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ABSTRACT

In this paper, racial prejudice is introduced into an urban

model and results about racial discrimination and residential

segregation are derived. To be specific, a household maximization

problem is used to determine the market price-distance function that

gives no household an incentive to move. Prejudice is introduced

by assuming that the racial composition of a location affects a

householdB utility and by deriving, for both blacks and whites,

price-distance functions that reflect racial composition. These

price-distance functions imply that if whites prefer segregation and

some blacks prefer integration, no stable locational equilibrium exists

for both races without discrimination.



RACIAL PREJUDICE AND LOCATIONAL
EQUILIBRIUM IN AN URBAN AREA

INTRODUCTION

Racial prejudice strongly influences the locationa1 decisions of

households in an urban area, but the relationship between racial pre-

'judice and the pattern of residential location is not well understood.

In'this paper, therefore, we will introduce racial prejudice into a

model of an urban area and derive several results about residential

location. This exercise is useful not only because it helps explain

the pattern of residential segregation, but also because it sheds some

light on the relationship between prejudice and discrimination in housing.

The distinctions among several terms are important for what

follows. Prejudice is defined to be an attitude--an inflexible,

deeply felt attitude toward a particular group of people. Discrimination,

on the other hand, is behavior that denies one group of people rights

or opportunities given to others, and segregation is the actual physical

1separation of different groups of people. Although logically

separate, these three concepts are closely related in the structure

of American society. It should be pointed out that price discrimination

is one--but by no means the on1y--type of discrimination of interest

. 2to econom~sts.

The basic long-run model of an urban area developed by Alonso

(1964), Mills (1967, 1972), Muth (1969), and others adds a locational

dimension to a model of the housing market under perfect competition.

The solution to such a model is a set of prices and quantities that, in

addition to satisfying the usual profit- and utility-maximization con-

ditions, insures that no firm or household will have an incentive to



2

change its location. The main theoretical contribution of these

models is therefore a locational equilibrium condition, which is the

price per unit of housing services, expressed as a function of

location, that insures that no one will have an incentive to move.

In this paper we will examine the demand side of this type of

model in some detail and show how a simple formulation of racial

prejudice affects the locational equilibrium condition. In particular,

we will derive a housing-price function that leads to locational

equilibrium for prejudiced whites and one that leads to locational

equilibrium for prejudiced blacks. These two housing functions will

be combined to obtain a condition for racial equilibrium such that

neither blacks nor whites will have an incentive to move. A careful ex­

amination of this racial equilibrium condition provides some insight

into the relationships between prejudice and both segregation and dis­

crimination in housing.

The long-run perspective of this paper should be emphasized from the

beginning. Factors that will be eliminated by the entry of housing

firms or the movement of households will not be considered here. This

is not, of course, to say that these factors are unimportant. My goal

in this paper is to isolate some of the forces that affect residential

location in the long run. I hope that an understanding of these forces

will provide a useful complement to the analysis of the factors that

affect residential location in the short run.

1. THE DEMAND SIDE OF AN URBAN HODEL

On the demand side of an urban model, consumers maximize their

utility over a composite consumption good and housing, subject to a
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budget constraint that includes commuting costs. Consumers are all

assumed to work in the central business district (CBD) and to choose

a residential location (as measured by distance from the CBD) as part

of their maximization problem. In symbols, a household will

where

(1) Maximize

Subject to

U(Z,X)

Y = P Z + P(u)X + tu
'z

U = the household's utility function;

Z = the composite consumption good;

x = housing (measured in units of housing services);

Y income;

P the price of Z (which does not vary with location);
z

P(u) = the price of a unit of housing services at distance u;

t = the cost per mile of a round trip to the CBD.

The Lagrangian expression for problem (1) is

L = U(Z,X) + A(Y - P Z - P(u)X -tu)
z

and the first-order conditions are

(2.1) 3L/3Z = 3U/3Z AP = 0z

(2.2) 3L/3X = 3U/3X - AP(u) = 0

(2.3) 3L/3u = -A[P'(u)X + t] = 0

(2.4) 3L/'dA = Y - P Z - P(u)X'" tu = 0z

This set of four conditions can be simplified to two conditions

with more straightforward interpretations. The first two conditions

can in general be used to eliminate A and Z so that Equation (2.4) can

be written

(3) X = D[(Y-tu), P(u)]
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Equation (3) is the demand function for housing. Without a precise

form for the utility function, the demand function cannot be derived

explicitly.

Condition (2.3) can be rewritten as

(4) P'(u)X + t = 0

This equation is the locational equilibrium condition for a household.

It indicates that a household will have an incentive to move farther

from the CBD until it arrives at the location where savings in the

cost of housing are just offset by higher commutinR costs. With any

given P(u) function, households with different tastes will choose

different quantities of X and, according to Equation (4), different

locations.

In an urban model, Equation (4) becomes a market condition. The

locational requirement of market equilibrium is that no household have

an incentive to change its location; therefore, the solution to an

urban model includes the p(u) function that will make households

indifferent to their location. On the basis of the assumption that all

households with a given income have identical tastes, the desired P(u)

function is the solution to the differential equation given by Equation

(4); that is, the equilibrium P(u) is a function that guarantees that

(4) is met at every location. Hence, a market interpretation of the

locational equilibrium condition for a single household indicates that

for households to be indifferent among all locations in an urban area,

the higher transportation costs incurred by living farther from the CBD

must be just offset by a decrease in the amount spent on housing. If

we find that this condition is met, we will say that households are in

locational equilibrium.
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In order to derive a locational equilibrium condition, Equation

(3) is substituted into Equation (4) and the resulting differential

equation is solved for P(u). The differential equation ohtained in

this manner t&ces the form

.-
(5) f[P(u), P'(u), (Y-tu)] -t

The solution to this equation, which is called the price-distance

function, consists of the price per unit of housing services that ~vould

make consumers indifferent to their location.

Note that to find a definite solution to the differential equation

(5), an initial condition is required. In the Mills (1967, 1972) version

of the model, the initial condition comes from the supply side. In

particular, Mills shoHs that with a Cobb-Douglas production function for

housing, a perfectly elastic supply of capital, and a supply of land

that is proportional to distance, the price of housing and the rental

price of land are related by

(6) P(u) = AR(u)a

. where A is a constant and a is the coefficient of land in the production

function for housing (1967, p. 117, eq. 9; 1972, p. 82, eq. 5-11).

Since a city will extend to the location where the price of land for use

in housing equals the agricultural rental rate, the desired initial

condition is

(7) R(u) = R

where u is the outer edge of the city and Ris the agricultural rental

rate (1967, p. 119, eq. 15; 1972, p. 81, eq. 5-9).
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In order to make use of this initial condition, Equation (6)

and its derivative with respect to u are substituted into Equation (5)

to obtain a differential equation of the form:

(8) g[R'(u), R(u), (Y-tu)] = -t

The initial condition is the particular solution that is used in solving

(8) for the rent-distance function, R(u). Note that although uis

determined endogenously in an urban model, the results presented here

hold for any value of u.
It should be emphasized that every income class will have a

different rent-distance function. The income class that lives at a

given distance from the CBD will be the one that has the highest

rent-distance flIDction at that location, and it is typically true in

urban models that groups with higher incomes live farther from the CBD. 3

Note also that the introduction of more than one income class complicates

the initial condition (since only one group can live at the edge of

the city) but does not change the substance of the preceding analysis.

2. UTILITY FUNCTIONS AND RENT-DISTANCE FUNCTIONS

In order to solve the differential equation (5) [or (8)], one

must have a specific form for the demand function (3). The usual

procedure in urban models is to assume a form for (3), instead of

assuming a form for the utility function and deriving the demand

function from it. The former procedure is followed because the demand

functions that can be derived from utility functions are either not

operational or not sufficiently general for empirical purposes. This

problem is not, of course, unique to urban models. Although the use
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of specific utility functions does reveal something about the form

the demand function should take, such information has not, in my

opinion, been sufficiently utilized; indeed, I believe that the forms

usually assumed for the demand function in an urban model are not

generalizations of any demand functions that can be derived from a

utility function.

The simplest form for a utility function is the Cobb-Douglas form

(written here after a monotonic transformation into natural logarithms):

(9) U = cl 10g(2) + Cz log (X)

As Green (1971) points out, this utility function leads to demand

functions· with several undesirable properties. In particular, the Engle

curves associated with such demand curves are straight lines that pass

through the origin; that is, the income elasticities are unitary. In

an urban model, this result meanS that at any given distance the proportion

of income spent on 2 and X will not change as income changes.

A generalization of (9) is

where sl and Sz are what Green calls "survival quantities." In this

case, the Engle curves are straight lines that pass throught the point

(sl'sZ)' and the proportion of income spent on 2 and X can change with

income.

Substituting Equation (10) into the maximization problem (1), we

4have

Maximize

Subject to

U = cl 10g(Z-sl) + Cz 10g(X-sZ)

y = p Z + P(u)X + tu
z
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The relevant Lagrangian expression is

L = U + A(Y-P Z-P(U)X-tU)z

and the first-order conditions are

(11.1) 8L/az = c1/(Z-sl) AP = 0z

(11.2) aL/ax = c2/(X-s2) AP(U) = 0

(11.3) aL/au = -A(P'(U)X + t) = 0

(11.4) 8L/aA = Y - P Z - P(u)X - tu = 0z

By substituting the first two conditions into the fourth, we obtain

the demand function

where

To derive the rent-distance function, we take the derivative of

(6) with respect to u, or

(13) P'(u) = aAR(u)a-1R,(u)

then substitute (6), (12), and (13) into (11.3) to obtain

or

(14)

+ duet) = 0

where d indicates a differential. Now making use of the integrating

factor
-ak

R(u) 2
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we find that the general solution to the differential equation (14) is

-ak
2(y-p

z
s

1
-tu) = K

:-

h K " t t f" t" 5w ere ~s a cons an 0 ~ntegra ~on.

be used to obtain the definite solution

The initi21 condition can then

(15)

Since Equation (15) cannot be solved explicitly for R(u), it cannot

be transformed back into P(u) or any of the other variables in an urban

model. Nevertheless, we can examine the properties of the R(u) in (15).

Differentiating (15) vuth respect to u yields

R'(u) = -tiD < 0

where

It can also be shown that6

R"(u) = t(ClD/Clu)/(D
2

) > 0

In short, although Equation (15) differs in form from other. rent-distance

functions that have appeared in the 1iterature,7 its basic

properties--the signs of its slope and curvature--are the same as those

of other rent-distance functions.

Without a survival quantity for X (the survival quantity for Z

causes. no analytical difficulties and is retained), we simply replace

I
I
!

-'
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(12) with

and follow the same steps as before to derive

R'(u)/R(u) = (1/ak2) [-tl(y-p s -tu)]
z 1

Integrating and taking the exponential of this equation and making use

of the initial condition, we obtain

(17) R(u)

It is easily seen that in this case, as before,

R'(u)<0

R"(u) > 0

As mentioned earlier, only certain types of demand functions can

be derived from utility functions. One way to generalize our results

without referring to a utility function is to include non-unitary price

and income elasticities in the demand function (16). This is the type

of demand function used, for example, by Mills, with the major difference

that (Y-tu) instead of Y is now the income term. This generalized demand

function takes the form

(18)
81 82X = k(Y-tu) P(u)

By combining Equation (18) with Equations (4), (6), (7), and (13),

it can be shown8 that if 82 ~ -1,
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(19) R(u) t jib + [bE/(1-8l )]
1-61 ~ 1~61 } lIb

= [(Y-tu) - (Y-tu) ]

and if 82 = -l~

ji eXPt . ~6 ~6 \
(20) R(u) 1 - 1

:~ = [E/ (1-81)] [(Y-tu) - (Y-tu) ]

where
1-8 -1

E = (aA 2k)

In summary, the rent-distance functions given by Equations (15),

(17)~ (19)~ and (20) are based either on demand functions that can be

explicitly derived from a utility function or on simple generalizations

of such demand functions. These rent-distance functions, like those

of Muth and Mills, have negative slopes and positive curvatures; however,

our analysis reveals that (Y-tu)--not simply Y as has been previously

assumed~-is the income term that should appear in the demand function

for housing. The substitution of (Y-tu) for Y significantly changes the

form of the rent-distance function (if not its basic properties), and

will affect the implications of rent-distance functions in specific

applications, such as the analysis of prejudice that follows.

3. RACIAL PREJUDICE AND LOCATIONAL EQUILIBRIUM

The type of prejudice considered in this paper can be thought of

as a disutility of whites or blacks from living with or near members

of the other race. .There are two simple ways to include sUGh prejudice

in the analysis of the locational equilibrium of households in an

urban area. The first method, which is found iIl the work of Courant
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(1974), begins with the assumption that there is complete segregation

in an urban area with one race living in the city center and the other

living in the doughnut-shaped rest of the city. If whites get disuti1ity

from living near blacks, then some function of distance from the b1ack­

white border appears in the white utility function. The price-distance

(or rent-distance) function that leaves whites in 10cationa1 equilibrium

can then be derived as described earlier.

Using this kind of "border model," Courant shows that households

will be in 10cationa1 equilibrium only if blacks live in the city center.

He also shows that if there is more than one income group, rich blacks

will have an incentive to "hop" over poor whites. Unfortunately, this

result undermines the original assumption that all blacks live in the

city center, so that the model must be re-so1ved with a new assumption

about the pattern of racial segregation. Not only does this simultaneity

between 10cationa1 equilibrium and the pattern of segregation make the

model unwieldy, it also undermines the single assumption about prejudice

on which the model is based; since there will be many black-white

borders when there are many income classes, it is no longer clear what

to include in the utility function of whites.

An alternative approach, which is followed in this paper, is to

assume that both blacks and whites get disuti1ity from living with

or near members of the other race--without making any assumption about

the pattern of racial segregation--and then to investigate the factors

that affect the 10cationa1 decisions of whites and blacks. The key to

this approach lies in the formulation of prejudice. As we have said,

the utility of a prejudiced household will be lower if it has to live

:\
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with or near members of the other race; therefore, let us begin by

defining a variable that measures the degree to which a household will

be with or near members of the other race at any particular location.

To be specific, let us define r(u) to be a measure of the proportion

of the population at and around location u that is black. The choice

of race here is arbitrary; a symmetrical argument could be made using

the proportion of the population that is white.

One way to define r(u) more completely is to say that it consists

of a weighted sum of the racial compositions of the neighborhoods within

a certain dist?nce of u (say u*). For example, we might write

5u+u*
r(u) =

u-u*
W(u'-u)B(u')du'

where W is some weighting function and B(u) is the proportion of the

population at u that is black; indeed, it might be desirable to use the

righ t-hand side of the above equation in the analysis that follows,

were it not for the difficulty such a procedure would add to the

mathematics. In any case, we will assume that r(u) is some measure of

the racial composition of a location--and in particular a proportional

measure of its "blackness"--that appears in the utility functions of

both blacks and whites.

For white households, the utility function takes the form

(21) U = U (z , X , r(u))w w w w

where r(u) is the variable defined above and the "w" subscript indicates

"white. II It is clear that if whites are prejudiced the marginal utility

of r(u) is negative.
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It will prove useful to express Equation (21) in a somewhat

different form in order to isolate the relationship between X and r(u).

According to the view of the housing market used in this paper, the

quantity of housing services that appears in a household's utility

function depends on the quantitative and qualitative characteristics

of the household's dwelling unit and neighborhood. 9 For a prejudiced

household, r(u) is one of the neighborhood characteristics that affect

housing services; consequently, we can write

(22) H = H (X , r(u»w w w

where H is the number of units of housing services and X represents the

non-racial characteristics of housing. Plugging Equation (22) into a

utility function yields

(23) U = U (Z H)
w w w' w

This modest reformulation of Equation (21) allows us to specify several

different forms for the interaction between X and r(u)--via Equation

(22)--and still make use of simple separable forms for the utility

function of a prejudiced household.

One straightforward form for the function H is
VI

-d
w

H = H r(u)w w

This form is not acceptable, however, because it implies that when

r(u)=O (that is, when only whites live at u), H is equal to infinity.w

Prejudice is, to be sure, a powerful feeling, but I doubt that "whiteness"

is infinitely valued by prejudiced whites.
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Another possible form is

d
H = X (l-r(u)) w

w w

but this form goes to another extreme: it implies that the number of

units of housing services received by a white would approach zero as

r(u) approached one.

A functional form that avoids these problems is

(24) H = H exp[-d r(u)]w w w

In this case, H equals X in an all-white neighborhood and approachesw w

(X lexp(d )] as r(u) approaches one. This form also implies that thew w

change in housing services will increase with the quantity of housing

services in the dwelling and decrease with the size of the neighborhood. lO

In other words, a black neighbor will have a greater impact on housing

services (and hence on utility) for the owner of a fancy house (that is,

one that contains a large quantity of housing services) than for the

owner of a plain house, and a smaller impact in a large neighborhood

than in a small orie.

Plugging Equation (24) into a Cobb-Douglas utility function yields

-d r(u)
(25) Uw = cl log(Zw) + c2 log(Xwe w )

where C
w

= d
w

c2• Thus a white household's maximization problem is to

(26)
Maximize.

Subject to

U
w

y = P Z + P (u)X + tu.z w w w
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It is important to note that r(u) does not appear in the budget

constraint of this problem. It is well known that in the long run the

implicit price of a housing characteristic is equal to its marginal

production cost. This conclusion applies to the physical characteristics

of a house and to the neighborhood characteristics associated with that

house. Furthermore, if neighborhoods with a certain characteristic

can be reproduced in the long run, then, for houses built in such

neighborhoods, there will not be any marginal cost associated with that

characteristic. 11 Since neighborhoods with any given racial composition

can be reproduced in the long run, the implicit price of r(u) will be

zero.

In the short run, when r(u) has a non-zero implicit price, Hw

replaces X in the budget constraint of problem (26); however, no
w

matter what the form of the H -function (Equation (22)), r(u) does not
w

affect the locational equilibrium condition in the short run. This

result is proved in Note 4 of the Mathematical Appendix.

The Lagrangian expression for problem (26) is

L = U + A(Y-P Z -P (u)X -tu)w z w w w

and the first-order conditions are

(27.1) aL/aZ = cl/Zw A.P = 0w z

(27.2) CJL/aX • c /x - AP (u) = aw 2 w w
(27.3) aL/au = -c r' (u) A (P' (u)X + t) = a

w w w

(27.4) aL/aA = Y - P Z P (u)X - tu = az w w w

Since the introduction of prejudice has only affected the locational

equilibrium condition (27.3), the demand function that is derived from



17

conditions (27.1), (27.2), and (27.4),is the same as the function

derived without considering prejudice (Equation (16)):12

(28)

where

x = k2(Y-tu)/P (u)w w

The substitution of condition (27.2) and the demand function (28)

into the locationa1 equilibrium condition (27.3) yields

Integrating and taking the exponential of this equation, we find that

(30)
-c r(u) c1+c2 1/c2P (u) = [e w (Y-tu) /K ]w w

Where K is a constant of integration. The rent-distance function
w

corresponding to Equation (29) is found, using Equations (6) and (7),

to be

(31)
dw(r(u)-r(u») _ 1/ak

2R (u) = Re [(y-tu)/(Y-tu)]w

Equations (30) and (31) describe, respectively, the price- and rent-

distance functions that, for a given racial distribution r(u), would

make prejudiced whites indifferent to their location; in addition to

declining with distance from the CBD, the equilibrium rent-distance

function for prejudiced whites must also be lower at locations with

higher concentrations of blacks.

Prejudiced blacks also choose how much housing to buy and where

to live. A plausible H-function for blacks is
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(32) I\ = Xb exp [db (r(u)-l)]

This function indicates that in an all-black neighborhood I\ equals

Xb' and as a neighborhood approaches "whiteness," I\ approaches

The utility function for blacks is thus

(33)

where cb = c2~' Since adding a constant to a utility function is a

monotonic transformation, we can rewrite (33) as

Black households maximize this utility function subject to a

budget constraint that, except for the subscript "w," is the same as

that faced by whites. Furthermore, the only difference between the

black and white utility functions [Equations (25) and (34), respectively]

is that r(u) enters the former with a coefficient of cb and the latter

with a coefficient of (-Cw); thus it can easily be seen that the

locationa1 equilibrium condition for blacks that is analogous to

Equation (31) for whites is

(35)
_ -db (r(u)-r(u» _ 1/ak2

~(u) = R e [(Y-tu)/(Y-tu)]

For any given r(u), prejudiced blacks will be indifferent to their

location if Equation (35) is satisfied.



:.

19

4. RACIAL EQUILIBRIUM

In order for both prejudiced blacks and prejudiced whites to be

in locationa1 equilibrium, Equations (31) and (35) must be satisfied

simultaneously; in this section, we will derive an r(u) function that

makes such a result possible. If blacks and whites with a given income

have the same tastes, aside from their prejudice, then the two rent-

distance functions will both be satisfied only if

-d (r(u)-r(u)) _ _ 1/ak
2R (u)e w = R[(Y-tu)/(Y-tu)]

w

~(r(u)-r(u))
= ~ (u)e

Thus it must also be true that

(dw+db) (r(u)-r(u))
= e

and

This equation describes the function r(u) that will keep both

blacks and whites in locationa1 equilibrium, given the rent-distance

functions (31) and (35). When Equation (36) holds we will say that

an urban area is in racial equilibrium.

The key to Equation (36) is the term ~/Rw' Under perfect compe-

tition, a factor that can be freely transferred from one use to another

will earn the same return in both uses. In the short run, there is

undoubtedly some cost to transferring land from the production of housing

in white neighborhoods to the production of housing in black neighborhoods

(that is, changing the racial composition of the neighborhood around

_.~. ""'~--' '__~__ - . ,__ ,, ,_. ' 0••_" _._..:_. _,'"' __ " __' ~__ ,_~~__~_._,__._._,_-_~__ ______>. ••
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a given unit of landl3), but in the long run--and this is a long-run

model--these transfer costs will disappear. Thus if both races live

at u, ~/Rw equals unity, log(~/Rw) equals zero, and

(37) r(u) = r(u)

Equation (37) indicates that, given our assumptions about pre­

judice, the only continuous function r(u) that insures that both blacks

and whites will be in locational equilibrium is one in which r is constant

for all values of u. Since a complete urban model would include

conditions guaranteeing that all blacks and all whites be supplied

with housing, this result is equivalent to the statement that, at all

values of u, r(u) must be equal to the ratio of the total number of

blacks to the total population of the urban area. Note that if r(u)

is a constant, the equilibrium price-distance function reflects, as it

does when prejudice is not considered, the higher transportation costs

at higher values of u, and the constant value for r(u) guarantees that

no household can gain utility by moving away from the race against

which it is prejudiced.

Although Equation (37) describes the only continuous racial

equilibrium,' it is by no means the only racial equilibrium when there

is prejudice. In fact, in this model any completely segregated

solution--any solution in which only blacks or only whites live at

each distance--will have the same price-distance function as the model

without prejudice and will be an equilibrium. Furthermore, such

segregated solutions clearly represent a gain in utility for both blacks

and whites; the trade-off between housing costs and transportation

costs is the same for the integrated solution as for any such segregated
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solution, but in the case ~f segregated solutions no household'has

any disutility from living with members of the race against which it is

prejudiced. In other words, if both groups are prejudiced, complete

segregation is Pareto-superior to integration.

The logic of the racial equilibrium condition also tells us some-

thing about the dynamics of neighborhood change in this model. Starting

from an integrated equilibrium, a small increase in the proportion

of the population that is black at a given distance will give blacks

an incentive to move to that location and whites an incentive to moVR

away from it. Such moves will change the racial composition of other

locations and, in turn, stimulate more moving. This process will con-

tinue until some completely segregated solution is reached. The model

does not indicate, however, what the resulting segregated solution

will look like. Therefore, unless everyone expects integration to be

enforced by, say, the government, the integrated equilibrium is highly

unstable; in the long run, prejudice of the form we have described is

almost certain to lead to complete segregation.

It is also interesting to note that Equation (37) is the appropri-

ate condition for racial equilibrium in the case of reverse prejudice--

when either blacks or whites (or both) Erefer to live with members of

the other race. According to our formulation, reverse prejudice simply

involves a change in the sign of the coefficient of r(u) in the utility

function of the group or groups with reverse prejudice; the derivation

of Equation (36) is therefore still appropriate. As long as d is not
w

equal to (-db)' the first term of Equation (36) will equal zero and

perfect integration will be the only continuous racial equilibrium.
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The equality of dw and (-~) represents the unlikely situation in

which whites and blacks have identical tastes for racial composition.

In this case any r(u) is consistent with racial equilibrium. Note

also that reverse prejudice eliminates the possibility of a segregated

equilibrium, since households with reverse prejudice have an incentive

to move into areas inhabited by'the other race. In short, the only

racial equilibrium when there is reverse prejudice is the unstable

equilibrium of perfect integration.

The results of recent surveys of the attitudes of urban blacks

indicate that blacks differ on the neighborhood racial composition

they prefer. Many blacks prefer racially mixed neighborhoods; others

want to live in all-black neighborhoods. 14 These surveys are summarized

by Pettigrew (1973). Thus it is appropriate to include groups of

blacks with different tastes in our model and to add a third category--

preference for a racially mixed neighborhood--to the two extreme

t . f . d' d . d' 15ca egor~es 0 preJu ~ce an reverse preJu ~ce. To be specific, if

two groups of blacks, one with prejudice and one with a preference for

a racially mixed neighborhood, are included in the preceding analysis,

it is clear that the perfectly integrated solution is still an unstable

equilibrium. Furthermore, no combination of segregated and integrated

regions in an urban area will be a stable equilibrium. Prejudiced

blacks will be in equilibrium when they are segregated from whites, but

blacks who prefer integrated neighborhoods will not be in equilibrium

unless they are living with whites. If some integration does take place,

however, a small decrease in r(u) in one of the integrated neighborhoods

would give whites an incentive to move to that location. This would
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cause changes in r(u) at other locations, thereby causing other

moves, and so on. Thus the combination of prejudice and either rever$e

prejudice or a preference for racially mixed areas is an unstable

combination: no race-distance function will prove a stable locational

equilibrium for every group.

The addition of more than one income group does not significantly

change these results. Each income group will live in that range of

values of u where its rent-distance function is higher than that of any

other group. Within each income group, prejudice (or reverse prejudice)

will affect location in the manner we have described for one income group.

The perfectly segregated solution will involve a different proportion of

blacks for different income classes, but a constant proportion of

blacks throughout the distance occupied by any given class; The list of

segregated solutions will include any combination of all-black and all-

white locations that does not involve the mixing of income classes.

It will prove instructive to conclude this discussion of racial

equilibrium by examining another possible type of racial equilibrium:

one in which Equation (31) holds in some locations and Equation (35)

holds in other locations. For example, take the case in which locations

with a white majority are located in the outer part of the city and

have a rent-distance function given by (30), whereas the centralized

black locations have the rent-distance function (35). In this situation,

competition would insure that at the border between the black and white

areas, rent would be the same when calculated by either function. Thus

the initial conditions for the rent-distance functions would be:

for R (u): R (u) = Rw w

for ~(u): ~(u*) = R (u*)w

where u* is the border between the two areas.
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This case can be illustrated in a diagram as follows:

I
I

R ---------1--
I
I
I
I
I

u*

Figure 1.

distance
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An analysis of this diagram reveals that it cannot represent an equiii-

brium. If everyone is prejudiced, then no one will be willing to pay

the land rent in the area where a majority of the residents are of the

other race; complete segregation will inevitably result. And we have

already shown that if some blacks want to live in racially mixed areas,

those blacks and whites will both be in equilibrium only if the blacks

are evenly distributed throughout the white area. In either case, the

racial term will drop out of the rent-distance function. Note that

these results will hold for any combination of Equations (30) and (35),

not just for the example presented here.

In summary, the analysis in this section results in four main

conclusions about racial equilibrium when prejudice takes the form

we have postulated:

1. If there is complete segregation or perfect integration,
racial composition will not affect the rent-distance function.

2. Complete segregation is a stable racial equilibrium only in
the case of prejudice on the part of all blacks and all whites.

3. Perfect integration is an unstable racial equilibrium in the
case of prejudice,' reverse prejudice, or the desire to live
in a racially mixed area.

4. If any group of blacks or whites has reverse prejudice or the
desire to live in a racially mixed area, then there exists
no stable racial equilibrium.

5. .AN ALTERNATIVE SPECIFICATION OF PREJUDICE

In the preceding section a multiplicative form was used for the

H-function (Equation (22)) in order to derive results about locational

equilibrium; in this section we will show that the same results an be

obtained using an additive form. An additive specification of the
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H-function for white consumers can be written

(38) H = X - a r(u)w w w

so that H equals X in an all-white neighborhood and approachesw w

(X -a ) as a neighborhood becomes all-black. Equation (38) impliesw w

that the effect of a black neighbor on H decreases with neighborhood
w

size, but, unlike the multiplicative form, it also implies that the effect

of an additional black neighbor does not depend on the level of H •
w

When Equation (38) replaces Equation (24) in the maximization

problem (26), one can derive, as shown in Note 5 of the Hathematical

A d · tl f 11 . 1 t· 1 ·l·b· d"· f h· 16ppen 1X, Ie 0 oW1ng oca 10na equ1 1 r1um con 1t10n or w 1tes:

(39)
le

1a [P(u) r(u)...]

k
- 1­
P r]

-k
2[(Y-tu)P(u)

-k
(y-tii)p 2] = 0

An additive H-function for black consumers takes the form

(40) ~ = ~ - ~(l-r(u))

so that ~ equals ~ in an all-black neighborhood and approaches (~-~)

as a neighborhood becomes all-white. By plugging (40) into a maximi-

zation problem for a black consumer analogous to problem (26) for

whites, one obtains, as shown in Note 5, the locationa1 equilibrium

condition:

(41)
k

1
_k

1
_

~[P(u) (l-r(u)) - P (l-r)]
-k2[ (Y-tu)P(u)

-k
(Y-tu)P 2] = 0

The racial equilibrium condition, which is derived in Note 5 by

equating (39) and (41), is

(42)
k

- 2 - .r(u) = (p/P(u)) (r-i\) + &\
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where

Although this condition is somewhat difficult to interpret, it is

shown in Note 5 that Equation (42) is consistent with locationa1

equilibrium for both blacks and whites if and only if

(43) r(u) = constant.

Equation (43) implies that with an additive H-function perfect

integration represents a racial equilibrium. Furthermore, inspection

of Equations (39) and (41) reveals that if Equation (43) holds, then

r(u) drops out of the locationa1 equi1ibirum condition.· The analysis of

the multiplicative case in the preceding section can also be used in the

additive case to show that complete segregation is a stable racial

equilibrium when all blacks and all whites are prejudiced and that

there exists no stable racial equilibrium when some group has reverse

prejudice or a preference for integration. In short, all four of the

conclusions on page 25 are valid for both multiplicative and additive

H-functions.

6. PREJUDICE AND DISCRIMINATJ,ON

Although discrimination against blacks has not been considered

in the derivation of racial equilibrium conditions, the analysis of

those conditions provides two important insights into the phenomenon

of discrimination.

First, we have shown that as long as some blacks want to live in

racica11y mixed areas, there is no stable locationa1 equilibrium in

areas inhabited entirely or partly by whites: if the price-distance

... --.----_._--- ._.- -_. ._- .-. _. _ ... - ---- -----._-_. - -------- _. --'
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function in those areas reflects white prejudice, then blacks who

prefer mixed neighborhoods cannot be in equilibrium; and if the

price-distance function does not reflect white prejudice, then whites

will want to move to those areas with the fewest blacks. In either

case, whites will be uncertain about the future racial composition of

their neighborhoods. To the degree that this type of uncertainty

involves disuti1ity for whites--and I suspect that it involves considerable

disuti1ity--whites will have an incentive to discriminate against

blacks by restricting them to certain areas. If such restrictions

are possible, then an equilibrium can be attained when r(u) is determined

by discrimination against blacks and the rent-distance function is

given by Equation (31). It is appropriate, therefore, to restate the

fourth conclusion from Section 4 as follows:

4'. If any group of blacks or whites has reverse prejudice or
the desire to live in a racially mixed area, then there
exists no stable racial equilibrium without discrimination.
If discrimination against one group is possible, then an
equilibrium can be obtained when r(u) is determined by
discrimination and the price-distance function is the one
derived above for the discriminating group.

The second insight provided by our analysis is that r(u) drops

out of the price-distance function for every equilibrium that does not

involve discrimination; therefore, if r(u) is found to have a significant

17
coefficient in an empirically determined price-distance function, it

follows that either

a. the area is not in locationa1 equilibrium, or

b. there is discrimination.

If one has reason to believe that the area under study is close to

locationa1 equilibrium, then one can infer something about the nature
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of the discrimination that is taking place. To be specific, a price­

distance function that takes the form given by Equation (30) implies

that r(u) is determined by discrimination against blacks and that the

price-distance function keeps whites in locational equilibrium.

(Similarly, an empirically determined price-distance function that

takes the form given by (35) implies that there is discrimination

agains t whites.)

We have shown that the only way to obtain a stable pattern of

racial composition in an urban area in the long run is by discrimination.

Thus, to the extent that stability is valued by the white community,

whites will have an incentive to discriminate ~gainst blacks. Another

way of stating this result is that stability is a public good for the

White community that can be purchased with discrimination. A discussion

of the institutions that have developed for the purpose of purchasing

this public good is beyond the scope of this paper; suffice it to say

that the preponderance of stable white suburban communities testifies

to the success of those institutions.
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MATHEMATICAL APPENDIX

Note 1

In this note we will prove that

where

and

(A1)
ak

1
_ak1 -ak -ak

s2A[R(U) - R ] - (Y*-tu)R(u) 2 + (Y*-tu)R 2 = 0

y* = Y - P s
z 1

Proof. Taking the derivative of (A1) with respect to u, we find

that

-ak
+ tR(u) 2 = 0

or, since k1 = 1-k2

This equation can be rewritten as

(A2) R'(u) = -tiD

where
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Now since R(u)--the price of 1and--is always positive and since all

of a consumer's income is not spent on transportation so that (Y*-tu)

is positive, D will always be greater than zero; therefore, by (A2),

R'(u) < 0

Taking the derivative of (A2) with respect to u, we have

(A3) ~'(u) = t(3D/3u)/(D2)

where

(A4)

-2 -1- ak2 (Y*-tu)R(u) R'(u) - tak2R(u)

Thus R"(u) will be positive whenever (A4) is positive and (A4) will be

positive if

a-1 -1R'(u)[(a-1)sZAR(u) - akZ(Y*-tu)R(u) ] > takz

that is, if

(AS) -R'(u)[E] > tak
2

where

a-1 -1E = (1-a)ak1s ZAR(u) - ak2 (Y*-tu)R(U)

To determine when (AS) will hold, note from (A2) that

-R'(u)[D] = t

or

-R'(u)[D(l-a)] = t(l-a)
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Now, by definition,

and

D(l-a) = (1-a)K1 + (1-a)K2

where

..:1
K = ak (Y*-tu)R(u)2 2

therefore, since both ~ and k2 are positive,

E < D(l-a)

and

(A6) R'(u)E > R'(u)[D(l-a)] - t(l-a)

Furthermore, since

a = .2 (see Mills, 1972, p. 80)

then

(A7) tak2 < t(l-a)

and

. (A8) R'(u)E> t(l-a) > tak2

Thus condition (AS) is fulfilled and ~I(U) > O. Q.E.D.



Note that a sufficient condition for (A7)--and hence for (AS)--to

hold is that a be less than or equal to 0.5.

Note 2

Our task in this note is to derive a rent-distance function using

the demand function

(18)
8
1

8
2X = k(Y-tu) P(u)

The other relevant equations are

(6)

(13)

(4)

aP(u) = AR(u)

a-lP' (u) = aAR(u) R' (u)

p' (u)X + t = 0

or

(7) R(~) = R •

Plugging (18), (6), and (13) into (4), we obtain

8 8
(A10) aAR(u)a-1R'(u)k(Y-tu) l[AR(u)a] 2 + t = 0

where

1+8 B-1
aA 2kR'(u)R(u)

81= -t/ [ (Y-tu) ]

Rearranging, this equation becomes

(All)
B-1 -81R(u) R'(u) = E(-t) (Y-tu)
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where

1+82 -1
E = (aA k)

Now if B # a (that is, if 82 # -1), integrate both sides of

(All) to find that

B 1-81R(u) /B + C1 = E(Y-tu) /(1-81) + C2

or

1-8 l/B
(A12) R(u) = [BE(Y-tu) 1/(1-81) + BC]

where C = C2 - C1 is a constant of integration. Now using the initial

condition (7) to solve (A12) for C, we have

1-8 l/B
R(u) = R = [BE(Y-tu) 1/(1-81) + BC]

or

1-8
(A13) C = (RB/B) -E(Y-tu) 1/(1-81)

Plugging (A13) back into (A12) yields

B 1-8 1-8 l/B
(A14) R(u) = R + BE[(Y-tu) 1 - (Y-tu) 1]/(1-81)

Mills's result (1972, p. 83, eq. 5-14a), which uses Y instead of

(Y-tu) in (18), is

-B - l/BR(u) = [R + BtE(u-u)]

If B = a (that is, if 82 ' = -1), then (All) becomes

-8
(A15) R'(u)/R(u) = E(-t)(Y-tu) 1

._--------------._---- -------- ------ ---._-
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Integrating, we find that

1-8
1log[R(u)] + C1. = E(Y-tu) /(1-81) + Cz

or

(A16)
1-8

1R(u) = C exp[E(Y-tu) /(1-81)]

where C = exp(CZ-C1) is a constant of integration.

Solving for C using (7), we find that

or

R(u)
_ 1-81

= R = C exp[E(Y-tu) /(1-81)]

Thus

(A17)

(A18)

1-8
- - 1C = R exp[-E(Y-tu) /(1-81)]

{
1-8 1-8 l- 1 - 1R(u) = R exp E[(Y-tu) - (Y-tu) ]/(1-81)

This can be compared with Mills's result (1972, p. 83, eq. 5-14b):

R(u) = Rexp[tE(u-u)]

Note 3

In this note we will show (a) that the second order conditions of

problem (1) in the text require that P"(u) be positive, and (b) that

if R"(u) is positive, P"(u) will also be positive.
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By totally differentiating the first-order conditions (Z), one

obtains the following bordered Hessian for problem (1):

Uzz UZX 0 -P z

UXZ UXX -AP' -P

IHI

0 -AP' -AXP" -(P 'X+t)

-P
z -P -(P'X+t) o

Since, for a maximum, the principal minors of this Hessian must be

alternately positive and negative starting with 1HzI , and since, by

(Z.3); P'X+t = 0, we know that a maximum requires that

or

Uxx

-AP'

-P

-AXP"

a

-P

o

o

> 0

:)

Since A and X are positive, this condition is equivalent to

P" > a

Now since P
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and

aARa- 1 [ (a-1) R' /R + Rill

Furthermore, since 0 < a < 1; R' < 0; and A, R > 0; P" will clearly always

be positive if R" is positive.

Note 4

In the short run, a white household attempts to

Maximize

Subject to

where

Y = P Z + P(u)H + tuz w

H = H (X , r(u))w w w

In this note we will show that the short-run locationa1 equilibrium

condition derived from this problem does not contain racial composition

as an argument •

The Lagrangian for the above problem is

L = c1 log(Z) + c2 log(H ) + A[Y - P Z - P(u)H - tul
w z w

and the first-order conditions are
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ClL/Clu = cZ(ClH /Clr)rl/H - AP'H - AP(ClH /Clr)r l - At = 0w w w w

ClL/ClA = y - P Z - P(u)H - tu = 0
z w

The first two conditions can be used to eliminate Aas follows:

or

Substituting for Z in the fourth condition, we obtain the demand function:

or

Now by eliminating A from the locational equilibrium condition (the third

first-order condition above), we find that

or

cZ(ClH /Clr)rl/H - cZP'/P - cZ(3H /Clr)rl/H - cZt/PH = 0w w ~y w w

or
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Plugging in the demand function, the locational equilibrium condition

becomes

or

Thus r(u) drops out: racial composition does not appear in the short-run

locational equilibrium condition.

Note 5

In this note a long-run racial equilibrium condition is derived

for the case of an additive H-function.

The white consumer's problem is to

Maximize D(Z , H )w w

Subject to H = X ... a r(u)w w w

Y = P Z + P(u)X + tu
z w w

The Lagrangian for this problem is

+ A (Y - P Z + P(u)X + tu)zw w
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and the first-order conditions are

I'

(A2l)

(A22)

(A23)

(A24)

dL/dZ = clfZ - AP = 0w w z

dL/dX = c2/H - AP(u) = 0w w

dL/dU = (c2fH )(-a r') - A(P'X + t)w w w

dL/dA = Y - P Z - P(u)X - tu = 0z w w

o

, ,~

The demand function, which is derived by using (A21) and (A22) to

eliminate A and Z from (A24), is
w

where

The locational equilibrium condition is then derived by substituting

(A22) and (A25) into (A23) to obtain

or

(A26) dr[awP(u)] + dP[k2 (Y-tu)/P(u) + klawr(u)] + du[t] = 0

where d indicates a differential.

Using the integrating factor
-k .

P(u) 2
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the solution to this total differential equation is found to be

(A27)
l-k -k

a P(u) 2r (u) - (Y-tu)P(u) 2 = K
w w

where K is a constant of integration. The initial condition for (A27)w

is

(A28) P(u) = P

so that the market locational equilibrium condition is

(A29)
kl _kl _ -k -k

a [P(u) r(u)-P r] - [(Y-tu) P(u) 2 - (Y-tu)p 2] = 0 •w

The black consumer's problem is to

Subject to ~ = Xb - ~(l-r(u))

The Lagrangian for this problem is

L = cl log(Zb) + c2 log[Xb - ~(l-r(u))]

and the first-order conditions are

(A30) dL/dZb = cl/Zb - ~ =02

(A3l) dL/dXb = c2/Hb - AP(U) = 0

(A32) dL/dU = (c2/Hb)~r' - A(P'Xb+t) = 0

(A33) dL/dA = Y-P Z - P(u)Xb - tu = 0z b
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Following the same steps as with the white consumer's problem,

one can derive a demand function

(A34) ~ = k2 (Y-tu)/P(u) + ~kl (l-r(u))

and a locational equilibrium condition

~r' - (P'/P(u))[kZ(Y-tu)/P(u) + ~kl(l-r(u))] - t/p(u) 0

or

(A35) dr[~P(u)] - dP[k2 (Y-tu)/P(u) + kl~(l-r(u))] - du[t] - 0

-k
Using the integrating factor, p(u) 2, the solution to (A34) is found

to be

(A36)

where ~ is a constant of integration.

Using the initial condition (A28) , this becomes

(A37)
kl

~ [P (u) (l-r(u))
k

- 1 -P (l-r) ]
-k

Z[ (Y-tu)P(u)
-k

(Y-tu)P 2] = 0

The racial equilibrium condition is found by equating (A29) and

(A37) and solving for r(u). Thus,

k
l

__k
l

a [r(u)P(u) - r P ]
w

or

k
l

_k
l

. _
= ~ [p·(u) (l-r (u)) - P (l-r)]

k
(A38) r(u) = (P/P(u)) l(r_~) + ~
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where

Finally, we will prove that (A38) implies that there will be

racial equilibrium if and only if r(u) is constant.

If r(u) is constant, there will clearly be racial equilibrium

because in that case r(u) drops out of the market locational equilibrium

conditions (A29) and (A37).

The "only if" part of the proof is more complicated. We will

proceed by showing that a non-constant P(u) function leads to a

contradiction. If there is to be racial equilibrium, then the individual

locational equilibrium conditions for whites and blacks, (A26) and (A35),

must both be satisfied, that is, it must be true that

- r'~P(u) + P'kl ~[l-r(u)]

Substituting (A38) and its derivative with respect to u into (A39) , we

find that

k
(A40) - 2 -(P/P(u)) (r-~) (kl -k2)P' (aw+~)

- klP'(~(l-~)-aw~) 0

But since

~ (1-.1\) - aw~ = ~aw/ (~+aw) awab/ (~+aw) = 0 ,

the second term in (A40) drops out and one can substitute (A38) into

(A40) to obtain
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(r(u)-~)(kl-k2)r.'(aw+~) a

or

(A4l) r(u) = ~

Since ~ is a constant, (A4l) contradicts our assumption that r(u)

is not constant. Thus racial equilibrium is possible if and only if

r(u) is constant.
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FOOTNOTES

1For a more complete discussion of th~se terms, see Simpson and
Yinger, 1972, ch. 1.

2Thurow, for example, lists seven types of discrimination of
interest to economists (1969, pp. 117-118).

3For one proof that higher-income groups live farther from the
CBD, see Mills (1972, pp. 85-88). See also the derivation of Equation
(14) in Muth (1969, p. 30).

4In performing this maximization problem, we are implicitly
assuming that the consumer has at least enough income to purchase the
survival quantities of Z and X.

5In checking this result it is helpful to note that k1 + k2 = 1.

6A proof is given in Note 1 of the Mathematical Appendix. Note
2 shows that the second-order cond~tions require a positive curvature
for P(u) and that if R"(u) is positive, this condition will be satisfied.

7Cf • Mills (1967, p. 121, eq. 22); Mills (1972, p. 83, eqs. 5-14a
and 5-14b); and Muth (1969, p. 72, eq. 3).

8These results are derived in Note 3 of the Mathematical Appendix.
The corresponding results from Mills (1972) are also presented for
comparison.

9For a discussion of this conceptualization of the housing market,
see Muth (1960) or Olsen (1969).

10To obtain these results, write r(u) = B(u)/N(u) where B(u) is
the black population at u and N is the total population. Now assume
that N is constant (so that the addition of a black neighbor implies
the loss of a white neighbor), and differentiate (24) with respect
to B to find that

DR IDB = X exp(-d BIN) (-d IN) = -d H IN
\v w W \v W \v

\",here, to avoid confusion, D denotes a derivative.

11For a more complete discussion of this result, see Hamilton (1972),
and Yinger (1974, sec. 11.1).
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l2Note that in order to simplify the notation, the survival
quantities have been left out of this analysis; therefore, the first­
order conditions (26) should be compared to the conditions (11) with
sl and s2 equal to zero. Similarly, the demand function (28) should
be compared to (16) when sl equals zero. Alternatively, the survival
quantity for Z can be included in the following analysis simply by
reinterpreting Y to be (Y - Pzsl ).

13See Yinger, (1974, sec. 11.1).

14preference for a racially mixed neighborhood reflects many different
attitudes, including racial prejudice and the desire for high-quality
schools and other local public services. Thus a preference by blacks
for integrated neighborhoods could exist despite strong black prejudice
against whites. In this paper we will make no attempt to disentangle
the effects of these various attitudes.

l5The preference for a racially mixed neighborhood might correspond
to an H-function of the form

H = X exp[-d (r*g g g g
2

r(u» ]

for any group g, where r* is the most desirable racial composition.
Although the derivation is somewhat more complicated, Equation (37)
can be derived for any two groups with H-functions of this form.

l6In order to simplify the derivations of the locational equili­
brium conditions in this section, the transformation into rent was
not performed, and the initial condition (7) was replaced by

P(u) = p

Furthermore, a single P(u) function was used in both the white and the
black consumer maximization problems--that is, the equality of P (u)

w
and Pb (u) was assumed. See pages 19-20.

17 .
There have not been, to my knowledge, any attempts in the

literature to estimate price-distance functions in forms determined
by urban models. One possible estimating procedure (along with some
illustrative regressions) is presented in Yinger (1974, sec. 1.7).
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