| HLE C@PY ;o
DO NOT REMOVE

NSTTUTE FOR™
ESEARCH ON
OVERTY 4R

ESTIMATING EARNINGS FUNCTIONS FROM
TRUNCATED SAMPLES

||

David L. Crawford

UNIVERSITY OF WISCONSIN-MADISON .




ESTIMATING EARNINGS FUNCTIONS FROM
TRUNCATED SAMPLES

David L. Crawford

University of Wisconsin

July 1975

The research reported here was supported in part by funds grahted to

the Institute

for Research on Poverty pursuant to the provisions of

the Economic Opportunity Act of 1964. The author gratefully acknowl-
edges the comments and suggestions received from Glen Cain, Lewis

Evans, Steven
and Mead Over.

Garber, Arthur Goldberger, Donald Hester, Bengt Muthén,

s




. T

ABSTRACT

Over the last several years, we have witnessed the accumulation
of several micro-data sets, collected for the purpose of analyzing
potential responses to incomé maintenance schemes. These samples are
not random samples from the total U.S. population because they were
selected to represent those families whose incomes are below certain
poverty thresholds. This paper is an examination of the ways in which
such data can be used to study behavior in the total U.S. population.
This examination focuses upon the estimation of conventional earnings
functions‘for male heads of households where earnings are assumed to

be a function of education, IQ, and several demographic variables.




ESTIMATING EARNINGS FUNCTIONS FROM
TRUNCATED SAMPLES

1. Introduction

During the last several years, we have witnessed the accumulation
of several sets of microeconomic data, collected for the purpose of
analyzing potential responses to income maintenance schemes. These
samples are not fandom samples from the tbtal U.S. population because
they were selected to represent those families whose incomes are below
certain poverty thresholds. This paper examines techniques for the
estimation of linear models when the sample design excludes observations
whenAthe dependent variable exceeds some 'truncation' value;l These
techniques are illustrated using a national cross-sectional sample and
a subsample which has been truncated when income exceeds some predeter-
mined level. These samples are taken from the five year panel data set
collected by the Survey Research Center of the Institute for Social
Research at the University of Michigan (Survey Research Center, 1972).

This paper is composed of seven sections. In the next section,
the problems encountered when one uses linear regressionlto eséimate
linear models from truncated samples are examine&. In the third.
section, two techniques which yield consistent parameter estimates
from truncated samples are reported. In the.fourth section, a simple
earnings model is presented. In the following two sections, we
discuss the data to be used and estimate the model from a random sample
using linear regression and from a truncated sample using linear

.regression as well as the two consistent techniques presented in the
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third section. The final section reports conclusions regarding the use

of truncated samples and some proposals for future research.

2. Linear Regression in Truncated Samples

In this section, biases in linear regression coefficient estimates
obtained from truncated samples are examined. The focus is on the

_comparison of the population linear regression functions in the full

and truncated populations. In a joint probability distribution p(y,x),

the conditional expectation function E(y[g), which traces out the
conditional mean of y given x, may be nonlinear in x. The best (in a
least squares sense) linear approximation to E(y!z) is the population

linear regression function
L(yl_}g) =a+x'Yy . o (L
where

V) 1 e (x,y)

Ey) - Y'E@) | | (2)

=<
]

Q
I

and where V(§) is the variénce matrix of x and C(x,y) is a column
vector of the covariances of individual x's with y. If E(ylg) is
linear then L(y|x) coincides with it. |

The examples which follow afe'special cases of the classical

regression model

y=x"8+e, E(E[x)=0 o - S (3)

where x is a k x 1 vector of exogenous variables. The conditional
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expectation function is linear and therefore coincides with the

population linear regression function
Bylo = Lolw = x'8 . “)

It is well known that linear regression slope estimates, b, based on a
random sample from the full population characterized by (3) have

expected values equal to the slopes of L(y|x).

E®) = V@1 ey = 8 . (5)

Since a truncated sample is a random sample from a truncated populatiom,
we know that linear regression slope estimates, b%*, based upon a
truncated sample have expected values equal to the sldpe of L*(yng

(* indicating the truncated population). That is,
I

E(b%) = V@1 ek (x,y) = 8% - C®

So the question of bias in linear regression estimates from truncated
samples can be reduced to a comparison of (5) and (6); that is, linear
regression coefficient estimates based on a truncated sample are biased
whenever B* is not equal to B.

Example 1. In our first example there is a single x and.a popu-

lation consisting of the nine equi-probable points displayed in Table 1.

Table 1




The conditional expectation function for y given x is
E(y|x) = x . ' (7)

Since the conditional expectation function is linear, it coincides with
L(y|x) which has slope

C(x,y) R
Vo) T S (8)

Now form a subpopulation by deleting those péints where y is greater
than zero. In this truncated population consisting of 6 equi-probable
points, the linear conditional expectation function is also the popula-

tion linear regression function
E*(y|x) = L*(y|x) = -.5 + .5x . (9)

Figure 1, shows the nine original points, Lty]x), and L*(y|x).
Now, consider drawing random samples from the full and the truncated
populations and computing the linear'regréssion of y on x. Note that'
estimates obtained with samples from the truncated population will be
biased estimates of the slope of L(ylx) because they are unbiased for
the slope of L*(y|x), which is nof equal to the slope of L(ylx).

Example 2. In the second example, there is again a single x, but

the population consists of the twelve equi-probable points displayed in

Table 2.
Table 2
x | -2 | -2 | -2 | -2 ]=~-1t]-12{ o0 lojJo |1 |1 |1
y |3 |-2 |-1.]-2 [-1] of-L Jo |1 Jo [1 |2




. L(yIx) = E(yix)

- E*(ylx)

: —
*
—~
<
>
——
n

Figure 1
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The conditional expectation function is again
E(y|x) = x = L(y|x) | (10)

which appears as the line AC in Figure 2. Again form thé truncated
population by deleting points at which y is greater thaﬁ zerb. This
time, the conditiomal expectation function in the truncated population
[E*(y|x)] is not linear. This function is labeled ABD in Figure 2. We

can readily calculate L*(ylx), the best linear approximation to E*(y|x).

Using the results

E#(y) = -1.11 , E#*(x) = -.889 , C*(x,y) = .679 ,

V& (x) = .988 : (11)
we conclude that

L*(y|x) = -.500 + .688x : (12)

which is graphed in Figure 2 as EF.
As in the first example, linear regression in a sample from the
truncated population yields a biased estimate of the slope of L(y|x).

1f b* is such a linear regression estimate, we know that
E(b*) =..688 # 1 . | (13)

Next, we turn to a simple case of the classical normal regression

model where there is a single regressor z with a unit coefficient:

y=2z+E¢€

e v N(0,07) . | . (14)




1 P L(yix) = E(ylx)

. GD\L*MX)
-1 ‘ /A\E

E*(yix)

Figureié




8

This model implies that the conditional distribution of y given z is

normal with mean z and variance 62. The probability density function

for y is
1 (y-2)*
gy) = exp (- > ) . (15)
'2ﬂ02 20

The conditional expectation function is linear in z so it coincides

with L(y|z):

E(ylz) = L(y,z) = é . (16)

Now, consider the truncated subpopulation which consists of all

points at which y is less than some value H. In that subpopulation,

the density function for y is

g(y)/G(H) for y < H
g*(y) = (17)
0 otherwise

where G is the cumulative normal distribution function

e = SMgyay . 2 (18)

In the subpopulation, the conditional expectation of y given z is

Ex(y|z) = Slygr(y)dy
= -C;%ﬁy _Ofoﬂyg(y)dy

o1 H 2 dg(y)
= E?ﬁji_i gly)z - O &y dy,




2
2 ng(y)dy - E%ﬁ?’ fHdg(y)

GH) _
- 2 g(H) 3
= Z —/O G(H) . : . (19)

To study E*(y]z) it is convenient to transform variables. Let

a = (H-2)/0 (20)
50

z=H- 0a . (21)
Then

o 8 _ £Qa) _ Ly, | (22)

G(H) F(a)
say, where f(*) and F(°) are the standard normal density and cumulative

functions respectively. Then (19) can be rewritten as

E*(y|z) = z - or(a) (23)

Evans (1975) has calculated r(a) for various values of a. His graph of
r(a) is reproduced in Figure 3 and is used to plot E*(ylz) in Figure 4.
Note that E*(y]z) is a positive, convex function of z which asymptoti-
cally approaches y = z as a > -® and y = L as a * @,

The best linear approximation to E*(y|z) is L*(y|z) which has

slope equal to C*(z,y)/V*(z). Using

C*(z,y) = C*[z,E*(y|z)] (24)

and (23), we obtain




Figure 3
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Figure 4 -
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C*(z,y) = C*[z,z - or(a)] (25)
which can be rewritten as
C*(z,y) = V¥(z) - oC*[z,r(a)]. (26)

Note that r(a) is monotonically decreasing in a and therefore mono-
tonically increasing in z. The sign of C*[z,r(a)] can be determined
using a theorem due to Gurland (1967) regarding the covariance of
functions of random variables. Gurland's theorem says that two mono-
tonically increasing (or decreasing) functions of the same random
variable will have a positive covariance. Since z and r(a) are two
monotonically increasing functions of z, C*[z, r(a)] is positivé and

_ C*(z,y) C(z,y) _
B* = ) S v ~ L

. _ (27)

Once again we see that a linear regressionJCOefficient estimaté from a
sample drawn from a truncated subpopulation will be biased for the
slope of L(ylz) because L*(ylz) has a different slope. Next, we
generalize this result to the case of multiple regressors.

Consider the model

y = 'E+€

B

where x is a k x 1 vector of exogenous variables. The results contained
in our last example can in large part be generalized to cover this case

by defining

2= x'8 . | - @9
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The slope vector of L*(y|x) is

B = [Vk( 1 cx(x,y) = [V*(x)17 CxIx,E*(y|0)] (30)

where V#(x) is the variance matrix of x and C*(x,y) is a column vector

of the covariances of y with each X, . Using the fact that

E*(y|x) = x'B - or(a) : (31)
where

) H—E'_B_ .

8= —, (32)

(30) can be rewritten

B*

[v4 () 17 V% (08 - o[V (@)1 c* [x,x(a) ] (33)
or

B%

B - 0[V*<§>]"lg* [x,r(a)] (34)

where C*[x,r(a)] is a vector of covariances of thé individual x's with
r(a). In this general case, linear regression coefficient estimates
based upon truncated samples will in general be biased estimates of E;
but the signs of biases are ambiguous. In the case of two x's, ?or

example, (34) reduces to

-
B ® B - _—q—_ V*(X )C*[X ’r(a)] - C*(X » X )C*[X ,r(a)]]
1 1 IV"‘(?E)' L 2 1 1°72 2
= (35)
* o] 8 .
B B, =~ —— |V*(x )C*[x,,r(a)] - C*(x, ,x, )C*[x ,r(a)]]
2 2 IV*(ES)l L 1 2 1°72 1
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The signs of bias will obviously depend upon the signs of the three

covariances.

In this section, we have considered several examples of the biased
coefficient estimatés which result when linear regression is applied to
truncated samples. We have found it useful to think of truncated
samples as random samples from truncated populations. Our conclusions
aré that linear regression in truncated samples provides biased
estimates of the slopes of L(y|§) and that the directions of such

biases are, in general, ambiguous.

3. Consistent Estimation Techniques for Truncated Samples

In this section, two methods for obtaining .consistent estimates
from a truncated sample are considered. The model is that of (28),

which we rewrite as

Y, = 5t'§_+ €, t=1, . . ., T ' (36)
) .
et v N(0,0%) .

The sample consists of all observations for which

Ve < Ht t=1, . . ., T. (37)

The limit value Ht may vary across observations, but it is known at

each observation.




a. Instrumental Variable Approach

Amemiya (1973) studies the model:

1 O . ' O o
LT e LI e > 0
Ve = (38)
0 otherwise t=1, . .., T

S N(0,0%)

o . .
where e is the observed value of the dependent variable at observation

o . . o . .
t, X, 1s a vector of exogenous variables, and € is a normal disturbance

t

which is independent of zi. This is the specific case of the Tobit model

(Tobin, 1958) in which the lower bound is equal to zero at each observa-

tion.

Amemiya obtains consistent estimates of this model using only the

non-limit observations. He shows that

o}
l'.x
B*(yg) = Y'x} + ur (=) ~ < (39)

and that
) 'xo
. 0y24 _ 1 0.2 1. O — = 2
B[ ) ] = (UE)” +oy'mr 50 +w
= y'x%m% (5%) + (40)
- =t t ,

where r is defined in (22). Defining

[
]

_ 0 ' o ' '
-— * :
y, ~ E (yt) | E (41)
and
0.2

v, 2 67 - B9 @)
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(40) implies

0y2 _ 1,0, 0 _ 2 S
(yt) —lgc_t(yt u)+w‘+v v, > 0
o 12000 4 2 °. 0 ’
Y'xy, tw +n Y, (43)
where n, =V - X'zu . (44)

Amemiya uses (43) to obtain estimates of Yy and wz. The correlation

between nt and yt precludes linear regression, so Amemiya proposes

A

. . . , , o’ o .
instrumental variable estimation of (43) with (ziyt,l) as instruments

0’0o 0”0

~ X5, -1 X Yy
+ + : 0.2 .
[Y—Z—J = |z (xyps V| Z ) (45)

w 1 1

where
~0 U S S ' )

o] O 0 0o O (46)

ve Txg Txx )T ExY,

+ 0
and where I dindicates the sum over all observations at which Ve is
greater than zero. He shows that y and w~ are consistent for y and w
under general conditions.

The model displayed in (44) can be written in the form of (46) by

making the substitutions

(o]
yt = Lt - yt ) ‘ (47)
| . |
%=1 |, - e
1 , _
x= s , ‘ (49)




o

o
€. = =€, (50)
w2 = 02 . (51)

So, consistent instrumental variable estimates of our model can
be obtained using Amemiya's instrumental variable technique. First,
the yt's are regressed on the 5%'5, and the predicted values from the

regression, ?t's, are used to compute (Ht - ?t) for each t. Next the

vectors ¢, and d re constructed where
<, 4, are ns

c, = (Ht—yt) Lt | N | (52)
x,
and
dp = @5 [ G
5,

Each element of [ is regressed on gt and a constant to obtain a

vector of predicted values §t' Finally, we regress (yt)2 - 81 on

(32, e e, 8k+l) and a constantj the coefficients obtained for

(Crs « « « 5 & ,,) will be —B and the constant coefficient will be
2 k+1 = -

A

2
0 . This procedure takes advantage of the familiar computational

technique for obtaining instrumental variable estimdtes using a two-

stage linear regression algorithm.

b. Maximum Likelihood Approach

Amemiya (1973, p. 1000-1001) also spells out the maximum likeli~
hood method for estimation of the model in (38) which can be adapted

as follows. The model displayed in (36) implies that-yt is normally
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distributed in the full population with mean gi'ﬁ_andvvariance 02.
It follows then that the density function of Ve conditional on Ve
being less than Ht is

g (v )/c (H) for y <H
0 otherwise
where 8, is the normal density function with mean gt'ﬁ_and variance
02, and Gt is the corresponding cumulative distribution function.
Since the truncated sample is a random sample from the truncated
population characterized by (54) the likelihood function of the sample
can be written as -
8. (v.)

T
g* (Y ) = H e
1 t t=1 Gt(Ht)

(55)

=2
il
[

t

‘ 2 .
We wish to choose those estimates of f and ¢ which maximize (55) or,

equivalently, which maximize

2

T
1 = 'g)2
2 2 g IOy B) (56)

Ind = —ZlnGt - E-ln21r - E-lnc
207 t=1

where

G, = Gt(Ht) . ' (57)

The values which maximize {(56) will be a solution to the first order

conditions

01nd

L6 T2 e TR R 2
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1
oine 1 < GE B o 1 I van2
2 -T2 = c 7t~ F O, -x B =0
30 200 t=1 t 20 20 t=
where
8, = gt(Ht) . (59)

’

The seceond derivatiwves .of (58) are displayed in the appendix,

For a given set of data, we wish.to'find a solution to equations
(58) at which the likelihood function takes.dn.its méximum value. To
do so, an algorithm for the maximization of a function of several
variables ié required. The method used here was developed by Davidon,
described by Fletcher and Powell (1963), and made opefational by
Gruvaeus and Joreskog (1970). The method searches for a maximum of the
likelihood function using analytical first derivatives of the function’
and an approximation to the matrix of second derivatives, beginning
with user supplied starting values of the parameters. We will use the
instrumental variable estimates as thése starting values. Having
found the maximum likelihood estimates of B and dz, we estimate the
asymptotic covariance ﬁatrix of these estimates as the ﬁegative of the
inverse of the matrix of second derivatives of 1n®, Under certain
regularity conditions, the maximum likelihood estimates of B and 02
are'asymptotically efficient and asymptotically ﬁormally‘distributed
with means B and 02 and variances estimated as noted above.

In this section two techniques for the estimation of simple
linear models from truncated samples have been described. The maximum
likelihood estimates have more desirable asymptotic properties, but the

choice of techniques in finite samples remains open. The instrumental
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variable estimates have the practical advantage of being relatively

easy to compute. Both techniques are used in the folloWing sections.

4, A Model of the Determination of Earned Income

In order té get an empirical picture of the relation between
full-sample and truncated-sample results we estimate an earnings
function using a full random sample and a truncated subsample. The
model to be estimated determines earned income of male heads of house-~
holds. The earnings function is not a structural equation but, rather,
represents a reduced form equation associated with an unspecified
structural system of the demand for and supply of labor. The argu-
ments of the earnings function are exogenous variabies which affect
demand and/or supply. Among these variabies are factors which deter-
mine the individuél's productive potential such as his age, his
edﬁcation, and his intelligence. Other arguments of the earnings
function are family size Which shéuld aﬁfect'labor supply, race which
captures earnings differences due to discrimination; and region which

should measure earnings differences attributable to regional varia-

‘tions in the productivity of labor and the cost of living.

Our model of earnings is

E = Bo + Bl GRSCH + 82 HSCH + 83 SOME + 84 GRAD +'85 TEST

+ B SOUTH + B, FSZ + ¢ (60)

AGE + 67 AGESQ + 83 RACE -+ 69

6

where -

E = individual's labor income in 1968 (includes imputed earnings

" of self-employed)




GRSCH =
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otherwise (base category is high school graduates with no

1f individual did not enter high school
0

further formal education)

HSCH =§1 if individual entered high school but did not graduate
" 0 otherwise
SOME ={1 if individual graduated from high schoél, had further formal
training, but did not graduate from college
0 otherw1se
GRAD if individual graduated from college
{; otherwise
TEST = individual's score on a sentence completion (IQ) test
(scores rangé from 0 to 13)
AGE = individual's age in years
AGESQ (AGE)2
RACE =|1 if individual is nonwhite
0 if individual is white
SOUTH =|1 if individual lives in the SouthernvCensus Region
0 otherwise
FSZ = number of persons in the individual's household
and € is a normal disturbance with mean zero and variance ¢ . We assume

that € is independent of the exogenous variables in the model.

- Two characteristics of the functional form are worthy of note.

First, the model contains four dichotomous variables which measure the

individual's education. The education variable was originally available

in nine categories. For the sake of parsimony, we have collapsed these

nine categories into five categories. Second, we have specified a
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quadratic form for the partial impact of age upon earnings because

most researchers have found age to have a first positive and then

negative effect upon earnings, a result which has theoretical appeal.

5. Data

The data used in this analysis were taken from the five-year
panel collected by the Survey Research Center (SRC) of the Institute
for Social Research at the University of Michigan. This data set
consists of five annual interviews with approximately 5000 family units,
40 percent of which were selected from members of the Survey of
Economic Opportunity (SEQ) sample. The remaining 60 percent of the
sample units make up a national cross-sectional sample. In the present
ﬁaper the_SEO follow-up sample is excluded. One-half of the national
cross—-sectional sample has been randomly selected for anmalysis; the
remainder is available for future analysis. Finally, attention is
restricted to male-headed families which had the same head over the
entire five-year period; a sample of 864 families is available. This
gample is assumed to be a random sample from the full population of
male heads of households.

A truncated subsample was constructed from the sample of 864
observations by excluding an observation if the family's income was
more than 150 percent of the family's poverty threshold ("Orshansky
Ratio" greater than 1.5). For a given family size this restriction
imposed an upper bound on totél family ‘income. A group of 253 obser-
vations remained. The sample is truncated on the basis of total family

income and the model explains only head's labor income, so we must
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translate the truncation on family income into a truncation on head's
labor income. To do so, it is assumed that all other components of
family income are fixed. The upper bound on family income in the
truncated sample is 150 percent of the family's poverty threshold.
The upper bound on head's labor income is taken to be the family income
bound minus family income from sources other than the head's labor
income.,

The full and truncated éample means and standafd deviations of
the variables in our model are displayed in Table 3. Note that men
in the truncated sample have, on average, much lower earnings, much
less education, and only slightly lower intelligence test scores.
The average man in the truncated sample is slightly older than the
average man in the full sample. Further, we see that the proportions
of nonwhites and of southerners are higher in the truncated sample.
Finally, there is the interesting result that the average family size
is virtually the same in the two samples. »One migh; have thought'that 
larger'familiesuwith higher poverty thresholds W09¥d be over-represented
in the truncated sample, but such is not the case. Apparently, larger
families have sufficiently higher incomes fhat they are no more likely

to fall below the bound of 150 percent of their po%erty thresholds.

6. Estimation of the Model

Four sets of estimates of the parameters of the earnings model
shown in (60) are described in this section. The first set, hereafter
denoted LR-F, was obtained with the full sample using linear regression.

The remaining three sets of estimates were obtained with the truncated




Table 3

Sample Means and Standard Deviations from the Full Sample and the Truncated Sample

Full Sample Full Sample Truncated Sample Truncated Sample
Mean Standard Deviation Mean Standard Deviation
E 7100. 5920. 2340. 2410.
GRSCH . 264 441 482 .501
HSCH .153 .360 .150 .358
SOME « 244 .430 .194 .396
GRAD .152 ’ .359 .059 .237
- TEST 9.72 2.16 8.89 2.51
AGE 45.2 15.7 50.6 19.3
RACE ‘.lOl o .301 174 .380
SOUTH .338 ' 473 .466 .500
FSz 3.47 1.73 3.42 2.17
Sample Size 864 253

ve



. 25
sample using linear regression (LR-T), the iﬁstrumental variable
technique (IV-T), and the maximum likelihood technique (ML—T).7 These
four sets of estimatee are displayed in Table 4; estimated standard
errors are reported in parentheses.

First, consider the LR-F estimates. The education variables
appear to have a strong impact upon earnings. It is somewhat surprising
that the coefficients of HSCH and SOME are not significaﬁtly different
from zero. This result impiies that the earnings ef high school
graduates are not significantly different from the earnings of those
who completed only some high school or from those who graduated from
high school, had some formal training beyond high school, but did not
graduate from college. The hypothesis that the coefficients of the
four education variables are jointly equal to zero can be tested with
an F~test. The F-statistic with 4 and 853 degrees of freedom is 32.9
which allows the hypothesis to be rejected at the .00l level of eigni—
ficance. The age—earnings profile implied by the model exhibits a
positive effect of increasing ege until'age 46. The Qariable RACE has
a negative but insignificant impact upon earnings. The lack of
significance may be due to the heterogeneity of the nonwhite group
which includes Orientais as well as Blacks and people of Spanish
heritage. The variable SOUTH has a strong negative.impact upon
earnings. The family size variable has a strongly significant and
positive impact upon earnings, which might suggest that heads
with responsibilities for larger families are likely to be more
highly motivated to work or that richer people have more

children, in which case the model is mis-specified. The
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Table 4

Estimates of the Earnings Model
(Standard errors in parentheses)

Full Sample Truncated Sample
Linear Instrumental Maximum
Linear Regression | Regression Variablgy.  Likelihood
CONSTANT -10,100. 47.9 4,220, 821.
(1,600.) (957.) (4,420.) (1,640.)
GRSCH -2,410. -879. -2,850. - =1,460.
(524.) (342.) (2,020.) (588.)
HSCH ~563. ~172. -1,010. -840.
(558.) (401.) (2,000.) (692.)
SOME 487. 213. 178. 702,
(494.) (382.) (2,220.) (711.)
~ GRAD 4,140. 152. 3,680, 605.
(561.) (521.) (2,670.) (976.)
TEST 275. -27.9 44,2 -22.0
(85.5) (47.1) (180.) (72.1)
AGE 680. 110. 231. 172.
(62.4) (37.2) (170.) (62.4)
AGESQ -7.45 -1.50 ~2.84 - -2.27
(.656) (.373) (1.67) (.605)
RACE ~764. ~273. -864. -418.
(560.) (292.) (926.) (448.)
SOUTH -909. -25.9 -239, -52.8
(350.) (215.) (794.) (353.)
FSZ 344, 545. ~53.4 373.
(104.) (56.2) (258.) ' (89.8) .
4,710. 1,580. 3,140. 1,950."
' ' (136.)
2
R .367 .569 - -
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intelligence test variable has a positiﬁé coefficieﬁt which is differ-
ent from zero at the .0l 1evei of significance{ Fiﬁally, it should be
noted that this model fits the data remarkably well for a cross-
sectional individual model as indicated by the R2 of .367.

The three sets of estimates of the coefficients of our model based
upon the truncated sample differ considerably. The linear regression
estimates are inconsistent for B and 62, but the biases cannot be
calculated explicitly as the true values of the parameters afé unknown.
In addition, the calculated standard errors of the linear regression
estimates are spurious. It is interésting'nevertheless to compare the
three sets of estimates from the truncated sample with the estimates
from the full sample.

First, comparing the linear regression estimates from the two
samples, note that the sign of each coefficient ié.preserved except
for the TEST coefficient. Second, of the remaining coefficient
estiﬁates, the LR-T estimates are closer to zero than the LR-F esti-
mates with the single exception of the coefficient on FSZ. 'This
single exception makes'sénse if we remembéf that‘largér families had
higher income cut-offs due to the truncation on the "Orshansky Ratio."
Third, the ordering of the estimates of the education coefficients are
different in the two samples. In the fpll sample; a monotonically
increasing relationship exists between education and earnings, but in
the truncated sample it aﬁpears that collegé gfaduation reduces
earnings. Fourth, the age—earnings profile based on the truncgted
sample is flatter and has an earlier peak at age 37. Finally, the
conventional estimate of the standard deviation of ¢ ig smaller in the

truncated sample, and the R2 is larger. Generally, it seems that
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linear regression on the truncated saﬁple yields quite unsatisfactory
estimates of the coefficients of the earnings function, judgiﬁg on the
basis of comparison with the LR-F estimates.

The.instrumental variable estimateé of the model seem to be more
satisfactory. The sign of each coefficient is the same as in thé full
sample regression, except for FSZ, a somewhat puzzling exception. The
magnitudes of the IV-T coefficients tend to be closer to the magnitudes
of the LR-F estimates than are those of the LR~-T estimates. In épite
of these similarities the instrumental variable estimates are substan-
tially different from the full sample estimates, but there is no
apparent'pattern to the differences. Once again, we see a monotonic
relationship between earnings and education.

Turning to the maximum likelihood estimates, we see that the
estimated TEST coefficient is, once again, negative while the estimated
FSZ coefficient is positive. The signs of the other maximum likelihood
estimates correspond to the full sample estimates. The ordering of
the estimated coefficients Qf SOME and GRAD are as they were in the

set of linear regression estimates from the truncated sample, implying

.a non=monotonic relationship between earnings and education. Generally,

the ML-T estimates are closer to the LR-F estimates than are the LR-T

estimates but not so close as are the instrumental variable estimates.

To test the hypothesis that the coefficients of the education variables

are jointly equal to zero, it is convenient to use a likelihood ratio

test. Recall that

-2 1n |—=21 =~ Xy o : (61)
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where @HO is the value of the likelihood function under the null hypo-
thesis, @Hl is the value of the likelihood function under the alterna-
tive hypothesis, and k is the number of restrictions imposed by the
null hypothesis, in this case four. The X2 statistic is 220, which
allows the hypothesis that education has no effect on earnings to be
rejected at the .005 level of significance.

Our maximum likelihood estimates are based upon two assumptions:
that there is no systematic difference betweenkthe truncated and full
populations apart from that due to truncation and that the stochastic
term in that function has a normal distributionlconditional on the
values of the exogenous variables. We can test the first assumption
under the maintained hypothesis that the second is correct by means
of a likelihood ratio test. In order to perform this test we evéluate

the likelihood for the truncated sample using the LR-F and ML~T esti-

mates of B and 02. When we do so we obtain a very large X2 statistic

v

with twelve degrees of freedom of 1642 which forces the rejection of
the first assumption (conditional on the normality of é) at a level of
significance very close to zero.

If the second assumption is incorrect, however, this test is
difficult to interpret. “What is required is a test'oflthe conditionai
normality of the disturbance term in the full sample. The predicted
values (E's) and residuals associated with the LR-F estimates were
computed. The observations Wefe then grouped into deciles on the
basis of the predicted values. Within each decile a Pearson Xz test of
the hypothesis that the residuals were distributed normally was

performed (Blum and Rosenblatt, 1972, pp. 408-409). The residuals in

each decile were sorted into eight cells for this test, so the ¥




statistic has seven degrees of freedom. The cell boundaries were set
such that the probability of a residual falling into any cell, under
the null hypothesis, was ,125. Table 5 reports the céll frequencies
of the residuals and the x2 statistic for each decile. The 5 percent
critical value for a X2 with seven degrees of freedom is 14.1, and

the 1 percent critical value is 18.5. The assumption of normality
cannot be rejected for five deciles at the 1 percent level of signifi-
cance and for two deciles at the 5 percent level. One would have to

agree that the assumption of normality is somewhat tenuous.

7. Conclusions and Extensions

In this paper the problems encountered in using linear regression
to estimate simple linear models from truncated samples have been
examined. Two techniques for obtaining consistent estimatés in such
situations were described. Finally, these téchniques were used to
estimate an earnings function with an artifiéiélly tfuncated sample.
There are two lessons to be léarned from this exércise.'

First, it is clear that linear regression will not, in general,
provide consistent estimates of linear models when samples are
truncated on the basis of the dependent variable. Empirically, it
appears that this problem may be of substantial magnitudé as it éeemed
to be in the example. |

Second, we cannot be too optimistic about the possibility of
using the Rural Income Maintenance Experiment data to estimate the
earnings model as it now stands. We can obtain consistent estimates

from truncated sampleé only if the model is correctly'specified, and
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Table 5

Decile of E

Cell Frequencies (Low to High)

(Low to High) 1 2 3 4 5 6 7 8 X

1 .00 .00 .19 .24 .22 .10 .19 .06 46.
2 .00 .13 .21 .21 .19 .15 .10 .0l 32.
3 .00 .17 .16 .23 .21 .14 .05 .03 36.
4 .05 .19 .19 .23 .13 .16 .03 .02 31.
5 .03 .13 .23 .19 .20 .16 .05 .0l 33.
6 .06 .13 .14 .22 .16 .15 .08 .06 15.
7 .06 .13 .15 .21 .21 .09 .07 .08 17.
8 .13 .09 .16 .23 .17 .05 .09 .07 18.
9 .09 .09 .16 .17 .13 .19 .06 .10 10.
10 .10 .17 .19 .09 .09 .11 .08 .18 10.
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this model appears to be misspecified. >NeVertheleés, techniques have
been proposed which will provide consistent and possibly asympﬁotically
efficient estimates of correctly specified models using trqncated
samples. Obviously, it is best to use full samples when they are
available, but truncated samples contain information which economists
cannot afford to waste.

The maximum likelihood'technique developed in this.paper can be
easily extendedato the estimation of multiple equation models.
Joreskog (1973) has developed a maximum likelihood technique for the
estimation Qf a general linear model. Most types of linear models
can be expressed in the form of Joreskog's model. The model implies
a joint multinormal distribution of observed exogenous (x) and endog-
enous (y) variables. Each specific model implies a set of restrictions
on the covarilance matrix of the variables, as the elements of the
matrix are functions of the parameters of the model. These parameters

can be estimated from a random sample via the maximization of the like-

lihood function

(62)

where m is the multinormal density function. Consider a sample that
has been truncated when yl exceeded some predetermlned value, H . The
'likelihood function for the Joreskog model would then be
T* .

m(x;,¥,)

Ok = ] ————
£=1 Ml(Ht)

(63)
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where Ml is the marginal cumulative distribution of vy Estimates of
this model can be obtained from truncated samples by finding parameter
values which maximize (63).
Having developed techniques for the estimation of multiple equa-

tion models from truncated samples, we can formulate a more plausible

structural model of the determination of earnings. One such model

might be
In S=0 1In W+ §f§1 + € (64)
InW=y'Z +uw ‘ (65)
InE=1nS+1nW (66)

where S is hours worked, W is the individual's wage rate, E is the
4 ) b

individual's earnings, and Z, and Z, are vectors of exogenous variables.

1 2
Equation (64) is the demand function facing the indiyidual and equation
(65) is the supply function of the individual. The identity (66)
permits the possibility of an earnings truncation in this model.

The multiple equation technique can also be used for the estima-

tion of models which more fully exploit panel data. One such model is

¥* = B'Z + ¢

=<
il
]
&
+
<

i=1 «..,J (67)

where Z is a vector of exogenous variables, Y# is permanent income,
and Yj is measured income in period j. If such a model is to.be
estimated with income maintenance experiment data, then the truncation
on first ﬁeriod income should not be ignored. The technique suggested

above will allow us to account for the truncation.
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NOTES

lAfter completing an earlier draft of this paper, I became aware
of a paper by Hausman and Wise (1975) which deals with this same

subject in a similar fashion.

2This density function may remind tﬁe reader of the Tobit model
developed by Tobin (1958) and analyzed by Amemiya (1973). The différ—
ence between the two models is that the Tobit model implies a nonzero
probability of limit observations while our model implies a zero

probability of such observations.

3Johnson and Kotz (1970, Vol. 1, p. 81) display the expected
value of the doubly truncated normal distribution, which can be

simplified to (19) when the lower truncation point is minus infinity.

4In Figure 3, we see that r(a) is a decreasing function of a, but
we can obtain this result analytically. Differentiating r(a) we

obtain

dlr(a)] _ 1 > ({-aF(a}f(a) - [f(a)]z)

da  [F(a)] r
_ f(a) £(a)
== Fa BT ER!
= —-r(a)[a + r(a)] . ' - (FL)

Since r(a) is strictly positive everywhere, the sign of (F1) will be
determined by the sign of [a + r(a)]. When a 1s greater than or equal
to zero [a + r(a)] is obviously positive. In the case where t is less

}

than zero, we define




)
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; u=-a (F2)

so that

a+ r(a) = -u+ r(-u) s, u=>0. (F3>
Using the symmetry of the normal distribution we conclude that

FCw = 50 T TRy T RM (=)
where R(u) is Mills' Ratio (See Johnson and Kotz, Vol..2, P. 278). So
for a less than zero

a + r(a) = -u + 1 u>0. (F5)

R(u) °?
Since Mills' Ratio satisfies the inequality (Johnson and Katz, Vol. 2,
p. 279)

0 <R <= u> 0 (TF6)

we know that

1
—_—— > >
) u u 0
4+ =2 > 0 u>0
R{u)
a+r@ >0 u>0. (F7)

Having established that a + r(a) is strictly positive everywhere, we

conclude that df[r(a)]/da is negative for all values of a.

5Goldberger (1975) has shown that the signs of the biases are

ambiguous.
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6
This test consisted of 13 items selected from the verbal part of
the Lorge~Thorndike Intelligence Test.
7Linear regression estimates were obtained using the Regan 2

program in the Statjob series. Instrumental variable estimates were

calculated using the Time Series Processor available from DACC.

Maximum—-likelihood estimates were obtained using a minimization program

written by Gruvaeus and Joreskog and adapted by me.
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APPENDIX

To derive the first and second order conditions for the maximiza-

tion of (64) we have made use of several results:

36, | _
E = (A1)
aGt 1
— = -5 (L_-x "Bg ‘ (A2)
302 202; t =t t
og
.__E = .;L__ - '
8 2 Lo T EPax \ (43)
L2 2 -

o8, (C E) 0

2 B 2 - (A4)
oa 20

The first order conditions are displayed in (66). The second derivatives

are as follows:

2 T g G
o 1nd _ t t 1
i I |5 (8. +—= L -x '8 -—=lxx"'
9BaB" Gi t 2 [t x, '€] ;2| =
;
2 T g |G : .
d 1nd _ t t ' 2 ,
= 3 — L -x'B -G +g |L -x '8
2 S = ‘ £
8028_6_ t=1 Zcht 02 [ t t j ‘ t t [ t =t ]
(v,-x_'8)
R - X (A5)
A
o
2 T, -x 'B>g G j
3 ln _ t t — t t »_' Y 2 - - '
7z~ % ) 7 (e - 28" -0+ g (L - x'E)
90 00 t=1 4o Gt »
2
- 1
G, - %.'B) 1
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