
FILE COpy
DO NRO""'", I .•.,,, \

.' ~ Rtj~OVf

#446-77

NSTTUTE FOR
.RESEARCH ON
POVERTYD,scWK~~~

FITTING STOCHASTIC MODELS TO LONGITUDINAL SURVEY DATA

--SOME EXAMPLES IN THE SOCIAL SCIENCES

. Burton Singer and S~ymour Spilerma.n

~
t<_"1
"~f

. ./j'l."/.' ('\
~'.'~'"

t.·~I'::l"
" ...

UNIVERSITY OF WISCONSIN -MADISON ';~tl



',.,

Fitting Stochastic Models To Longitudinal Survey Data

--Some Examples in the Social Sciences

Burton Singer

Columbia University
U.S.A.

Seymour Sp"i1erman

ausse11 Sage Foundation
U.S.A.
On leave from University

of Wisconsi.n

ry>

The work reported here was supported by National Science Foundation
grants SOC76-17706 at Columbia University and SOC76-07698 at'_University
of Wisconsin-Madison. Support from the .Institute for Research on
Poverty at the University of Wisconsin is also gratefully acknowledged.



~.

ABSTRACT

An important feature of longitudinal data which has no counter­

part in cross-sectional surveys is that one may carry out empirical

studies in which individual histories are the basic unit of analysis.

This opportunity for research aimed at understanding individual

economic and social dynamics has focused attention on the dearth

of analytical tools which are available for exploiting this unique

feature of longitudinal data. We present examples, arising in the

social sciences, of some new procedures for testing a commonly

occurring form of longitudinal data --(multi-wave panel data)-- for

compatibility with continuous time Markov chain models and mixtures

of them. The tests exhibited herein are the simplest prototype

of analytical procedures which are in serious need of development;

particularly for assessing and characterizing path dependencies in

individual histories.
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Fitting Stochastic Models to Longitudinal Survey Data

--Some Examples in the Social Sciences

1. INTRODUCTION

The recent availability of large longitudinal data sets has

focused attention on the dearth of analytical tools which are

available for exploiting the unique features of such data.

Particularly prominent among existing longitudinal surveys are the

National Longitudinal Survey of Labor Force Experience (Parnes

[14J) and the Michigan Panel Study of Income Dynamics (Morgan

[13J), each of which attempts to measure various facets of the

labor force experience of individuals over a substantial portion of

their lives. Also of considerable interest are the National Crime

Survey and several victimization surveys as described in Fienberg,

[7J. An important feature of these data sets which has no

counterpart in cross-sectional samples is that one may carry out

empirical studies in which individual histories --or household

histories-- are the basic unit of analysis. This focus immediately

highlights new kinds of questions which can be answered with

longitudinal data and that cannot be addressed otherwise. For

example, in the context of labor force participation, accurate

individual histories can be utilized to construct distributions of

the durations of employment and unemployment for persons in

particular occupational groups, age ranges, and geographical

regions. Conditional probabilities of persons transferring from

one job category to another givenftheir age and earlier employment



history can be computed from w0z;k history data, whereas thes~

probabilities are empirically outside the scope of cross~s~ctiorlal

surveys.
If quantities such as durations Sf unemployment arid the ab0ve

mentionetl conditional probabilities bf transfet' between pairs of

jobs are jUdged to be of centrai importance when a iongitudiriai
survey is being planned; then cdritlnoUs histdt'ies fbI' each
individUal rept'eseni: the ideal form of data coilection. Thus in

the employmeht; urletr(plbyment, out af the labor JJlat'1<et trichotomy H
would B@ d~sirabie to know in which of these states each individual
is situated for ali times after, say, age i7. Unfortunately, few
longitudinal sUt'veys have been designed with such &uestions in mirid

--for an exception see the retrospective sUrvey of Coleman, et al~;

[6]; As a fgsUlt, if questions ansWerable in terms of detailed

indliiduai nistorIes ~re bf interest to a researcher, he is usually
corifronted with data where the histories contain gaps of varioUs

kinds. The methOdological issue then is how to Utilize such
fragIDerl~ary data to test theo~ies of ihdividuai movement which
incdrpbrate pdth the 0bserved and Unobserved events.

Tfle pUrpose of this paper is to 0U1:line and illustrate a
general conceptual framework ror such tests utilizing a cdffimonly
bccurt'ihg form of fragmentary data from muiti~wave panel sttidies~

In Section 2 we descri~e a form of dIscrete-state rnUiti~wave pati~l

data in detail and p~eseht a formal significanee test of the fi~i1

hypotliliis is
Ho: Two waves of panel data on a two state pt'ocess

were generated by a continuous time Markov chain.

This test represents the simplest prototype of formal
inferential methods to assess whether observed histories with gaps

could fia~e been generated by at least 6~e me~Der of a family of
stochastic pt'ocess models.

uhroJ;\tunately, as discussed in Section 3~ i!here has been ;fery
little de~eiopmerit of ~ppropriate inferential methbds for
multi-wave panel data. As a result; we are usually forced to rely on fdrmaJ.
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procedUI'es, which can, nevertheless, be quite informative about

dynamic processes which could have generated some sort of

fragmentary data.

Sections 4-6 illustrate such informal tests and describe some

unsolved problems whose solution would place the cUI'rently available

methods for the analysis of longitudinal survey data on a firmer

foundation.

2. INDIVIDUAL HISTORIES AND PANEL DATA--THE SIMPLEST PROTOTYPE

Let S be a finite set containing r elements, each of which is

identified with a possible state of a stochastic process. Then

define

n =' {w:w(t), t~O is a step function taking values in S} •

One of the most frequently enountered forms of longitudinal data is

a panel sUI'vey of observations from n of the form

. {w. (k.6), 1 S j S N, where N = number of persons surveyed,
J

o S k S n, where n+l =number of waves in the panel

study,

o < A = spacing between observations} (1)

Thus the states {w.(t), ttkA} occupied by individual j are not
J

observed, and (1) represents fragmentary information about the

movement of the N individuals. Complete individual histories over a

time interval [O,TJ would be' {w.(t), OStST, lSjSN}; such data is
J

rarely available in economic and sociological surveys --(but see

Coleman, et. ale [6J for an exception),

Now let
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be a pj;lobability m~af!Ul;'e on. Snt.l = <n+l)-fol~ C~tesi~n Pl'od.~ot; Qf $

with i1;selI, and obseJ:\Ve that t~e m~im~ likelihood ~f!tima;te 9f
. {Pi' i~Sn+l} us~ng the data (1) is

(~)

where

if (Wj(O), ••. , Wj(nA»)= i

ot~~rw~s~

On~ of the PIlj.ma.J:lY objectives in th~ analysis of l,ongitlJd,~paJ,.

supve.y C!.Ci.ta is to assess wh~th~r Qr not (1) could hav~ arisen f;l:.'lom

observations o:n a stochastic pJ:"ocess whose. joint distr.iQ1,lt:l.o:n,s at

the sampling times O. ~, 24, •.• , nA belong to som§ parame~ic.

fant;j,,;I.y

where A i.s a s~s~t ~f a fi:nite dimensional Euc,lid$an SPace.
This kind of assessment can b~ incorporated with~n th~ f.pame~

wOIlk of ClassiCal hypothesis testing, by 1,lsing ~lgebrai9 c~~j;laQter~

izations of specific papametric families (3) to d,e§cj;l~~ a nu,l,;!.

hypothesis. We illustrate this ;i.deawith a simf,l1.e eXc:l,mple., whiQA .i.s

a usefu~ prgtotype of the general problem of assessing whether

multi-w~ve p~el data could have ~een generated by a Ilestricted

clasf! of stochastic prooess models.

ExampJ,.e J,.;

Ca:nsider a two-state process with $ ~. {l~ 2}, and let ~ ~ ~ in

the obs~rvation plan (1) --(i.e.. a twQ-Wav~ Pane~ Stud.y). ~f g~

null hY~Qthesis is tflat (1) was ~n~ated by $OTll$ eQ:ni;4.n.1,].o~$ t~mi?
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Markov chain then we are asking whether' {p., i e: S2} can be
~

represented as

p. . = 71'. p. .
~O'~l . ~O ~O'~l

where

p. . =
~O'~l

p. .
~O'~l

71'.
~O

and the stochastic matrix

p = rP11 P12]

lP21 P22

satisfies

trace P =P11 + P22 > 1. (4)

Remarks:

(i) Condition (4) is an algebraic characterization of the

class of all 2X2 stochastic matrices whose entries can be transition

probabilities for a two-state continuous time Markov chain. This

was first established for chains with stationary transition

probabilities by D. G. Kendall (see Kingman [10J, 9g. 15) and then

extended to include general two-state non-stationary chains by

Goodman [8J. Goodman expresses (4) in the equivalent form

det P =trace P - 1 > a • (4' )
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(ii) A formal statistical test which rejects the null

hypothesis

HO: PEE ={p : trace P > l}

rejects all non-stationary, continuous time Markov chains as

possible processes to generate (1) with 0=1. However, if HO is

accepted then a continuum of non-stationary continuous time chains

can generate P while there is only one time-homogeneous chain

which has transition probabilities

In particular, the unique chain with stationary transition

pr6babi1ities statisfying

I /p •. (O;6) =Prob(w:w(/:.)=j jw(O)=i)/ I =P € P
~J ~

has t~ahsitiofi probabilities for general times 0 S s < t

p .. (s,t) = Prob{w:w(t):::j Iw(s):::!) = (e(t-s)Q) ••
~J ~J

where

1Q = I:. log P
1.. _. P . ]11

P .. 1 •
22

There is a natural parametrization of the 2x2 intensity

matrices Q; namely,

where a. ;;:: 0,
~

i ::: 1,2} .

Thus we can e~press any P t P in the parametric form

,.
i
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and thereby identify the joint distribution" {P., i E S2} with a
~

member of the parametric family" {pea)} A where
- aE

and

IT. = E p ..
~ j ~J

For a formal test of the null hypothesis HO:P E :

={p trace P > l} introduce the alternative hypothesis

and the decision rule:

if

trace ~ > 1+01'

1-02 S trace P S 1+01'

trace P < 1-02'

accept HO;

accept that the observations

ar>e inadequate to discriminate

between HO and Hl ;

accept Hlo

,'" Here
~ n ..
P = 11..21.11 - IIp .. /I

",,) ni + ~J

n .. = number of individuals in state j at time A
~J

who were in state i at time 0

2
n. = E n ..
~+ j=l ~J
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and the constants 01 and 02 ~e.determined from an a ~iori 'specifi~

cation of Type I and Type II error. Especially ~ we set

ell = ProbE (reject HO) =Prob (Type I error)
o HO (5)

=sup Prob (trace P < 1-02)
P:P1l+P22>1 p

and

where

el2 =ProbH (accept H ) =P:r::'ob (Type II error)
1 0 Hl

"=sup Prob. (t:r::'ace P > 1+(1)
£:Pll+P22~ £

(6)

o S; p .• S; 1,
.1..1.

i =1,2

and {ai' i=1,2} CiI'e specified by tpe I"esearcheI".

Simple appI"oximate solutions to (5) and (6) are

6l ~ ~ ~~+ + n~+ ~-l(l-a2)

and

_ 1

/~ + 1 -1
°2

J:t -
2- n2+ 4l (0.

1
)

wheI"e

[ 2
-u /2

4>(x) e
du= .

.121T

Some pI"eliminaI"y numeI"ical evidence indicates that this

approximation is quite good when min(n
l

' n
2

) > 35. Full. + . +
analytical and numerical details about this and other tests of the

hypothesis HO will be published elsewhere.
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3~ :MORE:COMPLICATED 'HYPOTHESES- '-----
For multi-wave panel data such as (1), formal significance

tests of H(~):{(l) were generated by an ~th order Markov chain}

where 0 :$ ~ :$ n have been given by Anderson and Goodman [1]. Their

investigation, however, pays no attention to the distinction between

discrete and continuous time processes; hence, tests of the kind

exhibited in example 1 have not been previously discussed. The

point at which algebraic characterizations such as (4), that

distinguish conditional probabilities for a continuous time process

from those that can only arise in a discrete-time formulation, enter

into test statistics --e.g. the generalized likelihood ratio-- is

in specifying the region over which a supremum is to be computed.

Such computations present difficult numerical analysis problems

which are far from resolved. In fact, the entire subject of formal

inferential test procedures for stochastic process models with

observation plans such as (1) is virtually undeveloped.

Because of this paucity of inferential methods we describe some

informal test procedures in sections 4-6 which are based on

algebraic characterizations of conditional probabilities generated

by restricted classes of models. The procedures are analogous to

the inferential test illustrated in example 1, except that there is

no formal consideration of Type I and Type II errors. This,

possibly excessive, reliance on the subjective judgment of a

researcher to say when a hypothesis should be rejected is a

consequence of the lack of a systematic sampling theory for the

algebraic expressions utilized in the proposed tests.
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4. UNOBSERVE.D. 1'!ULTIPLE "T.R4NSIT:rON~';'-~ "EXAMPL,E

AS part of a study of interpersonai relationships am~ng

American high school youth in the 1950's, J. Coleman [3] asked

students in Northern Illinois high schools in October 1957 and

again in May 1958 whether or not:

(l~ they perceived themselves to be members of the

le~ding crowd in their schqpl;

(2) t4ey can maintain their prdnciples and be a member

of the leading crowd.

Affirmaidve answers to each question were scored + and negative

answers were scored -. Thus, an individual can I1espond to the

above questions in one of four possible ways at each observation

time: (~esponse to (1), Response to (2» = (+,+), or (+,-), or

(-i+), qr (-,~). We Then identify these responses as possible

states of a stoc~astic process. The observed counts for boy~

and girls based on the above mentioned ~wo waves of PaPel data

are:

TABLE I

Boys, Obs~rved Counts

Question (1) + + ,..
(2) + ... +

+ + 458 lifO 110 49
Respo#se + 171 182 56 87

Octoper 1957 + 184 75 531 281
85 97 ~38 554

So~ce: Coleman [4], pg. 171
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TABLE II

-!-, Girls, Observed Counts

Response, May 1958

Question (1) t t
(2) t t

+ t 484 93 107 32
Response + 112 110 ' 30 46

October 1957 + 129 40 768 321
74 75 303 536

Source: Coleman [4], pg. 168

Although the attitudes (1) and (2), held by each student,

were assessed at times spaced nine months apart, their attitudes on

these questions could have changed multiple times between

October 1957 and May 1958. Such changes are, of course,

non-observable. In connection with the above data, Coleman [4],

~g. 168 utilized a theory about attitude changes in an adolescent

population on issues such as (1) and (2). In particular, he

suggested that individuals could change their attitude on either

issue alone at anyone time but could not change their attitude

on both issues simultaneously.

Examination of Tables I and II reveals that in both the

male and female populations some individuals had changed their

attitude on both issues, as observed at the survey times --e.g.

32 girls responded (t,t) in October 1957 and (-,-) in May 1958;

75 boys responded (-,t) in October 1957 and (t,-) in May 1958.

Since the times at which an individual changes his/her attitude

is unrelated --to the best of our knowledge-- to the survey times,

our only recourse in assess~g conpatibility of data such as

Table I and II with Coleman's theoretical proposition, is to first

propose a variety of plausible models of individual attitude

change which allow for transitions at arbitrary times. We then

assess whether the observed data can --at least to within small

errors-- be generated by one or more of the proposed models.
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A simple baseline class of mqdels which were suggested by

Coleman for comparison with Tables ! and II are continuous time

Markov chains with stationary transition probabilities governed by

the special 4x4 intensity matrices

Q E Ql = jQ: q. . < 0 , q.. ~ 0, i -p j,
~ ~~ ~J

q14 = q23 = q32 = q41 = 0

4
L q.. =
·-1 ~JJ-

that is, instantaneous change is possible only on one attitude at a

time. Transition probabilities P(O,t) for these models satisfy the

matrix qifferential equations

dP _
it - Qp, p(O) = I (7)

where Q E 91 (see Coleman [4J for the restricted class 91 ); and

P(O,t) can be represented as

P(O,t) = etQ
(8)

Note: Transition probabilities between a pair of states conditional
on a transition occurring --whether it is observed or not-­
are given by m.. = q . .I(-q .. ), i 1- j.

~J ~J ~~

In order to assess whether the transition matrices induced by

Tables I and II according to

n ..
P( 0, L\) = II ~J II

ni +
(9)

(here, n .. = number of individuals in state i in October 1957
~J

who are also in state j in May 1958,
4

ni + = L: n .. ,
j=l ~J

and L\ = 9 months)
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can be approximately represented in the form (8), we introduce the

matrix norm
;'./

, '

IIAI J = Ir. r. la .. 12

i j ~J

and determine Qb and Q . 1 for which
oys , g~r s

'"
min IIlog P . 1 - QI j

g~ s
Q€Sl

are attained,

The primary quantities of interest are the probabilities

1
0--

qll
M = Q + I

0 1--
q44

interpreted as probabilities of movement between pairs of states

conditional on a change occUI'ring. These probabilities are given

in terms of the least squares intensity matrices, Qb andoys
Qgirls' by

0 ,6148 .3852 0

',6546 0 0 .3454
M =boys .3561 0 0 .6439

0 .,2133 .7867 0

=

1- ( )
qll boys

o

o

1- ( )
q44 boys

Q + Iboys
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and similarly,

0 .5361 .4639 Q

M .6897 0 0 .3103=giI>ls .2367 0 0 .7633

0 .2344 .7656 0

Computing tables of expected values under the model proposed by

Coleman we obtain

nl + 0
Q

1+51+.3 134.9 108.8 65.6
e boys = 174.6 182.6 47.1 91.7 (10)

0 nl++ 187.2 56.7 539.2 286.7
boys 93.2 92.1 334.2 554.0)

n 0 479.1 90.6 104.7 41.6lor
Q . 1e g~r s 111.8 112.4 22.4 51.5 (11)=

0 124.8 38.0 770.6 324.5
n4+

girls 57.6 77.5 305.6 544.4

Comparing (10) and (11) with Tables I and II reveals that

constrained time-homogeneous Markov models with Q E 91 provide

very good approximations to this data. The key methodological

lesson of these calculations is that observations on a process,

where multiple transitions occur between the observation times,

can still be effectively tested for compatibility with theoretical

models which incorporate these non-observable events. Furthermore,

the preliminary conclusions about the adolescent society

listed below are much more transparent in ~ and M . 1 then in--boys gJ.r s
Tables I and II or in the transition matrices p(O,~) induced by

them. These conclusions are:
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(i) The most probable transitions for both boys and

girls are (+,-) + (+,+); (-,+) + (-,-); and

(-,-) + (-,+).

(ii) Although both boys an~ girls who perceive them­

selves outside of the leading crowd and who don't

feel you must give up on principles to be in it

will tend to change their mind on the issue of

principles, girls have a somewhat higher probability

than boys of feeling this way. In particular,

(m3~)girlS = .7633 > (m34 )boys = .6439.

(iii) For persons perceiving themselves outside the

lead~ng crowd and feel~ng you mus~ go .against

your principles to be in it, it is much more likely

that they will change their attitude about the

issue of principles before they are in the leading

crowd than the reverse. (i.e. m43 > m42 for both

boys and girls)

Having demonstrated that a restricted class of time-homogeneous

Markov models provides a readily interpretable and remarkably good

approximation to the data in Tables I and II, it is necessary to add

a note of caution. In partiCUlar, a variety of non-Markovian models

of both homogeneous and hete~ogeneous populations, which are

indistinguishable from time-homogeneous Markov models on the basis

of two waves of panel data, can also represent Tables I and II.

Thus we view the conclusions based on the preceding calculations as

suggestive but tentative pending a comparison of

(k-j )LiQb
e oys and

(k-j MQgirls
e"

A "A

with observed matrices Pb (j~,k~) and P . I" (j~,k~) arising from
oys " g~r s

additional waves of the panel study.



5, MOD:EL REJ:ECTION WITH 2-WAVES OF PANEL nATA
,':' ...""~" ,.,·'Ff~ .. ··'·:'-··""""""'"

.....NON,;,STA'1'J.:QNMy·CHAINS

A simple inequality which holds for the transition

probabilities I jp. ,(s,t) = Prob(w:w(t) :: j Iw(s) = i)11 of arbitrary
~J

continuous time non-stationary M~kov chains Can be converted into a

rejection critera for a test of the null hypothesis

HO observq1:ions of the form (1) with n=l

were. generated by some continuous time

non-stationary M~kov chains.

In particular G. Goodman [8J proved that

I"
II p " ~ det II p .. " > 0

i::l J.J. ." J.J
(12)

foX' transition ?I"bbabilit~es Pij (s, t) which are solutions of the

matt'ix 94fferential eq.uatiqns

ap(s;t)
at . = P(s,t)Q(t), PC;,t) = I

(13 )

a?(s,t) = -Q(s)P(s,t),
as P~s,s) = I

t'
and "Is ~ 0, Q(s) e: Q = {Q:q .. :::; 0, q .• ~ 0, i ~ J',. E q•. :: O},

J.J. J.J . ' . J.J '. '
l

Thus the entries of a stochastic lp-atrix which satisfies

r
IT p .• < det P

i=l J.J. .
(14)

cannot be interpreted as transition probabilities of any continuous

time non-stationary chain.
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Example 2: Art·iIiformal:test

Suppose that

/-,

P(O,A) = [

.15

.37

.20

.35

.1+5

.60

.50 J

.18

.20

(15)

is a stochastic matrix whose entries are conditional frequencies

.from data of the form (1) with n = 1. Computing
3 ~

IT p" = .0135 and det P = .05 we find that (14) holds and that
i=l ~~

--provided (14) is based on a large sample-- we may reject HO on

the basis of this data. A formal test of significance which uses

r
IT p.. - det P

.i=l ~~
(16)

as a test statistic can be specified in principle; however,

development of the necessary distribution theory for (16) based on

multinomial sampling remains to be carried out.

The inequalities (12) are only necessary conditions for a

finite stochastic matrix to be embeddable in a continuous

2-parameter family of matrices satisfying (13). Hence, they can

only be used to specify criteria for model rejection.

Unfortunately, no computationally tractable necessary and sufficient

conditions are known for the. general non-stationary Markov chain

embedding problem (see Johansen [9] and Kingman [llJ for an up to

date account of this problem). However, if we restrict

consideration to the non-stationary birth and death processes

--i.e. continuous time Markov chains whose transition probabilities

satisfy (5.3) but with

Q(s) e: Q I'\{Q:q .. =° ifli-j I > l} = 92 'is ~ 0, -
... ~J ~



Th.~o~~: Apon~s~ngg~~ stqchast~c matr~ P is ~mb~dgqpl~

in. acon.~in.uous two ~~~te~ fami~y of stochastic

matpicessatisfyi.;ng <.3,3 ~ w~"tb Q( s) E: 82 vs ~ 0 if·/ it
is tQtally positiv~.

,..-

i <: i <..~ .. ~

< •Jkjl < j2 < •••

d~t II aiR.~11111

;t.::;R.~k

l~m~k

(.].7 )

for k :;; ~, $., "" r ~

~athem~tiqa~ details qOnCeI'n~ng the ~ove ~heorem W~~ pe

:pubJ.ish.ec;l e.J.§~wheI'e. How~veI', th~ impQ~i:~:~m~~ of this result f9I1

the ana,J,ysis of mUlti~wave panel da~a li~s in the fact that tests

of the vali~ity of the inequaJ.ities (+7) Can pe~dily pe ~p.3,~m.e.nte4

on a comJ?ut~r. A, much more diffic1).,lt task is the d~velopmen.t of a,

distri1?ution tpeol'y for the detepmipants in (.3,7) pased on

multipQmial sampling. 'rhis task ViOu~d pe nece.s$~Y if fopma..:i.

tests of s~g~ificance are, to rep,lqce, th~ ~fo~al e~aminati.q~ of

the de~~rm~~ants in (17) as a, means pf ass~ssing compat~ility of

two.wav~ panel gata w~th p~th a~d dea~h ~ocess mode.ls~

6. ~SIDUAr.s. f'ROM TIl1E~liOMOGENE.O{JS MA~OV GHAINS

The,re is an extensive empirical lite.rat~e in sociology and.
economi9s ...~ (see,Sipger and Sl?ilermafl P,9J~ [*6.J fo:p a 4ig;clJ§l~;s:m,.,
and references ) ...~ in which. an observe<;l stochastis inatr~ P~ 0,L\), ,
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based on two waves of panel data, has been identified with a matrix

of transition probabilities for a time-homogeneous Markov chain.

Tests of the validity of this identification using several

waves of panel data have generally led to its rejection and, at

the same time, consistently revealed the inequality

A ~k A

f(k,~) =trace P (O,A) - trace P(O,kA) < ° (18)

"with f(k,A) decreasing as k increases.

The most frequently utilized explanation for (18) is

that a socially heterogeneous population is being treated as though

it was bo~ogeneous --(see, however, Coleman [5J and Singer and

Spilerman [15J for a discussion of other explanations). This

interpretation suggests that mixtures of Markov chains should provide

a better description of the data and, thereby, account for (18).

Indeed, in many investigations-(e.g. [2J, [12J}-(18) has provided

excellent clues to readily interpretable mixtures of Markov chains

which also fit the observed data quite well.

Motivated by this empirical success, it is natural to ask

whether general mixtures 'of Markov chains must automatically

satisfy

f(k,A) = trace pk(O,A) - trace P(O,kA) < ° (19 )

for k =2,3, ..• and ~ > 0. In [16J we showed that (19) does not

hold in. general and exhibited wide classes of mixtures of Markov

chains for which

f(k,A) > 0, k = 2, 3 and ~ C!: 1 • (20)

For a simple example of this behav~or, consider' the family of mixtures

with transition probabilities



and

Ms M=
N

M:M :::

1...(2a+~)

do

a
a

a (3

1-(2a+a) d

a. l-(~at~)

a
a

1-(20.+/3) .

Each M5 ~ has ~igenvalues Vi ::: 1, V2 ~ Va ::: 1-2(a+a)~ and

v4 ::: l-~a. In "terms of' {Vi}. " " , a somewhat tedious ea:).cti+ation
~=l,2,3,Lf.

and

where

4
2

4 , 3....3 + 3 t \l. .- 2 t v. > 0
i=2 ~ i:;2 l.

*0 < s < s

The importance of such examples for the development or techniqu~s

~or the analysis Or multi-wave panel data lies in the qUestions,

they raise about posSible iptei:'pretatioris of (18). For :example',';f

suppose we restrict attention to miXtures or the form

where Mis a stOChastic matri~ witn dis~inct
eigeI1vaiu~s, cl.ild 1.11s~ILar?it:r~~ pi:'Obab~lity:_,
inea~ure on [0,+,<0) }
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or
, ,tf.- "

P2 = {P(O,t);PCO,t) ~ f M dp(f.-) ,
~·A . t = 0, 1, 2, ., .

Note:

where Mis a stochastic matrix with distinct
eigenvalues, and l.l is an arbitrary probability
measure on, A = [ 0, 1, 2, •. ,)} ,

P(O,t) in equation (21) is in :2'

, (ii)

Then the following issues arise:

(i) If P(O,t) e: ~U:2 and '1ft ~ 0 has real positive

eigenvalues, then (19) holds for k = 2, 3, ,"

and VA > 0, It is not known whether most of the

observed matrices for which mixture models in

~lU~2 --or slight generalizations of these--

have been successfully utilized to account for

(18) actually have real positive eigenvalues.

There is certainly no clear a priori reason ~my

observed matrices in a wide variety of longitudinal

surveys should have this property.

Since (20) can occur for mixtures in ~lU:2 only

when P(O,A) has at least one pair of complex

conjugate eigenvalues or a negative real eigenvalue,

it would be important to know how frequently such

observed matrices arise in studies where a convincing

substantive argument can be made for mixtures in

~lU ~2 as a plausible class of models. If (18)

occurs for many matrices hav~ng complex contugate

~igenvalues, then there must be severe restrictions

on the classes of matrices M, mixing measures l.l, and

observation intervals A in mixture models which

could have, generated the data, Especially, it would

be important to understand, form an empirical point

of view, why the inequalities (20) exhibited by

models such as (21) tend not to occur in economic
"-



and socio~ogical panel data~ if thi~ is in fact.

the case.

(iii) :Finally it it should be ~emarked that even for data

generated .by mixtures in P1U P2"with real positive
. N N

ei~~hValties, (18) can be violated simPly as a

consequence of sampli.ng variabi:).ity. A sampli.ng

"~heQry f9X' f(k,A) whic~ could place info~al tests such

as (18) on a st:ro.nger foundation remains to be developed.
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