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ABSTRACT

This paper reviews and &evelops summary measures of associations
between multiple setsvoflvariables through the application of canonical
correlation analysis. These measures are subsequently applied to a
specific research problem. Some of the data analysis situations for

which canonical correlation is appropriate are also discussed.




CANONICAL CORRELATION AND THE RELATIONS BETWEEN SETS

OF VARIABLES

I. Introduction

Sociologists are becoming increasingly sophisticated in their
use of multivariate statistical models, and a number of excellent
sources are now available in the literature. (See Van de Geer, 1971;

Blalock, 1971; Goldberger and Duncan, 1973.) We wish to direct

sociologists' attention to a multivariate statistical technique, whose ,

usefulness as a data analysis tool has a great deal of appeal when
interest centers around the joint distribuﬁion of two or more sets of
variables. The.tgchnique, canonical correlation, was developed by
Hotelling (1935, 1936)' more fhan three decades ago, and is used rather
extensively in biometric; and psychometrics. In sociological
literature, Klatzky'and-Hodge (1971) used the technique to analyze
intergenerational occupational mobility, Van de Geer (1971) uéed the
technique to estimate the parameters of unobservable variable models,
and Hauser and Goldberger (1972) noted the similarities between
canonical correlation and confirmatory factor amalysis in the esti-
ﬁation of unobservable Vériable models. However, these applications
do not begiﬁ to exhaust the potential usefulness of canonical cor-
relation analysis{ Sbme ofbthe data'analysis gsituations for which
canonical correlation is appropriate are discussed in this paper.

Consider a situation in which a researcher is in a position

to separate the variables of interest to him into sets, and he is in




a position to postulate "flows" of influences among the variable sets
based upon information obtained from a theoretical model. The
researcher's primary bbjective is in determining to what extent and
at what point the distributions of these wvariable sets intersect. All
multivariate statigtical techniques are designed to provide answers to
these types of questions, though perhaps from different data amalytic
points of view. Moreover, the researcher is interested in answering
the following questions as a means of evaluating the plausibility of
some specific hypotheses implied in his theoretical model: (1) What
is the total relationship between the dependent and the independent
variable sets? (2) In instances in which the independent set consists
of several theoretically distinct subsets, one may ask what is the
relative contribution of each subset to the total amount of variation
explained in the dependent set? (3) Which variables in the dependent
and independent set(s) respectively contributed most to the total
amount of variaéfbn shared between the sets? Those familiar with uni~
variate correlation and regression analysis will immediately recognize
that questions one and two are practically identical to those that omne
would ask if the relations between individual variables are pursued.
Indeed, it has been shown that certain aspects of canonical correlation
analysis are simple extensions of univariate correlation théory
(Rozeboom, 1965, 1968).

This paper presents a pedagogically oriented review of much
of the technical literature that has been presented on canonical cor-
relation (see Bartlett, 1941, 1947; Anderson, 1957; Morrison, 1967;

Cooley and Lohnes, 1971; Van de Geer, 1971). We think that the



specific problems e#plored here, by way of an example, should stimu-
late a greater interest in the general usefulness of this multivariate
statistical technique. Within this context, thé current discussion
focuses on two specific objectives.

‘First, as is known by most practiéing methodologists, it is
suggested that canonical correlation analysis offers a parsimonious
way to reduce the complexities involved in relating several dependent
variables to several independent variables, particularly when it is
appropriate to conceptualize dependent and independent variables
respectively as indicators of theoretical constructs. However, it
should be noted that the approach emplqyed here has neither the
statistical precision nor the theoretical parsimony of simultaneous
statistical models, particularly when the research problem calls for
their use, and their assﬁmptions can be met (see Hauser and Goldberger,
1972; ﬁurt, 1973; Duncan and Goldberger, 1973). On the other hand, it
can be argued that deficiencies in the data and/or in the theoretical .
model should not deter researchers from examining, at least in an
exploratofy mannei, the fruitfulness of a theoretical approach to a
subject that is defined as problematic. In this respect, canonical
correlation, as it is applied in this paper, can prowide the
researcher with an alternative whose requirements are less s;ringent
than those characteristic of simultaneous éstimation procédures. |

‘ Thé second objective involves an attempt to resolve some'of |
the problems frequently encountered in trying to interpret canonical
solutions. It is probably the case that one of tﬁé main reasons why

canonical correlation is so infrequently used by researchers has to do




with the difficulty associated with interpreting canonical roots and
vectors. It is suspected thaf this problem of interpretation arises
partly from a lack of appreéiation of exactly what is being done when
the relationship between sets of variables are subjected to a canonical
correlation analysis. We take the position that the interpretation
problem can be practically eliminated if it can be shown that canonical
correlation is a parsimonious way of decomposing a set of multiple
correlation coefficients. Thus, it will be shown that both the canoni-
cal coefficients and vectors can be given interpretations that are as
meaningful as computing multiple and multiple-partial correlation

coefficients.

II. Applications

In this section the particular approach taken toward canonical
correlation is applied to a specific research problem addressed by
Wilson's (1973) study of the determinants of housing status. The
interest is in analyzing the determinants of the quality of housing
occupied by primary families who owned their dwelling unit in 1960,
The dependent set Y, housing quality, is composed of measures of
whether the dwelling unit is in standard condition (Yl), the age of
the unit (Yz), and a measure of the quality attributes of the unit

(Y,). The independent set Z consists of measures of marital

3
duration (Wl), the total number of children present in the family
(W2), age of the youngest child (WB)’ education (Xl), occupational
fe

prestige (Xz), and total family income (X3). The first three 7

variables are defined as measures of family status (|| ), and the latter



three are defined as measures of socioceconomic status (”X ),2 The

observed correlation among these measures is exhibited in Table 1.
Figure 1 summarizes the e#pected diréctiqn of the relationships
among the variable sefs. It should Ee'noted that the model as dia—.
grammed postulates relationships among theoretical constructs repre-
sented by the variable sets (cf. Sullivan, 1972). The reason—for this
relates to the fact that evaluating the full'implication of the model
may require the use of more than one canonical solution. Thus, for
egample, the corrélation between Y -and its indicators may reQuire
two different sets of estimates in order to determine the total effects
of W and X.

In any event, the model hypothesizes that the effect of family
status on housing quality is expected to bé negative, largely because
of the influence exeited by family size and ag% of the youngest child.
Large families are least likely to be in a'posifion to spend a great
deal on housing consumption. Socioeconomic status should have a nega-
tive effect'on family status, because size of family is inversely
relate& to all three measures of socioeconomic status. Finally, socio-
economic status should have a positive effect on housing quality,
because the quality of the hdusing enfironment should reflect social
sﬁatus cqnsiderations. |

Witﬁ réspect to the fesearch questioﬁs posed earlier, a full

evaluatiqn of the implications of the model diagrammed in Figure 1




Table 1.

Correlations between Measures of Housing Quality, Family

Status, and Socioeconomic Status for Whites Who Owned Their
Home in 1960 (N = 8700)

Variables Symbol Y1 Y2 Y3 W1 W2 W3 X1 X2 X3

Housing quality

Condition of unit Y1 1.000 158 016 031 .049 -.010 .112 . 105 .116
Age of unit Y2 158 1.000 181 + 355 .146 .069 .220 .098 .106
Quality attributes Y3 .016 181 1.000 | -.020 .057 -.009 . 266 .300 278

of unit :
Family status :
Marital duration W1 .031 «355 =,020 {1.000 479 228 .357 -.,059 .096
Number of children W2 -.049 .146 -.,057 .479 .000 .661 212 ,041 145
Age of youngest child W3 -.010 069 -.009 .228 .661 1.000 101 .016 223
Socioeconomic status '
Education Xl 112 .220 .266 - ,357 212 .101 } 17000 . 534 .296
Occupational prestige XZ .105 .098 .300 .059 .041 016 .534 1,000 . 310
Family income X3 .116 .106 .278 .096 . 145 .223 .296 .310 1.000

Source: 1960 Census 1/1000 Public Use Sample Tapes.




7
X
+
! Y
J‘, / |
W '

Figure 1. The Determinants of Housing Quality.




require (1) a measure, analogous to a multiple R2, which can be used
to summarize the overall predictive ability of the model; (2) measures,
analogous to multiple-partial correlation coefficients, which can be
"used to determine the relative contribution made by the independent

subsets J| and X to the total variation explained in the dependent

set Y; (3) measures that can be used to interpret the direction
(positive versus negative) of the relationships between the variable
sets; and (4) measures, when used in conjunction with those in (3),
that can aid in determining which measured indicator wvariable(s) of
the respective sets played significant role(s) in determining the
overall relationships between the variable sets.

Matrix notation is employed throughout this exposition in oxder

to clarify and enhance the derivations of specific measures. For

illustrative purposes, let Y represent a Pl x N matrix (P1 = 3),

N a PW x N matrix (PW 3), X a Px x N matrix (PX = 3), and
/ aP, x Nmatrix (P, =P_ + P_ = 6). Note further that N .
2 2 W X
refers to sample size, and Pj refers to the number of variables in
each set, respectively. Assuming all variables are expressed in

standard form, the relationship between sets Y and 7/ can be

expressed in terms of the following equations:

U=~aY
= B Z

®



where
U and V are K x N matrices of canonical variates, and

A’ ana B’ are X x Pj matrices of canonical weights.

Tﬁe rows of [J and V are linear combinations of the variaﬁles in
sets Y and 7/ respectively. The relationship between-the jth

linear combination in |] and |/ can be expressed in terms of a
canonical correlation coefficient. There are K such canonical
coefficients possible. The problem addressed by canonical correlation
reduces to finding: (1) thé matrices f\ and B of canonical'weights,
and (2) a Kx 1 co}umn vecfor C,'with élements cj (3= l,.{.,k),
which are the correlatiéns.between linear combinations of the variables

in set Y with those in set /. In order to find the vector € and

the matrices A‘ and B, we form the products3
Y'f—— Y'Y Y'Z
7’| 'Y 1'7
multiplying by l/N,

LYy vz Ry Rz
Y 'l Rzy Rez

1/N

>

and solve the following set of homogeneous equations:
-1 -1 = (2)
L_(RYY) Rz Rezd = Rey = 25 I} A, =0 o @)

R L Ry Ry L Ry - 1y 1 3

puvamand

or)
S
i
o
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where

A, and ud are characteristic roots (J=1,...,K),

J

I is the identity matrix,

A, £ and BJ are P, x 1 column vectors of canonical weights

J

J=1,...,K) (These vectors are the transpose

of the row vectors in A’ and B'.)
and where the following constraints are imposed:

(1) R is of full rank, e.g., (R YY)'1 and

(R ZZ)_l exist.

(2) Y isa Pl x N matrix.

/ isa (P_+P) xN=P,  x N matrix.
w b4 2

(3) The first k < min (Pl’PZ) characteristic roots of

(R YY)-l R'YZ (R ZZ)-l R gy are distinct.

- (1f P2 > Pl, then all of the roots extracted ,

(R ZZ)_l R 7Y (R YY)-l R vz® will not be distinct.

The number of nondistinct roots will be equal to ?2 - Pl.)

4 A" Rew A, =1 andB’ R 1B,=1
\J YY J J A \J b4

in order that the canonical variates in |J and V_ are

in standard form.
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A 1 — I — .
) A Ry A 0 and B_ Rz BJ-—_U

Applying equations (2) and (3) to the observed correlation matrix

displayed in Table 1, we have

_ 178 |
MEE =2 o s c =
.003] '
and
.365 -.103 .930 | 022 .912  .527
A = |.137 .944 -.103 | -.352  .018 ~-1.312
921 -.315 =-.353 p oo | 053 -020 .486

448 050 -.047
.388 -.094 -.339
L_:szs -.070  .125

—]

It can be observed that the characteristic roots of equations

- (2) ana (3 afe identiéal and are the squared canonical correlation
coefficients. Since all of the canonical coefficients are signifiganf
beyond the (.01) level of rejection using.Wilk's lambda‘(Barlett;.l94i,
1974);5 ‘we are confronted with the ﬁroblem.of interbreting the éub—

stantivé significance of at least the first two canonical coefficients.

A. Multiple Coefficients

The key to interpreting canonical coefficients is recognition
of the fact that they are defined as the correlations between linear

. combinations of the original variables in sets _Y and /, and not the-
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correlations between the original variables themselves. .Thus, each
squared canonical coefficient is a measure of a certain amount of the
total variation shared between two sets of variables. A measure of
the total amount of variation shared between two sets of variables can
also be obtained, which is analogous to but not identical with the
squared product moment correlation coefficient, or with the squared
multiple correlation coefficient (when the independent set is composed
of two or more independent variable subsets). This coefficient has
been termed the Squared Vector Multiple Correlation Coefficient (here-
after referred to as SVMC) (Srikantan, 1970). The coefficient SVMC is

defined (Rozeboom; 1965, 1968; Srikantan, 1970) as

2 k 2
SVMC R" = 1-J] - <) > (4)
]

where I]: indicates sequential multiplication.
Now 4

LS 2
vea = ] (1= ¢))
j=1 )

is the Vector Coefficient of Alienation, or the vector correlation
A A .
between Y and the residual of Y - Y, where Y is the least squatres
estimates of the variables in Y. Thus, the correlation between Y
and Y ~Y is also a canonical relationship that conforms to equations

(2) and (3). Therefore,

SVMC = 1 - VCA .
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If the researcher is interested in estimating the total amount
of variation shared between two sets of variables, SVMC.is the
appropriate measure. With respect to the first research question

posed earlier,
svMéc = 1 - .709 = .291,

which suggests thatl29 percent of the variatioh of the variates in
set || can be explained by the variates in set \/. Note particularly
that the interpretation is applied to the variates and not the originél
set of variables. |

Srikantan (1970) preéents two other multiple canonical coeffi~
cients that may be appropriate for some research problems. However,
we‘favor SVMC because it is a direct extension of the squared product
_momeﬁt correlation coefficient. The major disadvantage of all of theée

measures is that their interpretations are not necessarily equivalent

to the proportion of variation in thé variables of set’ Y that can be
explained b& the variableé'in set Z. Measures that permit this type
of intefpretation afe available, aﬁd are our néxf topic of discussion.
(See Stewart and Love, 1968; Miller and Farr, 1971; Alpert and
Peterson, 1972; Wood, 1972.) |

It was hoted previously that the number of nonzero and
positive .c§ values.derived from eqﬁation (2) ié determined by fhe
rank of the variance-covariance matrix (the éorrelation métfix'in the -
example) associated with ﬁhe smallest variable set. for example, if

the Y matrix contains three variables and the / matrix six, the
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. 2 . :
maximum of nonzero and positive ¢ values is limited to three
(although one, and perhaps all three, may not be statistically signi-

ficant). Consequently, it is statistically possible to explain all

the variation in the variables in set Y and only 50 percent of the
variation in the variables of set Z (see Alpert and Peterson,
1972).6 One aspect of the interpretation problem alluded to earlier
with respect to canonical correlation is the symmetric character of
the squared canonical correlation coefficients and its multiples.
Thus, our immediate objective is to develop an asymmetric measure of
explained variation, which isbanalogous to the squared multiple cof-
relation coefficient. It will be reéalled that the squared multiple
correlation coefficient is a measure of the émount of variation in a
given variable that can be explained by a linear combination of pre-
dicting variables. Stewart and Love (1968), and Miller and Farr 1971)
have developed a measure for canonical analysis that is analogous

to the squaredlmultiple correlation coefficient and can be inter-
preted as the proportion of the variation in set Y which cén be
explained by set /. We will denote these measures as R ., Wwhen

dy.z
the emphasis is on explaining the variation in set Y, and dRz-y
when the emphasis is on explaining'the variation in set Z. In
general,

dRy-z 7 dRZ'y .

It is this asymmetric quality of this measure (hereafter referred to
as total redundancy) that makes it a more useful measure than edither

c§ or its multiples. As a measure of association, it has the
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folléwingvdesirable qualities: (1) ‘dRy'z will be zero if andvonly'
if R vz é 0; and (2) it‘will achieve é va;ue of 1 if and only if
~ the Variation in each of the vy variables can be completely explained
by the varig;ions in 7/, e.g., R Y7 = ].

For illustrxative purposes, we shall focus mainly on the deri-
.vation of dR .. » since 4dRz-y can bé obﬁained in a simila; manner.
It can be_shpwn that 'dR .;' is an arithmetic average of the squared

multiple correlation coefficients obtained from predicting each Yi

variable from all of the variables in /. First, we define the

Pj x K matrices RZYU gnd RZZV'
o T.387 046 921
= | .347 .938 -.020
“and : , A
. : .150 .002 _'.81:;-T
o ]
= . .121 . .879 .000
R Wl ass o2 am
. : . (131 \
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Similarly,
— —_—
.093 .992 -.014
-.115 472 ~.750
R v = |--005 .201 -.241
- . 724 .331 ~.237
.752 -.035 -.348
.717 .003 -.017 and,
— ~
.008 .985 .000
.013 .225 .563
R? - .000 .040 .058
yAY) .524 .109 .056
.565 - .001 121
.514 .000 .000
hevemarns. a—r—
The r2 an r2> elements in R? and R2 respectively
yi,uj zi,vj , YU A% ’

th

are defined as the proportion of the variation in the i~ wvariable in

Y or / that can be explained by the jth canonical variate in |

or V., respectively. Postmultiplying R2 and RZZV by the c?

YU
K x 1 column vector (the vector of sqpared canonical correlation

coefficients), we have

2 2
R vu © Qy
[1s0 .002 .sss
@y = .121 .879  .000
-845 —0024 c131
| |
.030
= .140
.154
and
2 2
Ry = g
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.008  .985  .000
.013  .225  .563
R 2 ' .178
A .000 .040  .058
= A .135
.524  .109. .056
. .003
.565 .001 .121
.514 .000  .000
[~ -
.135
- {.050
Q o .007
.108
.101
.093

yields a P X 1 column vector of squared multiple cor;elation coeffi-
cients. Postmultiplying QY further by a P x 1 uﬁity‘vectorA T

yields

B

Q't = R = ZRZ.Z
4 i=1 ¥i°

Inasmuch as Rz.z is simply the sum of the Rs‘.z - values pfedicting

each variable in Y given the variables in 7, it is possible that

the former can achieve a value greater than one. The maximum value of

Rs'z is equal to “Tr(R YY)’ or the number of variables in Y.
Ideally, one Would'ﬁant to employ a measure to éxplain variation that

conforms to the_iimits of (0,1), which makes R;'Z' less attractive

as a measure of association. The asymmetric measure dRy z corrects

for this undesirable quality by dividing R§ 2 by the number of

variables in Y. Total redundancy can thus be defined as
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1 2
R (R . )
Pl vz
P
1
- = 1’
1 =1 Tt

= ¢.030 + .140 + .154)/3
= 108, ‘

where the r , .'
yi,uj

P, x 1 column vectors of R

s are elements of RJ and, the RJs-are the
W'

The size of the multiple redundancy measure indicates that
socioeconomic status and family status combined explain 11 percent of
the variation in the measures of housing quality. However, inasmuch as
the theoretical model postulates asymmetric relationships among the
variable sets, this measure is of 1ittle use in this respect. The
meaéures most relevant for this task are the multiple-partial measures

of redundéncy, which are developed below.

‘B. Multiple-Partial Coefficients

In instances in which the independent variable set can be
decomposed into subsets, we can define a set of multiple~partial
coefficients. These coefficients can be used to determine the rela-

tive contribution made by each subset of / to the total amount of
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variation explaingd in set Y. 1In the example, the independent set /
is composed of two sets of independent variables, i.e., the gubset W
of family stafus variables, and the subset X of socioeconomic status
variables. The first-step in the computation of the multiple-partial
coefficients involyes computing the redundancy measures dRy-w aﬁd

R _._, which indicate the amount of variation in set Y that can be

‘ dy-x

explained by seté H and X separately. Once this is accomplished,

R can be decomposed into the following components:

. d vz

(l) dRy{W(x) B (dRy-z - déy-x)/(l - dRy-x)

(.108 ~ .070)/(1 - .070)

.041,

which indicates that the relative contribution of family status to the

total amount of variation explained in housing quality is (.041l) or

. 38 percent [(.041/.108) lQO].

@ Ryex T @y T dyw)/C T dyw)

(.108 - .047) /(1 ~ .047)

064,

which indiéateé that the relative contribution of socioeconomic status
to the total amount of vafiation éxplained in housing quality is (.064)'
ér 59 percent [(.064/.108) 100]. |

(3) Finally, we should pbint oﬁt that components (1) and (2) defiﬁe

the "unique" contribution of sets I and X. It is statistically -

possible that some portion of the total variation explained in set Y

by sets Y| and - X might represént the combined effect of these




20

independent subsets. This can occur when the independent subsets are
highly interrelated and therefore may exert common influence. (See
Duncan, 1970; Coleman, 1970, for examples.) The third component can be

derived as a residual,

R - -
d7y cwx (wx) dRy-z (dRy.x + dRy-w)/l (dRy-x + dRy-w)

= dRy-z - (dRy.x(w) + dRy-w(x))

= .108 - (.064 + .041)

= ,003

»

which in our case is very small. The reader should note, however, that
while the applic¢ation of the above decomposition to situations in which
there are more than two independent subsets might appear straightforward,
it may be more difficult to interpret component (3), because this
component would then be equal to the sum of all possible nonredundant
combinations of covariations existing between the subsets.

The multiple-partial measures of redundancy provide the answer
to the second_question posed earlier. Clearly, the relationships between
socioeconomic and family status with housing quality, though small, are
nonzero. But the theoretical model postulates not only that the
observed relationships are nonzero but also that they should be in a
specific direction. With the multiple-partials, we can only say that
the relationships are of a certain size; we cannot say whether they
imply positive or neégative relationships. This applies as well to the
other canonical coefficients discussed earlier and largely résults from

the way in which these coefficients are computed. The direction of the
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} .
variable-set relationships and the issue of which specific variables

within the dependent and independent sets, respectively, are responsible
for the total relations between variable sets can be determined by

further manipulating the r_,

, and r . elements of R and
yi,uj zi,v] ,

YU

RZV’ respectively.

C. Canonical Variate-Observed Variable Relations

If we used all of the information obtained from the matrices
RYU and RZV and the vector C, a more precise description of the
relationships between socioeconomid and family status and housing
quality would be.as dépicted in Figure 2, where the relations between

the variates (uj) are determined by applying constraints (4) and (5),

and the relations between variates and indicators are defined as

r,. r, ., or r,, T . .
ij vi,uj ij zi,vj
A useful indicator of between-set relationships.is the sign and
size of the r , ., and r_ , . values. If we wanted to relate a
i,uj : zi,vj ) g
variable in set Y with a variable in set Z/, the sign of the rij
values are important, because they indicate the direction of the
association between .the two variables as measured by the product moment
. correlation coefficient. Iﬁdeed, the product moment correlation

" coefficient has simply been subjected to decomposition and can be

estimated from the following equation:

. r e, T, . ' .
yi,zi yi,uj 7§ "zi,vji. _ (5)

Applying this equation_to the relations between Y2 and le(Zi = Wl);

we have
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’

ry2 21 = 347 (.422) .093 + .938 (.368) .992 + (-.020) (.055) .014
= .013 + .342 + .000
+ .356.

More generally, the matrix Rll2 can be reproduced by applying the

following equation:

R12 = RYUS-R'zVs , ®)

where R and f{zv, are Pl x K - and P2 %x K matrices respectively,

YU
: th . . ; ;
and § is a diagonal matrix with the J = canonical correlation in the--

Kx 1 column vector C as elements.

Thus, the signs of the r,, ., zand r_ . . values can be used
Ji,u} Z1,V] - o

to determine the general direction of the relationships between the

variable sets. On the other hand, the sizes of these values are poor
inaicators of between-set relationships by themselves because.they only
indicate the contribution made by the ith variable in sets Y or /
to the total amount of variation extracted by the jth canonical variate
frdm all the variébles in each set,.respectiyely. If they are Wéightéd
by the‘squared canonicai correlation coefficients, they provide some
indication of the amount of variation explained in the ith variable

of one set given all the variables in the other set via‘the' kth

- canonical relationship. The sum of these values for each variable

across the j h canonical relationship is equal to the squared multiple

correlation coefficient for that variable given the variables in the
other set. The reader will recall that the P X 1 columnh vector Q

of squared multiple correlation coefficients was defined as
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2 2 _
Ryy € Q
Now we wish to decompose each of the squared multiple correlation coeffi-

cients into an additive set of values that can be associated with each

canonical variate extracted from set Y . Thus, if we multiply each
r;i ui value in Rz by the c? value it is associated with, we have
H
r2. . c% = 1. .
yi,uj J yi,uj ,

which is a measure of the amount of variation explained in the ith-

variable of set Y by the variables in set / via the jth canonical
variate. (In the language of factor analysis, lij is simply the
square of the loading of the ith variable on the jth factor.) It

"should be obvious that, by definition,

k 2 k
rr foui G5 T r1 1.6
g1 Yisud 3 j=1 Yisud
_ 2
= Rz
and
Pk ) Pk
X Lr iui S0 z 1 1 .ui
i=1 j=1 Y% J i=1 j=1 Yo
Pl )
= R
i=1 7
- 2
Ry.g -
.The 1_, .- (or 1 ., _.) wvalues, then, not only provide us with
. Yyi,ujl Z1,v]

a means of determining which variable in each set made the largest contri-

. .th . . . . e 4.
bution to the j canonical relationship, but it also indicates what
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proportion of the total variation explained in a given variable
can be associated with the j h canonical relationship. Thus, the
total redundancy measure dRy~z can be used to estimate the total

amount of variation in Y that can be explained by /, and its decom-

position into an additive set of values permit the determination of:

which variéble in Y is actually being explained.

Table 2 reports.the empirical estimates derived from most of
thé meésures.we héve discussed in this chapter. The 1§sf column in the
table.fepérts the multiple and multiple-pa;tial redundancy measures,
whose relative sizes suggeét that both socioeconomic and family status
are related to the éuality of the housing environment inhabited by
owner households. As was noted earlier, our objectives are to deter-
mine not only whether socioeconpmic status and fémily statué are related

to housing quality, but we want to determine whether the hypothesized

directions of these relationships are confirmed by the data. We noted

that the overall direction of the relationships between sets can only

be determined by analyzing the signs and relative siZés of the relation-
ships betweenvthe.ofserved measures and the canonical variates. For
each canonical solution extracted from equation (2), Table 2 reports
L and lij values for each of the measured variables. As a further

aid to interpretation, the third colummn under each canonical solution

reports the lij values as proportions .of the total variation explained

in each of fhe variables (as represented by multiple R2 coefficients).
:.From Table 2 it can be observed that_socioecénomic status appears

to be related to housing quality because of the positive relationships

between measures of the former and condition and quality attributes of

dwellings. This observation is supported by the values reported under




Table 2. Canonical Relationships between Housing Quality, and Family Status and
Socioeconomic Status for Whites Who Owned Their Home in 1960 (N = 8700)

92

1st Canonical 2nd Canonical 3rd Canonical
1.. 1. .
i ij i
Variable Sets r 1 R r.. 1.. R r.. 1.. R R2 R
ij ij Ji'K ij ij Ji-K ij ij Ji-K ' Ji-K d ' J-K(L)
Housing quality .108a
Condition of unit .387 .027 .90 .044 .000 .00 .921 .,003 .10 .030
Age of unit ' .347 .,021 .15 .938 .119 .85 -,020 .000" .00 .140
Quality attributes .919 .150 .97 +.155 ,003 .03 -.362 .,000: .00 .154
of unit
Family status _ .0412P
Marital duration . .093 .,002 .01 .992 .133 .99 -.014 .000° .00 .135
Number of children -.115 .002 .04 472 .030 .60 -.750 .180° .33 .050
Age of youngest child 4-.005 ,000 .00 .201 ,001 1.00 -.241 .000 .00 .001
Socioeconomic status .064C
Education .724 ,093 .86 .331 .015 .14 -.237 .000 .00 .108 '
Occupational prestige v .752 .100 1.00 F.035 .000 = .00 -.348 .000 .00 101
Family income .717  .091 1.00 +003 .000 .00 -.017 .000 .00 091

a,
The amount of variation in set Y which can be explained by sets §{ and X.

Proportion of the total variation explained in set Y, which can be attributed to the effect
of family status.

c . . . . . .
Proportion of the variation explained in set Y, which can be attributed to the effect of
socioeconomic status.
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the first canonical solution in which the signé of the coefficients are
all positive and the lij/Rﬁ..K values are at least (.86). The first
canonical solution captures ;ractically all of the covariatioﬁ that
exists between socioeconomic status and housing quality. Thué, with
respect to this relationship, our expectations are confirmed.

The relationship between family status and housing quality
emergeé in the second canonical solﬁtion. Again, QSing the 1ij/R2J..K
values as the basis for evaluation, it'is.evident that age of dwélli;g
is being explained by mérital duration and number of children. Clearly,
fhe basis of the relationships that housing quality haye with socio-
économic status and family status are not the same. Mﬁreover, it should

be equally clear that our expectations in regards to the underlying

reasons for the relationship between housing quality and family status

‘are not confirmed. We postulated a negative relationship because it was

suggested that large families are more likely to live in poorer quality

housing., We find, on the other hand, that the relationship is positive

and it is marital duration, not age andlnumber of children, that is the
basis for this telationship. These results are.consistent with the
argument_that families:aée with their units.
It was prédicted that socioeconomic status would be.negativeiy ;
related fo;family status because of the inverse relationship between
size of family and the three measures of socioeéonomic status. These
relationships are reported in Table 3. Socioecoﬁomic.status explained. 
an average of 9 peréept of the variation in faﬁily status. ‘Mofeover,
it is CIéarly evident that the positive relationship between.marital

duration and education is responsible for the overall relationship




Table 3.

Canonical Relationship between Family Status and Socioeconomic

Status for Whites Who Owned Their Home in 1960 (N = 8700)

1st Canonical

2nd Canonical

Variable Sets o Ly 1ij/R§i-K X lij/Réi-K'  x |afrx
Family status

Marital status ~.989 .151 1.00 ~.090  .000 .00 152 | .091
Number of children 604 .057 .90 ~.371  .007 .10 063

Age of youngest child .335  .017 .29 928 .041 .71 .058
Socioeconomic status
Education 913 .129 1.00 -.097  .000 .00 .130
Occupational prestige 153 .004 1.00 -.027  .000 .00 004
Family income 294 .013 .25 910 .039 .75 .053
S mrerations 393 .217

2A11 canonical coefficients are significant beyond the

.01 level of rejection.

8¢
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between these variabie sets. The relationship between education and
number of children, though small, is positive, whilé income and occu-
pational prestige seem to bear no relationship to this variable.
Fiﬁally, family income.appears to be positively related to age of
youngest child with respect to both the first and second canonical

solution, a relationship which our theoretical model did not predict.

ITIT. Discussion

One of the main reasons why these particular sets of variables

were chosen in order to demomstrate the utility of canonical correlation -

vanalysis relates to the structure of the observed correlation matrix.
First, the within-set and between-set correlations are rather small,
.whiqh is due in part to the particular manner in which theée variables
(partipularly the measures of housing quality) were operationalized via
thé census. Evenbgiven these low values and the exploratory nature of
the.fhéoretical model under review, it would still be of some interest
to determine the reasonableness of the model in terms of whether it
warrants further‘investigation. The conceptualization of. the observed
variabies as -indicators of specific theoretical constructs wéuld appear
to this writer to be a reasonable approach to take toward these data.
This_is'the'p;imary reéson why the model as depicted in Figure 1 is
defined in terms of the relationships between sets of variables,
althéugh.we were also intereste& in the issue of which variables within
each set wére responsible for the between—set,relationéhips. Moreover,
it should be apparent that a canonical solution is derived maiﬁly from

the between—set correlation matrix RYZ and the correlation between
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variates and indicator variables are largely a function of the structure
of this matrix. Thus, the attempt here was not to find the optimal cor-
relation between a theoretical construct and its indicators, but rather
to simply summarize the relationships beéetween variable sets without
implying that an optimal set of relations were obtained. Admittedly,
this goal is less ambitious and less parsimonious than what would be
obtained using a simultaneous estimation procedure.

However, viewed from another angle, the technique employed
presents a clear picture of the complexity of the relationships between
the dependent set and each of the independent sets. We were able to
detect the fact that measures of socioeconomic status and family status
are differentially related to measures of housing quality. What this
means essentially is that if housing quality were related separately
to socioeconom;c and family status, different variables in the former
set would have emerged as being largely responsible for the total rela-
tionship between the variable sets. In other words, the correlations
between indicator variables and canonical variates would vary depending
on the nature of the variables in each set. This is an undesirable
~state of affairs, becaﬁse unless we can.assume.that the effects of
indicator variables within each independent set are the same with res-
pect to each indicator in the dependent set, there is no single "best"
estimate of the unobserved-unobserved correlations and the
unobserved-indicator correlations. For example, if tﬁe first canonical
solution is taken as the best overall estimate of the relationship of
housing quality with socioceconomic status and family status, then we
Woﬁld have virtually eliminated the relationship between housihg quality
and family status, since that relationship emerged in the second canonical

solution, not the first.
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The problem of differeﬁtial association between dependent and
indépendent sets is likely to increase in éomplexity as the number of
independént sets are increased Which, in some inétances, necessitétes
the application of less restrictive and less'precise statistical
models in order to evaluate the implications of the researcher's
théoretiéal model. Thus, our main argument is simply that the measures
we have proposed here can be used to partially overcome this problem

when more sophisticated and restrictive statistical models should not

be applied.
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FOOTNOTES

The measure "quality attributes of the dwelling unit" is definéd'as that
proportion of value of property which remaiﬁs after eliminating from it
the effects of its meaéured determinantsf (See Wilson, 1973.)

Age of dwelling unit, age of youngest child, total number of persomns in
the family, education and occupational prestige (Duncan scale) are.
 expressed iﬁ logarithms. The generalized least squares estimate of units

in standard condition is employed. This estimate takes the form:

Yi [

1/P (1 - P)]%

where

‘Yi,' is the observed (0, 1) value of the variable.

P is the OLS estimate of the brobaBility of living in a standérd»

unit.

 The data for this analysis are derived from the 1960 Census /1,000

Public Use Sample tapes.

The interested reader can find an extensive discussion of deriyations in

the technical literature cited earlier.

If one solves equation (2), then the vector BJ can be obtained as follows:

@iy,
B = ‘

(Réz)"l Ry
OR B, = A
1 J

A1 [ A%

Wilk's lambda conforms approximately to the chi square distribution with
(Pl)(Pz) degfees of freédom.
The latter is true if and only if the matrix is of full rank, otherwise

more variation can be explained. This is the primary reason why it is
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frequently suggested that the number of variables in the dependent set
should be equal to or less than the number of variables in the independent

set.
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