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ABSTRACT

Many of ehe data sets used by economists and sociologists to estimate

relationships between social origins of a youth and his later success

in life suffer from a serious nonresponse bias, where not responding

is negatively associated with success. An expression for the bias in

ordinary least squares (OLS) estimated coefficients is calculated for the

case where the probability of being in the sample is a linear function

of the dependent variable. Adopting the conventional assumption that the

true relationship has a homoskedastic error structure, we find that the

ratio of the true to the estimated coefficient of a bivariate and trivariate

regression is a simple positive function of the R
2

of the true relationship

and a negative function of the absolute size of the proportionate change

in samp~ing probability for a standard deviation change in the dependent

variable. When independent variables are symmetric, the bias is indepen­

dent of whether the sampling proportion is a positive or negative function

of the dependent variable.



Estimation When the Sampling Ratio Is a Linear
Function of the Dependent Variable

It is not uncommon for economists and sociologists to use data

bases where the probability that a random individual will be in the

sample depends upon his income, occupation, or education. Often these

data bases are used to estimate models predicting these same success

indicators. The application of ordinary least squares (OLS) to such

data, however, yields inconsistent estimators of models predicting

income, occupation, or education.

The biased nature of OL8 estimators when" the" sample selection

is based on the dependent variable, often called truncation bias in the

literature, has been pointed out frequently (Bishop 1974; Cain 1975;

Crawford 1975; Hausman and Wise 1977; Manski and Lerman 1976; Taubman

and Wales 1974, ch. 4, app. F, L). Sometimes the sampling process results

in an absolute truncation (i.e., absolutely no one with initial year

incomes above 1.5 times the poverty line, as in the Rural Income Main-

tenance Experiment). Estimation techniques for this situation have

been developed by Crawford (1975) and Hausman and Wise (1977).

This paper tackles the situation where all observations in the

population have some probability of being in the sample and the probabil-

ity is a linear function of the dependent variable. I calculate and

apply a formulae that relates the bias to the strength of success selecti­

2vity and the R of the true relationship.

Data bases where sampling ratio depends upon income are of two

types: follow-up surveys with substantial nonresponse rates, and
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interview surveys that oversample people in low or high income neighbor­

hoods. Follow-up surveys may fail to obtain information from many of the

people in its defined sample for a variety of reasons: death, inability to

find a current address, or refusal by the respondent to fill out the

questionnaire. Refusals are the primary cause of success bias.

One heavily used data set with substantial refusal problem is

Project Talent. The combined 1 and 5 year follow-ups of the male 11th

graders had a response rate of 52% to the series of mail questionnaires.

A special intensive follow-up of a 5% sample of mail questionnaire

nonrespondents,which obtained a 90% response rate allows us to establish

the ~tent to which success affects the probability o~,a:espondingto a

mail q~estionnaire. Stratifying by the social status of each student's

parents, college attenders were 1.5 to 1.6 times as likely to respond

to at least one of the two follow-ups (Bishop 1974). Given college

attendance status, the student's family background had no systematic

impact on his response rate.

Another ve~ important data set that potentially has a success

bias is the National Bureau of Economic Research (NBER)-Thorndike sample.

Thorndike took a random sample of 17,000 from a population of Army Air

Corps volunteers for pilot, navigator, ap.d bombarc:1iert'I'&ining"programs

who passed a preliminary screening test. By 1955, 1500 had died and

of the living, 2000 military and 9700 civilians responded to a mail

questionnaire. The response rate was therefore about >7.5%. ThHI' is a high '"'

response rate and is attributed by Taubman and Wales (1974) to the accurate

current addresses generally available from the,Veterans Administration and

the use of Retail Credit Bureau to find some of the nonrespondents.
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The 1969 data is a survey of the 1955 respondents. Of those for

whom current addresses were obtained and who had not died, 70% responded.

Taubman and Wales found that while the 1955 income of 1969 nonrespondents

was lower than for the respondents, it was not lower when ability and

schooling were controlled. From this they argued that any selection process

that existed was based on the independent and not the dependent variables.

It has been shown that when the true model has homogeneous coefficients,

differential sampling ratios that depend on included right hand side variables

do not bias the estimates of structural parameters (Porter 1973; Taubman

and Wales 1974).

However, their test applies only to the response rate conditional

upon having responded in 1955. There may still be success bias in th.e

1955 response rate. Their test also depends upon the assumption that success

persists over time and that income is as good a measure of success at age

29 as at age 44. If the conditional probability of responding in 1969.

given that one responded in 1955, is a function of the change in one's

relative income over the period, the test used by Taubman and Wales will miss

the success bias. An alternative way to test for success bias in the 1969

data would be to compare those who responded as soon as they received a

questionnaire to those who required reminders. But even this requires

some strong assumptions. Because of the lack of an intensive follow-up

by retail credit or phone, we can never be sure there is no success bias

in the NBER-Thorndike data. However, it may be possible to put limits

on the effects a success bias could have.

Another type of data set in which this problem arises is when black

neighborhoods have been overs'amp1ed, as in the 1966-67 Survey of Economic

------- _. -------
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opportunity (SEO); when low income neighborhoods h~ve been oversfUllpled,

as in the Census Employment Surveys; or when iow famiiy incomes relative

to the poverty line are oversampled , as in the Michig~n Panel Study of

Income Dynamics. These data sets have been used to estimate models

predicting success variables like hours worked, weeks worked, and earnings.

A widely publicized finding using these surveys has been that rates of

return to schooling ~re lower in low income neighborhoods than for samples

of people drawn from the metropolitan area as a whole or the nation

(Harrison 1972). Since living in a poverty neighborhood is a consequence

" ofeartlings, restricting one's sample to these neighborhoods or oversampling

in them results in a simUltaneous equations bias when estimating the structur~l

parameters of models that predict earnings and other success variables.

In the next section of this paper, I calculate the bias to be expected

in OLS estimates of structural models of earnings, work effort, or status

attainment when the probability of being in the sample is a linear function

of the dependent variable. If we adopt the conventional assumption that the

true relationship has a homoskedastic error structure, we find that the

ratio of the true to the estimated coefficient is a simple positive

function of the R2 of the true relationship and a negative function of

the absolute size of the proportionate change in sampling probability

for a standard deviation change in the dependent variable. When the

right hand side variables are sym1lletric (the third moment = 0), the

bias is independent of whether the sampling proportion is a positive

or negative function of the dependent variable. To de1llortstrate the

importance and relevance of these findings, the final section of this

paper compares the schooling coefficients estimated in different

subsamp1es of the SEO in models predicting yearly earnings.
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1. Statistical Model

Porter (1973) and others have shown that if sampling ratios are

independent of the disturbances of the model to be estimated and the

coefficients of that model are homogeneous over the popu1ation t OLS

estimators of structural parameters are unbiased. In other words t

sampling ratios that are functions of included independent variables

. (correlated with y only because of the join.t dependence of x and y)

do not produce a selection bias in OLS estimators. The problem dealt

with in this paper is sampling ratios that are linear functions of the

dependent variable. Sampling proportions c6rre1ate with independent

variables solely as a result of their joint association with y.

Analytical solutions are not difficult to obtain for models with

only one independent variable. Let the true model be

Then

3) E ry) ~ PiYi ~ (1 + YYi + vi)YiE"'(y) = = = W(y)s
~ ~ (1 +YYi + vi)Pi

where i indexes each observation in the population (i = 1 • • • n)

Y
i

and xi are defined as deviations from their population mean

u
i

is homoskedastic and independent of xi and vi

Pi = probability the "i"th observation will be selected

n Ins
= the average sampling ratio = the number of observations selected

for the sample (n ) divided by the total number in the population
(n) s
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Vi is independent of xi and consequ~ntly independent of Yi.

Y = the increased probability of being sampled per unit of y
divided by the ~verage sampling proportion

E is the expectation operator

s subscript indicates the mean, variance, or covari~ce indic~ted

is for the nonr~dom sample.

We note that all summations are over the entire population, i = 1 ... n,

and drop the limits from our notation. The sample mean of x is

Noting that rx" ty III 0, the sample variances andcovarialtces have

. 1
the following expectations:

t[i + yY + viltx:t. - Yf3\T{x)]2
E(Vs (x.» = 't(l + yy:+ vi) r

= V(x) + y2~2V(x)2 + YI1Yf~ - 2 y2~V(x)Cov(xy)
. n

5) E(v. (x))" V(x) [1 + ~~~:~ - b2V~)J

1 . . . .. [
E(Covs(Xy» = n L [xi - ySV(x)] Yi - yV(y)]



6)

7

. . [ 2 j
E(Cov (xy»:= Cov(xy) 1 + YSCLX( )

s n ov xy

The probability limit of the sample estimate of S is

7) b
s

b
8) ...!t

S

= Cov(xy)[1 - y2V(Y) + YS2tx3~cov(xy)
V(X) [1 - y2SV{x) + YSLx3!nV(x)

2= 1 + D - Y V(y)
1 + D _ y2 V(y)R2

IOU.

3
where D = ySLx InV(x) = yS times the ratio of the third and second

moments of x

R2 = the proportion of the variance explained by the true
relationship.

2
Since R < 1, b Is is necessarily less than or equal to· 1. Selection

- s

on the dependent variable attenuates the parameter estimates. The

amount of attentuation depends upon three factors: the direction and

degree of skewness of xeD), the strength of the relationship between y and

the probs@ility of selection.~y), and the R2 _of the underlying relationship.

The D term in (8) depends upon the interaction of the sample selection

process with the skewness of x. Since skewness is defined as

3 3a3 = LX In(Jx = the third moment of a variable over the cube of its standard

deviation, we may rewrite D = a
3

.. ySO' = a • yO' r • The expression ,
x 3 y xy

yO' r times 100, can be interpreted as the percentage change in the probabilityyxy

of an observation's selection into the sample that is associated with a

standard deviation change in x. It is positive when y and r have the same
xy

sign, as in earnings functions estimated on Project Talent or NBER-Thorndike

data sets. Thus, if the distribution of x in the population has positive
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skew, D is positive, which reduces bias. :rn SEO and Census Employment

Survey data sets where families in black or 1mr income neighborhoods are

oversampled , yo r is negative because here y and r have opposite signs.
yxy xY

In these surveys a positive skew to x causes D to be negative, thus

increasing the bias.

The distribution of years .of schoo1ing--the -x variable upon which

we are focussing in this paper--can be skewed in e~ther.direction;

depending on the year and.population studied. People educated in the early

twentieth century have positively skewed educational attainment distributions.

The most recent'"cohorts have negatively skewed di~tt'ibutions. Men between

the ages of 30 add 35 in 1974 have an a
3

= -.53. Distributions for adults

of all ages are very close to being synnnetric. When compared to the

skewness of a zero-one variable with a mean of .1, whose a = 2.67,
3

skewness for all adults is quite small: .04 for white males and -.14 for

black males in the 1967 CPS. Since the term measuring the impact of a

standard deviation change in x on the probability of selection, yo r ,
yxy

must have an absolute value of substantially less than one, schoolings

skewness does not have an important effect upon the magnitude of the

selection bias in first order statistics of relationships between schooling

and income. From this point on we will, therefore, neglect the impact of

skewness and assume that all independent variables are symmetric (a3 = 0).

When all variables are assumed symmetric, it is possible to derive a simple

formula for the selection bias in the coefficients 'of "'i"egteMioD:s ,with two ':' ';~'tI"

independent variables. (The mathematical derivation is carried out in

the Appendix.) The formula that results is the same as the formula for
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first order regression coefficients when x is symmetric:

bs-=
13

9) 2
1 - Y V(y)

2 2
1 - Y V(y)R

2
where R is the coefficient of determination in the multi or bivariate

. 2
regression in the full population. The sign of y indicates whether the

,
sampling ratio is positively or negatively associated with tbe dependent

variable. It is squared in the final terms of both the numerator and

denominator. Consequently, the size of the bias is not affected by

whether more income raises or lowers the probability of selection.

The probability limit of the ratio of estimated to true parameters

when the independent variables are symmetric is presented in Table 1

for alternative y's and R2,s.

2If the R = 1.0, there is no bias, for selecting the sample on-the

dependent variable is equivalent to selecting on the independent variables.

2
As the R declines, the bias increases in size for a Iya I of .4, an, I

y
2 2R of .6 implies a bias ratio of .929. An R of .3 implies a bias ratio

2of .882 or a 12% attenuation of regression coefficients. An R of .1

implies a bias ratio of .853 or a 15% attenuation of the coefficients.

In the limit as R2 approaches zero, the bias ratio approaches its maximum of

b /13 = 1 - y2V(y). Thus, when the bias in first order coefficients
s

is compared across alternative right hand side variables, the proportionate

attenuation is larger in variables that have a weak relationship with y.

Since in a trivariate relationship bias depends upon the multiple correlation

coefficient, the coefficients of both independent variables attenuate by

an identical proportionate amount.
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Table 1

2
Values of b fa as a Function of R of the True

s

Relationship and the Str~ngth of Selection on y

R2 = 1.0 .8 .6 .5 .4 .3 .2 .10 0

h<1y I = ,707 1 .833 .714 •667 .625 . .588 .555 .526 .5

Ira I = .5 1 .938 .882 .853 .833 .811 .789 .769 .75y

Ira I II: .4 1 .965 .929 .913 .897 .882 .868 .853. .84y.

Ira I = .2 1 ,992 .984 .979 .975 .971 .967 .964 .96
y

, .-,~"'.-" '''''''.:',.• '''~''',,',I'' .,," .•." .. '~""'- .' """ "...... , .~..¥,. .... " J

Note,; Al.:l- independen~ va:rtables are ~ytDmet:dc.

yq is the prQportionate :l.nc~ease itl the ~aIllpl:l.ng probability per standard
y dev:tatio~ of the dependent variable. .
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The expression, ya , is the change in the probability of inclusion"
y

in the sample associated with a standard deviation change in y divided by

the average probability of inclusion'~, The smaller Iya I the smaller the
y

bias. Since y must approach zero as the proportion cif a population that

is sampled approaches one, selection bias must decline as a survey's response

rate approaches 100%.
2For a given R , the attenuation of regression coeffi-

cients rises roughly in proportion to the square of ya •
y

2At an R of .30,

a ya of.2 causes a 3% attenuation, a ya of.4 causes an attentuation
y y

of 12%, and a ya ; ,of .707 yields an attenuation of 41% •
. y

Biases of even larger magnitudes are possible if selection probabili­
p

ties have a nonlinear relation (In 1 _ P = yy, for instance) with the

dependent variable. As long as the sampling ratio is defined as a linear

function of y, it is not possible for our model to handle truly powerful

selection biases. The derivations would be internally inconsistent if ,"":[

predicted sampling ratios fell outside the zero~one interval. They will

not fall outside this interval if y is sufficiently small and the y

distribution sufficiently compact. A rectangular distribution for y would

require a Iya I < .81, if n In < .5, and a Iya I < 2(.8l)(1-n )!n for
y s y s ...

n In > .5. All other single modal distributions of y will require
s

that y be smaller than these limits.

2. Application to Earnings Functions in the
Survey of Economic OpportunitY

Our statistical model predicts that when the sampling ratio is

dependent on income, the schooling coefficients in an earnings function

will be lower than the true population coefficient. Table 2 tabulates
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estimated relative sampling ratios by earnings for alternative subsampies

of the SEO. Not surprisingly, the prdbability of living in a idw income

neighborhodd is negatively associated with the level of one's earnings~

For whites, the probability of living in a predominantly black area is

also negatively associated with earnings. For blacks, however, there

was no visible relatidnship. Therefore, we do not expect blacks in the

speciai sainple of predominantly black neighborhoods to have lower schooling

coefficients than a national sample of blacks. We do expect, however,

that whites living in these neighborhoods will have a smaller schooling

~ 'cdefflcient than a'nat1dnal sa.mple of whites. Also, rates of return to

schdoling estimated for both blacks and whites living in low income

neighburhoods in urban areas are expected to be smaller than the rates

of return for all urban residents. An examination of Table 3 indicates,

as expected, that schooling coefficients of whites in predominantly black

and low income areas are substantially smaller than those in the national

sample. For whites the unbiased coefficient of .0879 falls td .0701 in

black areas and to .0643 when the sample is limited to low income

neighborhoods. The schooling coefficients for blacks are smaller only

for the low income areas. Furthermore, the drop in the schooling

2coefficients is larger for models with low R (those without measures

of work effort on the right hand side).

For blacks in ldw income areas the linear specification of the

samplirig mechanism predicts the cdeff1cient changes well. For whites,
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Table 2

Estimated Sampling Ratio Conditional Upon Income Relative
to the Average Sampling Ratio

::5 ' L

-Earnings 0-2 2-3 3-4 4-5 5-6 6-7 7-8 8-10 10-14 14-20

Whites in pre.- 2.24 2.24 2.47 1.53 1.41 .83 n .90 .64 .48 - '1-*
dominantly
black areas'

.
Blacks in pre- l.00 .91 l.02 .97 .83 l.09 .91 .88 * *
dominantly-
black areas .....

UJ

Whites in low 2.31 2.45 3.00 2.17 1.37 .87 .70 .56 .21 *
income areas ,.

Blacks in loy l.07 l.08 1.27 1.12 1.12 .88 .63 .52 * *
income areas

*-means n of the Current Population Survey base is below 10.

lSince low income areas were defined only for Standard Metropolitan
Statistical Areas the comparison base is all blacks living in SMSA's.
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Table 3

Schooling Coefficients in Different Samples

Low Predom~ CPS
Income Black

R2 ya* ya*
Area Area Coef. Predom. Low
Coef. Coef. Black Income

Yearly Earnings

Whites
0-20 yrs schooling .0643" .0701 .• 0879 .23 -.~5 -l.06
0-15 yrs schooling .0500 .0656 .0889 .17 -1.00 -1.11

Blacks
0-20 yrs SChgoling .0525 .0628 .0610 .08 .45 -.20
0-15 yrs,schoo1ing .0447 .0530 .0621 .07 .45 -.20

Hourly Earnings, 0-20 yrs
Schooling

Whites .0588 .0556 .0743 .40 -.95 -1.06
Blacks .0410 .0504 .0462 .54 .45 -.20.

Note: The dependent variable is the log of yearly earnings. Samples were
limited to nonfarm males not in school with at least six years of
exper.ience. The schooling coefficients are from regressions with
experience, experience squared, SMSA residence, and SMSA size as
controls. The hourly earnings coefficients have additional controls:
log of weeks worked last year, part time last year, and last week.
The Black CPS sample was limited to SMSA residents.

*Estimates of y were obtained from unweighted regressions of the ratio
of the observed conditional sampling ratio to the average sampling ratio
on the log of yearly earnings. The CPS provides the estimate of the
population distribution of earnings. Weighted regressions yield more
negative estimates of y •

..
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the impact of income on the sampling ratio is so powerful that the

estimates of y produced are too high. Some high earnings individuals

. will have negative predicted sampling ratios, in which case the ~alysis

becomes internally inconsistent. If predicted coefficients are calculated,

nevertheless, we overpredict the reduction in the schooling coefficients.

The problem is that for whites the sampling ratio-earnings relation­

ship for predominantly black or low income neighborhoods is nonlinear.

It looks like a logistic specification would serve better than a linear

specification. Simple analytic results are not obtainable, however,

when the sampling ratio is a nonlinear function of the dependent variable.

Where does that leave the researcher? If data availability forces

one to use a data set in which sampling ratios are nonlinear functions of

the dependent variable,"'how can consistent estimators be obtained?

The solution that suggests itself is a two stage process. First, estimate

a model of the sampling process. If sampling ratios depend directly on

some of the i~dependent variables as well as the dependent variable,

these variables should be included in the model along with y. The main

requirement of this model is that the error in predicting the sampling

ratio be independent of the disturbances of the. structural model. In

Census Employment Surveys this could be done by comparing the low income

area's population to that of the SMSA as a whole. In follow-up surveys

a data set with an intensive follow-up of a sample of nonrespondents

is required.

The second step is to estimate the structual model, using the

inverse of these predicted sampling ratios as weights. Manski and Lerman
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APPENDIX

Linear Selection Bias in the Trivariate

Regression Model·
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Linear Selection Bias in the Trivariate Regression MOdel

In the true model,

1)

2)

3)

4)

* *Yi = ctzi + f3 xi + e: i

~,,' .. *~ * .where a and a .are partial regression ,cQeff~cients

$, a, and e are first order regression coefficients

*e: is independent of x, z, u, vi and vi

•u is independent of x, z, y, vi and vi

y • income selectivity parameter,

Note that

ES(Y) III yV(y) E.(X) ... yCov(xy)

5)
2 2

E{Vs{x» = V{x) [1 + Dx - Y V{y)R yx]

6) E(Vs{z» =V(z) [1 + Dz - y2V{Y)R2~i]

7)

8)
2E[CoVs(zy)] = Cov{zy)[1 + Dz - Y V(y)],

3where Dx =y~x !nV{x)

3Dz == YctEz !nV{z)

if x is symmetric Dx = 0

if z is symmetric D = O.z

Obtairting an expected value for the sample covariance of x and z

is going to require that Y~{XIz) be evaluated:
n,CQv(xz)
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9) 1. E(xyz) = Y.LX;Z(S*X.+ a*z + E)/n COV(XZ)
n (}OV(XZ)

* 2 * 2= [B yEx z + a yExz + yExzs]/ncov(xz)

1 * COY (xz) 3 * C· 1!!) 3 * 2 .* 2 *
10) n Cov(xz) [S y v(x) Ex 1 + a "( o;.(~;Ez + S yEvx + ex yEz v + yExze:l •

*The independence of x and v, z and v , and £ and x and z results in

the last three terms being zero:

** 3 * 3 * ex ""
i1) ::J. LxyZ =II~ + .!....l k- = a D + --12. .b~ + D*

n cov(zz) n Vex) n V(z) aX aZ x z

12)
~

1E(Cov (xz» =- L(x - yCov(xy)(z ~ yCov(zy»s n .

+ ~LY(X - yCov(xy» (z - yCov(zy»

= Cov(xz) + y2cov(xy)cov(zy) + ; Exyz - 2y2Cov(XY)Cov(zy)

= ,Cov (:X.,\~ + 1. Exyz _ v 2 COV(xy~cov'(Zy~
~L n Cov(xz) I COY xz) J

. [ * * 2 .COV(~) .. c.9Y{~v) cr.cr ~= Cov(xz) 1 + D + D _ Y V( ) " . ."v ~Y x Z
. x. z y crycrx crya

Z
~o:v(~z)

= COy xz ~ +D: +D: _y2v{y) r~. rZYJ .
L . xz

*The true a may be written in terms of population moments:

15) * Q [ Cov(zy) Vex)s = P .. 1.-. 'V(z) 'cov(xy)

1 _ R2
xz

Cov(xz~
. vex):]

=
r R2 Vex)sL1~ X2: 'Cov (xz J.

1 _ R2
xz

Cov(zy)
... .cov(xy

16) ~ t- R
2 r

J
r. - r r= zy = xy xz zy

xz . 2r rxz xy (l-R .• )r

R
2 xz xy

1 - -xz

----._-_._.._~. ------- ----
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17) E«(3:) = E«(3s) [ 1(~ Cov{"y) COV"'".) [1+. D.Z.. -. yv(y).]e+~:+. D:~. y2~~~~~XJi
, v(z)'" ci~v(xy) :rf·'+··D;":~Yv&)j~~TI~+.DZ~~'yc2~)t;yJ ".

1 _C()V(~~2 r~ + Dtl + n~ - y2v(yf~;Z¥. J2
v(x) ( ) t: x.z .. ... .' rxz'" ...

(1 + D~ - y2V(y)R2 )(1 + D* _ y2V(y)R2
z zy x xy

We assume that z and x are symmetric:

18) *E«(3 ) = (3-Qs x ~
. R2 Vex) Cov(zy)

1 .,...~x;;;.z~..,-",.-....,... ......._
. . ~." ... ( . ,) C6V(XY"). . .IlJOV_XZ .. , .

1 - li2, -Set
xz

19) [

. r
1 _ R~ZY "

.. '.' .xz.rxzr
W

[ 1 - R
2 ~S·flxz ;"J

1 - y2V(Y)where Q = =-__~:..l_""'_.t.---=-_ < i is the attenuatiOn ratio for the first
x 1 _ y2V(i) R2 order regression

xy

S :::
2· ) r r1 - Y V(y xy zy

rxz
,

22
1 -y V(y)Rzy

=
·2,r . -··d r" r

~ 'X~', .. "g
... ;a" n·," ·.·..·2 2
r (1·.,. d R )xz . zy

·2 I

r . - drnf I

.. ": r xz
(l _ dtk

z
},

xz -ry

r ... r
XI" zy

r xz.
2 2

1 - 'Y V(y) It.
xy

2, ...,
1 - y V(y)

T =
--------~-=;.;-.
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*We get the following reduction from (19) dividing by 6 :

/;

20)

21)

r
2 zy

E«(3*s) _ Q.@. SR r r
(3* - x (3* t--_--=x:.:::z'--'x=z~x;L..

_ sm2
xz

•

Cancelling r 's in the third term of this product, and rearranging, we getxz

E(S*s)
S*

[(1 - R
2

) r J. xz xy
r - r rxy xz zy

[

[r (1 - d
2
R

2
) - r y(r z - d

2
r r ZY)] (1 - d2R

2
)(1 - d

2
R

2 )]Jxy . zy z x xy zy. xy • _
.-~~ . 22 2 2 22

[(1 - d R )(1 - d R ) - (r - d r r ) ]r (1 - d R )zy xy xz xy' zy xy zy

Cancelling (1 - d
2
R2 )(1 - d2R2 )r from numerator and denominator, we getxy zy xy

=

Computing the last term in numerator and denominator, we get

(1 - d2) (1 - R2 ) (r - r r )
c .::x::.z_~!Y:.t__....;z=__y~x;;..z ~---

(r - r r )[1 - R2 - d2(R
2 + R2 - 2r r r )]xy xz zy xz xy zyxy zy xz

~~~---"---------- ----
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=

'Ie

22) E(es ) 1 ~ d~
'Ie • ----~2~---:'2~.-..;~-----

a 1 _ d2 R + R . - 2r . r . rxv zy xy xz zy

1 - 1.
2
xz

,

2 .
where R is the coefficient of determipation of the regression (1)

predicting yWith x and z in the full population. The equiv­

alence represented by (22) is proved in Jolm8tOTl (1963, p. 57).
~1."",

-Thus, when'both r·ight hand side variables are symmetric and selection

probabilities are a linear"function of the dependent variable, the selec-

don bias in partial regression coefficients is (1) the same in both vari­

2abIes; (2) given by the same formula as for zero order regression coef-

ficients; (3) smaller the larger the R2 of the true multi-variate re1a-

tionship; (4) smaller the smaller is the degree of selection on the dependent

variable.
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NOTES

~omoskedasticity and the independence of x and u makes it possible.

to simplify Ly2xand Eyx2:

. 223
Ly2x = L x(ax + u)2 • L a2 .J + 2aiu + LXU = 13 LX

2 2 323Eyx III 1.: x (ax + u) = aLX + LX u • SEx •

2~n recent, as yet unpublished,work~Arthut Goldberger (1975) has proved

a result that is'in many ways more general. When the right hand side variables

aremulti-nermally distributed, truncation or selection bias results in a
"

proportionate shrinkage of .,all regression slopes by a2/1 - (1 - e2 )R
2 ~

where e2 is the ratio of the restricted s~le variance of y to the

population variance of y. Note that (1 - e2) corresponds to y2V(y) in our

notation. Thus, for the special case of bivariate and trivariate regressions

when there is a linear relation between y and the probability of selection,

this paper generalizes Goldberger's result to symmetric right hand side

variables.
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