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THE REPRESENTATION OF SOCIAL PROCESSES BY MARKOV MODELS

1. INTRODUCTION

Markov models provide a convenient framework for analyzing the struc-

tural mechanisms which underly social change, and for extrapolating shifts

in the state distribution of a population. For reviews of applications
and discussions of some pertinent mathematical issues, the reader is
referred to Boudon (1973), Bartholomew (1973), and Singer and Spilerman
(1974). Although most commonly employed in the study of mobility, Markov
models have been applied to diverse substantilve toplcs; they have been
used, for instance, to study the influence of group norms on conformity
(Cohen 1963), to measure distance in social networks (Beshers and Laumann
1967), and to analyze recidivism among delinquent juveniles (Wolfgang,
Figlio, and Sellin 1972). The attractiveness of this mathematical formu-
lation derives from the fact that it permits a researcher to focus upon
the dynamic properties of a social process, and ascertain the long-range
consequences of particular ingtitutional arrangements. An instructive
example of this sort of inquiry 1s provided by Lieberson and Fuguitt
(1967).

Several technical issues which relate to the sensitive use of
Markov models have only recently begun to receive an amount pf attention
that is commensurate with their importance. One matter concerns the

phenomenon of population heterogeneity. In the initial attempts at

' modeling mobility processes by time-stationary Markov chains, socially

heterogeneous populations were treated as though a single transition

rule governed the movements of all individuals. Special kinds of dis-
crepancles that were observed between the empirical data and predictions

from these one-type Markov models were suggestive about the form of
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stochastic process which might provide a more realistic theoretical
framework in which to view mobility (Blumen, Kogan, and McCarthy 1955).
The main attempts at modifying the Markov model so it would provide a
suitable description of movements by.a heterogeneous population have
involved viewing the population as consisting of a mixture of indepen-
dent Markov processes, one for each individual or each distinet soecial
group (McFarland 1970; Ginsberg 1971; Spilerman 1972a; 1972b; Singer and
Spilerman 1974);

A second issue concerns strategles for testing whether empirical
observations are, in fact, compatible with an assumed class of.models,
such as general finite-state Markov processes, or a subset of them, such
as birth and death processes. An example of this sort of inquiry is
presented in Singer and Spilerman (1974, pp. 360-363), where an observed
2-step matrixl E(Z)——representing occupational change between grand—
fathers' and respondents' generations—-was examined for compatibility
with a stationary discrete~time Markov structure. Conceptually, the
problem i1s to decide whether the empirically determined matrix could
have arisen via the evolution of the postulated process. Stated techni-
cally, it is to ascertain whether there exists a one-gtep transition
matrix P(l)--which would be identified with grandfather to father tran--
sitions or, equivalently, with father to son transitions--such that
E(Z) = [P(l)]z. Where the answer is negative, it would be incorrect to
predict future population distributions from a Markov model,2 such as
by raising the observed matrix to integer powers.

The same kind of issue must be faced with respect to compatibility
of observed data with other model structures, and it is this fundamental

gort of inquiry that we address in the present paper. We will
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concentrate on conditions for compatibility with a finlte~state continuoug-
time Markov process, a mathematical structure which holds special interest
for two reasons. First, although discrete-time formulations have been

used in most applications of Markov models, the empirical processes under
consideration commonly evolve continuously, and the appropriate technical

apparatus would be a continuous-time model (Coleman 1964a, p. 129). The

" reason for the greater popuiarity of the discrete-time structure stems

from its simpler mathematical nature, not from considerations of verisimil-
itude. Second, continuous-time Markov processes provide the underlying
mathematical framework for James S. Coleman's (1964a) influential volume
in mathematical sociology, as well as for a number of more recent publi-
cationé (Coleman 1968; Mayer 1972; Bartholomew 1973). Because of a
ﬁeglect of the representation consilderations that are discussed here,
serious deficiencies exist with the estimation procedures used in these
works. An additional reason for concentrating on éompatibility with a
continuous~time Markov framework is that the conceptual isgsues which must
be addressed with more complicated mathemaﬁical structures, such as models
of heterogeneous processes, already reveal themselves in this compara-
tively simple setting.

Representation becomes an 1ssue when we have available only frag-
mentary data on population movements. Unfortunately, in the study of
social phenomena, the common situétion is to have very incompleﬁevinfo:—
mation'about the evolution of an empirical process; frequently, observa-
tions‘haye been taken at only two time points, t = 0 and t = tl, yielding
a single tranéition matrix3 ﬁ(O,tl). What we wish to determine, then,

are the conditions which.this observed matrix must satisfy for it to be
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viewed as an outcome of a continuous-—time Markov model. TFor matrices
satisfying the requisite criteria, we wish further to recover the para-
ﬁeters of the particular Markov structure that underlies the empirical
process. These issues can be posed  most effectively in terms of two
sequential considerations——embeddability tests, and the identification
problem. . In practice, a single calculation is usually informative on
both matters.

Embeddability. This issue refers to whether or not an observed

transition matrix ﬁ(tl) could have arisen via the evolution of a stationary
continuous~time Markov process. It is well known that certain stochastic
matrices are not compatible with such a formulation; this is the case,

for instance, if §(tl) has an element ;ij(tl) = 0, but some power of the

ei

matrix, say ﬁ(tl)n, has a non-zero entry in the game position, i.e.,
;ij(n)(tl) # 0 (Chung 1967, p. 126). Also, according to Coleman (1964a,

p. 179; 1964b, p. 4), a stochastic matrix in which some main diagonal
element is less than another entry in its column could not have been gen-

- erated by a continous~time Markov process. We shall show that Coleman's
claim is in error.4 For the preseﬁt discussion, however, the esgential
point is that while it is recognized that certain transition matrices
cannot be represented by this mathematical structure, there is confusion
over the full scope of the requirements for embeddability. Our first task,
then, is to devise tests for determining compatibility of an empirically

determined matrix with a continuous-time Markov formulation.

Identification. If the embeddability tests are passed, then we are

guaranteed that P(tl) could have been generated by at least one continuous-
time Markov process. The identification problem refers to the pessibil-

ity that the matrix could have originated from the operation of more than
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oné Markov process.- Consequently,bour sécond task is to delineate the
conditions under which the solution for the parameters of the Markov“
médel will be unique. Also, for instances in which these conditions are
not satisfied, we will require procedures for recovering the several
Markov structures that could have produced the observed matrix, and
identifying the particular model from this list which should be asso-

ciated with the data.

Sampling error and data collection design. Overlaying the questions

of embeddability and multiple sdlutions 1s the 1ssue of sampling error.
In most applications, an empirically determined transition matrix ﬁ(tl)
will have been constructed from a population sample. Repeated surveys
of the population would produce somewhat different transition arrays, so
we would be well advised to Investigate the gsensitivity of our estimate
of the underlying Markov structure to sampling error. In particular, with
respect to the matter of embeddability, we might wish to inquire whether
a non—embeddable ﬁ(tl) is "within error distance" of some embeddable
matrix gi If this is the case, we could choose to carry out an analysis
in which Markov methods are employed using the adjusted (embeddable)
matrix §: instead of the observed array g(tl)'

The question of data error leads to more intriguing considerations
with respect to the phenomenon of multiple solutions. Even if ﬁ(tl) is
compatible with a unique Markov process, it 1s poséible that a slightly
modified matrix gl-within error distance of the ofiginal array~-will pro-
duce a very different Markov structure from the one that has been identi-
fied. As a result, if the data derive from a population sample, then

because of sampling variability we may have recovered the wrong Markov

structure for the population-level process! We therefore discuss
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strategiles for treating an empirically determined matrix as data contaln-—

ing considerable 'moise,”

and identifying from it the particular Markov
model to be associated with the substantive process.

Finally, there are cruclal considerations regarding when to survey
a population in order to facilitate model identification and parameter
estimation. It 1s widely known, for instance, that if the interval between
successive observations is very large (with respect to the rate of evolu-
tion of the empirical process), ﬁ(tl) wlll resemble the equilibrium matrix,
and the parameters of the continuous~time Markov model which produced the
observed array cannot be recovered (Coleman 1968, p. 472). Yet, the issue
of data collection design is considerably more complex than this simple
remark conveys, and involves decisions concerning the number of observa-

tions to be taken, the spacing between them, and interactions between these

considerations.

2., MATHEMATICAL PRELIMINARIES AND EXAMPLES
Consider a stochastic process with a finite number of states whose
transition probabilities are governed by the system of ordinary differen-

tial equations

dP(t)

ar = QP(t), P(0) = I (2.1)
where P(t) and Q are r x r matrices. It is well known (€oleman 1964a,
pp. 127-130; Chung 1967, pp. 251-257) that if Q has the structure

r

< 0, rq,,=0fori=1,..,r (2.2)

"q,, >0 for 1 # j,

ij 94

then the functions P(t), t > 0, which are solutions of (2.1) comprise the

- transition matrices—of—continuous—time—stationary-Markov—chains+—A—typical



7

element, pij(t), of P(t) has the interpretation,

Pi'(t) = probability that an individual starting in state 1
at time 0 will be in state j at time t.
The Q-arrays, which are known as 'iIntensity matrices,'" provide struc-

tural information about the population:
(1) qij/—qii =. probability that an individual in state 1
will move to state j, given the occurrence of a transition.
(ii) l/--qii = expected length of time for an individual in
state i to remain in that state.
We will denote the ciass of intensity matrices (arrays of the form [2.2])
by the symbol Q.

Solutions of (2.1) are given by the exponential formula

P(t) = elF, £>0 (2.3)

where the matrix exponential eA (A being an arbitrary r x r matrix) is

defined by

S SN Y
=0

®
4

The problem of finding simple test criteria on the entries of an observed
stochastic matrix P(tl), ty <= which will guarantee that it can be written in
the form (2.3) with Q € Q, was first posed by G. Elfving (1937). It has

3 come to be known as the embedding problem for continuous-time Markov

chains.

An obvious description of the subclass Z of stochastic matrices that

are embeddable is given by

Z = A{P such that log P e Q}.
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Attempts to develop practical test criteria or computer programs to deter-—
mine membership in Z are reported in Coleman (1964a, pp. 177-182), Mayer
(1972, pp. 327-328), and Zahl (1955, p. 97). However, all these investi-
gations suffer from a confusion about the full scope of the embedding
problem, as well as from using an incomplete description of the logarithm
function of matrix argument. This situation has resulted in a number of
erroneous statements about the conditions under which an empirically deter-
mined matrix ﬁ(tl) is, or 1s not, compatible with a continuous—time Markov
process.
Example 1:

Coleman (1964a, p. 179) has asserted that '"'the most obvious incompat-—
ibility is one in which for some state i, ni./n is less than sdme n,,/n

i'"1. ji 3.

' This statement5 suggests that a Markov structure would

for some state j.'
not be a suitable model for a large class of mobility matrices (e.g., Prais
[1955, table 1]; Coleman [1964a, table 14.8]); indeed, for any array in
which some off-diagonal element exceeds the main diagonal entry in its

column. That this assertion 1s incorrect can be seen from the matrix

.260 .169 .248 .323
.269 . 346 .232 .153
.162 .285 . 305 <248

In every column there is a violation of Coleman's necessary criterion, yet

this matrix can be represented as eQ with

~1.700 .034 .025 1.641
qQ - 1.573  -1.657 .059 .025
.051 1.785  -1.853 .017

.017 .085 1.649 -1.751



Example 2:

Elsewhere, Coleman (1973, p. 21) has written "It is not the case that

any discrete-~time Markov chain can be generated by an appropriate continuous-

time process. Heurilstically, those discrete~time chains that cannot be

generated by a continuous—-time process are those in which the equilibrium

distribution is approached through a damped wave, rather than approached

asymptotically.”6 Coleman's statement characterizing non-embeddable matrices

is incorrect, as the following computations 1llustrate.

By exponentiating the intensity matrix Q from example 1 with t = 1,

P(1.00) = e1'00Q

.231
_ 284
P(L.41). = el-*Q - 285
.224

and at time t = 2.24,
.248
P (2.20) 2:26Q _ .252
: .265
.261

.233
«244
.296
.299

.271
.259

262

.275

, the transition array (2.4) is reproduced.

.261
.201
.206
257

.239
.235
.223
.226

At time t = 1.41,

275
271
.213
.220

242
254
.250
.238

Note that each main diagonal entry pii(t)’ observed over the three matrices,

has the property pii(l.00)> pyy(1.41) < p,,(2.24). This means that p,, (t) ‘

approaches an equilibrium value as t » through damped oscillations, and :

not asymptotically. Yet, because of the manner by which the sequence of

P-matrices was constructed, they depiét the evolution of a continuous-time

Markov process.

Example 3:

In attempting to represent an observed matrix P(t) in the form (2.3),

Zahl (1955, p. 97) states that "the estimate of Q is taken to be .
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7 DR @-1)
k

%log P(t) = %
k=1

(2.5)

provided the series converges.' Coleman (1968, p. 472) makes essentially

‘the same claim. Yet, although convergence of (2.5) does provide a repre-

sentation of log P, it does not guarantee that7 log P ¢ g. In particular,
consider
.600 .330 .070

.302 .560 .138
.380 . 040 .580

L3 v IS
]

la)
The series representation for log P converges to

-.692 .639 .053

log P = .496 -.733 .237

.707 ~.144 -.563

which is not in Q since (log P)32 = —-,144 < 0.

Example 4:

In possibly the most serious of the misunderstandings, Coleman (1968,
p. 472) has asserted that "When [(2.5)] does not converge, this ﬁeans that
the data are not compatible with the assumptions of a continuous-time Markov
process, or that the moves of the panel are too widely spaced." Mayer
(1972, p. 328) makes essentially the same point: "The failure of [(2.5)]
to converge for all transition matrices P(t) reflects the fact that not
all such matrices can arise from a continuous-time stationary Markov chain."
These statements are in error. Equation (2.5) may fail to converge for
matrices P, not resembling the equilibrium matrix, which nonetheless can

be represented in the form eQ with Q € Q. Consider
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Qe Q |

- struction emﬁhasizes decomposing the qij elements of Q among theoretically
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.3654 .3762 .2584
P = <3292 .3567 .3141
. 4040 .3188 02772

The series representation (2.5) converges if and only if lki - 1] <1 for

all eigenvalues Ai of P. The above matrix has elgenvalues Al = 1, kz = ,0531,

Ay = =.053i. Thus |A, - 1| = [A; - 1| > 1 and (2.5) diverges. Nevertheless,
P = eQ for
-1.805 1.718 .087
Q = 044 =1.784 1.740
2.262 .017 -2.279

and it is therefore embeddable.

The preceeding examples highlight the confusions that exist concerning
which transition matrices can be represented as outcomes of the evolution
of a continuous-time Markov‘procgss. In particular, we ha&e indicated that
the standard recipe for estimating Q (the matrix>of structural parameters
which govern population movemenﬁs)——via the power serles representation
(2.5)=-is highly deficient. The series does not provide a complete des-
cription of the logarithm of a matrix; as a result, it fails to converge
for transition arrays that are compatible with a Markov formulation.

In fact, the iﬁadequacy of, equation (2.5) as a procedure for estimat-
ing the intensity matrix Q is even more fundamental than the above i1llus-
trations suggest. While the power series will converge to at most one

version of log P € Q, the equation P = eQ can have multiple solutions

because the conventional strategy in using Markov models for theory con-

postulated effect parameters (Coleman [1964a, chap. 5]; [1964b, chap. 2];
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McDill and Coleman [1963]). Clearly, one can hardly begin this task
without ensuring that the correct Q has been recovered for the substantive
process under study. Before considering the issues of multiple solutions
and model identification, we address the conceptually prior question of

embeddability of P; that 1s, we seek to determine which transition matrices

are compatible with a continuous—-time Markov process.

3. EMBEDDABILITY OF P
In the case of 2 x 2 matrices, a complete and practical solutilon to
the question of embeddability was given by D. G. Kendall (see Kingman [1962],

p. 15), who proved that

P11 Ppa

g >
1t

Pyy Pa ) » Py 20 ? Py = 1

is in 2 (equivalently, can be represented as eQ, Qe g) if and only if

-~ ~

pll + p22 > 1.

A solution to the embedding problem for stochastic matrices with an
arbitrary finite number of states was provided by Kingman (1962). 1In
particular, he proved that ; can be written in the form eQ, with Q ¢ @, 1if
and only if (i) det ﬁ > 0, and (ii) for every positive integer»n, there is
a stochastic matrix Pn such that (Pn)n = ﬁ. Unfortunately, condition (1ii)
does not lead to practical test procedures to be applied to %, and Kingman
pointed out the impossibility of obtaining general tests as simple as those
in the 2 x 2 case for matrices of order greater than or equal to 3. A
further mathematically interesting solution to the embedding problem has

recently been given by S. Johansen (1973, p. 180); however, in keeping with

Kingman's remarks, it too is not useful for practical computation.
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This impasse has led to the development of a>§on§idefaﬁleAnumbef of
eagily applicable necessary conditions for an r x r stochastic matrix %
to be in Z. These conditions are presented in section 3.1, with 1llus-
trations of their use. A common feature 6f the tests 1is that they can
only be used to assert that a particular matrix is not compatible with a
Markov model. An empirically determined matrix which passes all of the
tests in section 3.1 must still be subject to an examination based on
gufficiency conditions for embeddability, if one hopes to pass on to the
~stage of model identification. With the results of Kingman (1962) and
Johansen (1973) at hand, our only recourse 1s to develop simple computa-
tional-procedures for obtaining all branches of log § compatible with the
criteria in section 3.1, and test these versions of the logarithm for
membership in Q. This seemingly straightforward program leads to some
surprisingly subtle phenomena, which are delineated in section 3.2. General
practical recommendations for testing an observed ﬁatrix % for embeddabil-
ity are outlined in section 3.3.

3.1 Necessary Conditions

Test criteria whiéh empirically determined matriceé must saﬁisfy to
be compatible with a family of mathematical models can usefully be viewed
as devices for i1solating matrices generated by these models from the class
of all stochastic arrays. The necessary conditions listed below are the
simplest such tests for distinguishing the subclasé of matrices generated
by continuous-time Markov models.

Condition 1. (Austin and Ornstein, see Chung [1967, p. 126] for

details.) If pij(tl) = 0, then pign)(tl) = 0 for every integer n. If

- , 2 (n)
Pij(tl) # 0 then Py (tl) # 0 for any integer n.

Condition 2. (Kingman 1962) det P > O.
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Condition 3. (Elfving 1937) ©No eigenvalue A, of P can satisfy

i
lkil # 1 other than Ai = 1. In addition, any negative eigenvalue must
have even (algebfaic) multiplicity.

Condition 4. (Runnenberg 1962) All eigenvalues of P must lie inside

a heart—-shaped region Hr in the complex plane whose boundary is the curve

x(v) + iy(v), where

x(v) = | [exp (-v + v cos -Z-LL)] cos (v gin 2—})
: (3.1)
y(v) = [exp (-v + v cos —2-1::)] sin(v sin -2-15_-)

together with its gsymmetric image with respect to the real axis. In this

parametrized formulation, r = order of the matrix P, and v is restricted by

T
0<v j‘uéiﬂ(Zﬂ/r)' The regions H3, H6’ and le are displayed ;n figures
1, 2, and 3. The larger cone-shaped zones K3, K6, and K12 show the bounds

on the eigenvalues of. arbitrary 3 x 3, 6 x 6, and 12 x 12 stochastic

matrices.

Figures 1, 2, and 3 about here

The cone-shaped zones arise from the requirement that the eigenvalues

of an arbitrary stochastic matrix 3 must satisfy8
1.1 3 -1
G+DPr < argl = 1) < G-Dn (3.2)

(where the argument is in radiams), together with the condition IAI < 1.
The additional limitation to the heart-shaped set Hr contained in Kr arises
from the continuous—~time Markov assumptions. This restriction can also be
described by saying that the eigenvalues of ﬁ must satisfy (3.2) and

(%‘+ %)ﬂ < arg(log A) < C% - %)n (3.3)

Examination of H3 explains why failure of the series (2.5) to converge in
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’ Figure 1. Elgqnvalug Reglons for 3x3 Stochastic Matrices (KS)’ and foxr the

: S i
Subset of Them which is in 2 (113).

m?\ Ha

. L A i
lA_necmm;u‘y condition for P to be embeddable {s that all its elgenvalues lie

in the shaded zones : .
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Figure 2+ Eigenvalue Regions for 6x6 Stochastic Matrices (Ko). and for the

Subset of Them which is in z (“6)1

Im M

. A :
lA necessary condition for P to be embeddable is that all its eigenvalues lie

in the shaded rzanes
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Figure 3+ Efgenvalue Regloné tfo': 12x12 Stochastic Matrices (Klz), and for

the Subset of Them which fs in 2 (nn)l

| | | -
. | Im )\

1 o ~r .
A necessary condition for P to be embeddable Is that all fts elgenvalues lie

in° the shaded roee
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example 4 did not rule out compatibility of § with a continuous-time Markov
process., The region of convergence of (2.5) is |Ai - l| <1, i.e., the
unit circle centered at (1, 0), and the complex eigenvalues of the matrix

in that example, while exterior to this region, are inside H

3.
Example 5:
Suppose you observe the matrix
.15 .35 .50
P = .37 .45 .18
.20 .60 .20
Since det P = .05 > 0, condition 2 is satisfied. However, P has eigenvalues
Al =1, 12 = -, 1+ .24, AB = -1 - .21 which, by (3.2), lie inside the cone
K3, but they are outside the heart-shaped zone H3. Thus, P cannot be repre-

Q

sented as e” for any Q € @3 i.e., it is not compatible with a continuous-
time Markov model.
Example 6:

Consider the matrix

.20 .40 .40
P = .35 .20 .45
.40 .40 .20

Here, det P = ,04 > 0, satisfying condition 2. The eigenvalues of P are

=l’)\2=}\3=

2 and 13 are outside the zone HB' Thus, P 1is not compatible with

a continuous-time Markov model.

xl .2 so that condition 3 applies and is satisfied. Never-

theless, X

Example 7:
Recall the matrix of example 3,
.600 .330 .070

P = .302 .560 .138
. 380 . 040 .580
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This matrix satisfies the necessary conditions 1-4; however, it is still

not representable as eQ for any Q € Q. This assertion is based on an exami-

nation of all versions of log P which are candidates for membérship in Q.
An understanding of these tests requires a complete description of log P.
This 1s the subject of the next section.

3.2 The Matrix Equation P = eQ

We require a definition of a function of matrix argument9 ﬁhich is
sufficiently general to include analytic functions such as e* and log x.

It is useful to motivate the definition by an important property of paly-

nomial functions g(x). In particular, if

.. 2
gx) = a, + a,x + a,x + ... a X

and A is an arbitrary square matrix, a natural definition of g(A) is given
by_
2 n

g(A) = aOI + alA + azA + ... + anA

In addition, A can always be reduced to Jordan form J by some nop—singular
matrix H, i.e.,

A = mya?t : (3.4)

Finally, it 1s readily verified that
-1
g(a) = Hg(HH (3.5)

Every Jordan matrix J has the following block structure:

J = y , J, = A . (3.6)
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where A, is the i-th eigenvalue of matrix A, and occurs in J, with multi-

i i

plicity v, the order of Ji. (The Ai appearing in different blocks Ji are
, k
not necessarily distinct.) Also, I v, =T, the order of A.
1

The expression (3.5) will be useful in a wider context than just poly-
nomials provided that we have a representation of g(J) for arbitrary Jordan
matrices J, which generalizes to analytic functions10 £(J). Then our pro-
gram will be to define f£(A) according to (3.5), with g replaced by f, add-

ing appropriate conventions for multiple~valued functions. For a poly-

nomial function g(x) we introduce its Taylor series expansion about x = xi,
and write
w O
g(J,)
g(J) = t (3.7)
O e
wherell
(v,~1)
g (Ai) vi—l
= ' - —e b -
g(Ji) = g(xi)I + g ()\i)(Ji in) + ...+ (Vi—l)! gJi AiI)
(v,-1)
) 1"
g8(x;) g' (1) g" (1)) ‘e .8 ()
21 (v =11
(v;-2)
. v
0 g8(A) g'(A) - (A

= (vi-2)l

. . .

0 0 0 e e g(ki)
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Formula (3.7) has meaning for any function f which 18 analytic in a neigh-

Thus, if f is single-valued and analytic in

borhood of the eigenvalue Xi.

a region of the complex plane containing the eigenvalues of A (e.g.,
f(x) = ex), we define
-1
f(A) = HE(J)H (3.8)

where £(J) is specified by (3.7) with g replaced by f.

If £ is multiple-valued (e.g;, £(x) = Vx , or f(x) = log x), then we

define a branch of f(A) corresponding to the similarity transformation H by

_ ~1
fa<A) = Hfa(J)H (3.9)
where
f"‘1 ) O
faz(JZ)
O
ak k
and fu (x) is any single-valued branch of f(x). Notice that different
i ' '

branches of f(x) may be used with distinct Jordan blocks Ji’ and that each
combination of (£ , £ , . . , £ ) will generate a different verston of
: o, o o
. 1 2 Tk
f(A). Furthermore, the value of f(A) may depend on the cheice of H, a

point to which we will have cause to return.1 This definition was intro-

' duced by M. Cipolla (1932)--see also, R. F. Rinehart (1955)--and represents

the necegsary level of generality for a discussion of solutions of the

ﬁatrix eqdation eQ‘= P (P is identified with A in the preceeding discussion).
We now specialize to the case where the'eigénvalues of A are distinct. The

repeated elgenvalue condition, while crucial to a complete understanding of
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embeddability, is more involved mathematically, and will be considered

separately.

I. Distinct Eigenvalues
In this case, the Jordan matrix J reduces to a diagonal matrix D, in
which the non-zero entries are the eigenvalues of A. Analogous to (3.4)

we have
— -1
A = HDH (3.10)

where

Also, the eigenvector corresponding to ki is contained in the i-th column
of H. The foregoing discussion regarding analytic functions of matrix

- argument carries over in its entirety, with the functions of Jordan blocks
f(Ji) replaced by functions of eigenvalues f(xi). In particular, when £ is

multiple-valued, (3.9) reduces to
f (A) = Huf (D)H'l (3.11)
o o

where
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A different version of f(A)Y is obtained from each combination of branches

of (fal, fuz, e far).

This discussion is relevant in the following way to the determination
of embeddability. Ascertaining compatibility of an observed matrix § with
a continuous—-time Markov process requires investilgating whether there exists
an array Q € .Q such that § = eQ. Lacking readily computable sufficiency

conditions for general r x r stochastic matrices, our strategy must be to

compute log P and examine it for membership in Q. Now, the logarithm func-

tion is multiple—valued,l3
log,z = loglz| + i(e + 27k), k = 0,+1,+2, ... (3.12)
where z 1s an arbitrary complex number, z = a + bi; |z| = a? ¥ b2; and

= tan-l”b/a. Each value of k generates a different version of log =z,

called a branch of the logarithm. In general, an infinity of branches will

exist.

From equations (3.11) and (3.12) we have

log,P Hlo gKDH"l (3.13)

14

where

wp O
kl 1

log, X
k2 2

ngKp = , )
O
k.t

Every combination of values of (logk Al, logk Xz, ces logk Ar) in (3.13)
' 1 T

2
Will yield a vérsion of log P, so to determine embeddgbility one must check

whether at least one branch is in Q. An iImportant implication of necessary
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condition 4 in section 3.1 is that only finitely many brénches of log ﬁ
need be checked for membership in Q. It is this feature which makes the
computational tests, described in detail in section 3.3, feasible. Further-
more, in many applications, the number of branches which must be computed
is quite small.

Sylvester's formula. If A is an r x r matrix with distinct eigen-

values kl, A ceas Ar’ and if f is single~valued in a neighborhood of each

2’
of the eigenvalues, then equation (3.8) is equivalent to (Sylvester 1883)
(A - A1)

Ay - Aj)

r
fa) = T f(xi) Il (3.14)

1=1 j#i
In addition, if f is multiple~valued, then (3.14), with f(ki) replaced by

fa (Xi), defines a version of f£(A) for each combination of branches of (fa ,
i 1

fu s ey fa ); i.e., this equation is equivalent to (3.11).
2 r

Example 8:

Consider the matrix

. 3654 3762 .2584
P = .3292 .3567 3141
. 4040 .3188 .2772

which also appeared in example 4, and identify P with A in the above dis-

Q

cussion. In order to solve the equation P = e*, observe that P has distinct

1° 1, AZ = .0531, A

Sylvester's formula, we obtain

eigenvalues A = -,0534. Setting f(x) = log x in

3

1) ® - \DE@ - 2,D)
+ log(),) —— -
3) 2 Ffz. SRR

N ® - AZI)(P - XB
log P = log(),) - —
1 (ll _K?)(ll A

@ - xlx)(ﬁ - 2,0

)

+ log(x3
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-1.805 1.718 .087
= 044 -1.784 1.740
2.262 .017 -2.279

which satisfies criterion (2.2) for membership in Q. In this calculation
we used the prinéipal branches of log kz and log A3; namely, log Az = log(.055)

+ i E; and log A

2 = log(.055) - i I, Any other branch, e.g., log kz = log(.055)

3 2

+ i(% + 27k) for an integer k # 0, would yield a version of log 5 which 1s not

in Q. For a similar reason we use the principal branch of log(xl) = log(l) = O.
An important feature of this example, and Sylvester's formula in general,

is that the logarithm of a matrix Is well defined even when the power series

(2.5) diverges, as it does here. ‘For matrices with distinct eigenvalues Ai

satilsfying |Ai - ll < 1, the series (2.5) is equivalent to the principal

branch solution of (3.14)--k = 0 in equation (3.12). However, Sylvester's

formula is more general in that it will generate all branches of log E as k

is varied.15 Furthermore, it leads to an evaluation of analytic functilons |

of matrix argument as finite polynomials in the original ﬁatrix ﬁ. The trans-

cendental nature of f(é) is incorporated entirely in the coefficlents of

this polynomial, and involves only functions of eigenvalues. In particular,

by rearranging terms, Sylvester's formula for general r-x r matrices (3.14)

can be written in the form

a2 cr-1

£(P@) = cOI + clP + CZP + ..+ c. P

> ‘

in which the ci's are scalar functions of the elgenvalues of P.

II. Repeated Eigenvalues

~ i

When P has one or more sets of equal eigenvalues, the computatiouns to

determine embeddability can be considerably more involved. Unfortunately,

~

even though the occurrence of repeated eigenvalues in an observed matrix P-

would be a rare event, we will have reason to consider adjustment strategies
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which make use of this condition. We therefore outline the main issues
and analytic procedures at thisg point; some elaborations are found in
section 4.2 and in Appendix 1.
It is useful to categorize matrices with repeated eigenvalues accord-
ing to whether or not their elementary divisorsl6 are distinct. Distinct

elementary divisors means that each eigenvalue A, appears in exactly one

i
Jordan block Ji(ki) in equation (3.6). Non-distinct elementary divisors

means that a repeated eigenvalue A, can serve as the diagonal element in

i
more than one Jordan block. The importance of this distinction derives from
the fact that the eigenvalues in a block are constrained to be on the same
branch of a multiple-valued function--i.e., they must have the same value

of k in expression (3.12). Non-distinct elementary divisors therefore

permits different branches of log A, to be present simultaneously in log J,

1
via the presence of Ai in more than one Jordan block. It is this condi-
tion which creates exceptional difficulties in the calculation of log P.
The following propositions and examples outline the computations for the

two multiple elgenvalue cases:

Proposition 1. If A is an r x r matrix with m different eigenvalues

Al, cees Am haviéng multiplicities r vees Lo and elementary divisors

l’
rl r

(- Al) Y W Am) m——i.e., distinct elementary divisors-~and if £

is a function that is single-valued and analytic in a neighborhood of each

of the eigenvalues, then f(A) may be computed via (3.8) or by using the-

equivalent but computationally often simpler formula17

m Y

k
f@A = 3 I ec [f(x ) + (A=A, I)ME'(A) + ...
k=1 s=1 X8 k k k
-1
(A-A I)S r r, -s
k (s-1) _ 3 ean k
+ (s-1)1 £ (Aki] jgk(A AjI) (A kI)

(3.15)



27

where the terms Crg 2re the coefficients in the partial fraction expression

m X .
m r ol g=1 =2 )%
n(x-xk)k k=1 s=1 (A=A )"
k=1

When f 1s multiple-valued, the various branches fa(A> may be found by com—

puting (3.15) for all combinations of branches of (fa s fa s esns fu Y-
. 1 2 r

i.e., fa <v)()\i) replaces f(v)(xi), v=20, 1,..., s-1, in equation (3.15).
i R

With respect to determining embeddability of P, the number of versions of

log P = £(P) which need to be examined is discussed in section 3.3.

Example 9:

Consider the matrix

: .1600 .5300 .3100
P = .0527 <4900 4577
.1100 .1400 . 7500

and identify § with A in the preceding discussion. The eigenvalues of §

are Al =1, and)\2 = .2, with multiplicities rl = 1 and r2 = 2, respectively.
First note‘that both eigenvalues lie in H (figure 1). It is also the case
that the elementary divisors of § are distinct; they are (A~1l) and (A—.Z)Z.

We may therefore solve for all solutions to P = eQ by using equation (3.15)

and setting f(Ai) = log Ai:
. -~ _ ~ 2 ‘A A.-
log P = cll(log l)(P-AZI) + c21(log Az)(P AlI)cP kZI)
) N "
Fe (P - {
+ czz[;&pg %2) I+ AZ(P AZI{](P xlI) 13.16)

Selecting the principal branch of the logarithm for each eigenvalue, the
first term in expression (3.16) disappears since log 1 = 0. From the remain-

ing terms, we obtain
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-2.046 1.993 .053
.315 .043 -.358

As in the previous example, we could have chosen some other branch of the
logarithm function, log .2 + 2wki, for an integer k # 0. However, (3.16)
would then produce matrices with complex entries, ané these have no mean-
ing in the context of Markov models (i.e., they are not in Q).

Q

Proposition 2. All solutions of the equation e* = A are called branches

of the logarithm function of A, and they are given by (Gantmacher 1960,
pp. 239-241)

1.-1

Q = logA = HB log JB "H (3.17)

where
(i) H is any non-singular matrix which reduces A to Jordan form,
A = HIE L,
(11) B is an arbitrary non-singular matrix that commutes with J,

i.e., BJ-JB = 0.

(1i1)

log J

where



' Vj—l
-1 1 -1
log Aj . Az . .». . vj—l
J j Y (vy-D)!
vj—Z
- 1 (G29)
log Jj = 0 log A . . —
i v, (v,
J J
0 0 0 .. . log ),

log Aj = log |Aj| + i(arg Aj + 27k), k 1s an integer, and vj = multipli-

city of Aj in the elementary divisor (A—Aj)vj. |

Ifhthe elementary divisors of A are distinct, then B may be replaced
by the didentity in (3.17) and log A is independént of the choice of H., It
ié'this property which permits the simpler representations (3.14) and (3.16).

When the elementary divisors of A are non-distinct, computation of all

versions of log A requires a knowledge of the matrices B which satisfy

BJ-JB = 0. These matrices contain a finite number of parameters, each of
which can be an arbitrafy complex number. Every product'HB represents a
similarity transformation which reduces A to Jordan form and, at the same
time, generates a distinct version of log A. This leads to uncountably

many versions of'log A, and there may, in fact, be a continuum of such
matrices, all 6r part of which is in Q. It is precisely these matrices with
ﬁon—distinct elementary divisors which prevent the development of simple
general solutions to the embedding problem. In any other situation a
researcher need only compute polynomials in § to evaluate log E, and test

a finite number of branches of the logarithm for membership in Q.
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Example 10:

Consider the matrix

1+2X 1-X 1-X
P = 3 1-X 142X 1X (3.18)
1-X 1-X 1+2X
where X = _e—2¢§n , and identify P with A in the preceding discussion. The

eigenvalues of P are Xl = 1, and AZ = A, = X; the elementary divisors are

3
(A>-1), (A-X), (A=X), which are non-distinct. Consequently, the Jordan

matrix associated with P is

Jl 0 0 1 0 0
J = 0 J2 0 = 0 X 0
0 0 J3 0 0 X

Also, a gimilarity transformation H such that P = HJH—l is given by

1 1 1
"= | 1 2(-1+1/3) (-1-1/3 (3.19)
1 %(—1—1/5) %(-l+i/§)

In computing log P = Q choose log Jl = log 1= 0; log J2 = log X =

-2/31 + ix; and log J, = log X = -2/31 - ix. Now, formula (3.17) with

3
B = I, the identity matrix, yields

-2 1 1

3 2 6

~ 1 2 1
log P = 2n/3 2 -3 > (3.20)

1 1 _2

2 6 3

which belongs to Q.
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’ ’ A - .
To manufacture other versions of log P which are also in Q, observe

that the matrices which commute with J are all of the form

a 0 0
B = 0 ey (3.21)
0 €1  C22

where {c,,} and a are arbitrary complex numbers subject only to the restric—

13
tion that B be invertible. For log P to be in 9, we may limit consideration

to matrices B with entries satisfying,

(1) eqp ey 7 €1 8 = O )

11 S0t Cqp G T 209y

€11 S22 T ©12 ©21

(1i) u is real, where u

(3.22)

11 S22 T 19 Sp1 7 251 Sy >

Vv is real, where v . o e e
11 722 712 21

and

2 N

Conditions (i) and (ii) guarantee that log P will be real valued, while

(111) |u] <2 - and |v]

IA

‘(iii).ensures that the entries will satisfy criteria (2.2). Each choice

} then yields a version of log P which is a ﬁember of Q, and they

of‘{cij
are all given by
log P = HB log J g iyt
S U
= w3 '% -5 - %’“ (“IZ) %‘+ 53%51 (3.23)
R Bl

The matrix (3.20) arises in the special case where c;; = ¢,, = 1,
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c = 0, and thus u = v = 1. The non-zero constant a in matfix B

12 - %21
does not enter into the formula for log §‘because it can only multiply the
first row of log J, all of whose entries are 0.

With this example at hand,18 some remarks concerning the role of such
matrices in social mobllity studies are in order (these comments will be
elaborated upon in section 4). If the primary purpose of an investigation
is to obtain structural information about the propensity of individuals in
a population to move between particular states, then our major concern must
center on the possible values of qij/-'v_qii for i # § in branches of log § = Q
which are in Q. These ratios have the interpretation, "propensity to move
from state i to state j when a change in state occurs." The Eontinuum of
branches of log § which are given by (3.23) represent a continuum of pro-
pensities to move between states, all compatible with the observed matrix

A

P. TFocusing on mobility out of state 1 in (3.23), we see that

0 < a2 _ M3tuwe _
- -qll 2/3 -
and
o < a3 _ 1/3-u6 _

~

Thus, on the basis of observations at two time points which give rise to P
given by (3.18), we cannot even say whether individuals who start out in
state 1 tend to favor state 2 or state 3 when they move. Clearly, this
situation is totally uninformative about the underlying mobility mechanism,
and the present example thereby serves to highlight the unusual difficulties
which can arise in the case of ggpeated eigenvalues with non-distinct ele-

mentary divisors.
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3.3 Summary of Steps to Determine Embeddability

I. Distinct Eigenvalues

A

The most common eigenvalue configuration for P, an empirically deter-
mined stochastic matrix, is one in which the roots are distinct. In test-
ing log § for membership in Q, we therefore start with this case.

Step 1. Check that the necessary conditions (1), (2), and (3) in
section 3.1 are all satisfied.

Step 2. Check the eigenvalues of E for membership in the heart-shaped

zone Hr described in section 3.1. If this test is passed proceed to steps

3 or 4.

A

Step 3. If the eigenvalues of P are all real and positive, compute
log § using.either the power series (2.5), Sylvester's formula (3.14), or
the diagonalization transformation (3.11). Only the principal branch of
the logarithm (k = 0 in equation [3.12]) will be real-valued, and‘any of

the procedures will yield the unique version of log P that can possibly

be in Q.

~

Step 4. If P has complex eigenvalues they must occur in conjugate

pairs. For each such pair (A,K}, determine all branches of their logarithms

which satisfy:Runnenberg's conditionm,

1.1 3 _1
ﬂ(z + r)' < arg(logk A) < n(z r) (3.24)
where r = order of matrix P, arg(logk A) = tan—q'(f%fig%?ﬁ , and k speci-
fies a branch of logk A according to
logk A= log p + i(6 + 2mk); k= Q, i“l:‘i 2, veey, 008 <1

(3.25)

Now select one of the branches for each complex conjugate pair, and compute
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log E via (3.11) or by using Sylvester's formula (3.14). Check the result-
ing matrix for membership in Q. Repeat this calculation for all branches
satisfying (3.24). Clearly, there are only a finite number of such compu-
tations to be performed, and they will yield all versions of log ﬁ e Q.

In particular, if we represent a palr of complex conjugate elgenvalues
(X,X) by (peie, pe_ie), 0 <p<1landO <6 <m, then the number of branches
of log X which need to be examined in testing log ﬁlfor membership in Q is

U(x) + L(r) + 1, where

L1y . )
U(r) = dinteger part of (log p)tan[“(z_t_r)] 8
2q
? (3.26)
3 1
L(r) = dinteger part of (log p)ta?EE‘Z - r)] - ®
2 J

and r 1s the order of the matrix.zo U(r) specifies the upper bound to +k,
and Lr) the lower bound to -k, with respect to the multiple-valued logarithm
function (3.25). Since the computation of U(r) and L(r) is to be performed
for each pair of complex conjugate eigenvalues of §; the number of versions

v

of log P that must be examined is T [U
3=1

(r) + L,(r) + 1}, where v, the upper

3 3
limit, denotes ﬁ's number of complex conjugate eigenvalue palrs. fhe value
of this product will usually be small (frequently Uj(r) = Lj(r) = 0 for
most j's), In section 4.2 we indicate why it is especially rare. for a branch
other than the principal branch of log § to be in Q when the matrix is of
low order (r < 3). In larger arrays, however, one might have to examine

multiple versions of log P to determine embeddability.

II. Data Noise and Repeated Eigenvalues

v
1
I

Because our data are commonly contaminated by the effects of sampling

variability and measurement error, one cannot be certain that an empirically

determined matrix P is the correct transition matrix for the population of
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interest. As a consequence, if the preceding caleulations indicate that

~ ~

P is not embeddable, but the violations in log P are not severe, a researcher
should consider adjustiﬁg the observed matrix to a nearby ;.which 1s embed-
dable, and continuing his analysis with the modified matrix. Strategles
for making such an adjustment usually operate on log §, perturbing 1t to a
~ Qo o~

matrix Qo e Q, and then estimate P, the modified array, via e ~ = P.

There are several procedures for altering log ? so it will satisfy
a priori chosen conditions, such as membership in Q. Zahl (1955, p. 98)
suggests setting the offending elements (negative qij's, i+4 3, in the
present context) to zero, and modifying the main diagonal entries so that
the row sum con&ition, ? qij = 0, will be satisfled. Coleman (1964a,‘
pp. 178-180) uses an iterative routine which forces selected qij elements
to zero in the computation of log ﬁ, thereby smearing the compensatory
adjustments over the remaining non-zero entries. 1In exampie 11, we 1llus-
trate the adjustment process using yet another procedure, one which mini-
mizes the sum of squared differences between log‘§ and Q e Q. . General
recommendations regarding wﬁich of the ﬁechniques is advantageous in a
particular problem are currently being prepared.

Example 11:

Suppose you observe the matrix

.600 .330 .070
P = . 302 560 .138
. 380 .040 580

which also appeared in example 3. This matrix haé eigenvalues Al = 1,

A, = .370 + .0L14, A, = .370 - .011i. Applying Runnenberg's condition in
the form (3.26) we find that U = L = 0; hence only the principal branch of.
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the logarithm needs to be examined for membership in Q. Calculating this

branch,
e 692 a639 1053
log ? = .496 -.733 .237
0707 _cll,'l" _0563

which is not in Q since (log P)32 = ~,144 < 0. This raises the question
of whether a small'perturbation of P would yleld a logarithm in Q. To this

end we determine the nearest intensity matrix Q0 to log P, and check whether

Q

or not e ° represents a "small perturbation" of P. The notion of "nearest"
will be defined by min||log P - QI[ where |]A-B|| = //Z'(a - b )2.
ij ij
QeQ 1,3
In the present example, the minimum is obtained for
-.692 .639 .053
Q° = 496 -.733 .237
.635 0 ~-.635
Qo ~
Calculation of e ~ = P yields
M .598 .334 .068
P + (small perturbation) = P = .298 .568 134
.349 .104 547

A

and a case might now be made that P was not embeddable‘only because of
sampling error or other data noise. To conclude that the substantive process
actually is Markovian with Qo as the governing intensity matrix, tests of

the sort described in section 5, based on 3 or more time points, must be
passed.

Repeated eigenvalues. From a computational point of view, the notion

of repeated eigenvalues means that they agree to within a prescribed finite
number of digits. If you take a large random sample of stochastic matrices,

then those matrices with repeated eigenvalues tend to occur with a frequency
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close to zero. On the other hand, the eﬁtriés iﬁ § &hich arise in mobility ‘
investigations are often subject to considerable sampling variability and~
other sources of error. Our concern, therefore, is in knowing whether a
small perturbation in §, call it 52 would lead to branches of log glwhich

are radically different from those of log P. These radical differences can

.occur in passing from a distinct to a repeated eigenvalue matrix, which in

turn can be viewed as being "within error distance" of the original distinct
eigenvalue matrix. This suégests that a distinct eigenvalue matrix ﬁ which
is compatible with a Markov model and which has a pair of eigenvalues within
a prescribed number of digits of each other, should be perturbed to a ;
with repeated eigenvalues. Then the structure of the continuum should be
displayed as in example 10. If the branches of log Slwhich are in Q are

sufficiently varied, this would lead us to report that our observations P

based on data collected at two time points a;é uninformative about the
underlying mobility mechanism.

The additional tasks to be undertaken, then, in a situation where P

has eigenvalues which are close to being repeated consist of carrying out
I

the following procedures:

Step. 5. Adjust the observed stochastic matrix P so that it will
have repeated eigeﬁvalues. |

Step 6. Determine the .structure of the continuum using the simula-
tion strategf described in Appendix 1, and check whether some part of the
continuum is in Q.

The task of adjusting P so it will have repeated eilgenvalues is not
&ifficult in the case wheré the eigenvalues close together are complex

conjugates. Fortunately, it is this situation which is of primary practicai
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interest. If we represent these eigenvalues in polar form, (A,K} = (peie,
pe_ie), 0 <8 <mw, where 6 & 0 or 6 o v, then the corresponding eigenvalues
in log ; are log p + 1(6 + 21k). We now want to alter £ so”that one of the

approximate equalities is replaced by an exact equality. For a scalar t,

t log P = Ht log DI—I—1 will have among its eigenvalues t log p + 1(t6 + 2mwkt).

_ _ 2uk - o T+ 21k
Therefore, 1f we choose t = tl = ek + 6 °F t t2 o F 2rk where k is

. v » R
the largest branch number21 that satisfies (3.24), the matrix P ef log P

5

by gomk F1 -1k
e s P e )= (0 7,

will have répedted real eigenvalues, either (p
t t

(=p 2, ~p 2). This technique is

t

t t .
o1y or (o 261T(@eHD) T2 mim(Zitl)y

called "riding log P." It was employed in example 2, and it is applied

again in section 4.2.

4. MULTIPLE SOLUTIONS OF P = eQ

4.1 Conceptual Overview

The tests outlined in the preceding section pemrmit é regearcher to
ascertain whether or not an empirically determined matrix é(tl)? constructed
from observations at time$ t=0 and t = tl, is compatible with a continuous-
time Markov process. When the answer is affirmative, at least one version
of log ﬁ(tl) will be in Q. In general, as we have observed, it may be
necessary to examine several branches of log E(tl) to resolve the question
of embeddability. For instance, when ﬁ(tl) has complex eigenvalues, each
complex conjugate pair will generate U + L + 1 candidates for membership
in Q.

In discussing the tests in section 3 our objective was to investipgate
embeddability; we sought to determine whether any of the log §(tl) candi-
dates‘was, in fact, a bonafide member of Q. In the present section, we

shift emphasis and inquire into how many versions of log ﬁ(tl) can belong
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to Q. Stated technically, we wish to compute the number of different
. Qt

solutions Q to the equation e = P(tl) which have the required structure

(2.2). 1In the discussion that follows, we shall assume P(tl) is embeddable;

i.e., at least one version of the logarithm is in Q.

Under certain conditions it 1s possible to guarantee that this solu-
tion Q ¢ g will be unique. In particular, this is the case whenever one

of the following sufficiency conditions is satisfied:

(1) The eigenvalues of P(t,) are distinct, real, and positive.
1

(11) min{p,, (£t} >-L, where p,, (t;) is the diagonal element in the
1 i1t 2 s TR

i-th row of P(tl).

(11i) det B(t;) > e = .0432
The first criterion derives from the fact that only the principal

branch of log P(tl) is real-valued under the indicated eigenvalue constraints.

Also, in this circumstance, the agsessment that Q = %?—log P(tl) € Q will
B

be unique is independent of the cholce of tl’ since the eigenvalues of P(t)
generated by such a Q retain the specified properties for all times t.
Additionally, when the eigenvalues satisfy (1), the series formula (2.5)

will converge to the unique version of the logarithm in [+ R

The second and third criteria were established by i; Cuthbert (1972; .
1973), and refer to the specific times t in the evolution of P(t) = th at
which the solution Q e Q will be unique. For the purpose of model identifi-
cation, conditions (i11) and (iii) reveal that every Markov chain (identified
by a matrix Q € Q via the relation P(t) = th) has an interval of time
[O?T] during which only one version of log P(tl), 0 < tl < T, is in Q.

[The location of the uniqueness interval at the origin follows from the
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fact that L(t), the number of branches of log P(t) in Q, is a non-decreasing

function of time-—-see figure 6, section 4.2,]

These comments suggest that in planning an observational study where
Markov models are to be utilized for identifying non-directly observable-
mobility mechanisms (Q-matrices), it is advisable to take the first two
observations as close together as possible, while still allowing a repre-
sentative amount of movement to occur. The question of what constitutes an
appropriate time interval i1s clearly tied to the nature of the particular
substantive process. The point to be highlighted here is that because of
the complications which arise when there are multiple solutions, this sort
of consideration is consequential in developing sampling strategles for
situations where the number of time points at which data can be collected
is very restricted.

Except when one of the special conditions (i), (ii), or (ii%) is satis=-
fied, it is possible for several branches of log §(t13 to be in Q. This
non—uniqueness phenomenon, illustrated in the examples below, has received
very little attention in scientific disciplines (physics, engineering, soc-
iology) in which Markov processes are frequently utilized., Nonetheless,

B i Lk . - . R ¢) - ~
the existeneé of multiple soldtions Q € Q to the equition e 1. P(tl) is
not at all uncommon.

Example 12:

Consider the emplrically determined matrix

.234 <252 . 264 +250
P(tl) - .252 «237 | . 245 .266
.268 <255 .230 <247

.248 .271 248 .233
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Qt
This array can be represented in the form e » Qe Q, with elther of the
matrices
-3.350 .134 .067 3.149
L = 3.132 -3.306 144 .030
1 .035 3.233 ~3.395 127
.137 .033 3.149 -3.319
or
~3.329 3.312 .005 .012
e = .033 -3.337 3.209 .095
2 016 .023 ~3.334 3,295
3.294 .050 .027 -3.371

From the perspective of uncovering structural mechanisms, the matter
of identifying the '"correct" Q for an empirical process must be a centtral

consideration because the alternative intensity matrices consistent with

the mathematical formalism P(tl) = a 1 will lead to different substantive
conclusions. If only the branch %fiog ﬁ(tl) = Q1 were reegovered, one would

assert that the most frequent transitions are Sl -> S4, 82 > Sl’ S3 + Sz,

;nd SE +WSSJ In contrast, if only the branch %—1og P(tl) = Q2 were computed,
1

one would contend that the process evolves principally through the following

pattern of movements: S1 > 82, S2 - S3, 33 -+ 54, and S4 -+ Sl. Since in

applications of continuous-~time Markov processes attention has been directed
to the relative magnitudes of the qij'entries, and to apportioning these
elements among theoretically specified effect parameters (e.g., Coleman
1964a, chap. 6; McDill and Coleman 1963; Bartholomew 1973, chap. 5), identi-
ficatioﬁ of the appropriate intensity matrix would appear to be a neéessary

initial step in this sort of analysis.
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This task may be divided into two component issues: (a) recovery of

Qt ~
Leriey,

allumatriééé Q € Q that are compatible with: the .representation e
and (b) selection from this list of alternative Q-matrices the correct one
for the empirical process at hand. Procedures for accomplishing the first
task are presented in the current section. The second issue can be resolved
either by bringing additional substantive information to bear on the nature
of the process to aid in choosing among the alternative Q-matrices, or by
collecting data at more than two time points, or by sampling the population
over a briefer time interval (e.g., within the region of uniqueness). These

matters will be considered in section 5.

4.2 How Multiple Versions of lggﬁ?(t) e Q Arise

The simplest way to describe how multiple matrices Q € Q originate is
to consider the case of a general 3 x 3 stochastic matrix P(t) which has
complex eigenvalues. Expressing this matrix in diagonal form we have,
P(t) = HD(t)H_l. For convenience we write the complex eigenvalues of &

P(t) as exponentials,

1 0 o0 1 0 0
p(ey = | 0 Ace) 0 - 0 tlathl) 4 (4.1)
0 0 D 0 o ef@PL)

where A(t) denotes the complex conjugate of the eigenvalue ., A(t). Then,

log P(t) = H IogDﬁu)'H_l, in which

0 0 0
log D(t) = 0 at+i (bt+2rk) 0 s k=0,+ 1, + 2,...
0 0 at-1(bt+2rk) (4.2)

We specify b > 0. Also note, for reference, that because 'A(t)l < 1 for

all t, at = log [A(t)]| < 0.
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Applying Runnenberg's necessary condition for embeddability (3.24),

we have
5m ~-1{bt + 21k 7 _
6 < tan ( s ) < 5 k=0,+1, +2,... (4.3)

where the inverse tangent specifies arg(log A(t)) in (3.24). For a fixed

t, we therefore have a series of tests, one for each integer (branch) k.
The point to be emphasized here is that since every branch of log P(t) whose
eigenvalues satisfy (4.3) 1s a candidate for membershiﬁ in Q, more than one
version of the logarithm may, in fact, be in Q. It is also the case that as
t increases, and P(t) evolves to the equilibrium matrix of the process, the
number of branches of log P(t) that are potentially in Q becomes larger.

These phenomena are 1llustrated in figures 4 and 5.

Figures 4 and 5 about here

Figure 4 displays the locations of various branches22 of the eigen-
values log A(t) = (a + bi)t + 21k, t = 1, in relation to Runnenberg's cri-
terion. The wedge-shaped region (solid lines) defines the boundaries of
this necessary condition for embeddability--all eigenvalues of log P(t) must

Alie in the zone. In this illustration, only the princiﬁal branch (k = 0)
is 1o§ated in the wedgé-shaped region; other branches of the logarithm,
| which differ by multiples of 27 in their imaginary pafts,.lie outsidé the
wedge.
Now consider the effect of letting t increése. With regpect to the
principal branch of log_k(t), tan—l(giﬂ = tan-l(b/a) and hencé the argument

of the logarithm is unchanged. With regard to any other branch k > 0, since

bt + 21k _ b+ 2mk/t . b+ 2wk
at a a
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Figure 4. Eigcnvalues’of log P(t), for t =1

Im (/e#g)\({:))

sm/e

L) Re (fog )

1
The pair of crosses closest Lo the negative real axis depicts the principal
branch of the logarithm, log A = a + bi, The pair next further out represents

the branch for k = 1, f.c. log A = a t i(b 4 2n). And so forth,
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Figure 5. Trajectories of the Eigenvalues of log P(t), as a function of time

T (Log M)

Re(Le4 Mf):)

The dashed lines with arrowheads show the trajectories of the branches of

lo.;,; )\(t); as a function of t,
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(the inequality follows because a < 0), and since tan_lx is an increasing

function of x in the second quadrant, we have
arg(at + i[bt + 2mk]) = tan-l([bt + 2rk]/at)
> tan—l([b + 2rkl/a) = arg(a + i[b + 2wk])

This calculation shows that the angle made by a branch of the logarithm

(k > 0), with respect to the positive real axis, enlarges with time. As
a_result, additional branches enter the wedge, and the number of versions
of log P(t) that are candidates for membership in Q increases. This pheno~
menonAis,illustrated in figure 5.

If we let L(t) = {number of branches of log P(t) ¢ glgiven t}, the next
relevant considerations are: (i) L(t), itself, is a monotone non-decreasing
function of t (except, possibly, for isolated time points), and (i1) if
L(t) > 1 at some time t (other than one of the isolated time points), then
L(t) + ® as t - » (Cuthbert 1972; 1973). The graph of L(t) in figure 6 is
the prototype for the evolution of any Markov chain where Q has distinct
eigenvalues and at least one complex conjugate pair. At times t = w/b,
2r/b, 37/b, ..., nm/b, ..., the complex conjugate eigenvalues of P(t) will
equal explann/b + i(ar + 27k)], n =1, 2, 3, ... and k=0, + 1, + 2, ... .
This expression reduces to one of the multiple real root conditions, either
Az(t) = X3(t) = exp(ann/b) or kz(t) = A3(t) = —exp (ann/b), according to
whether n 1s even or odd. The point to be stressed is that at these times
P(t) = th has repeated eigenvalues with non-distinct elementary divisors,

which will give rise to a continuum of branches of log P(nm/b).

Figure 6 about here

From the point of view of model identification--determining the correct

Q e Q for a substantive process--these times are a source of difficulty
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Figure 6. Number of Branches of log P(t) in Q, as a function of time

5 -
2 -
l
I T I >
0 . aTr 37 time,
b b b
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because their locations are a.priori unknown.  Knowledge of log ﬁ(tl) Where
ﬁ(tl) has the same structure as P(aw/b) in the preceding illustrétion, can
be useless for making statements about the propensity of individuals to
move between particular states.23 If many observations in time are allowed
in a particular study, we could prepare sampling plans for model identifica-
tion which would be relatively uninfluenced by this phenomenon. With
obéervations at 2, 3, or 4 time points being a constraint in most studies,
however, a single uninformative matrix %(ti) can make a consilderable differ-
ence in the available information for identifying the Q-matrix underlying
a substantive process.

With general r-state matrices, the preceding discussion is complicated
by the possible presence of more than one pair of complex conjugate eigen-
values. The graph of L(t) (figure 6) would then be altered in two ways:
First, there are additional isolated time points at: which L(t) = + «. These
correspond to the instants at which the édded complex eigenvalues Have zZero
imaginary parts and become repeated real roots. Second, the rise in the
step function can be much steeper. This is because the wedge-shaped region
(figure 4), which determines the number of branches of log A(t) that can

generate candidates for membership in Q, widens as a function of r, the

order of the matrix. This phenomenon is illustrated in figures 7, 8, and 9.

Figures 7, 8, and 9 about here

Figure 7 displays the wedge-shaped zones for general 3—state and 6-state
matrices; the respective angles made with the positive real axis are deter-
mined by the inequalities (4.3). From the illustrative representation of
an eigenvalue of log § and its complex conjugate, we see that while only the

principal branch lies in the wedge for 3 x 3 matrices, two additional branches

would be candidates for membership in Q if this same eigenvalue belonged to
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Figure 7. Runnenberg's Wedge Criterion, Illustrated for 3x3 and 6x6 Matrices,

for t = 1

Im (fog %(t))

- Re (Léj )\('t)\)'
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. A A
Figure 8¢ FEigenvalue Reglons of P in which Two Versions of log P are Candldates

for Membership In 2’ for 4x&, 06x6, 12x12, and 20x20 Matrlcesl

""1 -0"“—

1 A
Each eigenvalue of P that is interior to the curve relevant to its size will

penarate at least two logarithm candlidates for memberahip in Qe
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A
Figure 9. Figenvalue Reglons of P in which Multiple Verslions of log 3 are

Candidates for Membership in Q, for 20x20 Matrices

Im A

"'1 -0"" '

. A - A .
All ei_.p,envnlues of P wmust lie in the region "20 for P to be emboddable. 1f an

A
efpenvalue {s interior to a k-curve, it generates [k| + 1 versions of log P

whiclh may be in Qe
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the larger array. It is this fact, together with the presence of addi-
tional complex conjugate elgenvalues to generate candidates for membership
in Q, which prompted our remark in section 3.3 to the effect that the number
of branches which must be checked for embeddability increases directly with
the order of«ﬁ. In the context of the present discussion, we emphasize that
the computations -are more likely to prodﬁce multiple versions of log ﬁ e Q
in large-order arrays.

Figure 8 presents the same information as figure 7, but from a'differ-
ent perspective. -The preceding plot depicted.the constraints on the branches
of.the'eigenvalues of ;gg;ﬁ, as they relate to eligibility for membership in
Q. In figure 8 we display the conditions on the eigenvalues of EJ in the
case of 4 x 4, 6 x 6, 12 x 12, and 20 x 20 matrices, for 1t to generate at
least twé candidates for membership in 3. We thereby see in a more direct
fashion how the constraints are relaxed as the matrix size is _increased.z4
Finally, in figure 9 we show the restrictions for different numbers of
logarithms to be eligible for membership in g, in tﬁe particular instance of
a 20 x 20 array. The outer, heart-shaped region, labeled H20’ is a graph of
Runnenberg's necessary conditions: &all eigenvalues of ﬁ must lie in this
zone for the matrix to be embeddable. The interior curves delineate the
regions in which an eigenvalue of § will generate multiple branches of log §
that can be in Q; for instance if some eigenvalue Aj.lies interior to the

curve labeled "k = -1," then each of the two branches of its logarithm,
log 2, = a+bli and log Aj' = a+ i(b-2m)

will generate versions of log P which must be examined for membership in Q.
The most severe form of non-uniqueness of log P(tl) occurs for Markov

chains P(t) = éQt having real eigenvalues which remain repeated for all
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t > 0 rather than separating into complex conjugates, as was the caée iﬁ
the preceding discussion. The transition mechanisms associated with such
chalns are by no means pathological from a substantive point of view, and-

the prototype of this phernomenon is illustrated in the following example.

Example 13:

Consider the matrix

L40e=3t/2 1-e~3t/2 1-e~3t/2 |
P(t) = %- l-e“Bt/2 l+2e--3t/2 l—-e-st/2 ' (4.4)
1-a=3t/2 1-e~3t/2 1420372

where t > 0. P(t) has eigenvalues 1, e_3t/2, e-3t/2 (which are repeated

irrespective of the choice of t), and non-distinct elementary divisors (A1),

—e—Bt/z), (A-e_Bt/z). Note that this is the matrix of example 10 with

-3t/2

(A

X=e

From the discussion of repeated elgenvalues with non-distinct elementary

divisors (section 3.2 II) we know that all branches of'% log P(t) may .

be computed via

Liog B(t) = < HB log 3(t)E H T | (4.5)

where H is any similarity transformation that reduces P(t) to diagonal form
(e.g., equation 3.19), B is a matrix with complex entries (3.21) which

commutes with J(t), and log J(t) has the form

0 0 0
. . -3t &Y
log J(t) = 0 5t 2mki 0 - (4.6)
0 0 —"-23—‘:— - 2mki

in which k = 0, + 1, + 2, ... specifies branches of the logarithm.
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We ﬁow describe how a continuum arises in this eigenvalue condition.
The first time that tﬁe complex eigenvalues in (4.6) satisfy Runnenberg's
condition (4.3) with k # 0 occurs at t* = 4w0§. Before this time only the
branch k = 0 of log J(t) will be in the wedge-shaped zone (figure 4). It
can be checked that when k = 0,Blog J(t) = log J(t)B, and therefore equation
(4.5) .reduces to %-H log J(t) H—'l for every matrix B. This means that at

most one version of %-log P(t) can be in Q. Indeed,

11
L7 3
1 1 1 - ;ég?
Q = T log P(t) = 7 -1 0l for 0 <t <V 3 4.7)
11
7 3 1

: An :
*
When t > t = Vv 3 a second branch of log J(t) in (4.6) enters the wedge-

shaped zone (see figure 5). In this circumstance, it is no longer the case
that B lbg J(t) = log J(t) B, and a continuum of versibns of-% log P(t) will
be generated, each version corresponding to a choice of {cij} in B (equation.

3.21). A bit of computation will show that if {ci } are restricted accord-

3

ing to
(1) e11649 = 9989y =0
1189 * ©12%1 1 2251999
€11%2 T ©12%21

(i1) u is real, u

“11%2 * 12%1 T 2915
€11%2 T %1221

v is real, v

(1i1) |ku| < V3t/4n and |kv| < SBt/bn

where k is an integer (the branch number), then all choices of {cij} will

yield matrices Q ¢ Q, and they are summarized by
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1 1, 2knyu 1 _2kmu
2 J3 t 2 3 t
‘ 4r
- 1 - L _2Zkm v _q, - Em o fuy 1, kr (utv) for t > —
!'_+_2_1§_1LY. }-2__1}_'”_ "Ht-v _l+_151 UZV
2 5t /3 3

(4.8)

The graph of L(t) vs. t for this Markov chain is shown in figure 10.
From the point of view of model identification, the second obse;vation tl must
be taken befére t* = 4w//§ . After this time, a repeated observation will
yield the matrix (4.8) which is completely uninformativelabout the propensity
to move between different states. . The fundamental difficulty illustrated
by this example 1is that empirically determined matriceslwith non-distinct

elementary divisors in which this property is retained through time may be

associated with a continuum of intensity matrices for all times_tl greater
*
than some threshold t . To distinguish this "essential" continuum case from
2m

. T
the chance occurrence of an "isolated" continuum (viz. the points TR

%1 ,..'in section 4.2) a researcher should check whether the eigenvalues of

P(tl + At), some At > 0, are repeated with non-distinct elementary divisors

when his initial matrix P(tl) has these properties.

Figure 10 about here

4.3 Summary of Correspondence between Eigenvalue Gharacteristics and

Number of Matrices Q € Q

The number of versions of log P that can possibly be in Q, as this
relates to the eigenvalue characteristics of P, is summarized in table 1.

~

The left tab of the table refers to a single eigenvalue of P or to a set
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~
Figure 10, Number of Branches of log rP(e) € 0 as a Function of time,

for P(t) in Example 13

L(t) H -

'Z._
i —~
T -
0 4T time
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of eilgenvalues sharing a common property (e.g., complex conjugates). The
evaluation in column 3 assumes that embeddability is met, 1.e., at least
one version of log £ is in Q. Im making this evaluation, it is also pre-
sumed that the remaining eigenvalues of § do not satisfy a condition which
is compatible with a greater number of candidates for membership in Q3 for
instance, all eigenvalues must belong to categories (1) and (2) in ?rder to

conclude, on the basis of an examination of eigenvalues alone, that at most

~

one version of log P is in Q.

A second point to be noted in connection with the table is that the
elgenvalue conditions which rule out embeddability do sc by not being com-

patible with a real-valued version of log P. TFor example, if P has a unique

negative eigenvalue, A = -&.(a > 0), its logarithm will be log a + ikr, k = O,

+1, +2, ..., which always has a non-zero imaginary part. The correspond-

1

ing eigenveqtor'h in the similarity transformation P = HJH ~ will be real-

valued (since ) = —-a is distinct and real), and log % = H log JH--1 will have
the identical eigenvector corresponding to its complex eigenvalue. There
1s no way in which log § can be real-valued in this circumstance. What
alters the éituation in the case of repeated negative eigenvalues with even
multiplicity is that when the elementary divisors are not distinct, the
elgenvectors corresponding to the repeated eigenvalues will be complex con-
jugates, and real versilons of log ﬁ can result. In particular, this will
occur when different bfanches of the logarithm of ~a are present simultan~
eously iﬁ log D.

' Finally, we emphasize that the eilgenvalue configuratioﬁs most commonly
found in empirically determined matrices involve combinations of distinct

~ positive and distinct complex conjugates, i.e., categories (1) and (7).
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Table 1 about here

5. TESTING STRATEGIES

5.1 Identification of Structural Parameters

We assume first that the process under obser&ation is time-stationary,
that the data are free of measurement and classification error, and that the
entire population has been surveyed so sampling variability 1s not a concern.
These assumptions have also been made, though without being noted explieitly,
in the preceding sections. In this environment, the identification problem
arises wheh observations are taken at.only two time points (t = 0, t = tl),

and the matrix P(tl) constructed from these observations can be represented

A Qt
in the form P(tl) = e 1 for multiple arrays Q ¢ Q. A researcher then has

the following options:

(1) He'may bring to bear other information about the substantive
process. For instance, if §(tl) were the matrix in example 12, a researcher
might have reason to believe that 45 > dy4 and therefore Q2, not Ql’ governs
the evolution of the process. Clearly, such a cholce can be made only when
there 1s a finite list of intensity matrices, and not when a continuum is
present.

(i1) If an opportunity exists tobcollect data at a third time
point, it shouid be selected so as not to be an iInteger multiple of the ini-
tial interval (0, tl). The reaéon is because at multiples of an observation
interval the same list of Q-matrices can reéppear; this was the case, for
instance, with the times n/b, 2n/b, etc. in figure 6. If, however, the third
observation is taken at t2 # ktl, k an integer,25 then even in the presence
of multiple_branches of lég'ﬁ(tl, t2) € Q, only one version of tﬁe logarithm,

Qo’ will have the property
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TABLE 1

Eigenvalues of P and the Number of Matrices Q e Q

Eigenvalue Characteristics Embeddable? , How Many Q's?
1. positive, distinct ‘ possibly one
2. positive, repeated, distinct possibly ‘ one

elementary divisors

3. positive, repeated, non- possibly one or continuum
- distinct elementary divisors

4, negative, distinct never -

5. mnegative, repéated, odd never -
multiplicity

6. negative, repeated, even possibly continuum
multiplicity

7. complex, distinct, member of possibly one or multiple
a conjugate pair

8. complex conjugate, repeated possibly one, multiple or

continuum
9. mixture of the above types possibly | the most extreme

form of non-
uniqueness present
in any component
of the mixture
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1

1 £ty

Q = -%— log P(O, tl) = E(t (5.1)

o 1’ t2)

This corresﬁondence will identify the unigue'Q that can be associated with
the empirical process.

There is an additional virtue in collecting data at three or more time
points. The embeddability problem concerns only the question of compati-
bility of a single stochastic matrix.g(tl)——i.e., observations at two time
points--with a continuous-~time Markov process. We have seen that on the
basis of this information alone it is frequently possible to rule out a
Markov structure. However, when data are available from more than two time
points, a direct test can also be made of the fundamental dynamic assumption
of a first-order Markov process, namely that the futﬁre state of the system
depends only on current state, not on its history; These additional neces-
sary conditions are specified by tests of the sort

1;(1:1, t) = I;(ti, tj) I;(tj, By 0 <ty < tj <t (5.2)
The availability of data at three time points provides the most rudimentary
opportunity to check this assumption. Formal statistical tests of the validity
of the Markov property are described in Anderson and Goodman (1957) and

Billingsley (1961).

Study design considerations. The potential for non-un;queness can be
minimized at the study design stage. If the use of Markov models is con~
templated, the survey times should be chosen close together in time, while
still permitting a representative amount of movement to take place. When
.the number of states is small (say r < 5) it should be possibie to select

~ A )
t, so that min{p,, (t,)} > l-. If P(t,) is embeddable, this condition on the
1 1 1171 2 1
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diagonal elements ensures that log E(tl) e Q will be unique (see section
4.1). When the number.of system states is large, it may not be possible

to satisfy this condition and still retain an adequate amount of population
movement to estimate log.ﬁ(tl) accurately. Even in this circumstance, how-
ever, tl should be selected reésonably close in time to the initial observa-
tion, since the degree of non-unlqueness of Q ¢ Q 1s a monotone increasing
function of time (figure 6), except for isolated instants such as {kmn/b}.

In most data gathering situations one has neither a priori information
concerning the rate of movement (to assist in selecting the second observa-
tion), nor an opportunity to-schedule the second wave of a survey according
to these considerations. A more pragmatic suggestion would be to collect
detailed retrospective information about the procesg; Ideally, this should
consist of ”éample path" data; that is, complete information about a respon-
dent's duration in each system state over the time interval of interest.
Where such data are deemed too costly to collect, a respondent should be
queried regarding his system state at several pre-chosen time points in the
| past (e.g., one year ago, two years ago, etc.). Having gathered such infor-
mation the estimation procedures and model tests that require more than two
‘observations in time may be utiiized.

5.2 Sampling Error and Data Noise

The data avallable to researchers are commonly contaminated by errors
of various sorts. Whilg we may wish to make statements about a population-
level process, information is usually collected for a population sample.
Similarly, errors of measurement can result in the misclassification of
individuals With respect to system state.

Ordinarily, these are not very serious problems. In many sampling

-gituations the inference made about a population parameter, using standard
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statistical procedures, tends to be incorrect to a degree that varies con=-
tinuously with the magnitude of the measurement error. By using distribu~
tional statisfics, one can put confidence bounds around an estimate, and
describe the interval in which the population-level parameter lies. However,
measurement error and sampling variability.carry greater consequence when we
seek to identify the non-directly obserwvable structural mechanisms (Q-matrices)
that uﬁderly Markov processes. In particular, when an empirically determined
matrix ﬁ(tl) is in the vicinity of a second stochastic matrix Elwhich can be
expressed in the form ; = eQ for multiple versions of log ;'e g, then a small

error in the estimate of P(tl) can result in the recovery of a matrix Q e Q

which, while unique, is the wrong intensity matrix for the gubstantive process.

Example 13:

Suppose you observe

.232 . 249 .266 .253
51(t1) 254 .236 . 242 .268
- .270 .258 .228 . 244
. 245 274 .250 .231
Qt

This matrix.can be written in the form e 1 for a unique version of

log P(tl) € Qy

~-3.216 .129 .064 3.023

Ql - 3.007 -3.174 .138 .029
.034 3.104 -3.260 .122

.132 .032 3.023 -3.186

n
If one believes that Pl(tl) is ‘error free, it would be reasonable to
conclude that Ql describes the evolution of the dynamic process. However, in
a fdllible environment, a second survey .of the same population would produce

a slightly different observed matrix. Congider,
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.231 .255 .266 .248
ﬁz(tl) _ .250 .234 <247 .269
.271 252 .227 .250
.251 .275 .245 .229

No element of this matrix differs from its counterpart in gl(tl) by an
amount in excess of .006 in magnitude, so it is not unreasonable to suggest'
that the two matrices represent different samples from a single parent popu-
lation. However, while it is the case that §2(t1) is also compafible with

a continuous-time Markov process for a unique Q € Q, this intensity matrix

is given by
-3.164 3.148 .005 .011
o - 031 =3.170 3.049 .090
2 .015 022 -3.167  3.130
3.130 048 026 -3.204

Matrices Ql and Q2 represent very different structural mechanisms, and
would lead to cdntrary conclusions about the nature of the substantive pro-

cess. What has happened is that while Pl(tl) and PZ(tl) are eaéh compatible
Qt

with.the,representation e and have unique logarithms in Q, the two empir-
. | o
ically determined P-matrices lie in the vielnity of a third, P, which in turn

can be represented as a Markov process for multiple matrices Q € Q. Indeed,

(tl.+ .OS)Q1

~
P e

Pl(tl + .05)

(tl + .05)Q2
e

~ ~ ) .
P Pz(tl + .05)

‘and this common P-array is the same one presented in example 12 to illustrate

the phenomenon of multiple intensity matrices.
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Specific error structures. In the context of sampling variabllity or

A Qtl
measurement error, then, a researcher cannot assume that because P(tl) = e

for a unique Q € Q, this intensity matrix describes the evolution.of the sub-
stantive process. He must either remove the error from the observed matrix
and use the '"purged'" array for estimating structural parameters, or examine
the intensity matrices of other P's that are within "error distance'" of his
empirically determined matrix.

Migclassification error can be formally incorporated in a description of

observed transition matrices by introducing the representation

P(ti,tj) = P(ti,tj) o e(ti,tj) 0 <ty < t:j (5.3)

where ﬁ(ti,tj) is an empirically determined r x r matrix of transition prob-
abilities based on observations at times ti and tj; Fkti,tj) 1s a fitted r x r
matrix of transition probabilities representing the error-free or purged
mobility structure; e(ti,tj) is an r x r matrix of residuals interpreted as

errors due to misclassification; and the symbol '"o" denotes either the opera-—

tion addition or multiplication. Motivating the representation (5.3) is the

view that matrix P, rather than 3, should be tested for compatibility with a
Markov process, and Q should be estimated from the equation P = eQ.

. Calculation of §-ana ¢ must be based on an assumed model of the error
structure, together with independent estimates of the parameters. For example,
if the states are occupational categories and there is a natural ordering
among them (e.g., on the basis of a prestige scale), an individual who actually
moves from state i at time t1 to state j at time t2
of being recorded in state j-1 at time t2, probability c

may have probability ¢y

9 of being recorded

in state j+l1 at time t2, and probability l-c of being recorded correctly.

17%

If this kind of measurement error is believed to operate, then it implies a
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representation of the form

P(tl,tz) = P(tl,tz) C , | (5.4)
where
1-¢, c, 0 0 O
C o — -

cl 1 cl c2 c2 0
0 cq l--cl--c2 c2

@ 'y [

[ ] L) * [ ]
. . <,

Given ¢ and ¢, based on independent misclassification estimates, we could

solve the matrix equation (5.4) for E(tl,tz). See Coleman (1964b) for approaches
of this sort to the study of change in a fallible environment.

Random error. In general, a formal model of the error structure will not

be available, yet we may wish to make allowance for the effect of 'noise" in

the data. We recommend a strategy of "exploring" a neighborhood of the observed

A

|
. matrix‘P(tl), to ascertain whether nearby P-arrays are compatible with inten-~

sity matrices that aré very different from the initial Q-matrix.
A reasonable procedure for exploring a neighborhood of P(tl) would be' to

"ride" its associated intensity matrix Q- By this is meant computing P(t)

Qt

from the representation P(t) = e ° .= 2At,

using for t the values tl - At, t1

ey tl - hAt, and tl + At, tl + 2At, .., tl + kAt, where the termination

polnts h and k are the last times that P(t1 - jAt) and P(tl + jAt) can be

considered "within sampling or measurement error" of the observed matrix.

Next, examine the elgenvalues in the sequence of matrices.
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(a) If there is a complex conjugate pair (A\,1) = (a + bi) whose
imaginary part passes through zero, then %(tl) is in a neighborhood of
some matrix P which has repeated real eigen&alues. Associated with this
array, a continuum of matrices Q ¢ Q will satisfy the relation’; = eQ.
Strategles for exploring the structure of a continuum are discussed in
Appendix 1.

(b) If a continuum does not occur within error distance, recover all

métrices Q ¢ Q that are compatible with the representation P(tl + kAt)

Q (t; + kat)
= e , where k was chosen as the forward stopping point of the

sequence of P—matrices.27 The complete solution to the problems of deter-
mining the number of candidates for membership in Q, and computing all ver-
sions of log P ¢ Q, was presented in section 3.

if it 1s the case that log Pe Q is unique under the perturbations of
§(tl), then this intensity matrix can be vigwed as the sole mobility struc-
ture compatible with a Markov formulation of the substantive process. Stated
more transparently, additional samples from the same population can be
expected to produce similar Q-matrices. In contrast, if multiple mobility
mechanisms Q ¢ Q are found for matrices P within error distance of the
observed array %(tl), then one of the procedures described in section 5.1
for selecting among alternative intensity matrices must be utilized.

In an environment containing error, the advantages of collecting data
at three or more points in time are especially apparent. We noted earlier
(section 5.1) that three time points is the minimum number for a direct test
of ﬁhe dynamic assumption underlying a first-order Markov process, i.e.,

checking that

P(O,tz) = P(O,tl) .P(tl,tz), 0 <t, <t (5.5)
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In practice, this entails evaluating whether ||P(0,t2) - P(O,tl) P(tl,t2)|| < g,

for € > 0, and some suitably chosen norm [e.g., ||A]|] =/ aijz]' When (5.5)

2

is satisfied, and it 1s also the case that

li—l

log P(o,t;)  (5.6)

log P(t“ tz) 0 "

l ~
o log P(O,t)) ™ %

1 21 2

we would define Q, the common intensity matrix for the process, as an average
of these three eatimates. In the presence of sampling or measurement error,
then, data at three or more time points permits a test of the fundamental
Markov assumption and also facilitates an accurate calculation of Q, through
the pooling of several estimates.

In an instance where (5.5) is satisfied, but equation (5.6) is not, the
process will still be Markovian, though it no longer is time—sfationary. This
leads to the problem of testing observed matrices for compatibility with a
time-homogeneous Markov model (the null hypothesis) against special non-time-
homogeneous alternatives. We hope to discuss this important issue in a future
publication. |

- As a final comment on analytic strategy in the context of data noise,
we emphasize that while the occurrence of mﬁltiple matrices-Q € Q may not be
very.éommon in an error-free environment, it characterizes the normal work
situation when data are fallible. This is because we advise a regearcher to
examine a neighborhood of an obsexved ﬁ(tl) for the presence of additional
intensity matrices, and to comsider each recovered Q ¢ Q as possibly govern-

ing the evolution of the empirical process. Due to data nolse, then, we

suggest creating a multiple Q € Q situation when an observed transition 4

matrix has associated with it a unique logarithm in Q. For this reason,

collection of data at three or more time points should be a routine require- '

ment when the use of Markov models is contemplated. ~f
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6. CONCLUSIONS

The point of departure for this study was the gross misunderstanding
among researchers concerning which stochastic matrices are compatible with
a continuous—-time Markov process having stationary transition probabilities.
We noted that the power series representation of the logarithm of a matrix
[equation (2.5)]--the principal formula used in estimating the structural
parémeters that govern the evolution of a Markov process--permits an inten-~
sity matrix to be recovered only for a subset of this class of stochastic
models. By resorting, instead, to the spectral decomposition representation,
we were able to estimate intensity matrices for Markov models in instances
where (2.5) does not converge; that is, in cases of tramsition arrays which
Coleman and others have considered not to be compatible with this mathe=
matical structure. In the course of the investigation, we also ralsed new
issues which a researcher must consider; these include, princilpally, the
possibility that multiple intensity matrices may be compatible with an empir-
ically determined transition array, and the fact that, as a resﬁlt of data

"noise,"

recovery of a unique Q € Q does not preclude the possibility that
the observed process is governed by an entirely different intensity matrix.
In.subsequent papers we intend to address two additional issues which
a researchér desiring to use Markov models in a flexible and creative manner
must entertain: (a) how . should a priori restrictions be placed on the ele-
ments of a Q-matrix, and (b) how can a researcher discriminate among the
alternative méthematical models which, on substantive grounds, provide
reasonable descriptions of his data. , The first topic was mentioned, in pass—

ing, in section 3.3, when we sought to adjust a non-embeddable log P to a

neighboring Q ¢ Q. More generally, we may wish to estimate the parameters
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of a sociological the§ry which specifies that certaiﬁ instantaneous transi-
tions are prohibited (see Coleman 1964a, chaps. 4 and 5 for examples). The
second topic refers to testing data for compatibility with a subset of
Markov models (such as birth and death processes) versis general finite-
state Markov processes, and to comparing the fit of Markov models with that
of ofher mathematical structures, such as mi#tures of Markov processes or
semi~-Markov processes.

 As a final polnt, we emphasize that the problems addressed in this paper

cannot be avoided by employing a discrete-time Markov framework in place of a

continuous-time formulation. 1In the discrete-time model the counterpart to
the task of estimating Q € Q entails recovering the one-gtep transition matrix

for an empirical process, i.e., taking the appropriate roots of the observed

matrix P, Like a logarithm, a root is a multiple-valued function, so the

problem of ndn—uniqueness which we have discussed he:e also sriges in that
formulation. Conceptually, the discrete—time model embodies a further diffi-
cuify: Because most social processes evolve continuously, there usually isn't
a compelling reason for preferringene specification of the unit time interval
to another. (Por instance, in studying intra=-generational 6ccupational
mcbility, should the unit time interval be five years or three years or six
months?) Yet, this is a question of great consequence because an empirically
determined matrix (estima;ed, let us say for this 1llustration, from observa-
tibns ten years-apart) may be consistent witﬁ a discrete~-time Marqu‘struc-

ture for some choices of the unit time interval but not for other choices

(see Singer and Spilerman 1974, pp. 360-363 for an example). Where no.subﬂ'
stantive meaning can be attached to a particular interval length, this does

not imply that the unit time interval can be specified at the convenience
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of the researcher, or that tests of the sort described here can be ignored.
Rather, it suggests that the appropriate mathematical structure is a con—
tinuous-time formulation, the procedures for which have been discussed in

this paper.
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APPENDIX 1. Exploring a Continuum

~

In the case where P has repeated eigenvalues and non-distinct elementary

divisors, the value of log P depends on the choice of similarity transforma-

tion that is used to reduce P to Jordan form. A computer based strategy to

test a representative collection of branches of log E for membership in Q isv
the most direct approach we can currently recommend for deciding'on compati-
bility of § with a continuous—-time Markov model. 1If a branch of log ; which
belongs to Q is discovered during the computer tests, them it can be shown

that there is in fact a continuum of branches which are in Q. The testing
strategy outlined below, and illustrated in a simple example, 1s also designed

to give some indication of the extent of the continuum of branches which are

in g.

A

Step 1. Compute one similarity transformation H which reduces P to

Jordan form. The method of computation is entirely at the discretion of the

researcher (see Gantmacher [1960, chap. 6] for suggestions).

Take a random sample of points in an 8~dimensional square region

Step 2.

with center at the origin.28 For each sample of 8 numbers, use them as the

real and imaginary parts of the parameters in the matrices B which commute

~

with J = H_l P H. Then evaluate

log P = HB log J B lmt
where
1 0 0 0 0 0
B = 0 11 19 s 4log J = 0 log lz 0
0 oy 59 0 0 log A2,
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0
1]

11 xp vy 12 X, iy,

Cc

21 X vy ) VI bY)

{xij}, {yij} are the 8 numbers associated with each sample point, and log 12

denotes the complex conjugate of log A Note whether this branch of log P

2l
is in Q. Several hundred such evaluations may be necessary in order to iden-
tify those matrice B, if any, which yield versions of log P e Q.

The preceding computations do not increase in complexity for r x r

matrices having a single palr of repeated real roots, which is the situation

most likely to arise. In this general case, B will have the form

11
a 0 0
vv
0 ¢33 ©12
B =
0 1 %22
av+3,v+3
) O a

ij

before is involved. In carrying out these computations, the reader is reminded

However, since only the {c,,} generate a continuum, the same simulation as

that 1if Az is a repeated negative root, the simulation must be performed for
all branches of log Ay = log |12| + i(m + 2rk) which satisfy Runnenberg's

necessary condition for embeddability (equation 4.3). If Az 1s a repeated
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positive root, the calculations must be carried out for all brancheg, except

9 = log |A2| + 2rki which satisfy Runnenberg's condition.

(The case k = 0 can produce at most one version of log P € Q--see example 13).

k =0, of log A

Example 1l4:

Recall the matrix of example 10,

1+ 2x 1l -x 1 -x
P = %- 1 -x 1+ 2x 1-x
1-x 1-x 1+ 2x

with x = —e-z}/§TT . This array is reduced to Jordan form by the similarity

transformation
1 1 1
1 : 1
H = 1 E<’1+/§i) 5(-1-/51)
| L-1-/3 L(_14/3
1 E(—l— 3i) E{-l+ 31)

our problem is to indicate how a random sampling scheme of the type mentioned
above could give some ingight into the variety of branches of log P which are

in Q. To 1llustrate the ideas, we restrict our consideration to the subset

of matrices B of the form

1 0 0
B = 0 B 0
0 o B

where o and B are arbitrary real numbers.
A computing strategy designed to .identify matrices B yielding brancheg
of log P ¢ Q would begin by generating uniformly distributed (0,8) values

within a square centered at the origin--the boundaries lu] = |8| = 10 are
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chosen here for illustrative purposes. Each generated value represents a
point on the o-~B plane for which log % = HB log J B—]'H—l is to be computed.
If the resulting matrix is in Q, a "+" igs recorded at the point; otherwise

a dot 1s recorded. 1In the present example, the flared pattern shown in

figure 4, known as the "Iron Cross of the Red Baron (2nd class),'" would result.

Figure 11 about here

The restrictions on o and ‘8 can be summarixed by the inequality
%-5_[§£g+ < 2. What is more to the point, the structure of the continuum
is identilcal to the one reported in equation (3.23). (This may be verified
by replacing {cij} in [3.21] with the appropriate o and B values, and com-
puting the restrictions [3.22].) In general, however, by limiting {ci } to

3

real values only a portion of the continuum will be produced.



75

Figure 11, l{cétrictimmt on Matrix B to Gencrate Branches of log I' ¢ Q

I 3ed

~

]"J‘hc (u,f) values for which log P ¢ Q are indicated by the symbol "4,

The contours of constant values of log P are the stralght lines (4 = (

where 1— glx, < 2,
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FOOTNOTES

lThe symbol "," over a stochastic matrix, or over an element in a matrix,

will mean that the quantity should be thought of as estimated directly from

data. Matrices without this symbol should be viewed as obtained from a
mathematical model.

2In most applications of Markov models, tests of this sort are not made.
Hodge (1966) provides an exception.

3Where it is understood that the initial observation is at t = 0 we will

simplify our notation and write P(tl), or even P, in place of P(O,tl).

4We wish to emphasize at the outset that our extenslve criticism of
estimation procedures used in Coleman's work in no way detracts from the
utility of the mathematical formulations he emplqys;nor"from his strategies
in translating sociological theory into mathematical statements. Indeed,

his work has been a source of inspiration to both of us.

5 N
nij = number of persons starting in state 1 at a reference time t = 0
. r
who are in state j at a later time t = 1; n, = z nij' In our notation
* j=1

~

nji/nj. =Py Actually, Coleman wrote nij/nj. in place of nji/nj.’ This
is obviously in error and elsewhere (Coleman 1964b, p. 4) he makes clear his

intention.

6
From the context, we interpret the word "asymptotically" to mean mono-
tone, rather than oscillatory convergence.

7 A
In different contexts we speak of checking whether Q = %-1og PegQ, or

whether log P € Q. Because multiplication of a matrix by a real-valued quan~
tity does not alter its character with respect to satisfying conditioms (2.2),

the two tests are equivalent.
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8These inequalities were established by F. I. Karpelewitsch (1951);
they represent a considerable strengthening of the well known restriction

that all eigenvalues of a stochastic matrix must lie inside the unit circle.

9For a lucid and detailed mathematical exposition, the reader should
consult Gantmacher (1960, chap. 5).

lOA function is said to be analytic at x 1f it has a derivative in a

neighborhood containing the point.

11Although the Taylor series expansion has an infinite number of terms,

a, - Ail)n = 0 for all values of n > v

i i’

12This matter is discussed in proposition 2.

13The simplest way to apprecilate the multiple valued character of the
logarithm is to begin with the definition: x = log y if x is a solution of

the equation eX = y for a given y. Suppose x is such a solution. Then, for

xt2mkl_ eXeZHkL= e® = y (since e2"k°= cos2tk + 1Sin2vk = 1).

any integer k, e
Therefore, log y takes on the values x, x + 27, x + 4w, etc.

14All logarithms are to base e. The subscript k denotes the branch number

of the logarithm of a scalar quantity, and takes on the values k = 0, + 1,

+ 2, ... . The subscript K denotes a version of the logarithm of a matrix,

and specifies a combination of branches of the logarithm of the eigenvalues.

15Sylvester's formula has been effectively employed by S. Johansen (1974)
in a recent study of the embedding problem. His results, however, are less
general than the ones presented here because Sylvester's formula also pro-
vides less than a complete description of the logarithm of a matrix, This

point is elaborated in proposition 2.
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16On computing the elementary divisors of a matrix consult Gantmacher

(1960, pp. 139-145).

17 1 for k=1, ..., m, then (3.15) reduces to Sylvester's

When rk

formula (3.14).

18The matrix (3.18) was introduced-by ‘J. Cuthbért (1973) 4in order to

‘exhibit an example of a stochastic matrix compatible with a continuum of

Markov models. Cuthbert's continuum arises when you choose 11 = €9 = 1
and ¢;, = Ch1o real. Then the constraints on u and v entail that ‘012| =
|c21| < 1/3. This chotice does not, however, lead to all of the branches of

log P given in (3.23), which represents an exhaustive list in Q.

19
If A = a+ bi, then p = |A! = Va2+b2 and 6 = tan 1 %—.

onhese formulas were computed from (3.24) by sblving for k (in the arc-
tangent) at each bound.

Zlk may be positive or negative. The sign 1s chosen according to whether
one wants to '"move backward" to a repeated eigenvalue situation (+k), or -
"move forward" (-k). Note also that k = 0 will not generate a continuum at

6 = 0. These issues are addressed in greater detail in sections 4.2 and 4.3{
22For brevity in the discussion we focus on positive branches (k > 0).
An analogous description can be presented for negative branches of the logar-
ithm.
23Tha game remark holds for a P which is considered to be within error

distance of P(E%O.
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4In connection with this point we refer the reader to the 4 x 4 matrix
ﬁ(tl) in example 12. The reason why it 1s reasonably similar to the equi-
librium matrix for the process can now be appreciated; namely, the complex
conjugate eigenvalues are close to zero in magnitude.

25This recommendation assumes that we have observed the first appearance

of a continuum, which will be the most common situation. If we have observed

the second occurrence, the times t2 = %Fl should be avoided. If it is a third

9 ='%Pl, etc. As a practical guide, if a researcher
avolds the two sets of time points cited in this footnote he is unlikely to

occurrence, omit the times t

encounter a second continuum.

26The Q-matrices in example 12 are the ones in this 1llustration multi-

plied by t = 1.05.

27Because L(t) = {the number of branches of log P(t) e g} is a non-
decreasing function of time (except for isolated occurrences of continua),
if is not necessary to examine points eatrlier than tl.
8We recommend beginning this search in the 2-dimensional subspace defined

by the conditions c 1’ real. Then extend the search to the

11 - %22° ‘127 %
4-dimensional space defined by the restriction that {Cij} be real, and finally
introduce complex numbers in the full 8~dimensional space. Improved strate-

gies for exploring this kind of continuum are currently in the preliminary

development stage.



81

REFERENCES

Andersen, T. W. and Goedman, L. A.

1957 "Statistical inference about Markov chains." Annals of Mathematical
Statistics 28:89-109.

Bartholomew, D. J.

1973 Stochastic Models for Social Processes (2nd edition). New York:

Wiley.

Beshers, J. M. and E. 0. Laumann

1967 "Social distamnce: A network approach." American Socilological
Review 32:225-236.

Billingsley, P.

1961 Statistical Inference for Markov Processes. Chicagos; University

of Chicago Press.
Blumen, I., M. Kogan, and P. J. McCarthy.

1955 The Industrial Mobility of Labor as a Probability Process. Cornell

Studies of Industrial and Labor Relations, Vol. 6. Ithaca, New York:
Cornell University.

Boudon, R.

1973 Mathematical Structures of Social Mobllity. New York: American

Elsevier Co.

Chung, K. L,

1967 Markov Chains with Stationary Transition Probabilities. Berlin:

Springer.
Cipolla, M.
1932 "Sulle matrice espressione analitiche di un'altra." Rend, Circ.

Mat. di Palermo 36:144—154.




82
Cohen, B.

1963 Conflict and Conformity: A Probability Model and Its Application.

Cambridge, Mass.: MIT Press.
Coleman, James S.

1964a Introduction to Mathematical Sociology. New York: Free Press.

1964b Models of Change and Response Uncertainty. Englewood Cliffs, New

Jersey: Prentice-Hall.
1968 "The mathematical study of change." In Hubert M. and Ann B.

Blalock (eds.), Methodology in Social Research. New York: McGraw-—

Hill.

1973 The Mathematics of Collective Action. Chicago: Aldine.

Cuthbert, J. R.

1972 "On uniqueness of the logarithm for Markov semi-groups." Journal

of the London Mathematical Society 4:623-630.
1973 "The logarithm function for finite-state Markov semi-groups,"

Journal of the London Mathematical Society 6:524-532.

Elfving, G.

1937 "Zur Theorie der Markoffschen ketten.' Acta Social Science Fennicae

n. Ser. A.2, No. 8.
Gantmacher, F. R.

1960 The Theory of Matrices (vol. 1). New York: Chelsea.

Ginsberg, R.

1

1971 "Semi~Markov processes and mobility." Journal of Mathematical

Sociology 1:233-263.

Hodge, R. W.

1966 "Occupational mobility as a probability process.' Demography 3:19-34.



»

83

Johansen, S.

1973 "A central limit theorem for finite semi-groups and its application

to the imbedding problem for finite-state Markov chains." Zeitschrifft

fur Wahrscheinlichkeitstheorie.26:173+390.

1974 "Some results on the imbedding problem for finite Markov chains.

Journal of London Mathematical Society 8:345-351.

Karpelewitsch, F. L.

1971 "On the characteristic roots of a matrix with non-negative elements."

Isvestija. ser. mat. 15:361-383.

Kingman, J. F. C.

1962 "The imbedding problem for finite Markov chains." Zeitschrifft fur

Wahrscheinlichkeitstheofie 1:14~24,

Lieberson, S. and G. V. Fugultt

1967 "Negro-white occupational differences in the absence of discrimina-

tion." American Journal of Sociology 73:188-200.

Mayer, Thomas F.

1972 "Models of intra-generational mobility." In Joseph Berger, Morris

Zeldich, Jr., and Bo Anderson, Sociological Theories in Progress.

New York: Houghton-Mifflin.

McDill, Edward L., and James S. Coleman.

1963 "High school social status, college plans, and interest in academic

achievement: A panel analysis. American Sociological Review 28
(December) :905-18.

McFarland, David D.

1970 "Intra-generational social mobility as a Markov process: Including

a time-stationary Markovian model that explains observed declines

in mobility rates over time." AmericanvSociolqg;cal Review 35:463~476.




84
Prals, S. J.

1955 "Measuring social mobility." Journal of the Royal Statistical

Society 118 (Series A):55-66.
Rinehart, R, F.
1955 "The equivalence of definitions of a matric function." American

Mathematical Monthly 62:395-414.

Runnenberg, J. Th.
1962 "On Elfving's problem of imbedding a time-discrete Markov chain in

a continuous time one for finitely many states."

Indag. Math. 24:
536-541.
Singer, Burton and Seymour Spilerman.

1974 "Social mobility models for heterogeneous populations." In Herbert

L. Costner (ed.), Sociological Methodology 1973-1974. San Francisco:

Jossey~-Boss.
Spilerman, Seymour.

1972a "The analysis of mobility processes by the introduction of inde-

pendent variables into a Markov chain." American Sociological

Review 37 (June):277-94.

1972b "Extensions of the mover~stayer model." American Journal of Sociology

78:599-627.
Sylvester, J. J.
1883 ""On the equation to the secular inequalities dn the planetary

theory." Philosophical Magazine 16:267-269.

Wolfgang, Marvin E., Robert M. Figlio, and Thorsten Sellin.

1972 Delinquency in a Birth Cohort. Chicago: University of Chlcago Press.

Zahl, Samuel.

1955 "A Markov process model for follow-up studies.' Human Biology 27:

90-120.





