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ABSTRACT

Many of the data sets used by economists and sociologists to estimate
relationships between social origins of a youth and his later success
in life suffer from a serious nonresponse bias, where not responding
is negatively associated with success. An expression for the bias in
ordinary least squares (OLS) estimated coefficients is calculated for the
case where the probability of being in the samplé is a linear function
of the dependent variable. Adopting the conventional assumption that the
true relationship has a homoskedastic error structure, we find that the
ratio of the true to the estimated coefficient of a bivariate and trivariate
regression is a simple positive function of the R2 of the true relationship
and a negative function of the absolute size of the proportionate change
in sampling probability for a standard deviation change in the dependent
variable. When independent variables are symmetric, the bilas is indepen-
dent of whether the sampling proportion is a positive or negative function

of the dependent variable.




Estimation When the Sampling Ratio Is a Linear
Function of the Dependent Variable

It is not uncommon for economists and sociologists to use data
bases where the probability that a random individual will be in the
sample debends upon his income, occupation, or education., Often these
data bases are used to estimate models predicting these same success
indicators. The application of ordinary least squares (OLS) to such
data, however, yields inconsistent estimators of models predicting
income, occupation, or educ_ation.

The biased nature of OLS égtimator; ;ﬁéﬁ'tﬁe'éémplé gelection
is based on the dependent variable, often called truncation bias in the
literature, has been pointed out frequently (Bishop 19743 Cain 1975;
Crawford 1975; Hausman and Wise 1977; Manski and Lerman 1976; Taubman
and Wales 1974, ch. 4, app. F, L). Sometimes the sampling process results
in an absolute truncation (i.e., absolutely no one with initial year
incomes above 1.5 times the poverty line, as in the Rural Income Main~
tenance Experiment). Estimatlon techniques for this situation have
been developed by Crawford (1975) and Hausman and Wise (1977).

This paper tackles the situation where all observations in the
population have some probability of being in the sample and the probabil-
ity is a linear function of the dependent variabie. I calculate and
apply a formulae that relates the bias to the strength of success selecti-
vity and the R2 of the true relationship.

Data bases where sampling ratio depends upon income afe of two

types: follow—up surveys with substantial nonresponse rates, and




interview surveys that oversample people in low or high income neighbor-
hoods. Follow-up surveys may fail to obtain Information from many of the
people in its defined sample for a variety of reasons: death, inability to
find a current address, or refusal by the respondent to £fill out the
questionnaire. Refusals are the primary cause of success bias.

One heavily used data set with substantial refusal problem is
Project Talent. The combined 1 and 5 year follow-ups of the male 1llth
graders had a response rate Qf 527 to the series of mail questionnaires.
A special intensive follow-up of a 57 sample of mall questionnaire
~ nonrespondents -which obtained a 907 response rate allows us to establish
the extent to which success affects the probability of responding to a
mail questionnaire. Stratifying by the social status of each student's
parents, college attenders were 1.5 to 1.6 times as likely to respond
to at least one of the two follow-ups (Bishop 1974). Given college
attendance status, the student's family background had no systematic
impact on his response rate.

Another very important data set that potentially has a success
bias is the National Bureau of Economic Research (NBER)-Thorndike sample.
Thorndike took a random sample of 17,000 from a population of Army Air
Corps volunteers for pilet, navigator, and bombardier trdining prograns
who passed a preliminary screening test. By 1955, 1500 had died and
of the living, 2000 military and 9700 civilians responded to a mall
questionnaire. The response rate was therefore about '75%. This'is a high-
response rate and is attributed by Taubman and Wales (1974) to the accurate
current éddresses éenerally available fromrthe\Veterans Administration and

the use of Retail Credit Bureau to find some of the nonrespondents.



The 1969 data is a survey of the i955 respondents. Of those for
whom current addresses were obtained and who had not died, 70% responded.
Taubman and Wales found that while the 1955 income of 1969 nonrespondents
was lower than for the respondents, it was not lower when ability and
schooling were controlled. From this they argued that any selection process
that existed was based on the independent and not the dependent variables.
It has been shown that when the true model has homogeneous coefficients,
differential sampling ratios that depend on included right hand side variables
do not bias the estimates of structural parameters (Porter 1973; Taubman
and Wales 1974). |
However, their test applies only to the response rate conditional
upon having responded in 1955. There may still be success bias in‘the
1955 response rate. Their test also depends ﬁpon the assumption that success
persists over time and that income is as good a measure of success at age
29 as at age 44. If the conditional probability of responding in 1969,
given that one responded in 1955, is a function of the change in one's
relative income over the period, the test ﬁsed by Taubman and Wales will miss
the success bias. An alternative way to test for success bias in the 1969
data would be to compare those who responded as soon as they received a
questionnaire‘to those who required reminders. But even this requires
some strong assumptions. Because of the lack of an intensive follow-up
by retail credit or phone, we can never be sure there 1s no success bias
in the NBER-Thorndike data. However, it may be possible to put limits
on the effects a success blas could have.
| Ancother type of data set in which this problem'arises is when black

neighborhoods have been oversampled, as in the 1966-67 Survey of Economic




Opportunity (SEO); when low income neighborhoods have been oversampled,

as in the Census Employment Surveys; or when low family incomes relative

to the poverty line are oversampled, as in the Michigan Panel Study of
Income Dynamics. These data sets have been used to estimate models
predicting success variables like hours worked, weeks worked, and earnings.
A widely publiciéed finding using these surveys has been that rates of
return to schooling are lower in low income neighborhoods than for samples
of people drawn from the metropolitan area as a whole or the nation
(Harrison 1972). Since living in a poverty neighborhood is a consequence

» of earnings, restricting one's sample. to these neighborhoods or oversampling
in them results ifi a simultaneous equations bias when estimating the structural
parameters of models that predict earnings and other success wvariables.

In the next section of this paper,»I calculate the bias to be expected
in OLS estimates of structural models of earnings, work effort, or status
attainment when the probability of being in the sample is a linear function
of the dependent variable. If we adopt the converntional assumption that the
true relationship has a homoskedastic error structure, we find that the
ratio of the true to the estimated coefficient is a simple positive
‘function of the R2 of the true relationship and a negative function of
the absolute size of the proportionate change in sampling probability
for a standard deviation change in the dependent variable, When the
right hand side variables are symmetric (the third moment = 0), the
bias is independent of whether the sampling proportion is a positive
or negative function of the dependent variable. To demonstrate the
importance and relevance of these findings, the final section of this
paper compares the schooling coefficients estimated in different

subsamples of the SEO in models predicting yedrly ear¥nings.



1. Statistical Model

Porter (1973) and others have shown that if sampling ratios are
independent of the disturbances of the model to be estimated and the
coefficients of that model are homogeneous over the population, OLS
estimators of structural parameters are unbiased, In other words,

sampling ratios that are functions of included independent variables

"(correlated with y only because of the joint dependence of x and v)

do not produce a selection bias in OLS estimators. The problem dealt
with in this paper is sampling ratios that‘are linear functions of the
dependent variable. Sampling proportions cdrrelate with independent
variables solely as a result of thei; joint association with y.
Analytical solutions are not difficult to obtain for models with

only one independent variable. Let the true model be

1) Yy Bxi + oy
2) Py = 1 +I‘Yyi + vi) ns/n.»\

Then
Vol DRy 5 Aty vy
° 5oey Z: (L + vy, +vy)

= W(y)

where i indexes each observation in the population (1 =1 . . . n)

i

u, is homoskedastic and independent of X and \A

P, = probability the "i'"th observation will be selected -

Y4 and x, are defined as deviations from their population mean

ﬁ /n = the averége sampling ratio = the number of observations selected
for the sample (ns) divided by the total number in the population

(n)




vy is independent of x, and consequently independent of Yy

Y = the increased probability of being sampled per unit of y
divided by the average sampling proportion.

E is the expectation operator

s subscript indicates the mean, variance, or covariance indicated
is for the nonrandom sample.

We note that all summations are over the entire population, i = 1 . . . n,

and drop the limits from our notation. The sample mean of x is

Sy m BPLX (L +yy, +v,)x
4) s = ___}_1,.1 = i1 1_ . Covlxy) = YBV(x).
: z (1+'Yy:L +vi)

Noting that Jx & Iy = O, the sample variances and covariances have
the following expectationssl
Ll + Yy, + Vi]["iﬁ. Y8V (%) ]

E(VS x)) = (L + Yyi+ v

Iy

.12
- B V@D 4 X gyix - vavea)’

1§

2 _ ,
v(x) + yB2V( 2 + YEYE] - 2 v2BV(x) Cov )
il

5) E(V (x)= V(x)[ %—%—x—)— = YZBZV(X)]

E(Cov_(iy)) %z [x, - ysv(x)][yi - YV (y)]

+

¥ ;11- plx, - YV 1ly, - W]

Cov(xy) + yzsv(x)‘V(y) +f; in’yi_-zl = ‘YZV(Y)CbV(xy)

Y28V (y)V (%)



2.3
LB EXT 2

6 B(Cov () = Covl)| 1+ Sy = Y Ve

The probability limit of the sample estimate of B is

D bS = Cov(xy)[1l - Y2V(y) + fszzxs/gCov(xy)
V) [1 - v28V(x) + vBIx/nv(x)

b 2
8)_£=1+D-'Y ve) s

B 1+D- Y2 V(y)R2

3
where D = yBIX /nV(x) = yB times the ratio of the third and second
moments of x

R2 = the proportion of the variance explained by the true
relationship.

Since R2_5 1, bS/B is necessarily iess than or equal to 1. Selection

on the dependent ?ariable attenuates the parameter estimates. The

amount of attentuation depends upon three factors: the direction and

degree of skewness of x(D), the strength of the relationship between y and

the probability of selection (y), and the Rz_of the underlying relationshiip.
The D term in (8) depends upon the interaction of the sample selection

process with the skewness of x. Since skewness is defined as

a, = Zx3/noi = the third moment of a variable over the cube of its standard

deviation, we may rewrite D = a3 . YBox = a3 . Yoyrxy' The expression ,

yoyr times 100, can be interpreted as the percentage change in the probability

of an observatidn's selection into the sample that is associated with a

standard deviation change in x. It 1s positive when vy and rxy have the same

sign, as in earnings functions estimated on Project Talent or NBER-Thorndike

data sets. Thus, if the distribution of x in the population has positive



skew, D is positive, which :educes bias. In SEO and Census Employment
Survey data sets where families in black or low income neighborhoods are
oversampled, chrxy is negative because heére ¥ and rxy have opposite signs.
In these surveys a positive skew to X causes D to be negative, thus
increasing the bias.

The distribution of years of schooling--the % variable upon which
we are focussing in this paper--can be skewed in either direction,
depending on the year and.population studied. People educated in the early
twentieth century have positively skewed educational attainment distributions.
The most trecent:cohorts have negatively skewed distributions. Men between
the ages of 30 aidd 35 in 1974 have an ay = -.53, Distributions for adults .
of all ages are very close to being symmetric. When compared to the
skewness of a zero-one variable with a mean of .1, whose a3 = 2.67,
skewness for all adults is quite small: .04 for white males and -.14 for
black males in the 1967 CPS. Since the term measuring the impact of a
standard deviation change in x on the probabillity of selection, chrxy’
must have an absolute value of substantially less than one, schoolings
skewness does not have an important effect upon the magnitude of the
selection bias in first order statistics of relationships between schooling
and income. From this point on we will, therefore, neglect the impact of
skewness and assume that all independent variables are symmetric (a3 = 0).
When éll variables are assumed symmetric, it is possible to derive a simple
formula for the selection bias in the.coefficients of “Fegressions with two ..
independent variables. (The mathematical derivation is carried out in

the Appendix.) The formula that results is the same>as the formula for



first order regression coefficients when x is symmetric:

9)

o

1~ YZV(y) R
1 - y2v(y)R?

£ =
B

where R2 is the coefficlent of determination in the multi or bivariate

regression in the full population.2 The sign of v indicates whether the
sampling ratio is positively or negatively associated with the dependént
variable. It is squared in the final terms of both the numerator and
denominator. Consequently, the size of the bias is not affected by
whether more income raises or lowers the probability of selection.

The probability limit of the ratio of estimated to true parameters

when the independent variables are symmetric is presented in Table 1

for alternative v's andiRz's.

If the R2 = 1.0, there is no bias, for selecting the sample oﬁﬂthe
dependent variable is equivalent to selecting on the independent variables.
As the R2 declines, the blas increases in size for a lyo;l of .4, an:'

R2 of .6 implies a bias ratio of .929. An R? of .3 implies a blas ratio

of .882 or a 127 attenuation of regression coefficients. An R2 of .1

implies a bias ratio of .853 or a 157 attenuation of the coefficients.

In the limit as R2 approaches zero, the bias ratio approaches its maximum of
bs/B =1 - Y2V(y). Thus, when the bias in first order coefficients

is compared across alternative right hand side variables, the proportionate
attenuation is larger in variables that have a weak relationship with y.

Since in a trivariate relationship bias depends upon the multiple correlation

coefficient, the coefficients of both independent variables attenuate by

an identical proportionate amount.
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Table 1
Values of bS/B as a Function of R'2 of the True

Relationship and the Strength of Selection on y

R =1.0 .8 6 .5 .4 .3 .2 .10 0
Iwy = ,707 1 .833° .714 - .667 .625. .588 555 526 .5
chy| = .5 1 .938 . .882 .853 .833 .811 .,789 .769 .75
|yay = .4 1 .965 .929 .913 .897 .882 .868 .853 ,84
|yo‘¥| = .2 1. .992 .98 .979 .975 .971 .967 .964 .96

R e e

Note: All independent variables are symmetric.

vya_ is the proportionate increase in the sampling probability per standard
y deviation of the dependent variable.

*”
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The expression, yoy, is the change in the probability of incldsioﬁ=
in the sample associated with a standard deviation change in y divided by
the average probability of inclusioﬁz. The smaller Iyoyl the smaller the
bias. Since y must approach zero as the proportion of a population that
is sampled approaches one, selection blas must decline as a survey's response
rate approaches 100%. For a given Rz, the attenuation of regression coeffi-
clents rises roughly in proportion to the square of yoy. At an R2 of .30,
a yo_ of .2 causes a 3% attenuation, a yoy of .4 causes an attentuation
of 12%, and a yqyuof .707 yields an attenuation of 417.

Biases of even larger magnitudes are possible if selection probabili-

ties have a nonlinear relation (In 1 E 7 =YY for instance) with the
dependent variable. As long as the sampling ratio is defined as a linear
function of y, it is not possible for our model to handle truly powerfui
selection blases., The derivations would be internélly inconsistent if =
predicted sampling ratios fell outside the zero=—one interval. They will

not fall outside this interval if y 1is sufficiently small and the y
distribution sufficiently compact. A rectangular distribution for y wéuld
require a chyl < .81, if nsln < .5, and a chy] < 2(.81)(1-n ) /n for

ns/n > .5. All other single modal distributions of y will require

that vy be smaller than thesé limits.

2. Application to Earnings Functions in the
Survey of Economic Opportunity

Our statistical model predicts that when the sampling ratio is
dependent on income, the schooling coefficients in an earnings function

will be lower than the true population coefficient. Table 2 tabulates
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estimated relative sampling ratlos by earnings for alternative Subsamples
of the SEO. Not surprisingly, the probability of 1iviﬁg in a low income
neighborhood is negatively assoclated with the level of one's earnings:
For whites, the probability of living in a predominantly black area is
also negatively assoclated with earnings. For blacks, however, there
was no visible relationship. Therefore, we do not expect blacks in the
special sample of predominantly black neighborhoods to have lower schooling
coefficients than a natieonal sample of blacks. We do expect, however,
that whites living in these neighborhoods will have a smaller schooling
-coefficient than a national sample of whites. Also, rates of return to
schooling estimated for both blacks and whites living in low income
neighborhoods in urban areas are expected‘to be smaller than the rates
of return for all urban residents. An examination of Table 3 indicates,
as expected, that schooling coefficlents of whites in predominantly black
and low income areas are substantially smalletr than those in the national
sample. For whites the unbiased coefficienit of .0879 falls to .0701 in
black areas and to .0643 when the sample is limited to low income
neighborhoods. The schooling coefficients for blacks are smallér only
for the low income areas. - Furthermore, the drop in the schooling
coefficients is larger for models with low R2 (those without measiires
of work effort on the right hand side).

For blacks in low income areas the linear Specification of the

sampling mechanism predicts the coefficient changes well. TFor whites,



Estimated Sampling Ratio Conditional Upon Income Relative

Table 2

to the Average Sampling Ratio

_Earnings 0-2  2-3 34  4=5  5-6  6-7  7-8  8-10  10~14 14-20
Whites in pre~ 2.24 2.24 2.47 1.53 - 1l.41 .83 .90 .64 48 -tk
dominantly

black areas

Blacks in pre-  1.000 .91  1.02 .97 .83  1.09 .91 .88 * *
dominantly-

black areas

Whites in low 2.31 2.45 3.00  2.17 1.37 .87 .70' .56 .21 *
income areas v

Blacks in lo 1.07 1.08  1.27 1.12 1.12 .88 .63 .52 * *

. income areas

€1

*
-means n of the Current Population Survey base is below 10.

Since low income areas were definéd only for Standard Metropolitan
Statistical Areas the comparison base is all blacks living in SMSA's.



Schooling Coefficlents in Different Samplés

Table 3

Low Predom. - CPS
‘Income  Black '2 Yo * YO *
Area Area Coef, R Predom. Low
Coef, Coef, Black Income
. Yearly Earnings
Whites ) )
0-20 yrs schooling .0643 0701 .0879% .23 -.95 -1.06
0-15 yrs schooling .0500 0656 ,0889 .17 -1.,00 -1.11
Blacks ‘
0-20 yrs schooling .0525 .0628 .0610 .08 45 -.20
0-15 yrs schooling 0447 0530 ,0621 .07 45 -.20
Hourly Earnings, 0~20 yrs
Schooling N
Whites .0588 .0556 0743 + 40 -.95 -1.06
“Blacks .04;9 0504 .0462 54 .45 -.20

Note: The dependent variasble is the log of yearly earnings.
limited to nonfarm males not in school with at least six years of
experience. The schooling coefficients are from regressions with
experlence, experience squared, SMSA residence, and SMSA size as

Samples were

controls. The hourly earnings coefficients have additional controls:

log of weeks worked last year, part time last year, and last week.

The Black CPS sample was limited to SMSA residents.

* .
Estimates of v were obtained from unweighted regressions of the ratio

of the observed conditional sampling ratio to the average sampling ratio
on the log of yearly earnings. The CPS provides the estimate of the

population distribution of earnings.

negative estimates of y.

Weighted regressions yield more
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the impact of incomé'on the sampling ratio is so powerful that the
estimates of y produced are too high. Some high earnings individuals
~will have negative predicted sampling ratios,'in which case the analysis
becomes internally inconsistent. If predicted coefficients are calculated,
nevertheless, we overpredict the reduction in the schooling coefficients.
The problem is that for whites the sampling ratio—earnings relation-
ship for predominantly black or low income neighborhoods is nonlinear.
It looks like a logistic specification would serve better than a linear
specification. Simple analytic results are ﬁot obtainable, however,
when the sampling ratio is a nonlinear function of the dependeﬁt variable.
Where does that leave the researcher? If data availability forces
one to use a data set in which sampling ratios are nonlinear funétions of
the dependent variablé,ﬁhow can consistent estimators be obtained?
The solution that suggests itself is a two stage process. First, estimate
a model of the sampling process. If sampling ratios depend directly én
some of the indepgndent variables as well és‘the dependént variable,
these variables should be included in the model along with y. The main
requirement of this model is that tﬁe errof in predicting the sampling
ratio be independent of the disturbances of the.structural model. 1In
Census Employment Surveys this could be done by comparing the.loﬁ income
area's population to thaf of the SMSA as a whole. In follow-up surveys
a data set with an intensive follow-up of a sample of nonrespondents
is required. |
The second step is to estimate the strugtual model, using the

inverse of these predicted sampling ratios as weights. Manski and Lerman
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(1976) have shown that when probabilities of inclugion in the sample ‘are
a function of a qétegoricél dependent variable, weighting each observation
by the inverse of its sampling ratio yields unbiased and efficient
estimators of the coefficients of a logistic model, Where sampling
ratios are known (as for follow-up surveys with intensive follow-ups
of a small sample) weighted least squares using these ratios from the
sampling frame is another alternative. It.is safe from misspecification
of. the sampling model but it becomes highly sensitive to the observations
in the nonrespondent sample, since just a few observations carry a major
' share of the variance to be. explained. .Both approaches reduce bias
only at the cost of increasing heteroskedasticity. The gdvantagg of -
using predicted sampling ratios rather than sampling frame ratios is
that the heteroskedasticity created by weighting will be less serious.
Heteroskedasticity, however, does not bias coefficients, it only
lowers the precision with which they are estimated.

This paper presents a suggested route for exploration. I leave the
rigorous development of the properties of such estimators to a later time,

and to others.
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APPENDIX

Linear Selection Bias in the Trivariate

Regression Model



18

Linear Selection Bias in the Trivariate Regression Model

In the true model,

* *
1) vy, oz, + B X, + e

i i

2) =g = 0wty

3) x =-G03LL}E)_ +V*

i V@ ATV

4) Py = a - Yy + ui) nS/n,

L % .
where a and B* are partial regression coefficients
¢, o, and B are first order regression coefficlents

*
¢ 1s independent of x, z, u, vy and vy

u is independent of x, z, vy, vy and v:
Y = income selectivity parameter,
Note that
E_(y) = YV(y) Eg(x) = yCov(xy) . Eg(z) = vCov(zy)

5 E(V,(0) = V@1 + D - YR ]

1

6) E(V (=) = V(2)[1 + D, - Y'V(nR® ]

7) E(Cov_(xy)) = Cov(xy)[1 + D_ —“YZV(}')]'

; 2
8) E[Covs(zy)] = Cov(zy)[1l + D, - Y v(y) 1,
vhere D = YSZxB/nV(x) if x is symmetric D =0
D, = Y&Zzsan(z) if z is symmetric D, = 0,

Obtaining an expected value for the sample covariance of x and z

C . . YE(xy2)  pe evaluated:
is going to require that 1, Cov (x2)
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%
9) l.zi(_’.{zf.)_ = YIxz{(f x + oz*z + €)/n Cov(xz)
n Cov(xz) :
= [B*Yszz + u*nyzz + yIxze]/n Cov(xz)
L gt Sovlm) 53 4 o Covemeds3 , ghrn 4 o*yiet + yEmze
10) n Cov(xz) [BYV(x') Ix1 + oy V-(Z)Zz + B yIvx ‘OLsz vIxze] ,

% ‘
‘The independence of x and v, z and v , and € and x and z results in

the last three terms being zero:

*

* * * -
i1y Y Ixyz =Bl£x3 aYEz3=BD+aD-,b‘§+D*
n cov(xz) n V(x) n V(z) g% FER. z

12) E(Cov,(x2)) = 3 I(x - Y0ov(xy)) (z = YCov(zy))

+ -;-zy(x - yCov(xy))(z - YCov(zy))

) .
Cov(xz) + vy Cov(xy)cov(zy) + % Ixyz - ZYZCOV(xy)Cov(zy)

\ Y Ixyz _ 2 COV(EZ%COV‘(ZZ)
Cov (XZ)E' + n Cov(xz Y Cov(xz

. _
. ov_(:;y_) . ch\ur(&g) 0,0, ]

]

_ ' * * 2
- Cov(xZ) 1_+ Dx + Dz =Y o0 oo Co_v(xz)J
: y X Yy 2z - *
] * 2 rg“rzz
=Covle+Dx+Dz—Y_V(y) = - 1.
. Xz
. * . N N .
The true B may be written in terms of population moments:
* * -
© 14 B =B—-.¢0t¢='8.‘-'_-£%—
' 1-R
Xz
® - Cov(zy) V(x) cov(xz):, [_ 2 V(%) - cov(zy)
1) 8 = B-[ "INGE) vy V@ P Res Svral - TCov(ay
1~ g2 . 1- g2
- Txz p.¢1
16) =8 |1 - Riz Tzy = xy 7 Txz Tzy

r. T e 02
2xz Xy (1-r x"z)rxy

1-R

Xz
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& » Cov(zy) Cov(xz) [1 + D - YV(}’)JE + D + D - Yz‘ﬂs’)m] !
17) E(Bs) = E(BS) Y= !

" CV(z) Cov(xy) T+ ﬁﬁf- Yﬁ&ﬁ i1+ D, = Y W@R ] .....

=

. % 2 — 2
(L +D% -y v<y>Rzy> @+ o} - vl

Cov(xz

1 -3V

We assume that z and x are symmetrics

. ‘ [ | Rx V(x) Cov(zy)
18) E(B) = BQ, .|l = goorey Cov(ay) ~ °

1-R2'ST

2.,
where Q_ = Lo XZV(Y) 5 < 1 is the attenuation ratio for the first
¥ 1-v V(y) ny order regression
. 2. r o .
1-vV(y) xy =y
S = T L - dzr L.
__ Xz o LXE Xy 2y -
- . 2.2
1 __.sz(y)Rz rxz(l d R zy)
2y
T F,
1-Yv(y)-5L—zf - r ‘dzrxyr |
T = - Xz _ xz( dZ _z%,
2 1 - d2R
1 - v"V(y) R, _

where a2 = y2v(y).
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We get the following reduction from (19) dividing by B*:

r
2 * =
0) Eé%_ﬁl = Q S* Sszrxzrxy
- STRZZ
ple . 2 o

N - w2 2.2 r
g2 a-rr || 1-l,a - % | Ty

21) =
2

2.2
1-4"R~ - -T - -
xy.J (xy xzrzy 1 - Txz d rxyrzy) / Txz d

r T
Xy

zy

2

Cancelling rxz's in the third term of this product, and rearranging, we get

2
E(g*s) _ (1 - ) .(1 " sz) Txy

* -
B (1- dzRiy) rxy Txz'zy

2.2 2 2.2 2.2
[rxy(l -d gzy) - :.-zy(rxz - d rxyrzy)] (1-4d Rzz) (1-4d ng)]
2 2

2.2 ' 2 2 2 2.2
[(1-4d Rzy) 1-4d ny) - (rxz - d rxy'rzy) ]rxy(l -d Rzy)

2

2

Cancelling (1 - d R§2<y) Q-4 Riy)rxy from numerator and denominator, we get

2 2 2,2
) (1-4a70a - sz)[rxy(l - d"R

- 2.2 2.2 2 2.
(r. -zr_r )[(1-dRzy)(1-dRzy)-(rxz—drxyrzy)]

—d2 r )]

r
Xy 2y .

(

zz) " oy Txz

Xy Xz 2y

Computing the last term in numerator and denominator, we get

2 2 2.2 2.2
1-4dM01 sz)[rxx’ R r o -r T+ d Rzyrxy_]

. 2,2 .
rxz(l - dR 2y \rxz(l - dR

Xy

R2

Xz

J

= 2.2
(rxy - rxzrzy) 1-4d Rzy -d ny + d Rznyy - sz 4+ 2d rxyrzyrxz

a- d2) a- Riz) (rXY - rzyrxz)

2 2,.2 2
(rxy B rxzrzy) - Rez d (ny + Rzy

-2 )]

r r T
Xy 2y X2

2.2 4 2 2 2 2 —d4R2R2
Xy z

v



22

2 2
(1-4d7@1A-R,)

2 2,2 2
1-R,-d"®R +R

zy 21“-xyr"zy""xz)

*
22) BBy 1= _1-d
% R | 57
B 2 Ry tR - or 1-4
1- g
p.&4

where Rz is the coefficient of dgtermingtion of the regression (1)
ﬁrédiééing ﬁ_witﬁ x and z in the fﬁll_ﬁopﬁlgfion. The equiv-
alence represented by (22) is proved in Johnston (1963, p. 57).

"“Thus, when both fight hand side variables are symmetric and gg;ectionn

probabilities are a linear function of the dependent varisble, the selec-

tion blas in partial regression coefficients is (1) the same in both vari-
ables;2 (2) given by the same formula as for zero order regression coef-
ficients; (3) smaller the larger the R? of the true multi-variate rela-

tionship; (4) smaller the smaller is the degree of selection on the dependent

variable.
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NOTES

1Homoskedasticity and the independence'of x and u makes it possible .

2 2

to simplify Zy“x and Iyx":

| 2 2.3
Zyzx = I x(Bx + u)2 = B'2£ + Zszu + Ixu” = B7Ix
Tyx? = L x2(Bx + u) = BIx> + Ix’u = BEx o

21n recent, as yet unpublished. work, Aithur'GoldBerger (1975) has proved
a result that is in many ways more general. When the right hand side variables
are multi;nermally distributéd; truncation or selection bias fesults iﬁ a |
proportionate shrinkage of .all regression slopes by 65/1 - (- 62)R2;
where 62 is the ratio of the restricted sample variance of y to the
population variance of ;. Note that (1 - 62) corresponds to y2V(y) in our
notation. Thus, for the speéial caée of bivariate and trivariate regressions
when there is é linear rglatibn between y and the probability of selection,

this paper generalizes Goldberger's result to symmetric right hand side

variables;
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