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ABSTRACT

This paper describes methodological approaches and estimation

techniques that may be applied to the analysis of change in discrete

or categorical data.




;‘methodology. One set of problems in particular need of attention are those

The Analysis of Change in Discrete Variables

1. TINTRODUCTION

Longitudinal data are,analyzed using a variety of techniques. and

methods in the various social and behavioral sciences. Over-—time data

come in many forms--as panel data, time series, and event-histories.

Different disciplines have tended to focus on one particular type of
over~time data--econometricilans on time series, demographers on a parti-
cular form of event—historieé, sociologists on panel data, psychometricians

on change scores. Further, different disciplines have sgpecialized in

. particular methodological problems——econometricians in problems of

estimation, especially those related to problems of time dependent errors;
psychometricians in ﬁhe reliability of change scores; and, in classical
panel analysis, sociologists have concentrated on developing measures of
causal influence. The result is that longitudinal methodology is a con-
fusing affair. Some problems have solutions, others equally important

do not, and it is often difficult to see the relevaﬁce of a technique for
a problen if the technique has been developed in another discipline with

a different researgh tradition.

There 1is, then, a need both for codification of existing longitudinal

methodology and for remedying some of the uneven development of longitudinal

problems encountered when analyzing change in discrete or categoricalvVariables.
Though such variables are often employed by the softer social sciences,

there does not exist a readily available set of techniques. and methods

for the analysis of éhange.




ﬁ justified in terms of substantive gonsideration of the process under study;
thus they may be empirically-and conceptually inadequaée, which would cause
misleading inferences and limit our ability to fully understand the processes
being analyzed. O¥n cross-sectional data,there is very little that can be

done since the unfolding of the processes that generate observéd relationghips
| among variables cannot be observed, ﬁhereas on over—time data it is possible

% to study directly tﬁe change processes that generate observed outcomes.
However, when over-time variation is treated as cross-sectional variation,

the opportunity for obtaining a better understanding of how observed out-

comes are generated is missed. Direct study of change is needed.

This paper advocates such a direct approach to the study of change

in discrete variables. The first part of this paper, sections 2 and 3,
identifies the components of change. The second part of the paper, sections
4~7, then briefly outlines some strategies for the causal énalysis of

4 these components.

5 2. CONCEPTUALIZING CHANGE

% o The foﬁus in longitudinal meth&dology is on the description and
analysis of variables that are functions of time. To identify the tasks
involved it is necessary to have a representation of the change process
that identifies the quantities that should be estimated in empirical
analysis. In cther words, a conceptualization of the change process

should be given a mathematical representation., The classic approach to

the mathematical analysis of change is the one represented by calculus.

It applies to variables that are continuous, i.e., variables that can be
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represented by réal numbers. Though the emphasis in this paper is on
discrete variables, the continuous variable treatment serves as a model
and 1s briefly outlined.

It seems natural to represent change as the difference in values of

the variable of interest obtained over some time interval. Denote the

‘time dependent variable y(t). The difference y(tz) - y(tl) observed over

the interval t2 - tl would be the quantity of interest. Presumably this
difference is brought about by some causal variables, possibly including
time, that act on y(t) in a cerfain way. In descriptive analysis the
objecfive 1s to specify the resulting time variation in y(t). In causal
analysis we go further and attempt to specify the various causal forces
acting on y(t) and estimate their influence. In other W;rds, for causal
analysis it is necessary (l) to specify the mechanisms that bfing about

change, and (2) to assess the causal influences transmitted by these mechan

Specifying the Mechanisms of Change

The specification of the change mechanisms depends first on the
timing of change. If y(t) changes continuousiy in time so that it is
continuocusly differentiable with respect to time over the interval of
interest, relating y(t2) - y(tl) to t2l— t, presents the problem that
as y(t) chanées, so does t. The classic solution is to focus on the
change in y(t) obtained in an infinitesimal interval of time (see Coleman,
1968, for further discussion). Thié_conceptual abstraction makes it |
possible to relate change to the value of time (and other wvariables)

rather than to intervals of time., Hence we focus on the quantity

dy(t)/dt, i.e., the instantaneous rate of change in y(t). The specificatio
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of the dependency of y(t) on time and other variables may then be carried

out in a differential equation:

&E -t o B, &

where the vector .x(t) represents causal variables, possibly including time
and y(t) itself, .and the vector o represents a set of parameters.

The specification of f in the differential equation should represent
assumptions about ﬁow change is produced. Somé éimple examples will illustrate
the strategy.

The simplest 'process 1s obtained assuming the y(t) changes by a constant
amount in.each small interval éf time, or |

e g @)

dt *
A slightly more complicated expression that is a useful repfesentation of

many processes assumes that change in y(t) is dependent on y(t):

dy(t

dé ) =k + by(t). (3)
The quantity b represents a feedback, either positive or negative-——in many

growth processes this feedback will be negative-—and (3) describes a process

where y(t) changes rapidly in the start of the proceés, but decreases as

'y(t) increases and eventually reaches zero at the equilibriﬁm level of y(t),

where dy(t)/dt is zero. Thoﬁgh stable processes will have this property,

there may be considefable interest in processes with positive feedback where

‘the variables of interest will take an explosive course. One example is the

problem of arms races leading to wars, which is modeled by Richardson (1960)
in a simultaneous differentiai equation model with basic properties like

(3), though mathematically more complicated.




Since dy(t)/dt is a qonceptual abstraction, differential equations
cannot be used directly with empirical data. In order to estimate parameters
and test the models it is necessary to solve the equations using methods
of inﬁegration. For example, the solution to equation (2) is |

y(t) = y(0) + kt, N (4)
where y(0) is the value of y(t) obtained at the start of the process, at

time 0., The solution to (3) is
y(t) = % (-.ebt - 1) + y(0) ePt, _ (5)

Expressions such as (4) and (5) may be used with eﬁpirical observations
on y(t) and y(0), either for a set of individuals (or whatéver.the unit of
analyesis is) or through repeated observations on the same individuél. These
formulations are necessary to test the moaels and estimate parameters, but
the conception 6f the change process is given by the differential equation,
from which the parameters derive their interpretationmn.

It is important to mote that the solution (5) to (3) only holds if
the parameters k and b are assumed constant over time»and identical for
all ‘individuals, nglure of these assumptions of stationarity and homo-
geneity will result in models that do not describe the .observed course of
processes adequately. Failure of the assumpﬁions means that éharacteristics
of individuals and/or time periodsicause va;iation in the;components of
change. Such variation should be modeled. The specification of the sources
of variation provides the desired infarmaﬁion on the causeélof change, as
shown below. |

The use of differential equations to mirror change processes depends
on the .continuous differentiability of-y(t) with respect to time. If change

does not take place continuously, but only after certain intervals of time, -




4 {different formulation is necessary. Change may then be modeled in a
fference equation treating time as a discrete (integer) variable:

Ay = f(}_(n)s o, n), : (6)

quantity
ﬁsually observable. This is sometimes seen as an advantage, and
difference equations are, for example, often used in economics because
‘the other hand, difference equations still need to be solved in ‘order to
dy the over-time behavior of the process and test the models, and the

ndard methods of calculus are not available for this purpose. Further,

e conception of change, not the timing of observations, should govern the

Ny

'rmuiétion of a model of change. This will usually dictate the continuous

me fbrmulation in a differentlal equation model.

pecifying the Causes of Change

>Tﬁe examples above are of models expressing the mechanisms of change
n‘tiﬁe, but not the dependency on other variables. One useful way of
ﬁFfoducing causal variables is to expresélthe parameteré of the models
s'%uﬁctiéns of a set of independent variables. ‘In eqﬁation (3), the

uantity k may, for example, be written as a linear function of a set of

Xogenous variables, il.e., k = s +ex, +. . .+ C X . - This will result in

1”1
dy(t) _ ‘ :
s c, * by(t) + c %y f CoXy o o o F % (7)

e: solution to (7) is parallel to (5), with the linear expansion of k. It

vimportant to note that if b < 0 and as t + = the solution to (7) will

ervations are obtained at fixed intervals of time (e.g., at yearly intervals).



.o n ' , ' (8)

The equilibrium formulation of (7) is thus the simple linear model for a
variable often used on cross-sectional data. Note that the derivation
from (7) shows that the quantities - ;i-that are the observed coefficients
to the independent variables depend on the feedback term.b. In other hords,
starting out with the model of chgnge, equation (3) results in a formulation
of the relationship among variables that may be observed in a cross—section
in terms of the fundamental quantities that govern chénge. Only over-time
data can identify these quantities, and only modeling change will directly
specify the components of change. Over-time analysis that treats over-time
variation as cross-sectional variation will not provide this information,
as it ﬁill amount to using models such as (7), with time as .an indegendent
variable; an inappropriate conception if (3) governs the change process.
For further implications of this and other results of modeling change
direcfly, see Sdrensen (1978).

Writing parameters in simple.change models as functions of causal

variables is only a meaningful way of modeling the causes of change if it

" can be assumed that the independent variables are unaffected by y(t), i.e.,

that there is no interdependence among y(t) and the X, variables. If this

cannot be assumed, more complicated simultaneous differential equation

models are needed to mirror the change proéess. These complications are
not diséuséed here.

The specification of the variation in quantity k of equation (3) in
terms of the X, variables should alsoAmake the model. more gmpirically adequa

since the heterogeneity in k is taken into account. Further modification
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may allow for time dependency, though the resulting models are quite
complicated (see Coleman, 1968,‘for an example).

Causal analysis of change processes, then, demands first a specification
of the mechanisms of changé in a diffefential or difference equation. The
causal variables may be introduced directly in the defining equation. In

many situations it is, however, simpler to see the causal variables as acting

- on the parameters that govern change. This is the approach suggested for

the analysis of discrete variables discussed in the remainder of the paper.

3. CONCEPTUALIZING CHANGE IN DISCRETE VARTABLES

Analysis of change in continuous and in discrete vafiables differs in
one all important respéct. Change cannot be meaningfully repreéented as
differences in the values of variables when the variable is discrete. Hence
differential or difference equations cannot be uéed to represent the change
process, and calculus cannot be applied directly to the variables,

The problem is sométimes solved by treating discrete variables as
though they have a'stroﬁger metric. It is, for example, common in socilology
to treat the sténdardbmeasures of occupational prestige,éé though they
possess interval level metric, fhough they are ordinal measures, Siﬁilarly;
dichofomous variables afe often treatéd in the same manner as continuous
variables. in regression énalysis. This solution is, however, often con-
Ceptually unsatisfactory, and the obtained estimates have undesirable-
statistical properties. An altgrnative solution 1s to study change iﬁ
discrete variables by "proxy''-~-by mapping the pategories of the discrete

variables onto a'probébiiity distribution. The probabilities provide the
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desired metric, and change can be studied as change in probability dis-
tributioné over the. state space glven by the categories of the discrete
variable. Probability theory (of course, often using a great deal of
calculus) becomes the relevant mathematical language for the study of
change, and the resulting models will be stochastic process models.

Change in continuous variables could also be studied by focussing
on change in probability distributions using stochastic process models
with continuous state space. However, the mathematical complications
are considerable, Ihe complications often become serious with discrete
state models too. But the use of stochastic process models is fhe only
way of modeling change in discrete variables, and this, rather than a
fundamental choice between a stochastic versus a deterministic conception
of a process, seems to be the usual reason for the use of stochastic
process models with discrete variables, and deterministic models with
conﬁinuous variables.

As with continuous variables, the timing of change determines whether
the defining equation 1s a differential or a difference eqﬁgtion, and as
described above, these equations have to be solved in order to estimate
parameters and test the models. However, solutions to stochastic process
models, except the very simplest, are usually quite complicated and in
fact often impossible to obtain (see, for example, the epidemiological
models presented by Bailey, 1957). On the other hand, because stochastic
process models permit a microscopic aﬁalysis of the process of change,
even very simple models may provide a wealth of information for the analysis

of the various components of change.

G
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Suppose now the variable of interest is a dichotomous variable giving
rise to a two-state system, Label the two 1 and 2 respectively. A unit
of analysis, say an ihdividual, is at a point in time, t, characterized by
thHe probability pl(t) of being in state 1, and pz(t) of being in state 2,
where pl(t) =1 - pz(t). The objective is to formulate the mechanism for
change in pl(t) and by implication, pz(t). If change occurs continuously,
a continuous time stochastic model is desired and should be’ defined in a
differential equation model.

Change in pl(t) will reflect movement in the state space. Movement
may elther take place in one direction only~-as when the two states refer
to life and death-—or, there may be movement in both directions-—-as when
the states refer to a positive and a negative attitude. If movements in
both direc;ibns-take place, change will be governed by the probability of
a move from state 1 to state 2 in an interval of time, énd the probability
of a move from 2 to 1 in the same interval of time. Denote qlzdt the
probability of moving from 1 to 2 in dt, and qudt the probability of
moving from 2 to 1. Assume further that these quantities are constant
over time. Then the probability of an individual being in state 1 will
change in dt according to

dpl(t) . , : ,
35 = 91907 () + gy p, (1), : (9)
where quPl(t) is the rate of movement from 1 to 2 times the probability ofA-
being in state 1, and q21p2(t), similarly, the rate of movemeqt out of state
2 to state 1 times the probability of Being in state 2., The expression is

easily generalized to cover a larger number of states:

dp, (£) ' '

i#] j#
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where the two parts of the right hand side respeétively govern the outflow
and the inflow from and to state i. For a k state system there will be k
such equations.‘ Assuming the qij's constant, these equations can be solved
to give the expression needed for empirical analysis. It becomes, in

matrix ﬁotation,

p(t) = p(0e, - | | (11)
where th) is the vector of probabilities at time t, p(0) thé probability

Qt

distribution at time 0, and e~ the matrix analog to e with Q a matrix of

qij's. This is the discrete state, continuous time.Ma;kov model. Its
application to social processes has been extensively discussed by Coleman
(1964).

The discrete time analog to (10) is obtained from quantitieé rij that
are transition probabilities for moving from state i to state j on a trial.
The typical equation for the change in the probability of being in state i
on a trial will be

Ap

pi(n) +3Ir (@. | (12)

1= "L Ty 11P

The solution to the set of different equations is, in matrix notation,

p@ = p(OR", | (13)
analog to (11). Though discrete'time.processes are most often met in
experimental situations, the dis;rete time Markdv model is frequently
applied to continuous time processes. Ifs advantage is mathematical sim-
plicity. The distinction is often unimportant for prediction. However,
for analysis, the continuous time model seems the most appropriate frame-
work. One reason is that change can be further decomposed with continuous

time models.
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The quantities qij of the continuous time model give the rate of
mo&ement from state i to state j, often conceived of as resulting from
the random occurrence of events in time, and the outcome of events. Thus,
in occupational mobility processes, a shift of occupation is the result
of a job shift with a certain outcome, i.e., a possible shift of occupation.
The occurrence of events and the outcome of events may be analyzed separately.
Formally this means that the quantities qij may be decomposed as
v Xmi 143
qij i { A(mé -1) i=3 ' (14)
i1 oo

where A governs the occurrence of events, and the m,,6's are the probabilities

1]
of moving from i to j given that such an event occurs.

With this decomposition, equation (11) can be written

p(t) = p(0) & WD)E (15)

as the matrix Q of (11) = M-I, where I is the identity matrix. Thié formu-~
lation has been extensively discussed by Singer and Spilerman (1974).

In the simple continuous time Markov Chain, the occurrence of events
is gerrned by a Poisson process., This means that the probability po(t)
of no event occurring by time t will change accofding to the differential
equation |

dpo(t)

S0 e (. - (16)

. \
The state space for the Poisson process is a count of the number of

events. The precbability distribution corresponding to this state space is

the Poisson distribution

1 A
p (t) = s (ii) , | . (17)
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where Pi(t) is the probability that 1 event has occurred by time t. The

mean of the distribution is At, a property that may be used to estimate A.
Of considerable interest for analysis is thg distribution of the time

intervals between events, or the waiting time distribution. In a Poisson

process this distribution will be exponential, with probability density

f(s) = le_xs, (18)
where s stands for the time interval’betweeﬁ events., The mean of s is 1/},
a property that again can be used in analysis of the occurrence of events.
The continuous time Markov Chain and the associated Poisson process
for the occurrence of events are very simple. In fact, the Poisson process
is the analog to the simplest model for Ehange in a continuous variable,
given as equation (2), with a constant increment in y(t) in each interval
of timej and the Markov Chain is the analog to equation (3), where change

is also assumed to depend on the current state of the system (in equation

(3) on the value of y(t)). These simple stochastic models may appear quite

"unrealistic models for change in discrete variables, They do, however,

mirror the basic components of change in discrete_vériables. The distinction:

between the occurrence of events and the outcome of events are particularly
important for analysis of change. Their appropriateness and one's will-
ingness to live with their simplicity depends to some extent on the objective

of the analysis of change, as the next section describes.

4, OBJECTIVES FOR THE ANALYSIS OF CHANGE

Models such as those described in the preceding section are introduced

because of a desire to model the behavior of a process. This desire may
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réflect an interest in predicting the future course of a process, in
formulating a theory of the process, or in providing a framework for a
causal analysis of the components of change. Ultimately these three
objectives may merge, but before they do, different criteria for the
usefulness of the models may be applied, depending on which objective

is emphasized.

If the objective is to predict or formulate a theory, the primary

. emphasis is on the modeling task. The analysis of empirical data on

change 1s carried out primarily to test the predictions from the model

and validate their assumptions, not because of an interest in observed

patterns of change and their empirical causes.

As a theory of a process, thé simple Markov model is quite uninterest-
ing, and it has been repeatedly shown that the process does not. accurately
predict many social‘processes; The model's failure may have numerous
causes, and an extensive literature exlists on how to modify the simple
model in order to improve its empirical or theoretical'adequacy. Much
of the literature on empirical adequacy addresses two problems: the
problem of nonstationarity--that is, the fact that parameters chaﬁge
over time; and the problem of population heterogeneity--that is, that
parameters vary among individuals or whatever are the units of analysis
to which the model is applied. Both nonétationarity and population
heterogeneity will result in failure of the model to predict observed
proceases. Numerous solutions héve been suggested in the literature

that will improve the fit of the simple Markov model, but they are not

reviewed here.
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The preceding section has been discussed to provide a point of departure
for empirical analysis of the causes of change. Such analysis focuses on
the sources of variation in the parameters that govern change, using con-
tinuous and discrete independent variables to account for this variation
in a manner analoéous to the specification of equation (3) in equation (7).
The utility of the simple models, then, lies in their identification of
the components of change. Nonstationarity and heterogeneity are of interest
not because they are soufces of failure of the models, but because they
are the phenomena we would like to account for by causal variables. They

are the objects of analysis, rather than something to get rid of.

5. PANEL VERSUS EVENT-HISTORY DATA

The representation of the Markov model presented in equation (15)

suggests that analysis of change in discrete variables may focus on the

N

variation in what governs the occurrence of events, and on variation in

. the m,,'s that govern the outcome of events. However, the separate analysis

i3

of the two components of change is only possible if the data provide the

necessary information. Most data on change in discrete variables in
sociology are obtained from panels, which are usually only observations
at two or three points in time on a group of respondents. Such data can

be used to estimate transition probabilities and from these transition

rates may be computed,

However, since only a few observations are made on the process the

information of the components of change will be very fragmentary. The

resulting difficulties have recently been extensively analyzed by Singer
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and Spilerman (1974, 1976). With a larger sample some analysis may be
performed of variation in transition rates among subgroups, but individual
level analysis is impossible.

Event-history data are still rare, but are far superior to panel daﬁa
for the causal analysis of change., With continuous observations on a group
of respondents, waiting timeé between events may be directly observed in
order to study wvariation in A. Counts of the outcome of events may be used
to ébtain information on the mij's. Event-history data thus provide ﬁuch
richer possibilities for analysis than do panel data, particularly for the

analysis of the rate at which events occur. The suggestions that follow

for such analysis assume that life-history data are used.

6. ANALYSIS OF THE OCCURRENCE OF EVENTS

Event—histaries of the kind I am assuming provide information on
the timing of certain events and their outcomes. The histories may
pertain to individuals and the events may be acts carried out by them,
such as a change of job, or of residence; or, the event-histories may
pertain to societies, and events may be wars, or elections (if electioms
can occur in any time interval). The purpose of the analysis would be
to study the causes of variation in the occurrence of events.

Withvthe Poisson process as the framework there are two ways of
carrying out such an analysis., One is to rely on the Poisson distribution
and use counts of events'to_estimate the rate at which they occur; the
other is to rely on informétion on waiting times between events,

1f‘counts of events are relied on, the rationale is that the pro-

bability distributions over the state space given by the count-have a
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mean that is At. Since t is known, a count of the number of events that
have occurred to a person or a group of persons will provide the desired
estimate. More precisely we may, for example, carry out a count for each
respondent over a period of time to give separate estimates of A, say Aj,
" for each person. These A,'s can then be used as dependent variables in

j

a causal analysis by relating their variation to characteristiés of the

respondents or theilr situation.

Relying on counts of events is, however, often an inefficient use of
the information available in lif;—history data, and may in fact provide
misleading inferences. The bagic assumption.of the Poisson process is
that events occur with a constant probability in each interval of time.
Counts will have to take place over a time period, and with infrequent
events this period may be quite long., It is likely that the causal variables
relevant for the occurrence of events change over this period. This in-
formation is ignored when relying on coﬁnts. In other words, intraindividual
variation cannot be studied when counts of events are used to study rates.
Furtﬁermore, the over-time variation in rates means that the counts do not
estimate means in Poisson distributions, so what is studied is not well
defined.

An example that illustrates this point occurred in an analysis of
job shifts that I did some.years ago. One reasonable hypothesis about
the occurrence of job shifts is that they are more likely to occur the
larger the discrepancy between a person's occupational resources (education,
ability, etc.) and‘the returns obtained in the job in the form of status
and earnings. .Such a hypothesis cannot be tested using counts of events

to estimate the rate of shifts, since the returns a person obtains from

e R R R R TR T IR
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jobs will change Sver time as a result of the very job shifts that are
analyzed. A different apéroach is needed, and it 1is offered by relying
on walting times, |

The rationale used for waiting times is that if the occurrence of
events is Poisson, waiting times will be exponentially distributed with
mean 1/A. The assumptions of course are the same as for the Poisson
distribution. However, waiﬁing times need not be summed over time as
in the case of counts of eveﬁts; rather, each waiting time ma& be treated
as a unit of analysis. This means that if there are N individuals in
the sample and k events for each individual, there will be Nxk units 6f
observation available for analysis. Each configuration of values of the
independent wvariables may be seen as defining a different Poilsson process
with its associated exponential distribution, and the procedure of treating
waiting timés as units will provide a set of means for these processes,
The procedure thus provides meaningful quantities aléo with within-
dindividual variation. |

In the analysis of job shift egch duration of a job was treated as
an observation of the dependent varlable, and thils variable was then
analyzed for its depéndency on variaﬁles characterizing individuals and
their jobs. The aforeméntioned hypothesis was substantiated. Straight-
forward OLS regression was used. ' This was probably not the best choice
of estiﬁation technique. A maximum likelihood procedure has been developed
bj Tuma (1976) that has more desirabie statistical properties and also

permits the tse of independent variables such as age that vary continuously

over the period of observation,
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The prdposed procedure is then to use observations on intervals of
time between events to estimate expre;sions of the form
A=b + ]zl b,x, | | (19)
'and use estimates of the bi coefficients to make inferénqes on the causes
of variation in the occurrence of events., The linear specification méy
seem a convenient choice. There is, however, one important reason for

choosing a different specification. What is analyzed are rates, and they

are nonnegative quantities., Hence, for example,

(20)

A = exp (bo + i bixi

may be a better choice,

The use of waitingAtimes gives rise to a rather intriguing problem.
It will usually be the case that observations are terminated at an arbitrary
point in time in relation to the process. This means the last waiting time
until an evenf might be interrupted by, for example, tﬁe interviéw. The
problem is what to do with this interval. It can be shown that if all
other intervals of time are exponentiall§ distributed the truncated
inﬁerval will be gamma distributed with a mean that is twice that of
other intervals. Intuitively the reason for this surprising result is
that 1onge: intervals of time have a greater chance of capturing the
interruption than shorter intervals., The problem does affect estimation
(Sérensen, 1977b), but several solutions are available. It is, incidentally,

not a solution to discard the truncated intervals, as serious bias may

result,
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7. ANALYZING OUTCOMES OF EVENTS

The conditional probabilities of moving from state to state on the
discrete variable given that an event occurs, the mij's, may also be
subjected to ;ausal analysis, They casn be estimated from event-history
data by counting the number of moves from each state of origin to each
.stéte of departure on each event., Thus, in an analysis of.occupational
mobility using event-history data, each job shift will résult in a move
from‘occupational‘category i to category j, where 1 may equal j. The
unit of analysis is the shift, If there are N respondents and k shifts,
there will be Nx(k-1) shifts available for analysié of the variation in
thé mij's. The timing of shifts, and evgnts in general, is of course
irrelevant, and is analyzed using the approach described above.

-The miﬁ's may be analyzed using an approach proposed by Spilermén
(1972) . For each row and cell in the mij matrix a variable yij is defined
so that yij<= 1 if there is an entry in the ij'th cell, and yij = 0 other-
wise, For those outcomes originating in the i'th fow a regression amnalysis
with yij.as the dependent variable is performed, i.e., the expression
(21)

yij =a, + I a,x,

is estimated. There will be k2 such equations with k states or categories
of the discrete variable being analyzed.‘

Spilerman proposed the procedure for the analysis of transition
probabilities in a discrete time Markov model, not for analysis of the
m,,'s., However, the discrete time transition probabilities estimated,

1]

for example, from panel data confound the rate at which events occur with

the outcome of events when they are estimated from a continuous time process.
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Though the abundance of panel data makes it tempting to treat event-history

data with techniques developed for panel data the result is an inefficient

use of the information contained in life-histories. Direct analysis of the

m,,'s that govern the outcome of events is preferable. Equation (21) is a g

1]

linear probability model, where the use of ordinary least squares is in-

efficient and the linear form probably a misspecification. Log-linear _ﬁ

]
15 s 1s preferable.

An interesting parallel between the continuous variable and the discrete

analysis of the m

variable case should be noted, In the survey of models for change in

b e s T e oo

continuous variables it was pointed out that the equilibrium state of the
model for change with feedback is the simple linear model used in regression

analysis of cross-sectional data to establish the relationship among variables.

B P R

A similar result may be obtained for the discrete variable case, at least

in the two state situation. il
i

The Markov Chain will result in an equilibrium distribution if certain ;

restrictions on the transition rates are fulfilled (corresponding to the
condition b < 0 for equation (7) to reach an equilibrium stafe); The . @
| equilibrium distribution will reflect the mij's'as the rate at which events U
occur and will determine only the speed with which equilibrium is reached.
In the two state case the equilibrium distribution will be the ?ector p (=),
with elements Pl(m) and pz(M). In tefms of the mij'é these two quantities

can be written as

pqy (=) = 12
1 m, t My
and ™4 (22)
p, (=) = — .
2 my My

| DS s e
‘ :




23

Now, let the m 's be log-linear functions of independent variables,

i3
that is,

™2

exp (bo + bixi)

i
m,; = exp ﬁco + i cixi). (23)

It follqws, inserting (23) into (22) and taking the ratio of pl(w)vand pz(m)

pl(w) ) : |
5, " exp [(bo -c )+ i (b, -\ci)xi] (24)
or
pl(w)
log 5;?:37= (bo - co) + i Kbi - Ci)xi' (25)

Equation (25) is the usual form of the logit model, and if the X,
variables are dummy variables theq it is just a special case:of Goodman's
log-linear model (1972) for odds-ratios. Hence the log-linear model for
odds-ratios may be seen as the equilibrium formulation of the Margov Chain
model for change in discrete variables, with an exponential decomposition
of the mij's in terms of independent variables., -The proof for the two~
state case has previously been given by Tuma, Hannan, and Groenveld (1977),
who,.howevef, rely on the transition rates, the qij's of equation'(llS,
rather than‘the mij's. If the mij's are written as linear functions of
independent variables, it can be shown--slightly modifying an approach
suggested‘by Coleman (1964)—-that the linear probability model results,

As in the case of continuous variables the ad hoc statistical models
that may be used to establish the relationéhips among discreté variables

can be seen as equilibrium states of the simplest models for change. It

follows conversely, that if the mij's.are subject to ldg—linear analysis,
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7

the mij's are in equilibrium, Thie assumption is, however, usually more

‘realistic than assuming that the state distribution is in equilibrium,

For example, in analysis of occupational mobiiity the occupational dis-
tribution of a cohort will usually change with the age of a cohort as
individuals form their occupational careers. Stable mij'S are consistent
with such an outcome. These quantities govern the outcome of moves when
they occur and may be assumed to reflect the occupational structure and

be quite stable, whereas the rate of movement changes with age.

8. CONCLUSION

This paper has advocated an approach to the analysis of change in
discrete or categorical variables where stochastic process models are used
to identify the éomponents of change and causal analysis of the sources of
variation in these components is then carried out. The continuous time
Markov Chain has been suggested as the appropriate framework for such
analysis. With event-history data this framework can be utilized to
analyze the rate at which eventé,occur and the outcomes of events as
functions of variables assumed to be relevant for change processes.

As mentioned aBove, the Markov Chain is not able to predict the
course of observed social processes very adequately. It may seem that
the choice of this model as a framework is unfortunate. However, the
failure of the model is often due to fallure of the assumptions of sta-

tionarity and homogeneity. The analyses proposed here are directed at

identifying and accounting for variation in parameters over time and among

individuals, and thus remedy these problems with the Markov model.

R et R A S e L e L
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The choice of this model 1s in fact not any more unrealistic than choosing
the simple model for change with feédback as framework with the causal
analysis of change in continuous variables, and this model has the linear
equation, used so~thén in causal analysis, as its.equilibrium state., It
has been shown that the Markov model, similarly, has well known statistical
models for analysis of relations among discrete variables as equilibrium
formulations.

The alternative to the approach hére is to use the ad hoc statistical
techniques on change data and treat the over-~time variation'in the same
manner as the cross—sectional variation. This approach has merit, but if
the appropriate data on change are available--event-history data--these
techniques do not make efficient use of the availaBle information on change.
Event-history data permit the direct analysis of changé, and a framework
that identifies the components of change is needed to take advantage of

this opportunity.
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NOTE

lEvent--history data are longitudinal data where the exact timing of
events is known. They are thus continuous time records of event-like
job shifts, residence shifts, etc., wheﬁ the units of analysis are
individuals. Life-history data are event—history daté. For metho~
dological purposes, the important feature of life-history data is the
information on the timing of events, not the coverage of people's lives.
Further, in some instances, information on the timing of events may be

obtained with designs other than the life-history study design. Hence

the term event-history is preferred.
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