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THE REPRESENTATION OF SOCIAL PROCESSES BY MARKOV MODELS

1. INTRODUCTION

Markov models provide a convenient framework for analyzing the struc-

tura1 mechanisms which underly social change, and for extrapolating shifts

in the state distribution of a population. For reviews of applications

and discussions of some pertinent mathematical issues, the reader is

referred to Boudon (1973), Bartholomew (1973), and Singer and Spilerman

(1974). Although most commonly employed in the study of mobility, Markov

models have been applie,d to diverse substantive topics; they have been

used, for instance, to study the influence of group norms on conformity

(Cohen 1963), to measure distance in social networks (Beshers and Laumann

1967), and to analyze recidivism among delinquent juveniles (Wolfgang,

Figlio, and Sellin 1972). The attractiveness of this mathematical formu-

lation derives from the fact that it permits a researcher to focus upon

the dynamic properties of a social process, and ascertain the long'-range

consequences of particular institutional arrangements. An instructive

example of this sort of inquiry is provided by Lieberson and Fuguitt

(1967).

Several technical issues which relate to the sensitive use of

Markov models have only recently begun to receive an amount of attention

that is commensurate with their importance. One matter concerns the

phenomenon of population heterogeneity. In the initial attempts at

modeling mobility processes by time-stationary Markov chains, socially

heterogeneous populations were treated as though a single transition

rule governed the movements of all individuals. Special kinds of dls-

crepancies that were observed between the empirical data and predictions

from these one-type Markov models were suggestive about the form of

. I
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stochastic process which might provide a more realistic theoretical

framework in which to view mobility (Blumen, Kogan, and McCarthy 1955).

The main attempts at modifying the Markov model so it would provide a

suitable description of movements by, a heterogeneous population have

involved viewing the population as consisting of a mixture of indepen-

dent Markov processes, one for each individual or each distinct social

group (McFarland 1970; Ginsberg 1971; Spilerman 1972a; 1972b; Singer and

Spilerman 1974).

A second issue concerns strategies for testing whether empirical

observations are, in fact, compatible with an assumed class of.models,

such as general finite-state Markov processes, or a subset of them, such

as birth and death processes. An example of this sort of inquiry is

presented in Singer and Spilerman (1974, pp. 360-363), where an observed

2-step matrix
1

P(2)--representing occupational change between grand-

fathers' and respondents' generations--was examined for compatibility

with a stationary discrete-time Markov structure. Conceptually, the

problem is to decide whether the empirically determined matrix could

have arisen via the evolution of the postulated process. Stated techni-

cally, it is to ascertain whether there exists a one-step transition

matrix P(l)--which would be identified with grandfather to fathe~ tran- .

sitions or, equivalently, with father to son transitions--such that

P(2) = [P(1)]2. Where the answer is negative, it would be incorrect to

2predict future population distributions from a Markov model, such as

by raising the observed matrix to integer powers.

The same kind of issue must be faced with respect to compatibility

of observed data with other model structures, and it is this fundamental

sort of inquiry that we address in the present paper. We will
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concentrate on conditions for compatibility with a finite-state continuous-

time Markov process, a mathematical structure which holds special interest

for two reasons. First,although discrete-time formulations have been

used in most applications of Markov models, the empirical processes under

consideration commonly evolve continuously, and the appropriate technical

apparatus would be a continuous-time model (Coleman 1964a, p. 129). The

reason for the greater popularity of the discrete-time structure stems

from its simpler mathematical nature, not from considerations of verisimil-

itude. Second, continuous-time Markov processes provide the underlying

mathematical framework for James S. Coleman's (1964a) influential volume

in mathematical sociology, as well as for a number of more recent publi-

cations (Coleman 1968; Mayer 1972; Bartholomew 1973). Because of a

neglect of the representation considerations that are discussed here,

serious deficiencies exist with the estimation procedures used in these

works. An additional reason for concentrating on compatibility with a

continuous-time Markov framework is that the conceptual issues which must

be addressed with more complicated mathematical structures, such as models

of heterogeneous processes, already reveal themselves in this compara-

tively simple setting.

Representation becomes an issue when we have available only frag-

mentary data on population movements. Unfortunately, in the study of

social phenomena, the common situation is to have very incomplete infor-

mation about the evolution of an empirical process; frequently, observa-

tions have been taken at only two time points, t = 0 and t = t
l

, yielding
. 3 A

a single transition matrix P(O,t
l

). What we wish to determine, then,

are the conditions which· this observed matrix must satisfy for it to be

. .
-.-- ----------_._.-.--..._---_.
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viewed as an outcome of a continuous-time Markov model. For matrices

satisfying the requisite criteria, we wish further to recover the para-

meters of the particular Markov structure that underlies the empirical

process. These issues can be posed' most effectively in terms of two

sequential considerations--embeddability tests, and the identification

problem. In practice, a single calculation is usually informative on

both matters.

Embeddability. This issue refers to whether or not an observed

transition matrix P(tl ) could have arisen via the evolution of a stationary

continuous-time Markov process. It is well known that certain stochastic

matrices are not compatible with such a formulation; this is the case,

for instance, if P(t l ) has an element Pij(tl ) = 0, but some P9wer of the
~

A n
matrix, say P(t l ) , has a non-zero entry in the same position, i.e.,

A (n)
Pij (tl ) , 0 (Chung 1967, p. 126). Also, according to Coleman (1964a,

p. 179; 1964b, p. 4), a stochastic matrix in which some main diagonal

element is less than another entry in its column could not have been gen-

erated by a continous-tim~ Markov process. We shall show that Coleman's

4claim is in error. For the present discussion, however, the essential

point is that while it is recognized that certain transition matrices

cannot be represented by this mathematical structure, there is confusion

over the full scope of the requirements for embeddability. Our first task,

then, is to devise tests for determining compatibility of an empirically

determined matrix with a continuous-time Markov formulation.

Iden~fication. If the embeddability tests are passed. then we are

guaranteed that P(t
l

) could have been generated by at least one continuous­

time Markov process. The identification problem refers to the possibil-

ity that the matrix could have originated from the operation of more than
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one Markov process. Consequently, our second task is to delineate the

conditions under which the solution for the parameters of the Markov

model will be unique. Also, for instances in which these conditions are

not satisfied, we will require procedures for recovering the several

Markov structures that could have produced the observed matrix, and

identifying the particular model from this list which should be asso-

ciated with the data.

Sampling error and data collection design. Overlaying the questions

of embeddability and multiple solutions is the issue of sampling error.

In most applications, an empirically determined transition matrix P(t l )

will have been constructed from a population sample. Repeated surveys

of the population would produce somewhat different transition arrays, so

we would be well advised to investigate the sensitivity of our estimate

of the underlying Markov structure to sampling error. In particular, with

respect to the matter of embeddability, we might wish to inquire whether

a non-embeddable P (t l ) is "within error distance" of some embeddable
rJ

matrix P. If this is the case, we could choose to carry out an analysis

in which Markov methods are employed using the adjusted (embeddable)
,J

matrix P, instead of the observed array P(t l ).

The question of data error leads to more intriguing considerations

with respect to the phenomenon of multiple solutions. Even if P(t l ) is

compatible with a unique Markov process, it is possible that a slightly
roI

modified matrix P--within error distance of the original array--will pro-

duce a very different Markov structure from the one that has been identi-

fied. As a result, if the data derive from a population sample, then

because of sampling variability we may have recovered the wrong Markov

structure for the population-level process! We therefore discuss
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strategies for -treating an empirically determined matrix as data contain-

ing considerable "noise," and identifying from it the particular Markov

model to be associated with the substantive process.

Finally, there are c~ucial considerations regarding when to survey

a population in order to facilitate model identification and parameter

estimation. It is widely known, for instance, that if the interval between

successive observations is very large (with respect to the rate of evolu-

tion of the empirical process), P(tl ) will resemble the equilibrium matrix,

and the parameters of the continuous-time Markov model which produced the

observed array cannot be recovered (Coleman 1968, p. 472). Yet, the issue

of data collection design is considerably more complex than this simple

remark conveys, and involves decisions concerning the number of observa-

tions to be taken, the spacing between them, and interactions between these

considerations.

2. MATHEMATICAL PRELIMINARIES AND EXAMPLES

Consider a stochastic process with a finite number of states whose

transition probabilities are governed by the system of ordinary differen-

tial equations

dP (t)
dt

= QP (t) , P (0) = I (2.1)

where P(t) and Q are r x r matrices. It is well known (Colemart 1964a,

pp. 127-130; Chung 1967, pp. 251-257) that if Q has the structure

qij > 0 for i ~ j,
r
~ qi' = 0 for i =1, .. ,r

j=l J
(2.2)

then the functions p(t), t > 0, which are solutions of (2.1) comprise the

, t ransi.tion-matrrce's--o:f-c-ontinuous--ti-me-sta1±ona-ry-Markov-cha1.-ns-.-A-t-y-p1.-cal----~
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element, p .. (t), ofP(t} has the interpretation,
1J

probability that an individual starting in state i

at time 0 will be in state j at time t.

The Q-arrays, which are known as "intensity matrices, II provide struc-

tura1 information about the population:

(i) = probability that an individual in state i

will move to state j, given the occurrence of a transition.

(ii) = expected length of time for an individual in

state i to remain in that state.

We will denote the class of intensity matrices (arrays of the form [2.2])

by the symbol g.

Solutions of (2.1) are given by the exponential formula

P (t) Qte , t > 0 (2.3)

where the matrix exponential eA (A being an arbitrary r x r matrix) is

defined by

The problem of finding simple test criteria on the entries of an observed

stochastic matrix P(t
1
), t

1
< 00, which will guarantee that it can be written in

the form (2.3) with Q £ g, was first posed by G. E1fving (1937). It has

come to be known as the embedding problem for continuous-time Markov

chains.

An obvious description of the subclass Z of stochastic matrices that
=

are embeddable is given by

Z = {p such that log P £ g}.
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Attempts to develop practical test criteria or computer programs to deter-

mine membership in ~ are reported in Coleman (1964a, pp. 177-182), Mayer

(1972, pp. 327-328), and Zahl (1955, p. 97). However, all these investi-

gations suffer from a confusion about the full scope of the embedding

problem, as well as from using an incomplete description of the logarithm

function of matrix argument. This situation has resulted in a number of

erroneous statements about the conditions under which" an empirically deter-

mined matrix P(t
l

) is, or is not, compatible with a continuous-time Markov

process.

Example 1:

Coleman (1964a, p. 179) has asserted that "the most obvious incompat-

ibility is one in which for some state i, nii/ni • is less than some nji/n j .

for some state j." This statementS suggests that a Markov structure would

not be a suitable model for a large class of mobility matrices (e.g., Prais

[1955, table 1]; Coleman [1964a, table 14.8]); indeed, for, any array in

which some off-diagonal element exceeds the main diagonal entry in its

column. That this assertion is incorrect can be seen from the matrix

.260 .169 .248 .323

P .327 .275 .146 .252 (2.4)=
.269 .346 .232 .153

.162 .285 .305 .248

In every column there is a violation of Coleman's necessary criterion, yet

this matrix can be represented as eQ with

-1. 700 .034 .025 1. 641

Q
1.573 -1. 657 .059 .025

=
.051 1. 785 -1. 853 .017

.017 .085 1.649 -1. 751
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Example 2:

Elsewhere, Coleman (1973, p. 21) has written "It is not the case that

any discrete-time Markov chain can be generated by an appropriate continuous-

time process. Heuristically, those discrete-time chains that cannot be

generated by a continuous-time process are those in which the equilibriunl

distribution is approached through a damped wave, rather than approached

6asymptotically." Coleman's statement characterizing non-embeddable matrices

is incorrect, as the following computations illustrate.

By exponentiating the intensity matrix Q from example 1 with t = 1,

P (1 00) 1. OOQ h . . (2 4) i d d Ail 41. = e , t e trans~t~on array . s repro uce. t t me t = . ,

.231 .233 .261

1.4lQ .284 .244 .201
P(1.4l). =e .285 .296 .206

.224 .299 .257

.275

.271

.213

.220

and at time t = 2.24,

.248 .271 .239 .242

P(2.24) 2.24Q .252 .259 .235 .254
= e =

.265 .262 .223 .250

.261 .275 .226 .238

Note that each main diagonal entry Pii(t), observed over the three matrices,

has the property Pii(1.00» Pii (L4l) < Pii(2.24). This means that Pii(t)

approaches an equilibrium value as t + 00 through damped oscillations, and

not asymptotically. Yet, because of the manner by which the sequence of

P-matrices was constructed, they depict the evolution of a continuous-time

Markov process.

Example 3:

In attempting to represent an observed matrix pet) in the form (2.3),

Zahl (1955, p. 97) states that "the estimate of Q is taken to be

- -------- ------ -~ -- -
-----~----- ------- - --------- --
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t log pet) =

00

1 L
t k=l

10

(-1) k-l [P (t)-It
k (2.5)

provided the series converges." Coleman (1968, p. 472) makes essentially

the same claim. Yet, although convergence of (2.5) does provide a repre-
7 A

sentation of log P, it does not guarantee that log P €~. In particular,

consider

P =
(

.600

.302

.380

.330

.560

.040

.070 )

.138

.580

"The series representation for log P converges to

log P =
(

-,692

.496

.707

.639

-. 733

-.144

.053 )

.237

-.563

-.144· < o.which is not in ~ since (log P)32

Example 4:

In possibly the most serious of the misunderstandings, Coleman (1968,

p. 472) has asserted that "When [(2.5)] does not converge, this means that

the data are not compatible with the assumptions of a continuous-time Markov

process, or that the moves of the panel are too widely spaced." Mayer

(1972, p. 328) makes essentially the same point: "The failure of [(2.5)]

to converge for all transition matrices pet) reflects the fact that not

all such matrices can arise from a continuous-time stationary Markov chain."

These statements are in error. Equation (2.5) may fail to converge for

matrices P, not resembling the equilibrium matrix, which nonetheless can

be represented in the form eQ with Q €~. Consider
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(.3654 .3762 .2584 )
P = .3292 .3567 .3141

.4040 .3188 .2772

The series representation (2.5) converges if and only if IA i - 11 < 1 for

all eigenvalues Ai of P. The above matrix has eigenvalues Ai = 1, A2 = .053i,

A3 = -.053i. Thus IA 2 - 11 = IA3 - 11 > 1 and (2.5) diverges. Nevertheless,

P = eQ for

Q
(

-1. g05

.044

2.262

1. 718

-1. 784

.017

.087 )
1. 740

-2.279

,I

and it is therefore embeddable.

The preceeding examples highlight the confusions that exist concerning

which transition matrices can be represented as outcomes of the evolution

of a continuous-time Markov process. In particular, we have indicated that

the standard recipe for estimating Q (the matrix of structural parameters

which govern population movements)--via the power series representation

(2.5)--is highly deficient. The series does not provide a complete des-

cription of the logarithm of a matrix; as a result, it fails to converge

for transition arrays that are compatible with a Markov formulation.

In fact, the inadequacy of, equation (2.5) as a procedure for estimat-

ing the intensity matrix Q is even more fundamental than the above illus-

trations suggest. While the power series will converge to at most one

version of log PEg, the equation_P =.eQ can have multiple solutions

Q E Q. This is a matter of great importance in sociological investigations-

because the conventional strategy in using Markov models for theory con-

struction emphasizes decomposing the qij elements of Q among theoretically

postulated effect parameters (Coleman [1964a, chap. 5]; [1964b, chap. 2];



12

McDill and Coleman [1963]). Clearly, one can hardly begin this task

without ensuring that the correct Q has been recovered for the substantive

process under study. Before considering the issues of multiple solutions

and model identification, we address the conceptually prior question of

embeddability of P; that is, we seek to determine which transition matrices

are compatible with a continuous-time Markov process.

3. EMBEDDABILITY OF P

In the case of 2 x 2 matrices, a complete and practical solution to

the question of embeddability was given by D. G. Kendall (see Kingman [1962],

p. 15), who proved that

P = ( ~ll
P21 Pi' ~ 0,. J l: P.. = 1

j ~J

is in ~ (equivalently, can be represented as eQ, Q E ~) if and only if

A solution to the embedding problem for stochastic matrices with an

arbitrary finite number of states was provided by Kingman (1962). In

particular, he proved that; can be written in the form eQ, with Q E ~, if

and only if (i) det P > 0, and (ii) for every positive integer n, there is

n "a stochastic matrix P such that (P) = P. Unfortunately, condition (ii)
n n

A

does not lead to practical test procedures to be applied to P, and Kingman

pointed out the impossibility of obtaining general tests as simple as those

in the 2 x 2 case for matrices of order greater than or equal to 3. A

further mathematically interesting solution to the embedding problem has

recently been given by S. Johansen (1973, p. 180); however, in keeping with

Kingman's remarks, it too is not useful for practical computation.
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This impasse has led to the development of a considerable number of

easily applicable necessary conditions for an r x r stochastic matrix P

to be in Z. These conditions are presented in section 3.1, with i11us-
=

trations of their use. A common feature of the tests is that they can

only be used to assert that a particular matrix is not compatible with a

Markov model. An empirically determined matrix which passes all of the

tests in section 3.1 must still be sUbject to an examination based on

sufficiency conditions for embeddabi1ity, if one hopes to pass on to the

stage of model identification. With the results of Kingman (1962) and

Johansen (1973) at hand, our only recourse is to develop simple computa-

tiona1 procedures for obtaining all branches of log P compatible with the

criteria in section 3.1, and test these versions of the logarithm for

membership in~. This seemingly straightforward program leads to some

surprisingly subtle phenomena, which are delineated in section 3.2. General

practical recommendations for testing an observed matrix P for embeddabi1-

ity are outlined in section 3.3.

3.1 Necessary Conditions

Test criteria which empirically determined matrices must satisfy to

be compatible with a family of mathematical models can usefully be viewed

as devices for isolating matrices generated by these models from the class

of all stochastic arrays. The necessary conditions listed below are the

simplest such tests for distinguishing the subclass of matrices generated

by cont!nuous~time Markov models.

Condition 1. (Austin and Ornstein, see Chung [1967, p. 126] for

" (n)
details.) If Pij(t1 ) = ~ then Pij (t1 ) = a for every integer n.

" , " (n)
Pij(ti) ~ a then P±j (t1 ) # 0 for any integer n.

Condition 2. (Kingman 1962) det P > O.

If

I

I
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Condition 3. (E1fving 1937) No eigenvalue Ai of P can satisfy

IAil ~ 1 other than Ai = 1. In addition, any negative eigenvalue must

have even (algebraic) multiplicity.

Condition 4. (Runnenberg 1962) All eigenvalues of P must lie inside

a heart-shaped region H in the complex plane whose boundary is the curve
r

xCv) + iy(v), where

xCv) [ exp(-v + v 2. ] 2'IT
= cos -;) cos (v sin -)

r
(3.1)

[ exp(-v + v 2 ] 2'ITy(v) = cos' -!') sin (v sin -)
.r r

together with its symmetric image with respect to the real axis. In this

parametrized formulation, r = order of the matrix P, and v is restricted by

'ITo < V <.. •
- - .'sin(2'ITfr)

The regions H
3

, H
6

, and H
12

are displayed in figures

1, 2, and 3. The larger cone-shaped zones K
3

, K
6

, and K
12

show the bounds

on the eigenvalues of. arbitrary 3 x 3,6 x 6, and 12 x 12 stochastic

matrices.

Figures 1, 1, and 3 about here

The cone-shaped zones arise from the requirement that the eigenvalues

... 8
of an arbitrary stochastic matrix P must satisfy

1 1(- +-)'IT
2 r

< arg(A - 1) <
3 . 1

(- --)7r
2 r

(3.2)

(where ·the argument is in radians), together with the condition IAI ~ 1.

The additional limitation to the heart-shaped set H contained in K arises
r r

from the continuous-time Markov assumptions. This restriction can also be

described by saying that the eigenvalues of P must satisfy (3.2) and

<
3 1(- - -)7T
2 r

(3.3)

Examination of H
3

explains why failure of the series (2.5) to converge in
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example 4 did not rule out compatibility of P with a continuous-time Markov

The region of convergence of (Z.5) is lAo - 11 < 1, i.e., the
1.

unit circle centered at (1, 0), and the complex eigenvalues of the matrix

in that example, while exterior to this region, are inside H
3

•

Example 5:

Suppose you observe the matrix

(

.15

P = .37

.ZO

.35

.45

.60

.50

.18

.ZO

Since det P = .05 > 0, condition 2 is satisfied. However, P has eigenvalues

A1 = 1, A
2

= -.1 + .Zi, A
3

= -.1 - .Zi which, by (3.2), lie inside the cone

K
3

, but they are outside the heart-shaped zone H
3

. Thus, P cannot be repre­

sented as eQ for any Q E g; Le •., it is not compatible with a continuous-

time Markov model.

Example 6:

Consider the matrix

( .20 .40

P = .35 .ZO

.40 .40

.40 )

.45

.20

Here, det P = .04 > 0, satisfying condition 2. The eigenvalues of Pare

A1 = 1, A
Z

= A
3

= -.Z so that condition 3 applies and is satisfied. Never­

theless, AZ and A
3

are outside the zone H
3

• Thus, P is not compatible with

a continuous-time Markov model.

Example 7:

Recall the matrix of example 3,

P = ( ~:~~
.380

.330

.560

.040

.070 )

.138

.580
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This matrix satisfies the necessa~ conditions 1-4; however, it is still

not representable as eQ for any Q E~. This assertion is based on an exami-

nation of all versions of log P which are candidates for membership in ~.

An understanding of these tests requires a complete description of log P.

This is the subject of the next section.

3.2 The Matrix Equation P eQ

9We require a definition of a function of matrix argument which is

xsufficiently general to include analytic functions such as e and log x.

It is useful to motivate the definition by an important property of paly-

nomial functions g(x). In particular, if

g(x) =
n

... a x
n

and A is an arbitrary square matrix, a natural definition of g(A) is given

by

g(A) =

In addition, A can always be reduced to Jordan form J by some non-singular

matrix H, 1. e. ,

A = HJH-l (3.4)

Finally, it is readily verified that

g(A) = Hg(J)H-l (3.5)

Every. Jordan matrix J has the following block structure:

J
l 0 Ai 1 0

J
2 Ai ,1

J = • J
i

(3.6)
•

0 0
1..

J
k

Ai
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where Ai is the i-th eigenvalue of matrix A, and occurs in J i with multi~

p1icity vi' the order of J i • (The Ai appearing in different blocks J i are

k
not necessarily distinct.) Also, ~ vi = r, the order of A.

1

The expression (3.5) will be useful in a wider context than just po1y-

nomia1s provided that we have a representation of g(J) for arbitrary Jordan

matrices J, which generalizes to analytic functions10 f(J). Then our pro-

gram will be to define f(A) according to (3.5), with g replaced by f, add-

ing appropriate conventions for multiple-valued functions. For a po1y-

nomia1 function g(x) we introduce its Taylor series expansion about x = Ai'

and write

g(J
1

) 0
g(J2)

g(J) (3.7)

0 g(J
k

)

11
where

g(J
i

)

(v
i
-1)

g (\)

(v
i
-1)!

ooo

g(Ai ) g' (Ai) gil (A )
(vi-1)

i . . . . g (Ai)

2! (vi -1) !

g(A
i

) g' (Ai)
(vi -2)

0 . . . . g (\)

= (v
i
-2)!
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Formula (3.7) has meaning for any function f which is analytic in a neigh-

borhood of the eigenvalue Ai' Thus, if f is single-valued and analytic in

a region of the complex plane containing the eigenvalues of A (e.g.,

xf(x) = e ), we define
I

f(A) = Hf(J)H-1
(3.8)

where f (J) is specified by (3.7) with g replaced by f.

If f is multiple-valued (e.g., f(x) = ~ , or f(x) = log x), then we

define a branch of f(A) corresponding to the similarity transformation H by

where

f (J) =
a

f (A)
a

o

= Hf (J)H-1
a

Notice that differentand f (x) is any single-valued branch of f(x).
a

i

branches of f(x) may be used with distinct Jordan blocks J i , and that each

combination of (f ,f ,.. ,f ) will generate a different verdon of
al a2 . ait

f (A) • Furthermore, the value of f (A) may depend on the choice of H, a

point to which we will have cause tb return. 12 This definition was intro-

duced by M. Cipolla (1932)--see also, R. F. Rinehart (l955)--and represents

the necessary level of generality for a discussion of solutions of the

matrix equation eQ = p (P is identified with A in the preceeding discussion).

We now specialize to the case where the eigenvalues of A are distinct. The

repeated eigenvalue condition, while crucial to a complete understanding of
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embeddabi1ity, is more involved mathematically, and will be considered

separately.

I. Distinct Eigenvalues

In this case, the Jordan matrix J reduces to a diagonal matrix D, in

which the non-zero entries are the eigenvalues of A. Analogous to (3.4)

we have

where

D =

o

A = HDH-1

A
r

(3.10)

Also, the eigenvector corresponding to A. is contained in the i-th column
~

of H. The foregoing discussion regarding analytic functions of matrix

argument carries over in its entirety, with the functions of Jordan blocks

f(Ji ) replaced by functions of eigenvalues f(A i ). In particular, when f is

multiple-valued, (3.9) reduces to

where

f (D) =
a

f (A)
a

= Hf (D)H-1
a

f (A)
a rr

(3.11)
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A different version of f(A) is obtained from each combination of branches

of (f ,f , . . .
(11 Ct 2

f ).
Ct

r

"

This discussion is relevant in the following way to the determination

of embeddabi1ity. Ascertaining compatibility of an observed matrix P with

a continuous-time Markov process requires investigating whether there exists

an array Q E .~ such that P = eQ. Lacking readily computable sufficiency

conditions for general r x r stochastic matrices, our strategy must be to

compute log P and examine it for membership in~. Now, the logarithm func­

13tion is multiple-valued,

= 10glz1 + iCe + 2TIk) , k = 0, + 1, + 2, (3.12)

where z is an arbitrary complex number, z

-1
e = tan'b/a. :Each value of k generates a different version of log z,

called a branch of the logarithm. In general, an infinity of branches will

exist.

From equations (3.11) and (3.12) we have

14
where

= (3.13)

..

log!? =

o
Every combination of values of (logk 1.

1
, 10gk 1. 2 ' ... , l08k Ar ) in (3.13)

1 2 r

will yield a vers·ion of log P, so to determine embeddability one must check

whether at least one branch is in ~. An important implication of necessary
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condition 4 in section 3.1 is that only finitely many branches of log P

need be checked for membership in~. It is this feature which makes the

computational tests, described in detail in section 3.3, feasible. Further-

more, in many applications, the number of branches which must be computed

is quite small.

Sylvester's formula. If A is an r x r matrix with distinct eigen-

values A1 , A2, .•. , A
r

, and if f is single-valued in a neighborhood of each

of the eigenvalues, then equation (3.8) is equivalent to (Sylvester 1883)

f(A) = (3.14)

In addition, if f is multiple-valued, then (3.14), with f(A i ) replaced by

f (Ai)' defines a version of f(A) for each combination of branches of (f ,
a

i
a1

f " •. , f ); i.e., this equation is equivalent to (3.11).
a 2 a r

Example 8:

Consider the matrix

P =
.3654

.3292

.4040

.3762

.3567

.3188

.2584 )

.3141

.2772

which also appeared in example 4, and identify P with A in the above dis­

cussion. In order to solve the equation P = eQ, observe that Phas distinct

eigenvalues A1 = 1, A
2

= .053i, A
3

= -.053~. Setting f(x) = log x in

Sylvester's formula, we obtain

log P =

A

(p - A2I)(P - A3I)

(A1 ~ A2)(A1 - A
3

)

A A

(P - A1I)(P - A3I)
+ 10g(A 2) (~~ - A

1
)(A

2
~ A

3
)
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( -l.gOS 1.718
.087 )

= .044 -1. 784 1.740

2.262 .017 -2.279

which satisfies criterion (2.2) for membership in~. In this calculation

we used the principal branches of log A2 and log A
3

; namely, log A
2

= 10g(.055)

+ ii, and log A
3

= 10g(.055) - i ~. Any other branch, e.g., log A2 = 10g(.055)

+ i(~ + 2~k) for an integer k ~ 0, would yield a version of log P which is not

in~. For a similar reason we uSe the principal branch of 10g(Al ) = log(l) = O.

An important feature of this example, and Sylvester's formula in general,

is that the logarithm of a matrix is well defined even when the power series

(2.5) diverges, as it does here. For matrices with distinct eigenvalues Ai

satisfying IA. - 11 < 1, the series (2.5) is equivalent to the principal
~

branch solution of (3.l4)--k = 0 in equation (3.12). However, Sylvester's

formula is more general in that it will generate all branches of log P as k

is varied. 15 Furthermore, it leads to an evaluation of analytic functions

of matrix argument as finite polynomials in the original matrix P. The trans-

cendental nature of f(P) is incorporated entirely in the coefficients of

this polynomial, and involves only functions of eigenvalues. In particular,

by rearranging terms, Sylvester's formula for general r x r matrices (3.14)

can be written in the form

f(P) =

in which the c. 's are scalar functions of the eigenvalues of P.
~

II. Repeated Eigenvalues

When P has one or more sets of equal eigenvalues, the computations to

determine embeddability can be considerably more involved. Unfortunately,

even though the occurrence of repeated eigenvalues in an observed matrix P

would be a rare event, we will have reason to consider adjustment strategies
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which make use of this condition. We therefore outline the main issues

and analytic procedures at this point; some elaborations are found in

section 4.2 and in Appendix 1.

It is useful to categorize matrices with repeated eigenvalues accord­

16ing to whether or not their elementary divisors are distinct. Distinct

elementary divisors means that each eigenvalue Ai appears in exactly one

Jordan block J i (Ai) in equation (3.6). Non-distinct elementary divisors

means that a repeated eigenvalue Ai can serve as the diagonal element in

more than one Jordan block. The importance of this distinction derives from

the fact that the eigenvalues in a block are constrained to be on the same

branch of a multiple-valued function--i.e., they must have the same value

of k in expression (3.12). Non-distinct elementary divisors therefore

permits different branches of log Ai to be present simultaneously in log J,

via the presence of A. in more than one Jordan block. It is this condi-
l.

tion which creates exceptional difficulties in the calculation of log P.

The following propositions and examples outline the computations for the

two mUltiple eigenvalue cases:

Proposition 1. If A is an r x r matrix with m different eigenvalues

(A - distinct elementary divisors--and if f

.•• , A having. multiplicities
m

r
1

rmA
1

) , ... , (A - A) --1. e. ,
'm

... , r , and elementary divisors
m

is a function that is single-valued and analytic in a neighborhood of each

of the eigenvalues, then f(A) may be computed via (3.8) or by using the

17equivalent but computationally often simpler formula

f(A) =

(A-). I)s-l J r r -s
+ ·k . f(s-l) (A) II (A-A I) j (A-A I) k
. (s-1) I k j+k j k

(3.15)
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where the terms 1ks are the coefficients in the partial fraction expression

1 ...
m

l:
k=l

When f is multiple-valued, the various branches f (A) may be found by com­
a

puting (3.15) for all combinations of b ranches of (f ,f , •• " f )'--
a

l
a 2 a r

(v) (v)
i.e., f (Ai) replaces f (A.), v = 0, 1, •.. , s-l, in equation (3.15).

a. 1
1

With respect to determining ernbeddability of P, the number of versions of

log P = f(P) which need to be examined is discussed in section 3.3.

Example 9:

Consider the matrix

P = (~~:~~
.1100

.5300

.4900

.1400

•3100)
.4577

.7500

and identify P with A in the preceding discussion. The eigenvalues of P

are Al = 1, andA
2

= .2, with multiplicities r l = 1 and r Z = 2, resp,etively.

Firat note that both eigenvalues lie in H (figure 1). It is also the case
r

that the elementary divisors of P are distinct; they are (A-I) and (A_.Z)2.

We may therefore solve for all solutions to P = eQ by using equation (3.15)

log P =
'" A

e21 (log A2) (P-AlI) (P-AzI)

+ C22G~pg 1,2) I + ~2 (P-A21)J (P-A1I) ~3.16)

Selecting the principal branch of the logarithm for each eigenvalue, the

first term in expression (3.16) disappears since log 1 = O. From the remain-

ing terms, we obtain
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Q = log P =
-2.046

.024

.315

1.993

-.818

.043

.053

.794

-.358

As in the previous example, we could have chosen some other branch of the

logarithm function, log .2 + 2TIki, for an integer k ~ O. However, (3.16)

would then produce matrices with complex entries, and these have no mean-

ing in the context of Markov models (i.e., they are not in ~).

Proposition 2. All solutions of the equation eQ = A are called branches

of the logarithm function of A, and they are given by (Gantmacher 1960,

pp. 239-241)

Q = log A

where

(3.17)

(i) H is any non-singular matrix which reduces A to Jordan form,

A = HJH-1 •

(ii) B is an arbitrary non-singular matrix that commutes with J,

i. e., BJ-JB = O.

(iii)

log J
1 0

log J
2

log J =

0 log J
k

where
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v -1

log A. 1 1 (-1) j
A. A:

. . v -1J
J A j (v -1) IJ j j

v -2

log J. a log A. 1 (-1) j
= . . . .

J J A. v -2
J A, j (v.-2)!

J J

log A
j

= log IA
j

I + i(arg A
j

+ 2~k), k is an integer, and v
j

= mUltipli­

v
jcity of A. in the elementary divisor (A-A,) .

J J

If the elementary divisors of A are distinct, then B may be replaced

by the identity in (3.17) and log A is independent of the choice of H. It

is this property which permits the simpler representations (3.14) and (3.16).

When the elementary divisors of A are non-distinct, computation of all

versions of log A requires a knowledge of the matrices B which satisfy

BJ-JB = O. These matrices contain a finite number of parameters, each of

which can be an arbitrary complex number. Every product HB represents a

similarity transformation which reduces A to Jordan form and, at the same

time, generates a distinct version of log A. This leads to uncountably

many versions of log A, and there may, in fact, be a continuum of such

matrices, all or part of which is "in Q. It is precisely these matrices with

non-distinct elementary divisors which prevent the development of simple

general solutions to the embedding problem. In any other situation a

researcher need only compute polynomials in P to evaluate log P, and test

a finite number of branches of the logarithm for membership in Q.
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Example 10:

Consider the matrix

p = 1
3

l+ZX

1-X

1-X

l-X

l+ZX

l-X

1-X

1-X

1+2X

(3.18)

-zl3nwhere X = -e , and identify P with A in the preceding discussion. The

eigenvalues of Pare A1 = 1, and A
Z

= A3 = X; the elementary divisors are

(A-1) , (A-X), (A-X), which are non-distinct. Consequently, the Jordan

matrix associated with P is

J l 0 0 1 0 0

J = 0 J Z 0 = 0 X 0

0 0 J 3 0 0 X

Also, a similarity transformation H such that P = HJH-1 is given by

1 1 1

1:.(-l+il3) 1 13" (3.19)H = 1 -(....l-i ).Z Z

1 1:.(-l-il3") 1:.(-l+il3")Z Z

In computing log P = Q choose log J 1 = log 1 = 0; log J Z = log X =

-zJ3TI +in; and log J 3 = log X = -Z/3n - in. Now, formula (3.17) with

B = I, the identity matrix, yields

1 1
Z 6

log P 2n13
1 Z 1 (3.20)= 6 -3 2

1 1 Z
Z 6 3

which belongs to ~.
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To manufacture other versions of log P which are also in ~, observe

that the matrices which commute with J are all of the form

B =

a

o

o

o o

(3.21)

where {cij } and a are arbitrary complex numbers subject only to the restric­

tion that B be invertible. For log P to be in g, we may limit consideration

to matrices B with entries satisfying,

(i)

(ii) u is real, where u

= 0,

c
11

c
22

+ c
12

c
21

+ 2c
21

c
22

c11 c22 - c12 c21

and

.v is real, where v =
c11 c22 + c12 c21 - 2c21 c22

c11 c
22

- c12 c21

(3.22)

(iii) Iu I 2. 2 and Iv I 2. 2

Conditions (i) and (ii) guarantee that log P will be real valued, while

(iii) ensures that the entries will satisfy criteria (2.2). Each choice

of {cij } then yift1ds a version of log P which is a member of g, and they

are all given by

log P =

!+¥. 1 u- --3 6 3 6

21TvJ 1 v 2 (u-v) !+ (u+v)
=

3 6 3 12 3 12

!+v 1 (u+v) 2 . (u-v)._- +
3 6 3 12 3 12

C3.23)

The matrix (3.20) arises in the special case where c11 = c22 = 1,
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c12 = c2l = 0, and thus u = v = 1. The non-~ero constant a in matrix B

does not enter into the formula for log P because it can onlY,multiply the

first row of log J, all of whose entries are O.

18With this example at hand, some remarks concerning the role of such

matrices in social mobility studies are in order (these comments will be

elaborated upon in section 4). If the primary purpose of an investigation

is to obtain structural information about the propensity of individuals in

a population to move between particular states, then our major concern must

center on the possible values of qij/~qii for i ~ jin branches of log P = Q

which are in~. These ratios have the interpretation, "propensity to move

from state i to state j when a change in state occurs." The continuum of

branches of log P which are given by (3.23) represent a continuum of pro-

pensities to move between states, all compatible with the observed matrix

P. Focusing on mobility out of state 1m (3.23), we see that

0 <
q12 1/3 + u/6

< 1= 2/3.... -qll ....

and

0 <
q13 1/3 - u/6 < 1= 2/3.... -qil ....

Thus, on the basis of observations at two time points which give rise to P

given by (3.18), we cannot even say whether individuals who start out in

state 1 tend to favor state 2 or state 3 when they move. Clearly, this

situation is totally uninformative about the underlying mobility mechanism,

and the present example thereby serves to highlight the unusual difficulties

which can arise in the case of ~epeated eigenvalues with non-distinct ele­
! "

mentary divisors.

;.,'

'I, ,
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3.3 Summary o~ Steps to Determine Embeddabi1ity

I. Distinct Eigenvalues

The most common eigenva1ue'configuration for P, an empirically deter-

mined stochastic matrix, is one in which the roots are distinct. In test-

ing log P for membership in g, we therefore start with this case.

Step 1. Check that the necessary conditions (1), (2), and (3) in

section 3.1 are all satisfied.

Step 2. Check the eigenvalues of P for membership in the heart-shaped

zone H described in section 3.1. If this test is passed proceed to steps
r

3 or 4.

Step 3. If the eigenvalues of P are all real and positive, compute

log P using either the power series (2.5), Sylvester's formula (3.14), or

the diagona1ization transformation (3.11). Only the principal branch of

the logarithm (k = 0 in equation [3.12]) will be real-valued, and any of

the procedures will yield the unigue version of log P that can possibly

1?e in ~'

Step 4. If P has complex eigenvalues they must occur in conjugate

pairs. For each such pair (A,I), determine all branches of their logarithms

which satis:fy" Runnenberg' s condition,

1 11T (- + -)
2 r

< arg(logk A) < 3 11T(- - -)
2 r

(3.24)

where'r = order of matrix P, (1 A) = tan,-l( e + 21Tk)arg ogk log p

fies a branch of 10g
k

A according to19

, and k .speci-

log p + i(8 + 21Tk); k· -= 0, +. 1, + 2, ••. , 0' <; e < 1T

(3.25)

Now select one of the branches for each complex conjugate pair, and compute
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log P via (3.11) or by using Sylvester's formula (3.14). Check the resu1t-

ing matrix for membership in Q. Repeat this calculation for all branches

satisfying (3.24). Clearly, there are only a finite number of such compu-

tations to be performed, and they will yield all versions of log P E Q.

In particular, if we represent a pair of complex conjugate eigenvalues

(A ,I) by (peiS , pe-iS ), 0 < p < 1 and 0 <;:: ,e < 1T, then the number of branches

".
of log A which need to be examined in testing l~g B for membership in Qis

U(r) + L(r) + 1, where

U(r) = integer part of

L(r) =

1 1
(log p)tan[1T<z"+r)] - e

21T

3 1

I
(log p) tan~1T (-2 - -r)] - S Iinteger part of =

21T

(3.26)

20and r is the order of the matrix. U(r) specifies the upper bowd to +k,

and L'(r) the lower bound to -k, with respect to the multiple-valued logarithm

function (3.25). Since the computation of U(r) and L(r) is to be performed

for each pair of complex conjugate eigenvalues of P; the number of versions
v

of log P that must be examined is .n [uj(r) + Lj(r) + 1], where v, the upper
J=l

limit, denotes pIS number of complex conjugate eigenvalue pairs. The value

of this product will usually be small (frequently Uj(r) = Lj(r) = 0 for

most j's). In section 4.2 we indicate why it is especially ra~e, for a branch

other than the principal branch of log P to be in Qwhen the matrix is of

low order (r ~ 3). In larger arrays, however, one might have to examine

multiple versions of log P to determine embeddability.

II. Data Noise and Repeated Eigenvalues

Because our data are commonly contaminated by the effects of sampling

variability and measurement error, one cannot be certain that an empirically

determined matrix P is the correct transition matrix for the population of
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interest. As a consequence, if the preceding calculations indicate that

P is not embeddable, but the violations in log P are not severe, a researcher
,.,

should consider adjusting the observed matrix to a nearby P wh~ch is embed~

dab1e, and continuing his analysis with the modified matrix. Strategies

for making such an adjustment usually operate on log P, perturbing it to a
,." Qo rJ

matrix Q £ Q, and then estimate P, the modified array, via e = P.
o -

A
There are several procedures for altering log P so it will satisfy

a priori chosen conditions, such as membership in Q. Zah1 (1955, p. 98)

suggests setting the offending elements (negative qij is, i ~ j, in the

present context) to zero, and modifying the main diagonal entries so that

the row sum condition, : qij = 0, will be satisfied. Coleman (1964a,
J

pp. 178-180) uses an iterative routine which forces selected qij elements

to zero in the computation of log P, thereby smearing the compensatory

adjustments over the remaining non-zero entries. In example 11, we illus-

trate the adjustment process using yet another procedure, one which mini-

mizes the sum of squared differences between log P and Q £ Q. General

recommendations regarding which of the techniques is advantageous in a

particular problem are currently being prepared.

Example 11:

Suppose you observe the matrix

('600 .330 .070 )P = .302 .560 .138

.380 .040 .580

which also appeared in example 3. This matrix has eigenvalues Al = 1,

A2 = .370 + .011i, A
3

= .370 - .011i. Applying Runnenbergis condition in

the form (3.26) we find that U = L = 0; hence only the principal branch of.



36

the logarithm needs to be examined for membership in~. Calculating this

branch,

log P =

-.692

.496

.707

.639

-.733

-.144

.053

.237

-.563

or not

end we

will be

which is not in ~ since (log P)32 = -.144 < O. This raises the question

of whether a small perturbation of P would yield a logarithm in g. To this

determine the nearest intensity matrix Q to log P, and check whether
oQo A

e represents a "small perturbation" of P. The no.tion of "nearest"

defined by minillog P- QI r where IIA-BII = / r. (aij - bij )2.
QE~ i,j

In the present example, the minimum is obtained for

=
-.692

.496

.635

.639

-.733

o

.053

.237

-.635

Qo ,.t

Calculation of e = P yields

(

,598
A ~

P + (small perturbation) = P = .298
. . .~9

.334

.568

.104

.068 )

.134

.547

and a case might now be made that P was not embeddable only because of

sampling error or other data noise. To conclude that the substantive,process

actually is Markovian with Q as the governing inte~sity matrix, tests of
o

the sort described in section 5, based on 3 or more time points, must be

passed.

Repeated eigenvalues. From a computational point of view, the notion

of repeated eigenvalues means that they agree to within a prescribed finite

number of digits. If you take a large random sample of stochastic matrices,

then those matrices with repeated eigenvalues tend to occur with a frequency
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close to zero. On the other hand, the entries in P which arise in mobility

investigations are often subject to considerable sampling ~ariability and

other sources of error. Our concern, therefore, is in knowing whether a
~ ~

small perturbation in P, call it P, would lead to branches of log P which

are radically different from those of log P. These radical differences can

.occur in passing from a distinct to a repeated eigenvalue matrix, which in

tum can be viewed as being "within error distance" of the original distinct
.

eigenvalue matrix. This suggests that a distinct eigenvalue matrix P which

is compatible with a Markov model and which has a pair of eigenvalues within
,-.I

a prescribed number of digits of each other, should be perturbed to a P

with repeated eigenvalues. Then the structure of the continuum should be

rei
displayed as in example 10. If the branches of log P which are in ~ are

sufficiently varied, this would lead Us to report that our observations P
-------- I

based on data collected at two time points are uninformative about the

underlying mobility mechanism.

The additional tasks to be undertaken, then, in a situation where P

has eigenvalues which are close to being repeated consist of carrying out
I

the following procedures:

/\

Step. 54 Adjust the observed stochastic matrix P so that it will

have repeated eigenvalues.

Step 6. Determine the structure of the continuum using the simula-

tion strategy described in Appendix 1, and check whether some part of the

continuum is in ~.

1\

The task of adjusting P so it will have repeated eigenvalues is not

difficult in the case where the eigenvalues close together are complex

conjugates. Fortunately, it is this situation which is of primary practical
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- iaIf we represent these eigenvalues in polar form, (A,A) • (pe ,

-i6
pe ), 0 < e < n, where e ~ 0 or e ~ WI then the correspoading eigenvalues

in log P are log p ± i(6 + 2nk). We now want to alter P so that one of the

approximate equalities is replaced by an exact equality. For a scalar t,

-1
t log P = Ht log DR will have among its eigenvalues t log p ± i(te + 2nkt).

Znk n + 2nk
Therefore, if we choose t = t l = Znk + a or t = t z = 6 + 2nk ' where k is

the 1.argest branch numberZ1 that satisfies (3.24), 'the 'matrix ~.~. e t log P

W· ~11 h- ~ c. d' . ~l' 1 h (tl i2nk t l -i2nk)
~ ave repeate rea eigenva ues, eit er p e ,p e

(
tz in (Zk+l)

p e
t z -in(Zk+l»

p e = This technique is

called "riding log P.'~ It was employed in example 2, and it is applied

again in section 4.2.

4. MULTIPLE SOLUTIONS OF P::io eQ

4.1 Conceptual_Overview

The tests outlined in the preceding section permit a researcher to

"
ascertain whether or not an empirically determined matrix P(tl ), constructed

from observations at timeS·t= 0 and t = t
l

, is compatible with a continuous­

time Markov process. When the answer is affirmative, at least one version

of log P(tl ) will be in~. In general, as we have observed, it may be

necessary to examine several branches of log P(t l ) to resolve the question

of embeddability. For instance, when P(t
l

) has complex eigenvalues, each

complex conjugate pair will generate U + L + 1 candidates for membership

in ~.

In discussing the tests in section 3 our objective was to investigate

"embeddability; we sought to determine whether any of the log P(t l } candi-

dates was, in fact, a bonafide member of~. In the present section, we

"shift emphasis and inquire into how many versions of log P(t l ) can belong
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to Q. Stated technically, we wish to compute the number of different
Qt1solutions Q to the equation e = P(t

1
) which have the required structure

(2.2). In the discussion that follows, we shall assume P(tl ) is embeddable;

i.e., at least one version of the logarithm is in~.

Under certain conditions it is possible to guarantee that this solu-

tion Q e g will be unique. In particular, this is the case whenever one

of the following sufficiency conditions is satisfied:

(i)

(ii)

The eigenvalues of P(t
1

) are distinct, real, and positive.

1 ~

m~n{Pii (tf} > 2' where Pii(tp is the diagonal element in the

-'IT
> e = .0432

The first criterion derives from the fact that only the principal

branch of log P(t1) is real-valued under the indicated eigenvalue constraints.

Also, in this circumstance, the assessment that Q = L10g P(t1) e Q will
. t

1

be unique is independent of the choice of t
l

, since the eigenvalues of pet)

generated by such a Q retain the specified properties for all times t.

Additionally, when the eigenvalues satisfy (i), the series formula (2.5)

will converge to the unique version of the logarithm in ~.

The second and third criteria were established by J. Cuthbert (1972; .

1973), and refer to the specific times t in the evolution of pet) m eQt at

which the solution Q e Qwill be unique. For the purpose of model identifi-

cation, conditions (ii) and (iii) reveal that every Markov chain (identified . I

by a matrix Q e g via the relation pet) = eQt ) has an interval of time

[O,T] during which only one version of log P(t1), 0 < t
1

< T, is in g.

[The location of the uniqueness interval at the origin follows from the
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fact that L(t), the number of branches of log P(t) in g, is a non-decreaeing

function of time--see figure 6, section 4.2,]

These comments suggest that in planning an observational study where

Markov models are to be utilized for identifying non-directly observable

mobility mechanisms (Q-matrices), it is advisable to take the first two

observations as close together as possible, while still allowing a repre-

sentative amount of movement to occur. The question of what constitutes an

appropriate time interval is clearly tied to the nature of the particular

substantive process. The point to be highlighted here is that because of

the complications which arise when there are multiple solutions, this sort

of consideration is consequential in developing sampling strategies for

situations where the number of time points at which data can be collected

is very restricted.

Except when one of the special conditio.ns (i), (ii), or (ii~) is satis-
A

fied, it is possible for several branches of log P(tIl) to be in~. This

non-uniqueness phenomenon, illustrated in the examples below, has received

very little attention in scientific disciplines (physics, engineering, soc-

iology) in which Markov processes are frequently utilized. Nonetheless,

Qt
the existenee of mUlti~i; solcielons Q € ~ to th~ equation e 1 = P(t1) is

not at all uncommon.

Example 12:

Consider the empirically determined matrix

.234 .252 .264 .250

P (t
l

) .252 .237 .245 .266
::::

.268 .255 .230 .247

.248 .271 .248 .233
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Qt
1This array can be represented in the form e ,Q E g, with either of the

matrices

-3.350 .134 .067 3.149

Q1
3.132 -3.306 .144 .030=

.035 3.233 -3.395 .127

.137 .033 3.149 -3.319

or

-3.329 3.312 .005 .012

Q2
.033 -3.337 3.209 .095

=
.016 .023 -3.334 3.295

3.294 .050 .027 -3.371

From the perspective of uncovering structural mechanisms, the matter

of identifying the "correct" Q for an empirical process must be a central

consideration because the alternative intensity matrices consistent with

" Qtlthe mathematical formalism P(tl ) = e will lead to different substantive

conclusions. 1 "If only the branch ~log P(tl ) = Ql were recovered, one would
1

assert that the most frequent transitions are 8
1

+ 8
4

, 8
2

+ 81 , 83 + 82 ,

1 '"In contrast, if only the branch ~log P(t
l

) = Q2 were computed,
1

6~~ ~oula contend that the process evolves princip~lly through the following

pattern of movements: 8
1

+ 8
2

, 8
2

+ 8
3

, 8
3

+ 8
4

, and 8
4

+ 8
1

, Since in

applications of continuous-time Markov processes attention has been directed

to the relative magnitudes of the qij 'entries, and to apportioning these

elements among theoretically specified effect parameters (e.g., Coleman

1964a, chap. 6; McDill and Coleman 1963; Bartholomew 1973, chap. 5), identi-

fication of the appropriate intensity matrix would appear to be a necessary

initial step in this sort of analysis.
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This ,task may, be divided into two component issues: (a) recovery of

, Qt1all, mat:d,c,es Q EQ that, are compatib_le ,with: ,therepresen,tatiGn -e = 1> (t
l
),

and (b) selection from this list of alternative Q-matrices the corr.ect one

for the empirical process at hand. Procedures for accomplishing the first

task are presented in the current section. The second issue can be resolved

either by bringing additional substantive information to bear on the nature

of the process to aid in choosing among the alternative Q-matrices, or by

collecting data at more than two time points, or by sampling the population

over a briefer time interval (e.g., within the region of uniqueness). These

matters will be considered in section 5.

"4.2 How Multiple Versions ,of log pet) E ~ Arise

The simplest way to describe how multiple matrices Q E ~ originate is

to consider the case of a general 3 x 3 stochastic matrix pet) which has

complex eigenvalues. Expressing this matrix in diagonal form we have,

pet) = HD (t)H-l . For convenience we write the complex eigenvalues of ,:..

pet) as exponentials,

'0 0

et(a+bi) 0 (4.1)

o et(a-bi)

o

o

1

=

1 0 0

D(t) =-

where A(t) denotes the complex conjugate of the eigenvalue, A(t). Then,
A , ,-1

log P (t) = H logD(lt~).' H ,in which

at+i(bt+21Tk)log D(t) =

o

o

o

o

o

°
o

at-i (bt+21Tk)

k=O,+ 1, + 2, •.•

(4.2)

We specify b > O. Also note, for reference, that because IA(t) I < 1 for

all t, at = log IA(t) I < O.
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Applying Runnenberg's necessary condition for embeddability (3.24),

we have

51f
6

< -1 (bt + 21fk)tan at <
77f
6

k = 0, ± 1, + 2, ... (4.3)

where the inverse tangent specifies arg(log A(t)) in (3.24). For a fixed

t, we therefore have a series of tests, one for each integer (branch) k.

The point to be emphasized here is that since every branch of log p(t) whose

eigenvalues satisfy (4.3) is a candidate for membership in ~, more than one

version of the logarithm may, in fact, be in~. It is also the case that as

t increases, and P(t) evolves to the equiltbrium matrix of the process, the

number of branches of log P(t) that are potentially in ~ becomes larger.

These phenomena are illustrated in figures 4 and 5.

Figures 4 and 5 about here

22Figure 4.displays the locations of various branches of the eigen-

values log A(t) = (a + bi)t + 21fk, t = 1, in relation to Runnenberg's cri-

terion. The wedge-shaped region (solid lines) de~ines the boundaries of

this necessary condition for embeddability--all eigenvalues of log P(t) must

lie in the zone. In this illustration, only the principal branch (k = 0)

is located in the wedge-shaped region; other branches of the logarithm,

which differ by multiples of 21f in their imaginary parts, lie outside the

wedge.

Now consider the effect of letting t increase. With respect to the

. -1 bt -1
pdncipal branch of log A(t), tan (;i):= tan (b/a) and hence the argument

of the logarithm is unchanged. With regard to any other branch k > 0, since

bt + 21fk
at

b + 21fk/t
a

> b + 2'11'k
a
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Figure 4. EJgcnvalucJ of log P(t), for t = 1
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Figure 5. Trajectories of the ElgcnvalucH of log P(t), a9 a fUllcl.ton of lil1lt.
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-1
(the inequality follows because a < 0), and since tan x is an increasing

function of x in the second quadrant, we have

arg(at + i[bt + Zwk]) = tan-1 ([bt + Zwk]/at)

> tan-1 ([b + Zwk]/a) = arg(a + i[b + Zwk])

This calculation shows that the angle made by a branch of the logarithm

(k > 0), with ,respect to the positive real axis, enlarges with time. As

a result, additional branches enter the wedge, and the number of versions

of log pet) that are candidates for membership in ~ increases. This pheno-

menon is. illustrated in figure 5.

If we let L(t) = {number of branches of log pet) E ~Igiven t}, the next

relevant considerations are: (i) L(t), itself, is a monotone non-decreasing

function of t (except, possibly, for isolated time points), and (ii) if

L(t) > 1 at some time t (other than one of the isolated time points), then

L(t) + ~ as t + ~ (Cuthbert 197Z; 1973). The graph of L(t) in figure 6 is

the prototype for the evolution of any Markov chain where Q,has distinct'

eigenvalues and at least one complex conjugate pair. At times t = w/b,

2w/b, 3w/b, "" nrr-/b, .•. , the complex conjugate eigenvalues of pet) will

equal exp[anw/b + i(n~ + Zwk)], n = 1, 2, 3, •.. and k = 0, ± 1, ± 2,

This expression reduces to one of the multiple real root conditions, either

A2(t) = A3(t) = exp(an~/b) or AZ(t) = A3(t) = -exp(anw/b), according to

whether n is even or odd. The point to be stressed is that at these times

pet) = eQt has repeated eigenvalues with non-distinct elementary divisors,

which will give rise to a continuum of branches of log P(n~/b).

Figure 6 about here

From the point of view of model identification--determining the correct

Q £ ~ for a substantive process--these times are a source of difficulty
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because their locations are a priori unknown. Knowledge of log P(t1) where

P(t1 ) has the same structure as P(nrr/b) in the preceding illustration, can

be useless for making statements about the propensity of individuals to

b . 1 23move etween part~cu ar states. If many observations in time are allowed

in a particular study, we could prepare sampling plans for model identifica-

tion which would be relatively uninfluenced by this phenomenon. With

observations at 2, 3, or 4 time points being a constraint in most studies,

however, a single uninformative matrix P(t
i

) can make a considerable differ­

ence in the available information for identifying the Q-matrix underlying

a substantive process.

With general r-state matrices, the preceding discussion is complicated

by the possible presence of more than one pair of complex conjugate eigen-

values. The graph of L(t) (figure 6) would then be altered in two ways:

First, there are additional isolated time points at; which L(t) = + 00. These

correspond to the instants at which the added complex eigenvalues have zero

imaginary parts and become repeated real roots. Second, the rise in the

step function can be much steeper. This is because the wedge-shaped region

(figure 4), which determines the number of branches of log A(t) that can

generate candidates for membership in ~, widens as a function of r, the

order of the matrix. This phenomenon is illustrated in figures 7, 8, and 9.

Figures 7, 8, and 9 about here

Figure 7 displays the wedge-shaped zones for general 3-state and 6-state

matrices; the respective angles made with the positive real axis are deter-

mined by the inequalities (4.3). From the illustrative representation of

an eigenvalue of log P and its complex conjugate, we see that while only the

principal branch lies in the wedge for 3 x 3 matrices, two additional branches

would be candidates for membership in ~ if this same eigenvalue belonged to
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Figure 7. RUllncnherg's Heugl' Cr1.terion, lllllBLrnll'<! for 3x3 "nd 6x() ~'i1lrl(~l'H,

for l :: 1.
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the larger array. It is this fact, together with the presence of addi-

tional complex conjugate eigenvalues to generate candidates for membership

in ~, which prompted our remark in section 3.3 to the effect that the number

of branches which must be checked for embeddability increases directly with

the order of-Po In the context of the present discussion, we emphasize that

the computations ·are more .likely to produce multiple. versions of log P E.: ~

in large-order arrays.

Figure 8 presents the same information as figure 7, but from a differ-

ent perspective. .The preceding plot ,depicted the constraints on the branches

of the eigenvalues of log P, as they relate to eligibility for membership in

~. In figure 8 we display the conditions on the eigenvalues of I, in the

case of 4 x 4, 6 x 6, 12 x 12, and 20 x 20 matrices, for it to generate at

least two candidates for membership in Q. We thereby see in a more direct
:::

fashion how the constraints are relaxed as the matrix size is increased. 24

Finally, in figure 9 we show the restrictions for different numbers of

logarithms to be eligible for membership in ~, in the particular instance of

a 20 x 20 array. The outer, heart-shaped region, labeled H20 ' is a graph of

Runnenberg's necessary conditions: all eigenvalues of P must lie in this

zone for the matrix to be embeddable. The interior curves delineate the

regions in which an eigenvalue of P will generate multiple branches of log P

that can be in ~; for instance if some eigenvalue A. lies interior to the
J

curve labeled "k ::: -1, '.' then each of the two branches of tts logarithm,

log A. = a + bi
J

and log A. = a+ i(b-2w)
J

will generate versions of log P lvhich must be examined for membership in ~.

The most severe form of non-uniqueness of log P(t l ) occurs for Markov

chains P(t) = eQt having real eigenvalues which remain repeated for all
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t > 0 rather than separating into complex conjugates, as was the case in

the preceding discussion. The transition mechanisms associated with such

chains are by no means pathological from a substantive point of view t and

the prototype of this pheriomenon is illustrated in the following example.

Example 13:

Consider the matrix

p(t) = 1
3

1+2e-3t / 2

1
· -3t/2
-e

1 -3t/2
-e

l_e-3t / 2

1+2e-3t / 2

1_e-3t / 2

l_e-3t / 2

1
-3t12

-e

1+2e-3t / 2

(4.4)

h 0 p() h . 1 1 -3t/2 -3t/2 ( hi h dwere t >. t as e1genva ues ,e , e w .c are repeate

irrespective of the choice of t), and non-distinct elementary divisors (A-I),

(A_e-3t / 2), (A_e-3t / 2). Note that this is the matrix of example 10 with

-3t/2
X = e

1t log p(t) (4.5)

where H is any similarity transformation that reduces P(t) to diagonal form

(e.g., equation 3.19), B is a matrix with complex entries (3.21) which

commutes with J(t), and log J(t) has the. form

0 0 0

log J(t) = b -3t + 27Tki 02

0 0
-3t 27Tki-- -2

(4.6)

in which k 0, ± 1, ± 2, •.• specifies branches of the logarithm.
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We now describe ho"tY a continuum arises in this eigenvalue condition.

The first time that the complex eigenvalues in (4.6) satisfy Runnenberg's

condition (4.3) with k ~ 0 occurs at t* = 4n}!:3. Before this time only the

bran~h k = 0 of log J(t) will be in the wedge-shaped zone (figure 4). It

can be checked that when k = 0) B10g J(t) = log J(t)B, and therefore equation

1 -1
(4.5).,reduces to t H logJ(t) H for every matrix B. This means that at

1most one version of t log pet) can be in~. Indeed,

Q
1= - log pet)
t =

-1

1
2

1
2

1
2

-1

1
2

1
2

1
2

-1

.iuL.
for 0 < t < 13 (4.7)

*When t > t
-A1L.

=~ a second branch of log J(t) in (4.6) enters the wedge-

shaped zone (see figure 5). In this circumstance, it is no longer the case

1that B log J(t) = log J(t) B, and a continuum of versions of t log pet) will

be generated, each version corresponding to a choice of {cij } in B (equation

3.21). A bit of computation will show that if {cij } are restricted accord­

ing to

(i) = 0

(ii) u is real,

v is real, v =

(iii) Iku I < I3t/4n and

cl1c22 + c12c21 + 2~21~22

c11c22 - c12c21

Ikvl < I3t/4n

where k is an integer (the branch number), then all choices of {cij } will

yield matrices Q £ ~, and they are summarized by
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-1 1 + 2krr .!!.
2 13 t

..

Q
1.. - log p(t)
t =

-1. _ k1T \U-V)
t

1:. _ k7r (u+v)
2 /3 t

1:. + k1T (u+v)
2· 13 t

for t > 41f
13

(4.8)

The graph of L(t) vs. t for this Markov chain is shown in figure 10.

From the point of view of model identification, the second observation t l must

*be taken before t = 41T//3. After this time, a repeated observation will

yield the matrix (4.8) which is completely uninformative about the propensity

to move between different states. The fundamental difficulty illustrated

by this example is that empirically determined matrices with non-distinct

elementary divisors in which this property is retained through time may be

the chance occurrence of an

To distinguish this "essential" continuum case from

" . 1 d" (i h i 1T 21T~so ate continuum v z. t e po nts b 'b , .. ,

in section 4.2) a researcher should check whether the eigenvalues of, ..

associated with a continuum of intensity matrices for all times, t l greater

*than some threshold t .

mr
b

P(t
1

+ ~t), some ~t > 0, are repeated with non-distinct elementary divisors

when his initial matrix P(t
l

) has these properties.

Figure 10 about here

4.3 Surranary of Correspondence between Eigenvalll8·€haracteristics and

Number of Matrices Q E ~

The number of versions of log P that can possibly be in ~, as this

relates to the eigenvalue characteristics of P, is summarized in table 1.

The left tab of the table refers to a single eigenvalue of P or to a set
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of eigenvalues sharing a common property (e.g., complex conjugates). The

evaluation in column 3 assumes that embeddability is met, i.e., at least

one. version of log P is in~. In making this evaluation, it is also pre-

sumed that the remaining eigenvalues of P do not satisfy a condition which

is compatible with a greater number of candidates for membership in ~) for

instance, all eigenvalues must belong to categories (1) and (2) in order to
(

conclude, on the basis of an examination of eigenvalues alone, that at most

one version of log P is in ~.

A second point to be noted in connection with the table is that the

eigenvalue conditions which rule out embeddability do so by not being com-

patible with a real-valued version of log P. For example, if P has a unique

negative eigenvalue, A '"' -a,(a > 0), its logarithm will be log a + ikrr, k == 0,

+ 1, ± 2, ... , which always has a non-zero imaginary part. The correspond-

-1ing eigenvector'h in the similarity transformation P = HJH will be real-

valued (since A = -a is distinct and real), and log P == H log JH- l will have

the identical eigenvector corresponding to its complex eigenvalue. There

is no way in which log P can be real~valued in this circumstance. What

alters the situation in the case of repeated negative eigenvalues with even

multiplicity is that when the elementary divisors are not distinct, the

eigenvectors corresponding to the repeated eigenvalues will be complex con-

jugates, and real versions of log P can result. In particular, this will

occur when different branches of the logarithm of -a are presentsimultan-

eously in log D.

Finally, we emphasize that the eigenvalue configurations most commonly

found in empirically determined matrices involve combinations of distinct

positive and distinct complex conjugates, i.e., categories (1) and (7).
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Table 1 about here

5. TESTING STRATEGIES

5.1 Identification of Structural Parameters

We assume first that the process under observation is time-stationary,

that the data are free of measurement and classification error, and that the

entire population has been surveyed so sampling va~iabi1ity is not a concern.

These assumptions have also been made, though without being noted exp1ie:i:tly,

in the preceding sections. In this environment, the identification problem

arises when observations are taken at only two time points (t = 0, t s t l ),

"and the matrix P(t
l

) constructed from these observations can -be represented

" Qtlin the form P(t1 ). = e for multiple arrays Q £~. A researcher then has

the following options:

(i) He may bring to bear other information about the substantive

process. For instance, if P(t
l

) were the matrix in example 12, a researcher

might have reason to believe that q12 > q14 and therefore Q2' not Ql' governs

the evolution df the process. Clearly, such a choice can be made only when

there is a finite list of intensity matrices, and not when a continuum is

present.

(i1) If an opportunity exists to collect data at a third time

point, it should be selected so as not to be an integer multiple of the ini-

tial interval (0, t
l
). The reason is because at multiples of an observation

interval the same list of Q-matrices can reappear; this was the case, for

instance, with the times TI/b, 2TI/b, etc. in figure 6. If, "however, the third

b ., k .J. k k' 25 h i ho s~rvat10n 1S ta en at t 2 Ttl' an 1nteger, t en even n t e presence

"
of multiple branches of 10gP(tl , t

2
) £ ~, only one version of the logarithm,

Qo ' will have the property
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TABLE 1

Eigenvalues of P and the Number of Matrices Q E Q

Eigenvalue Characteristics Embeddable? How Many Q's?

l. positive, distinct possibly one

2. positive, repeated, distinct possibly one
elementary divisors

3. positive, repeated, non- possibly one or continuum
distinct elementary divisors

4. negative, distinct never

5. negative, repeated, odd never
multiplicity

6. negative, repeated, even possibly continuum
multiplicity

7. complex, distinct, member of possibly one or multiple
a conjugate pair

8. complex conjugate, repeated possibly one, mu! tiple or
continuum

9. mixture of the above types possibly the most extreme
form of non-
uniqueness present
in any component
of the mixture
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=

This correspondence will identify the unigue Q that can be associated with

the empirical process.

There is an additional virtue in collecting data at three or more time

points. The embeddability problem concerns only the question of compati-

bility of a single stochastic matrix P(tl)--i.e., observations at two time

points--with a continuous-time Markov process. We have seen that on the

basis of this information alone it is frequently possible to rule out a

Markov structure. However, when data are available from more than two time

points, a direct test can also be made of the fundamental dynamic assumption

of a first-order Markov process, namely that the future state .of the system

depends only on current state, not on its history. These additional neces-

sary conditions are specified by tests of the sort

= (5.2)

The availability of data at three time points provides the most rudimentary

opportunity to check this assumption. Formal statistical tests of the validity

of the Markov property are described in Anderson and Goodman (1957) and

Billingsley (1961).

Study design considerations. The potential for non-uniqueness can be

minimized at the study design stage. If the use of Markov models is con-

templated, the survey times should be chosen close together in time, while

still permitting a representative amount of movement to take place. When

. the number of states is small (say r 25) it should be possible to select
A

If P(tl ) is embeddable, this condition on the
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diagonal elements ensures that log P(t
1

) E 9 will be unique (see section

4.1). When the number of system states is large, it may not be possible

to satisfy this .condition and still retain an adequate amo:unt of population

movement to estimate 1~gP(t1) accurately. Even in this circumstance, how­

ever, t 1 should be selected reasonably close in time to the initial observa­

tion, since the degree of non-uniqueness of Q Egis a monotone increasing

function of time (figure 6), except for isolated instants such as {k~/b}.

In most .data gathering situations one has neither a priori information

concerning the rate of movement (to assist in selecting the second observa­

tion), nor an opportunity to·schedu1e the second wave of a survey according

to these considerations. A more pragmatic suggestion would be to collect

detailed retrospective information about the process. Ideally, this should

consist of "sample path" data; that is, complete information about a respon­

dent's duration in each system state over the time interval of interest.

Where such data are deemed too costly to collect, a respondent should be

queried regarding his system state at several pre-chosen time points in the

past (e.g., one year ago, two years ago, etc.). Having gathered such infor­

mation the estimation procedures and model tests that require more than two

observations in time may be utilized.

5.2 Sampling Error and Data Noise

The data available to researchers are commonly contaminated by errors

of various sorts. While we may wish to make statements about a popu1ation­

level process, information is usually collected for a population sample.

Similarly, errors of measurement can result in the misclassification of

individuals with respect to system state.

Ordinarily, these are not very serious problems. In many sampling

situations the inference made about a population parameter, using standard

_._--------------~--~---_.~------~--~
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statistical procedures, tends to be incorrect to a degree that varies con-

tinuously with the magnitude of the measurement error. By using distribu-

tiona1 statistics, one can put confidence bounds around an estimate, and

describe the interval in which the population-level parameter lies. However,

measurement error and sampling variability carry greater consequence when we

seek to identify the non-directly observabie structural mechanisms (Q-matrices)

that underly Markov processes. In particular, when an empirically determined
,..,

matrix P(t
l

) is in the vicinity of a second stochastic matrix P which can be

expressed in the form ~ = eQ for multiple versions of log ~ € ~, then a small

error in the estimate of P(tl ) can result in the recovery of a matrix Q € g

which, while unique, is the wrong intensity matrix for the substantive process.

Example 13:

Suppose you observe

.232 .249 .266 .253

P
1

(t
l

) .254 .236 .242 .268
=

.270 .258 .228 .244

.245 .274 .250 .231

QtlThis matrix.can be written in the form e for a unique version of

-3.216 .129 .064 3.023

Ql
3.007 -3.174 .138 .029

=
.034 3.104 -3.260 .122

.132 .032 3.023 -3.186

A
If one believes that P

l
(t

1
) is error free, it would be reasonable to

conclude that Ql describes the evolution of the dynami.c. process. However, in

a fallible environment, a second Burv~y.of the same population would produce

a slightly different observed matrix. Consider,
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.231 .255 .266 .248

P2 (tl )
.250 .234 .247 .269

=
.271 .252 .227 .250

.251 .275 .245 .229

No element of this matrix differs from its counterpart in PI (t l ) by an

amount in excess of .006 in magnitude, so it is not unreasonable to suggest

that the two matrices represent different samples from a single parent popu-

"lation. However, while it is the case that P
2

(t
l

) is also compatible with

a continuous-time Markov process for a unique Q E Q, this intensity matrix

is given by

-3.164 3.148 .005 .011

Q2
.031 -3.170 3.049 .090=
.015 .022 -3.167 3.130

3.130 .048 .026 -3.204

Matrices Ql and Q2 represent very different structural mechanisms, and

would lead to contrary conclusions about the nature of the substant~ve pro-

compatible

and have unique logarithms in ~, the two empir­
ro/'

ically determined P-matrices lie in the vicinity of a third, P, which in turn

" "
cess. What has happened is that while PI (tl ) and P2(t l ) are each

Qt
lwith .therepresentation e

can be represented as a Markov process for multiple matrices Q E Q. Indeed,

~ "
P = Pl(tl + .05) =

,J

P

I

i

I
i

. i
I

. ._.J

and this common P-array is the same one presented in example 12 to illustrate

h h f 1 i 1 . i . i 26t e p enomenon 0 mu t p e 1ntens ty matr ces.
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Specific error structures. In the context of sampling variability or
1\ Qt lmeasurement error, then, a researcher cannot assume that because P(t

l
) = e

for a unique Q e Q, this intensity matrix describes the evolution of the sub-

stantive process. He must either remove the error from the observed matrix

and use the "purged" array for estimating structural parameters, or examine

the intel1sity matrices of other pIS that are within "error distance" of his

empirically determined matrix.

Misclassification error can be formally incorporated in a description of

observed transition matrices by introducing the representation

= P(t.,t.) 0 e(ti,t.)
~ J J

(5.3)

where P(ti,t
j

) is an empirically determined r x r matrix of transition prob­

abilities based on observations at times t i and t
j

; P(ti,tj ) is a fitted r x r

matrix of transition probabilities representing the error-free or purged

mobility structure; e(ti,t
j

) is an r x r matrix of residuals interpreted as

errors due to misclassification; and the symbol "0" denotes either the opera-

tion addition or multiplication. Motivating the representation (5.3) is the
A

view that matrix P, rather than P, should be tested for compatibility with a

Markov process, and Q should be estimated from the equation P = eQ.

Calculation of P and e must be based on an assumed model of the error

structure, together with independent estimates of the parameters. For example,

if the states are occupational categories and there is a natural ordering

among them (e.g., on the basis of a prestige scale), an individual who actually

moves from state i at time t l to state j at time t 2 may have probability cl

of being recorded in state j-l at time t 2 , probability c2 of being recorded

in state j+l at time t
2

, and probability l-cl -c
2

of being recorded correctly.

If this kind of measurement error is believed to operate, then it implies a
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representation of the form

= (5.4)

where

0 0
0

Cz..
•

• c• 2
•

c
1 l-c

2

l-c Cz 0
I

C .. c
i

l-c -c c
21 Z

0 ci l-c -c1 2... •
••

•
I'

Given c
i

and Cz based on independent misclassification estimates, we could

solve the matrix equation (5.4) for P(tl,tZ)' See Coleman (1964b) for approaches

of this sort to the study of change in a fallible environment.

Random error. In general, a formal model of the error structure will not

be available, yet we may wish to make allowance for the effect of "noise" in

the data. We recommend a strategy of "exploring" a neighborhood of the observed
I

matrixP(tl ), to ascertain whether nearby P-arrays are compatible with inten-
I

sity matrices that are very different from the initial Q-matrix.

A reasonable procedure for exploring a neighborhood of P(t l ) would be' to

for t the values t l - ~t, t l - 2~t,

"ride" its associated intensity

from the representation pet) =

matrix Q .
o

Q t
oe using

By this is meant computing pet)

•.• , t
l

- h~t, and t
l

+ ~t, t
l

+ 2~t, ... , t
l

+ k~t, where the termination

points hand k are the last times that P(t l - j6t) and P(t l + j6t) can be

considered "within sampling or measurement error" of the observed matrix.

Next, examine the eigenvalues in the sequence of matrices •

• >
i __. ' •. ~_
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(a) If there is a complex conjugate pair (A,~) = (a + bi) whose
A

imaginary part passes through zero, then P(tl ) is in a neighborhood of
,..

some matrix P which has repeated real eigenvalues. Associated with this

array, a continuum of matrices Q s ~ will satisfy the relation ~ = eQ.

Strategies for exploring the structure of a continuum are discussed in

Appendix 1.

(b) If a continuum does not occur within error distance, recover all

matrices Q s ~ that are compatible with the representation P(t l + Mt)

Qo (t
l

+ Mt)
= e , where k was chosen as the forward stopping point of the

. 27
sequence of P-matrices. The complete solution to the problems of deter-

mining the number of candidates for membership in ~, and computing all ver-

sions of log P s ~, was presented in section 3.

"-
If it is the case that log P s ~ is unique under the perturbations of

A

P(t
l
), then this intensity matrix can be viewed as the sole mobility struc-

ture compatible with a Markov formulation of the substantive process. Stated

more transparently, additional samples from the same population can be

expected to produce similar Q-matrices. In contrast, if multiple mobility

mechanisms Q s ~ are found for matrices P within error distance of the

observed array P(t
1
), then one of the procedures described in section 5.1

for selecting among alternative intensity matrices must be utilized.

In an environment containing error, the advantages of collecting data

at three or more points in time are especially apparent. We noted earlier

(section 5.1) that three time points is the minimum number for a direct test

of the dynamic assumption underlying a first-order Markov process, i.e.,

checking that

= (5.5)
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In practice, this entails evaluating whether IIp(o,t
z

)

for £ > 0, and some sUitably chosen norm [e.g.,

is satisfied, and it is also the case that

- P(O,tl ) P(tl,tz)11 < e,

ZL aij ]. When (5.5)
i,j

I "
-- log P(O,tl ) ~
t
l

(5.6)

we would define Q, the common intensity matrix for the process, as an average

of these three estimates. In the presence of sampling or measurement error,

then, data at three or more time points permits a test of the fundamental

Markov assumption and also facilitates an accurate calculation of Q, through

the pooling of several estimates.

In an instance where (5.5) is satisfied, but equation (5.6) is not, the

process will still be Markovian, though it no longer is time-stationary. This

leads to the problem of testing observed matrices for compatibility with a

time-homogeneous Markov model (the null hypothesis) against special non-time-

hOdOgeneous alternatives. We hope to discuss this important issue in a future

publication.

As a final comment on analytic strategy in the context of data noise,

we emphasize that while the occurrence of multiple matrices·Q £ ~ may not be

very common in an error-free environment, it characterizes the normal work

situation when data are fallible. This is because we advise a researcher to

examine a neighborhood of an observed P(t
1

) for the presence of additional

intensity matrices, and to consider each recovered Q £ g as possib]V govern-

ing the evolution of the empirical process. Due to data noise, then, we

suggest creating a multiple Q £ g situation when an observed transition

matrix has associated with it a unique logarithm in~. For this reason,

collection of data at three or more time points should be a routine require-

ment when the use of Markov models is contemplated.
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6. CONCLUSIONS

The point of departure for this study was the gross misunderstanding

among researchers concerning ~hich stochastic matrices are compatible with

a continuous-time Markov process having stationary transition probabilities.

We noted that the power series representation of the logarithm of a matrix

[equation (2.5)]--the principal formula used in estimating the structural

parameters that govern the evolution of a Markov process--permits an inten­

sity matrix to be recovered only for a subset of this class of stochastic

models. By resorting, instead, to the spectral decomposition representation,

we were able to estimate intensity matrices for Markov models in instances

where (2.5) does not converge; that is, in cases of transition arrays which

Cole~an and others have considered not to be compatible with this mathe­

matical structure. In the course of the investigation, we also raised new

issues which a researcher must consider; these include, principally, the

possibility that multiple intensity matrices may be compatible with an empir­

ically determined transition array, and the fact that, as a result of data

"noise," recovery of a unique Q E ~ does not preclude the possibility that

the observed process is governed by an entirely different intensity matrix.

In subsequent papers we intend to address two additional issues which

a researcher desiring to use Markov models in a flexible and creative manner

must entertain: (a) how should a priori restrictions be placed on the ele­

ments of a Q-matrix, and (b) how can a researcher discriminate among the

alternative mathematical models which, on substantive grounds, provide

reasonable descriptions of his data., The first topic was mentioned, in pass­

ing, in section 3.3, when we sought to adjust a non-embeddable log P to a

neighboring Q E~. More generally, we may wish to estimate the parameters
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of a sociolog~cal theory which specifies that certain instantaneous transi­

tions are prohibited (see Coleman 1964a, chaps. 4 and 5 for examples). The

second topic refers to testing data for compatibility with a subset of

Markov models (such as birth and death processes) versus general finite­

state Markov processes, and to comparing the fit of Markov models with that

of other mathematical structures, such as mixtures of Markov processes or

semi-Markov processes.

As a final point, we emphasize that the problems addressed in this paper

cannot be avoided by employing a discrete-time Markov framework in place of a

continuous-time formulation. In the discrete-time model the counterpart to

the task of estimating Q £ ~ entails recovering the one-step transition matrix

for an empirical process, i.e., taking the appropriate roots of the observed

matrix P. Like a logarithm, a root is a multiple-valued function, so the

problem of non-uniqueness which we have discussed here also arises in that

formulation. Conceptually, the discrete-time model embodies a further diffi­

culty: Because most social processes evolve continuously, there usually isn't

a compelling reason for Bxe£erring cane specification of the unit time interval

to another. (For instance, in studying intra-generational occupational

m6bility, should the unit time interval be five years or three years or six

months?) Yet, this is a question of great consequence because an empirically

determined matrix (estimated, let us say for this illustration, from observa­

tions ten years apart) may be consistent with a discrete-time Markovstruc­

ture for some choices of the unit time interval but not for other ch2ices

(see Singer and Spilerman 1974, pp. 360-363 for an example). Where no. sub''':':

stantive meaning can be attached to a particular interval length, this does

not imply that the unit time interval can be specified at the convenience
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of the researcher, or that tests of the sort described here can be ignored.

Rather, it suggests that the appropriate mathematical structure is a con­

tinuous-time formulation, the procedures for which have been discussed in

this paper.
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APPENDIX 1. Exploring a Continuum

In the case where P has repeated eigenvalues and non-distinct elementary

divisors, the value of log P depends on the choice of similarity transforma-

tion that is used to reduce P to Jordan form. A computer based strategy to

test a representative collection of branches of log P for membership in g is

the most direct approach we can currently recommend for deciding on compati-

bi1ity of P with a continuous-time Mar)ov model. If a branch of log P which

belongs to ~ is discovered during the computer tests, then it can be shown

that there is in fact a continuum of branches which are in~. The testing

strategy outlined below, and illustrated in a simple example, is also designed

to give some indication of the extent of the continuum of branches which are

in ~.

Step 1. Compute one similarity transformation H which reduces P to

Jordan form. The method of computation is entirely at the discretion of the

researcher (see Gantmacher [1960, chap. 6] for suggestions).

Step 2. Take a random sample of points in an 8-dimensiona1 square region

28with center at the origin. For each sample of 8 numbers, use them as the

real and imaginary parts of the parameters in the matrices B which commute

with J = H-l PH. Then evaluate

where

1 0 0 0 0 0

B = 0 cn c
12

log J = 0 log 1.. 2 0

0 c21 c22 0 0 log 1.. 2

the {c .. } are given by J
~J
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=

=

x12 + iY12

x22 + iY22

{x ..} , {Yi'} are the 8 numbers associated with each sample point, and log A2
1.J J

denotes the complex conjugate of log A2' Note whether this branch of log P

is in~. Several hundred such evaluations may be necessary in order to iden-

tify those matrice B, if any, which yield versions of log P E ~.

The preceding computations do not increase in complexity for r x r

matrices having a single pair of repeated real roots, which is the situation

most likely to arise. In this general case, B will have the form

B =

1

o

o

o

avv

o

o

o o

o

av+3, v+3.

However, since only the {cij } generate a continuum, the same simulation as

before is involved. In carrying out these computations, the reader is reminded

that if A
2

is a repeated negative root, the simulation must be performed for

all branches of log A
2

= log IAzl + i(~ ± Z~k) which satisfy Runnenberg's

necessary condition for embeddability (equation 4.3). If A2 is a repeated
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positive root, the calculations must be carried out for all branches, except

k • 0, of log AZ = log IAZI ± Z~ki which satisfy Runnenberg's condition.

(The case k = 0 can produce at most one version of log P € Q--see example 13).

Example 14:

I' Recall the matrix of example 10,

1 + Zx 1 - x 1 - x
p 1

1 1 + Zx 1
3

- x - x

1 - x 1 - x 1 + 2x

-zl3~
with x = -e

transformation

This array is reduced to Jordan form by the similarity

1 1

H = 1 l(-l+l3i)
2

1 1 /1"-(-1- 3i)
Z

1

Our problem is to indicate how a random sampling scheme of the type mentioned

above could give some insight into the variety of branches of log P which are

in~. To illustrate the ideas, we restrict our consideration to the subset

of matrices B of the form

B =

'1

o

o

o o

13

where a and 13 are arbitrary real numbers.

A computing strategy designed to identify matrices B yielding branches

of log P € ~ would begin by generating uniformly distributed (a,l3) values

within a square centered at the origin--the boundaries lal = 1131 = 10 are
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chosen here for illustrative purposes. Each generated value represents a

-1 -1point on the a-S plane for which log P = HB log J B H is to be computed.

If the resulting matrix is in 9~ a "+" is recorded at the point; otherw-ise

a dot is recorded. In the present example, the flared pattern shown in

figure 4, known as the "Iron Cross of the Red Baron (2nd class)," would result.

Figure 11 about here

The restrictions on a and·$ can be summarixed by the inequality

What is more to the point, the structure of the continuum

is identical to the one reported in equation (3.23). (This may be verified

by replacing {c .. } in [3.21] with the appropriate a and S values, and com­
1.J

puting the restrictions [3.22].) In general~ however, by limiting {cij } to

real values only a portion of the continuum will be produced.
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FOOTNOTES

1The symbol "A" over a stochastic matrix, or over an element in a matrix,

will mean that the quantity should be thought of as estimated directly from

data. Matrices without this symbol should be viewed as obtained from a

mathematical model.

2In most applications of Markov models, tests of this sort are not made.

Hodge (1966) provides an exception.

3Where it is understood that the initial observation is at t = 0 we will
A

simplify our notation and write P(t
1
), or even P, in place of P(O,t

1
).

4We wish to emphasize at the outset that our extensive criticism of

estimation pro'cedures used in Coleman's work in no way detracts from the

utility of the mathematical formulations he employs ,or from h;f.s strategies

in translating sociological theory into mathematical statements. Indeed,

his work has been a source of inspiration to both of us.

5nij = number of persons starting in state i

who are in state j at a later time t = 1; nit =

is obviously in error and

n'i/n ,
J J.

Actually,

at a reference time t ~ 0
r
L nij , In our notation

j=l

Coleman wrote nij/nj . in place of nji/n
j

.• This

elsewhere (Coleman 1964b, p. 4) he makes clear his

intention.

6
From the context, we interpret the word "asymptotically" to mean mono-

tone, rather than oscillatory convergence.

7 1 A

In different contexts we speak of checking whether Q = t log P £' ~, or

whether log P €~. Because multiplication of a matrix by a real-valued quan-

tity does not alter its character with respect to satisfying conditions (2.2),

the two tests are equivalent.
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8
Th~se inequalities were established by F. I. Karpelewitsch (1951);

they represent a considerable strengthening of the well known restriction

that all eigenvalues of a stochastic matrix must lie inside the unit circle.

9For a lucid and detailed mathematical exposition, the reader should

consult Gantmacher (1960, chap. 5).

lOA function is said to be analytic at x if it has a derivative in a

neighborhood containing the point.

11
Although the Taylor series expansion has an infinite number of terms,

l2This matter is discussed in proposition 2.

l3The simplest way to appreciate the multiple valued character of the

logarithm is to begin with the definition: x = log y if x is a solution of

Xthe equation e = y for

x+2~k~any i~teger k, e =

a given y. Suppose x is such a solution. Then, for

x 2~kL x 2~kLe e = e = y (since e = cos2~k + iSin2~k = 1).

Therefore, log y takes on the values x, x ± 2~, x ± 4~, etc.

14All logarithms are to base e. The subscript k denotes the branch number

of the logarithm of a scalar quantity, and takes on the values k = 0, ± 1,

+ 2, •••. The subscript K denotes a version of the logarithm of a matrix,

and specifies a combination of branches of the logarithm of the eigenvalues.

15Sylvester's formula has been effectively employed by S. Johansen (1974)

in a recent study of the embedding problem. His results, however, are less

general than the ones presented here because Sylvester's formula also pro-

vides less than a complete description of the logarithm of a matrix. This

point is elaborated in proposition 2.
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16On computing the elementary divisors of a matrix consult Gantmacher

(1960, pp. 139-145).

17When r k = 1 for k = 1, ... , m, then (3.15) reduces to Sylvester's

formula (3.14).

l8The matrix (3.18) was. ,introduced:,py'J. Cuthbert (1973) ,in order to

exhibit an example of a stochastic matrix compatible with a continuum of

Markov models. Cuthbert's continuum arises when you choose c
ll

= c
22

= 1

and c12 = cZ1 ' real. Then the constraints on u and v entail that Ic121 =

Ic211 21/3. This choice does not, however, lead to all of the branches of

log P given in (3.23), which represents an exhaustive list in~.

19 rz2. -1 b
If A = a + bi, then p = IAI = la~+b~ and e = tan -.

a

20These formulas were computed from (3.24) by solving for k (in the arc-

tangent) at each bound.

2lk may be positive or negative. The sign is chosen according to whether

one wants to "move backward" to a repeated eigenvalue situation (+k) , or

"move forward" (-k). Note also that k = °will not generate a continuum at

8 = 0. These issues are addressed in greater detail in sections 4.2 and 4.3.

22For brevity in the discussion we focus on positive branches (k > 0).

An analogous description can be presented for negative branches of the logar-

ithm.

23~he same remark holds for a P which is considered to be within error

A nIT
distance of P(b)'
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24In connection with this point we refer the reader to the 4 x 4 matrix

P(t l ) in example 12. The reason why it is reasonably similar to the equi­

librium matrix for the process can now be appreciated; namely, the complex

conjugate eigenvalues are close to zero in magnitude.

25
This recommendation assumes that we have observed the first appearance

of a continuum, which will be the most common situation. If we have observed

ktthe second occurrence, the times t 2 = 2 1 should be avoided. If it is a third

ktoccurrence, omit the times t
2

= 311, etc. As a practical guide, if a researcher

avoids the two sets of time points cited in this footnote he is unlikely to

encounter a second continuum.

26The Q-matrices in example 12 are the ones in this illustration multi-

plied by t = 1.05.

27Because L(t) = {the number of branches of log pet) £ ~} is a non-

decreasing function of time (except for isolated occurrences of continua),

it is not necessary to examine points ea:i:'lie'r than t
l

•

28We recommend beginning this search in the 2-dimensional subspace defined

by the conditions cil = c22 ' cl2 = c21 ' real. Then extend the search to the

4-dimensional space defined by the restriction that {cij } be real, and finally

introduce complex numbers in the full 8-dimensional space. Improved strate-

gies for exploring this kind of continuum are currently in the preliminary

development stage.
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