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ABSTRACT

An important feature of longitudinal data which has no counter-
part in cross-sectional surveys is that one may carry out empirical
studies in which individual histories are the basic unit of analysis.
This opportunity for research aimed at understanding individual
economic and social dynamics has focused attention on the dearth
of analytical tools which are available for exploiting this unique
feature of longitudinal data. We present examples, arising in the
social sciences, of some new procedures for testing a commonly
occurring form of longitudinal data --(multi-wave panel data)-- for
compatibility with continuous time Markov chain models and mixtures
of them., The tests exhibited herein are the simplest prototype
of analytical procedures which are in serious need of development,
particularly for assessing and characterizing path dependencies in

individual histories.




Fitting Stochastic Models to Longitudinal Survey Data

--Some Examples in the Social Sciences

1. INTRODUCTION

The recent availabjility of large longitudinal data sets has
focused attention on the dearth of analytical tools which are
available for exploiting the unique features of such data.
Particularly prominent among existing longitudinal surveys are the
National Longitudinal Survey of Labor Force Experience (Parnes
(14]) and the Michigan Panel Study of Income Dynamics (Morgan
[13]1), each of which attempts to measure various facets of the
labor force experience of individuals over a substantial portion of
their lives. Also of considerable interest are the National Crime
Survey and several victimization surveys as described in Fienberg,
[7]. An important feature of these data sets which has no
countérpart in cross-sectional samples is that one may carry out
empirical studies in which individual histories --or household
histories-- are the basic unit of analysis., This focus immediately
highlights new kinds of questions which can Le answered with
longitudinal data and that cannot be addressed otherwise. For
example, in the context of labor force participation, accurate
individual histories can be utilized to construct distributions of
the durations of employment and unemployment for persons in
particular occupétional groups, age ranges, and geographical
regions. Conditional probabilities of persons transferring from

one job category to another givenr their age and earlier employment




history can be computéd fhom work histery data, whereds these
probabilities are empirically outsidé thé scope of tross-séckiondl
surveys.

If quantities such as dupaticis 6f unemployment and the abové
mentioned conditional probabilities of transfer between pairs of
jobs aré judged to be &f central importatice when a longitudinal
supvey 18 being planned, theh continots histories for each
individial répresent the ideal form of data collection. Thus in
the employient, uremplojment, out &f the labor market trichotoiy it
would B& dé8irabié to know in which of these states each individual
is situsted For gii_timéé after, say, agé 17. Unfortuhdtely, few
longitidinal surveys have been designed with suth fuestions ifi mind
--for an exception see the retrospective survey of Coleman, &t al:;
[6]: As & pesult, if queéstiohs answerdble in terms of detailed
individudl histopies spe OF interest to 4 researched, he is ustally
corifronted with data where the histdries contain gaps of varidus
kind§. The methodological issue then i how to utilize such
fragmetitary data to test theoriés of individual movement which
incoppoaté Both the observed and unobsepved events.

THé plivpose of this paper is to outline and iliustrate &
generdl conceptual framework for such tests ufiliZiﬂg a dotithdnly
occurring form of fragmentary data from fiulti-wave panel studied:
In Section 2 we déscriBe a Form of discrete-staté multi:wave patisl
data in detail and present a formal dignificdnce test of the Auid
hypotHésis ‘

Hoi Two waves of panel data on a two stdte process
were generdated by a continuous time Markov chaid.

This test represents the simplest prototype of formal

inferefitial methods to assess whether obaepved histories with gaps

could Hive been generated by at least She membér of & family of

stochadtié prbécess models.

Uhfortunately, as discussed in Seéction 3; theve has been véry

little developmént of appropriate inferentidl methods for

multi-wave panel data. AB a result,; wé abeé usually forced to rély on formal



procedures, which can, nevertheless, be quite informative about
dynamic processes which could have generated some sort of
fragmentafy data.

Sections 4-6 illustrate such informal tests and describe some
unsolved problems whose solution would place the currently available
methods for the analysis of longitudinal survey data on a firmer

foundation.

2, INDIVIDUAL HISTORIES AND PANEL DATA--THE SIMPLEST PROTOTYPE

Let S be a finite set containing r elements, each of which is
identified with a possible state of a stochastic process. Then

define
Q = {w:w(t), t20 is a step function taking values in S} .

One of the most frequently enountered forms of longitudinal data is

a panel survey of observations from {2 of the form

'{wj(kA), 1 N, where N = number of persons surveyed,

I
" .
A

n, where n+l = number of waves in the panel

IA
A

study,

o

A

>
]

spacing between cbservations} . (1)

Thus the states {wj(t), t#kA} occupied by individual j are not
observed, and (1) represents fragmentary information about the
movement of the N individuals. Complete individual histories over a
time interval [0,T] would be'{wj(t), OLt<T, 1SjsN}; such data is
rarely available in economic and sociological surveys --(but see
Coleman, et., al. [6] for an exception).
Now let
w(A)=il, e w(nA)=in]
n+l}.v

E'=‘{p. = Prob w:w(0)=io,

is= (io, vees in).e S




be a probability measure on Sn*l = (n+l)-fold Cartesian product of §

with itself, and observe that the maximum likelihood estimate of
'{Eg, i§3n+l} using the data (1) is

| N |
- l . K3 > . n+l [
=1 =
where
1 if (w,(0), ooy w.(nA))= 1
v, (3) = ) ]

0 otherwise .

One of the primary objectives in the analysis of longitudinal
survey data is to assess whether or not (1) could have arisen from
cbservations on a stochastic process whose joint distributions at

the sampling times 0, A, 24, ..., nd belong to some parametric

family
_{2(52}3% = _—'i(!,,_), = Probi(wgw(o) = io, eres W(NA) s in) :

n+l (3)
Jaea

_J_-. (iO’ ceasy ig)es
where A is a subset of a finite dimensional Euclidean space.

This kind of assessment can be incorporated within the frame-
work of classical hypothesis testing, by using algebraic character-
izations of specific papametric families (3) to degeribe a null
hypothesis. We illustrate this idea with a simple example, which is
a useful prototype of the general problem of assessing whether
multi-wave panel data could have heen generated by a restricted

class of stochastic process models.

Example 1;

Consider a two-state process with § s {1, 2}, and let n = 1 in
the obsepvation plan (1) --(i.e. a two-wave panel study). If our
null hypothesis is that (1) was generated by some continuous time



Markov chain then we are asking whether'{ﬁg, ie 82} can be .

represented as

P. . =M, D.
ety Yo toot:
where
T. =% D, .
i . ti,i
0] .'Ll 0°71
Pio,il ‘
P; i = = Prob(w:w(A)=iljw(O)=io)
0°71 TS -
0
and the stochastic matrix
[Pll P12
P =
| lp2l Po2
satisfies
trace P = p,; +Pp,, > L. ()
Remarks:

(i) Condition (4) is an algebraic characterization of the
class of all 2x2 stochastic matrices whose entries can be transition
probabilities for a two-state continuous time Markov chain. This
was first established for chains with stationary transition
probabilities by D. G. Kendall (see Kingman [10], pg. 15) and then
extended to include general two-state non-stationary chains by

Goodman [8]. Goodman expresses (4) in the equivalent form

det P = trace P - 1> 0 . (4')




(ii) A formal statistical test which rejects the null

hypothesig
Hy: PeP = {P: trace P > 1}

rejects all non-stationary, continuous time Markov chains as
possible processes to generate (1) with n=1. However, if H, is
accepted then a continuum of non-stationary continuous time chains
can generate P while theve is only one tine-homogenéous chain

which has transition probabilities
”Pij(os,A)” =P.

In particular, the uniqué chain with staticnary transition

probabilities statisiying
Ilpij(O,A) = Prob(w:w(A)=7|w(0)=1i)|| =P e P

has tpransitioh probabilities for geéneral times 0 £ s < t

p..(s,t) = Prob(w:w(t)=]|w(s)=i) = (e(t‘S)Q)‘,
1] 15
where )
, pi, -1 1 - b,
q =10 p = L log(trace P-1) 11 1l
B8 TR frace P2 | 1-D,, Dy, =1L

Theré is a natural parametrization of the 2x2 intensity

matrices Q; namely,

{Q:Q = vl 11 where a, 20, 1= 152} .
B2

Thus wé can express any P € P in the parametric forth



ij ij

and thereby identify the joint distribution’{Eg, ie s?} with a

member of the parametric familylfgkg)}aeA where

and

T, = 2 E.. .
1 « 1
3 J

For a formal test of the null hypofhesis H:PeP

0
= {P : trace P > 1} introduce the alternative hypothesis

HiP R E
and the decision rule:
if

trace f > l+61, accept HO; .
1-62 < trace P £ l+61, accept that the observations
are inadequate to discriminate
. between HO and Hl;
trace P < 1—62, accept Hl'
Here
A ni.
P = 1240 = 18,41
i+
nij = number of individuals in state j at time A
who were in state i at time O
2
ni+ = I n,,
. -1 i

3



and the constants Gl and 62 are .determined from an a priori ‘specifi-

cation of Type I and Type II error. Especially, we set

@, = Prob, (reject H ) = Prob, (Type I error) ”
0 0 (8)
= sup Prob_(trace P < 1-§,)
Pip 1Pp”l 2
and
a, = Prob, (accept H ) = Prob (Type II error)
H 0 H
1 1 (8)
= sup Prob (trace P > 1+61)
P:P1;tPySt
where .
R = (Pll’ P22)9 o '<- Pii S la i = 1,2

and {ai, i=1,2} are specified by the researcher.

Simple approximate solutions to (5) and (6) are

1 /1 + 1
. ® 2 n n ¢ (l-OL)

1 1+ 2+ 2
and
- 1 1 + 1
s, % ~ VY1 n ¢_l(a )
2 2 1+ 2+ 1
where %
e—u2/2
o(x) = ———— du .
- V27

Some preliminary numerical evidence indicates that this
> 35, Full
1+? n2+)

analytical and numerical details about this and other tests of the

approximation is quite good when min(n

hypothesis HO will be published elsewhere.
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. 3, MORE 'COMPLICATED 'HYPOTHESES.

For multi-wave panel data such as (1), formél significance
tests of H(R)E{(l) were generated by an £ order Markov chain}
where 0 £ & < n have been given by Anderson and Goodman [1]. Their
investigation, however, pays no attention to the distinction between
discrete and continuous time processes; hence, tests of the kind
exhibited in example 1 have not been previously discussed. The
point at which algebraic characterizationssuch as (4), that
distinguish conditional probabilities for a continucus time process
from those that can only arise in a discrete-time formulation, enter
into test statistics --e.g. the generalized likelihood ratio-- is
in specifying the region over which a supremum is to be computed.

Such computations present difficult numerical analysis problems
which are far from resolved. In fact, the entire subject of formal
inferential test procedures for stochastic process models with
observation plans such as (1) is virtually undeveloped.

Because of this paucity of inferential methods we describe some
infbrmal test procedures in sections 4-6 which are based on
algebraic characterizations of conditional probabilities generated
by restricted classes of models. The procedures are analogous to
the inferential test illustrated in example 1, except that there is
no formal consideration of Type I and Type II errors. This,
possibly excessive, reliance on the subjective judgment of a
researcher to say when a hypothesis should be rejected is a
consequence of the lack of a systematic sampling theory for the

algebraic expressions utilized in the proposed tests.
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4. UNOBSERVED MULTIPLE TRANSITIONS--AN EXAMPLE

As part of a study of interpersonal relationships among
American high school youth in the 1950's, J. Coleman [3] asked
students in Northern Illinois high schools in October 1957 and
again ih May 1958 whether or not:

(1) they perceived themselves to be members of the

leading crowd in their school;

(2) they can maintain their principles and be a member

of the leading crowd.

Affirmative answers to each question were scored + and negative
answers were scored -. Thus, an individual can respond to the
above questions in one of four possible ways at each observation
time: (Response to (1), Response to (2)) = (+,+), or (+,-), or
(-,4), or (-,=). We then identify these responses as possible
states of a stochasti¢ process. The observed counts for boys
and girls based on the above mentioned two waves of panel data

are:

TABLE I
Boys, Observed Counts

Response, May 1958

Question (1) + + - -

(2) + - + -

+ o+ | 458 140 110 49

Resporise  + - 171 182 56 87
October 1957 - + 184 75 531 281
- -] 85 97 338 554

Source: Coleman [4], pg. 171
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TABLE II
Girls, Observed Counts

Response, May 1958

Question (1) + + - -

(2) + - + -

+ + L8y 93 107 32

Response  + - 112 110 "~ 30 4g
October 1957 - + 129 40 768 321
- - 74 75 303 536

Source: Coleman [4], pg. 168

Although the attitudes (1) and (2), held by each student,
were assessed at times spaced nine months apart, their attitudes on
these questions could have changed multiple times between
October 1957 and May 1958. Such changes are, of course,
non-observable. In connection with the above data, Coleman [4],
Pg. 168 utilized a theory about attitude changes in an adolescent
population on issues such as (1) and (2). In particular, he
suggested that individuals could change their attitude on either
issue alone at any one time but could not change their attitude
on both issues simultaneously.

Examination of Tables I and II reveals that in both the
male and female populations some individuals had changed their
attitude on both issues, as observed at the survey times --e.g.
32 girls responded (+,+) in October 1857 and (-,-) in May 1958;
75 boys responded (-,+) in October 1957 and (+,-) in May 1958.
Since the times at which an individual changes his/her attitude
is unrelated --to the best of our knowledge-- to the survey times,
our only recourse in assessing conpatibility of data such as
Table I and II with Coleman's theoretical proposition, is to first
propose a variety of plausible models of individual attitude
change which allow for transitions at arbitrary times. We then
assess whether the observed data can --at least to within small

errors-- be generated by one or more of the proposed models.
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A simple baseline class of models which were suggested by
Coleman for comparison with Tables I and II are continuous time
Markov chains with stationary transition probabilities governed by

the special 4xi4 intensity matrices

1]

y
QeQ = [Qiq;, < 0, g 20,143, I q..=0};
|

Uy % 93 % 937 T Yy T

that is, instantaneous change is possible only on one attitude at a
time, Transition probabilities P(0,t) for these models satisfy the

matrix differential equations

dp _ -
T ° QP, P(0) = 1 (7)
where Q € Q (see Coleman [4] for the restricted class Ql); and

P(0,t) can be represented as

P(0,t) = &2 , (8)

/

Note: Transition probabilities between a pair of states conditional
on a transition occurring --whether it is observed or not--
are given by m,, = q../(-q,.), 1 # j.
g ymgs = 944/0a;.0, 17 ]

In order to assess whether the transition matrices induced by

Tables I and IJ according to
n,.
Bo,d = [I=L]] (9)

s

number of individuals in state i in October’l957

(here, a4

who are also in state j in May 1958,

u
n,, = L n,. .,
i+ jz1 ij
and A = 9 months)
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can be approximately represented in the form (8), we introduce the

matrix norm

lall = /25 [a,)?

g M
and determine Qboys and Qgirls for which
| ~
gégl |l20g 2y o - 0l
min | |1og P - Q|
Q€91 ~% “girls

are attained,

The primary quantities of interest are the probabilities
( 3
e 0

91 -,
M= ‘. Q+1I
—

0 - ——

L - Uy
interpreted as probabilities of movement between pairs of states

conditional on a change occurring. These probabilities are given

in terms of the least squares intensity matrices, Qboys and
ggirls’ by
0 L6148 .3852 0
6546 0 0 L3454
Mpoys * .3561 0 0 L6439
0 421338 .7867 . -0
a \
_d
(qll)boys 2
- ", Qboys t1
: 1
= T
L Uy boys J




and similarly,

Mgirls

6897
+2367

14

5361
0
0
2344

146389
0
0
.76586

.3103
.7633

Computing tables of expected values under the model proposed by

Coleman we obtain

e 2
0 n
- . boys
J
o A
s P
0 n
- a ) girls

e

e

Q

boys _

girls _

\

454.3
174.6
187.2

93.2

479.1
111.8
124.,8

57.6

134.9
182.,6
56.7
82.7

90.6
l12.4
38.0
77 .5

108.8

47.1
538.2
334.2

io4.7

22.4
770.6
305.6

N

65.6
91.7
286.7
554.0 |

(10)

41.6
51.5
324.5
544.4‘

(1)

Comparing (10) and (11) with Tables I and II reveals that

constrained time-homogeneous Markov models with Q € Ql provide

very good approximations to this data.

The key methodological

lesson of these calculations is that observations on a process,

where multiple transitions occur between the observation times,

can still be effectively tested for compatibility with theoretical

models which incorporate these non-cbservable events.

Furthermore,

the preliminary conclusions about the adolescent society

listed below are much more transparent in Mboys and

M

then in

girls

Tables I and II or in the transition matrices ?(O,A) induced by

them.

These coriclusions are:
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(1) The most probable transitions for both boys and
girls are (+,-) + (+,+); (-,+) > (-,-); and
(=y=) > (=,%).

(ii)  Although both boys and girls who perceive them-
. selves outside of the leading crowd and who don't
feel you must give up on principles to be in it
will tend to change their mind on the issue of
principles, girls have a somewhat higher probability
than boys of feeling this way. In particular,

) = ,7633 > (m,, ) = ,6439.

M3yl giris 34’ boys

(iii) For persons perceiving themselves outside the
leading crowd and feeling you must go against
your principles to be in it, it is much more likely
that they will change their attitude about the
issue of principles before they are in the leading
crowd than the reverse. (i.e. m,, > m,, for both

boys and girls)

Having demonstrated that a restricted class of time-homogeneous
Markov models provides a readily interpretable and remarkably good
approximation to the data in Tables I and II, it is necessary to add
a note of caution. In particular, a variety of non-Markovian models
of both homogeneous and heterogeneous populations, which are
indistinguishable from time-homogenecus Markov models on the basis
of two waves of panel data, can also represent Tables I and II.

Thus we view the conclusions based on the preceding calculations as
suggestive but tentative pending a comparison of

(k-3)AQ

(x-3)AQ
e .

boys girls

and e

with observed matrices P (jA,kA) and P_, (§A,kA) arising from
ys “girls ~ '

bo
additional waves of the panel study.
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5. MODEL REJECTION WITH 2~WAVES OF PANEL DATA
-—NON-STATIONARX CHAINS

A simple inequality which holds for the transition
probabilities Ij (s,t) = Prob(w:w(t) = jlw(s) = i)|| of arbitrary
continuous time non-statlonary Markov chains can be converted into a

rejection critera for a test of the null hypothesis
H0 : observations of the form (1) with n=1
were generated by scme continuous time

non~-stationary Markov chains.

In particular G. Goodman [8] proved that

n =8

P,., = det]]p ]l >0 (12)
=1 *
for transitien probabilities pij(s,t) which are solutions of the

matrix differential equations

9P(s,t |
ELa®) L p(s, ),  RB(t,0) = 1
(13)
B8 = q(e)p(s,t),  P(s,s) =1
‘ r
> 3 = )2 < .2 =
and vs 2 0, Q(s) € Q {Q.qii <0, g5 20, i#3, i 95 0},
Thus the entries of a stochastic matrix which satisfies

r
I p,, <det?P : (14)
i=1

cannot be interpreted as transition probabilities of any continuous

time non-stationary chain.
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Example 2: An informal test

Suppose that

~
P(0,A) = | .37 .45 .18 (15)
.20 .60 .20 '

is a stochastic matrix whose entries are conditional frequencies

from data of the form (1) with n = 1. Computing
3 ~N
I P,, = .0135 and det P = .05 we find that (14) holds and that

i=1
--provided (14) is based on a large sample-- we may reject Hy on

the basis of this data. A formal test of significance which uses

r ~ A
I p.. ~ det P (16)

as a test statistic can be specified in principle; however,
development of the necessary distribution theory for (16) based on
multinomial sampling remains to be carried out.

The inequalities (12) are only necessary conditions for a
finite stochastic matrix to be embeddable in a continuous
2-parameter family of matrices satisfying (13). Hence, they can
only be used to specify criteria for model rejection.
Unfortunately, no computationally tractable necessary and sufficient
conditions are known for the general non-stationary Markov chain
embedding problem (see Johansen [9] and Kingman [11] for an up to
date account of this problem). However, if we restrict
consideration to the non-stationary birth and death processe§
--i.e. continuous time Markov chains whose transition probabilities

satisfy (5.3) but with

Q(s) € 91‘\{Q:q].Lj =0 if |i-j| > 1} = Q, Vs 2 0, —
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then we have the

Thggpgm: A non-singular stochastic matrix P is embeddable
in a continuous two parameter family of stochastic
. matrices satisfying (13) with Q(s) € 82 ¥s 2 0 if it
is totally positive.

Note: A mon-negative prxr matrix A is called totally positive if for

i, <4

L

2

< LN < i
2 ' k -

31

detl'ai

<j2<’“<jk

[| 20 (17)

for k 5 2, 8, +.., 2.

Mathematical details concerning the above theorem will be
published elsewhere. However, the importance of this rvesult for
the analysis of multi-wave panel data lies in the fact that tests
of the validity of the inequalities (17) can readily be implemented
on a computer. A much more difficult task is the development of &
distribution theory for the determinants in (17) based on
multinomial sampling. This task would be necessary if formal
tests of significance are to replace the informal egamination of
the de?gpmi@ants in (17) as a means of assessing compatibility of

two-wave panel data with birth and death process models,

6, RESIDUALS FROM TIME-HOMOGENEQUS MARKQV CHAINS

There is an extensive empirical literature in sociology and
economics --(see Singer and Spilerman [15], [18] fop a discussien

o
and references)-- in which an observed stochastig matrix P(0,4),
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based on two waves of panel data, has been identified with a matrix
of transition probabilities for a time-homogeneous Markov chain.
Tests of the validity of this identification using several

waves of panel data have generally led to its rejection and, at

the same time, consistently revealed the inequality
A ~k n
f(k,A) = trace P (0,A) - trace P(0,kA) < 0 (18)

with %(k,A) decreasing as k increases.

The most frequently utilized explanation for (18) is
that a socially heterogeneous population is being treated as though
it was homogeneous --(see, however, Coleman [5] and Singer and
Spilerman [15] for a discussion of other explanations). This
interpretation suggests that mixtures of Markov chains should provide
a better description of the data and, thereby, account for (18).
Indeed, in many investigations—(e.g. [2]1, [12])—(18) has provided
excellent clues to readily interpretable mixtures of Markov chains
which also fit the observed data quite well.

Motivated by this empirical success, it is natural to ask

whether general mixtures of Markov chains must autcmatically

satisfy

£f(k,A) = trace Pk(O,A) - trace P(0,kA) < 0 (19)
for k = 2,3, ... and A > 0. In [16] we showed that (19) does not

hold in general and exhibited wide classes of mixtures of Markov

chains for which

f(k,A) > 0, k=2,3 and_A =1, (20)

For a simple example of this behavior, considerlthe family of mixtures

with transition probabilities
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P(O,t) = 6 + (les)u®

“ (21)
and
¢ . )
1-(204B) o g o
& 1-(2048) @ B L
MeM=] MM = : 5 '
M= 8 o  1l=(204B) o
o 8 & 1l=(Zo+B) .
0<a,B; 20 +R %1 J
Each M € M has eigenvalues v; = 1, V, = ¥, = 1-2(0#8), and
v, = 1-20. In terms of {v} 4 somewhat tedious caleulation
V 4 l R X _ » . L - :
_ i=1,2,3,4

reveals that with A = 1 and k = 3,

£(3,1) = trace P°(0,1) = trace $(0,3) > 0
whenever 4 \ 4 s
’ o . 1 e 1
and i=2 122
_ )
0< g < s
where | 4 2 4 .
e 1—2 j_,_Aw_ i=2 o
z (vs—l)
iz

The importance of such examples for the development of techniques
for the analysis of multi-wave panel data lies in the questions
they rdise about possible inteppretations of (18). For example,
suppose we restrict attention to mlxtures of the form

£ {BC0,t) ¢ P(0,t) = f etA(M Doy, t20

where M is a stochastic matrix with distinct
eigenivalues, and u is an.arbitrary probab:.l:.ty .
measure on [0,4%) }
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P, = {P(0,t):P(0,t) = [ Mﬂdgm, t =0, 1,2, ...
A

where M is a stochastic matrix with distinet
eigenvalues, and | is an arbitrary probability
measure on A = [0, 1, 2, ...)} .

Note: P(0,t) in equation (21) is in P,.

Then the following issues arise:

(i)

(ii)

'P.UP

If P(0,t) € El\JE2 and Yt 2 0 has real positive
eigenvalues, then (19) holds for k = 2, 3, ...

and ¥A > 0. It is not known whether most of the
observed matrices for which mixture models in

ElL’§2 -—or slight generalizations of these-~

have been successfully utilized to account for

(18) actually have real positive eigenvalues.

There is certainly no clear a priori reason why
observed matrices in a wide variety of longitudinal
surveys should have this property.

Since (20) can occur for mixtures in BlU P, only
when P(0,A) has at least one pair of complex
conjugate eigenvalues or a negative real eigenvalue,
it would be important to know how frequently such
observed matrices arise in studies where a convincing
substantive argument can be made for mixtures in

as a plausible class of models. If (18)

2
occurs for many matrices having complex conjugate

- eigenvalues, then there must be severe restrictions

on the classes of matrices M, mixing measures y{, and
observation intervals A in mixture models which
could have generated the data. Especially, it would
be important to understand, form an empirical point
of view, why the inequalities (20) exhibited by

models\such as (21) tend not to occur in economic
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and sociological panel data, if this is in fact.
the case.

Finally, it should be remarked that even for data

 generated by mixtures in PlU P, with real positive

eigenvalues, (18) can be violated simply as a

consequence of sampling variability. A sampling

theory for %(k,A) which could place informal tests such
as (18) on a stronger foundation remains to be developed.



10.

11.

12,

13,

23

BIBLIOGRAPHY

Anderson, T. W. & Goodman, L. (1957). Statistical inference
about Markov chains. Ann. Math., Stat. 28:89-109,

Blumen, I., Kogan, M., & McCarthy, P. J. (1955). The Industrial
Mobility of Labor as a Probability Process. Cornell Studies

in Industrial and Labor Relations, vol. 6, Ithaca, New York:
Cornell University Press.

Coleman, J. S. (1961). The Adolescent Society. New York: The Free
Press.

Coleman, J. S, (1964). Introduction to Mathematical Sociology.
New York: The Free Press.

Coleman, J. S. (1964). Models of Change and Response
Uncertainty. Englewood Cliffs, New Jersey: Prentice Hall.

Coleman, J. S., Blum, Z. D., Sorenson, A, & Rossi, P, (1972).
White and black careers during the first decade of labor force
experience. Part I: Occupational status. Soc, Sci. Res., I(3):
243-270. : -

Fienberg, S. E. (1977). Victimization and the National Crime
Survey: Problems of design and analysis. Technical Report No. 291,
School of Statistics, University of Minnesota.

Goodman, G. S. (1970). An intrinsic time for non-stationary
finite Markov chains. Z. Wahrscheinlichkeitstheorie £§5165-180.

Johansen, S. (1973). A central limit theorem for finite
semi-groups and its application to the imbedding problem for
finite-state Markov chains. Z. Wahrscheinlichkeitstheorie 26:
171-180. “‘

Kingman, J. F. C. (1862). The imbedding problem for finite
Markov chains. Z. Wahrscheinlichkeitstheorie 1:14-24,

Kingman, J. F. C. (1975). Geometrical aspects of the theory
of non-homogeneous Markov chains. Math. Proc. Cambridge Philos.
Soc. 77:171-183. '

McCall, J. J. (1973). Income Mobility, Racial Discrimination,
and Economic Growth, Lexington, Massachusetts: D. C. Heath.

Morgan, J. N. & Smith, J. D. (1969). A Panel Study of Income
Dynamics, Institute for Social Research, Ann Arbor, Michigan.




iu,

15,

16.

24

Parnes, H. S. (1975). Sources and usés of panels of microdatd
--The national longitudindl surveys: New vistas for labor market
research. Am. Econ., Rev. 65(2):244-249;

Singer, B: & Spilerman, S. (1976): Some methiodological issues
in the analysis of longitudinal surveys. Ann. Econ, Soc. Meas:
5(4) suis7-47h,

Singep, B. & Spilerihan, §. (1977). Trace inequalities for
mixtubes of Markov chains. Adv. Appl. Probab. (in press).

(Key. words: Longitudinal Survey, Panel Datd; Markov Chain,

Hypothésis Testirng, Embeddability)





