available information on change.

Event-history data permit the direct analysis of change, and a framework

that identifies the components of change is needed to take advantage of

this opportunity.
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NOTE

lEvent-history data are longitudinal data where the exact timing of

events is known. They are thus continuous time records of event-like

job shifts ~ 'residence shifts, etc., when the units of analysis are

individuals. Life-history data are event-history data. For metho­

dological purposes, the important feature of life-history data is the

information on the timing of events, not the coverage of people's lives.

Further, in some instances, information on the timing of events may be

obtained with designs other than the life-history study design. Hence

the term event-history is preferred.
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