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EXTENSIONS OF MARKOV MODELS OF SOCIAL MOBILITY

TO HETEROGENEOUS POPULATIONS

1. INTRODUCTION

There is an extensive and diverse literature on the application of

discrete state Markov models to social processes. This formal structure

has been an important analytic device in the study of occupational and

industrial mobility (Matras 1960; Hodge 1966; B1umen, Kogan, and McCarthy

1955), income dynamics (Smith and Cain 1967; McCall 1971), and geographic

migration (Rogers 1966; Tarver and Gurley 1965; Brown 1970). The key

features of a problem which suggest the use of Markov models as a baseline

or for projection are (a) a specified list of system states which may be

occupations, industries, income categories, or geographic regions, (b) the

availability of repeated observations on population movements among the

states,and (c) an interest in the dynamics of the transition process.

In applications of Markov models it is frequently assumed (often

implicitly) that the population can be considered to be homogeneous, and

therefore is representable by a single Markov process. However, where

investigators have obtained data at several time points so that n-step

matrices could be observed and compared with the Markov predictions (i.e.,

checking the validity of Pen) = [p(l)]n), it has often been found that the

projections deviate from the observed values, and do so in a characteristic

manner. Blumen, Kogan, and McCarthy (1955) were the first to suggest

that the tendency of the Markov model to underpredict the main diagonal

entries of an observed matrix can be attributed, in many research contexts,

to population heterogeneity.
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Blumen, Kogan, and McCarthy introduced the "mover-stayer" model

to contend with this phenomenon. They postulated the presence of two

types of persons: movers, who transfer according to a single l~rkov

chain, and stayers, who remain permanently rooted in their origin states.

Using this extremely restrictive form of the notion of heterogeneity,

they constructed a simple mathematical model for the evolution of the

total population and devised estimation procedures for its parameters.

Recent work on extending the Markov framework to incorporate population

heterogeneity ina more flexible manner has proceeded in two directions.

The difference between them derives from the particular strategy adopted

to acco~~cdate heterogeneity; what they share in common is an assumption

that the individual level process can be considered Markovian.

In one approach (McFarland 1970; Spilerman 1971a) each person is

assumed to move according to a Markov chain, but follows a transition

matrix which is unique to him. Population heterogeneity is therefore

attributed to individual differences in the tendency to select particular

destination states at a move. In the second approach (Ginsberg 1971;

Spilerman 1972b) heterogeneity is accommodated by permitting individual
)

differences in the rate at which transition events occur. At each

transition, however, it is assumed that a single matrix common to all

persons governs choice of destination. Thus, in this formulation, the

burden of explaining heterogeneity is cast entirely upon variations in

the rate of movement.

With regard to the utility of these extensions,l each provides a

suitable framework for analyzing certain processes. Investigations into

job mobility (Palmer 1954, p. 50) and geographic migration (Taeuber,
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Chiazze, and Haenszel 1968) have concluded that substantial individual

differences exist in rate of movement. The second formulation would

be appropriate for studying these processes and forecasting changes in

their state distributions. In contrast, there are social phenomena for

which population heterogeneity is primarily a consequence of individual

differences in the probability of making particular transitions.

Intergenerational occupational mobility is the most apparent instance;

indeed, the very notion of different rates of movement seems inappropriate

so that all population heterogeneity would have to arise from individual

proclivities for certain transitions. A more detailed comparison of

these complementary perspectives is presented in Spilerman (1972a).

In the present paper we present a unified framework in which to

view the models mentioned above as well as more intricate social mobility

models. The essence of our conceptual apparatus involves a formal

distinction between the individual level or microscopic process, which

is usually unobserved, and the population level or macroscopic process.

An individual will be identified by a collection of rates which describe

the average times he stays in particular states before moving, or by a

stochastic matrix whose entries can be interpreted as propensities to

favor transitions to certain states. It is also conceivable that an

individual be classified by specifying both a matrix of rates of movement

and a stochastic matrix listing probabilities of making particular

transitions when a move occurs.

From a description of individual level behavior and a specification

of the form which heterogeneity takes, we show how the population level

process can be constituted. From a data analysis perspective, however,

our situation is usually the reverse; we generally lack sufficient
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information to identify the individual level process. Instea~ a .

researcher is constrained to sample the population at a few points in

time and obtain counts of the number of persons making particular

transitions, as well as other statistics concerning the population

level process. From these observations we wish to infer the parameters

of the unobserved, individual level process. One reason for recovering

these parameters is that they can be used to reject a model by showing

the implied, individual level description to be unrealistic for the

problem at hand. Another reason is that they provide the basic

ingredients for making statements about future trends in the population.

Our program is to first describe a class of Markov and semi-Markov

processes which will serve as models for the evolution of individual

behavior. In addition, the ideas involved in identification of non­

directly observable parameters are illustrated by examples with the

simplest Markov chain models (section 2). In section 3 we again proceed

via a sequence of examples to show how the above mentioned population

processes can be described mathematically. The basic mathematical

structures characterizing the observable macroscopic level processes

are mixtures of Markov and semi-Markov models. This notion is explained

from the point of view of weighted averages of stochastic processes and

from the alternative perspective of observable histories.

Finally we present some examples in section 4 of an "inverse

problem" where gross macroscopic level information is used to obtain

partial, and in a few instances complete, information about the mechanics

of the individual level process. This aspect of our study involves

an independent mathematical development which will be presented else­

where in a joint paper by the authors. Our purpose here is simply to
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illustrate the ideas involved and communicate their relevance for the

study of social mobility.

2. MARKOV CHAINS -- TRANSITION PROBABILITIES

2.1 Discrete time processes

The simplest mathematical caricature that we will employ to describe

the evolution of an individual (or a homogeneous population) is a discrete

time Markov chain. This stochastic process {X(k), k = 1,2,3, ••• } should

be viewed as detailing state transitions by an individual, where the system

states might be geographic regions, occupations, industries, or income

categories, depending upon the particular substantive problem. Probability

statements about the process are governed by the analytical recipe,

Prob (X(k+n) =j/X(k) =:0 =m.. (n)
'-) ~J

<,

for k = 0,1,2, ••• , and n = 0,1,2, •... The element m.. (n) is the (i,j)
~J

entry in the stochastic matrix MF (n-fold matrix multiplication of M).

M is itself a stochastic matrix and describes single transitions by an

individual; its (i,j) entry m.. has the interpretation, "probability of
~J

moving from state i to state j in one step."

The typical empirical setting in which mobility data are gathered does

not allow the matrix M to be estimated directly from the movements of an

individual. An investigator usually observes the locations of many persons

at a few time points nO = 0, nl ,n2 , ... , and estimates stochastic matrices

A 2
P(n

l
), P(n

2
), ... , where the (i,j) entry in P(n

k
) denotes the proportion

of individuals from among those in state i at time nO who are in state j

at time nk .
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One assumption which is frequently made is that the population is

homogeneous in its movements. This permits the matrix P(n
k
), estimated

from the observed locations of the population at times nO and n
k

, to be

associated with the evolution of a single individual. We also make this

assumption in the present section. A second specification which is often

adopted is to identify the smallest observational time interval (nO,n
l

)

with the unit interval of the process. Thus, we might define M = p(n
l

)

in which case, if n
k

= hn
l

for some integer h, we have

=

The above identification is often used when a discrete time mathematical

model is desired for a process evolving continuously in time but having no

natural unit time interval which can be associated with it. On the other

hand, when a discrete sequence of times can be identified as spaced at sub-

stantively meaningful intervals, it sometimes happens that the unit time

interval is smaller than the minimum observation interval. That is, while we

observe a population at times nO and n
l

, the unit interval of the process could

be (nO,[l/hJn
l

) for some integer h > 1. A prOblem of this sort might arise if

we collected data on respondent's occupation (n
l

= 2) and grandfatherts occupa­

tion (nO = 0), but neglected to obtain information on father's occupation~ Given

the observed P(2) matrix we might inquire into whether it can be represented

in the form P(2) = M
2

for some stochastic matrix M. A question of this very

nature was posed by Robert W. Hodge (1966) in an inquiry into the extent of

inheritance of occupa7.ional status beyond a single generation.
A

The problem of dec.iding whether a particular observed matrix Pen)

may be represented in the form Pen) = ~ for some stochastic matrix M is
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the simplest version of what we will refer to as the embeddability

problem. This is equivalent to asking whether or not the observed data

are compatible with a discrete time Markov model. If the answer to this

question is affirmative then we require a procedure for recovering the

one-step transition matrix M. This is a statement of the inverse problem.

In the present context it entails tabulating the n-th roots of Pen) in

order to determine all transition matrices M which are compatible with

our observations.

To illustrate these ideas in a simple mathematical setting suppose

we are in a substantive situation which allows observations to be made

only at times nO = 0 and n
l

= 3, and that we estimate the stochastic matrix

P(3) ~ fl3
\2/3

2/~ 0

1/3)
(2.1)

Computing cube roots of this matrix we find that

=

1.[1 __1_]
2 f3

1[1 + _1_]
2 13

= M (2.2)

is the unique stochastic matrix which is a cube root of P(3). Thus the

empirically determined matrix P(3) is embeddable in a discrete time Markov

chain with one-step transition matrix M given by (2.2).

In general, we will be able to ascertain embeddability without having
....

to compute the n-th roots of Pen) [see section 4]. If the matrix is

found to be embeddable in a discrete time Markov process then we should
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be able to identify at least one stochastic matrix M such that Pen) = ~.

In the above example, the inverse problem reduced to calculating all

cube roots of P(3) which are stochastic matrices. An explicit analytical

recipe for calculating the roots of an arbitrary stochastic matrix is

described in Appendix I.

If the natural time scale of the problem is such that the matrix (2.1)

corresponds to observations at times n = 0 and n = 2, then the process is

3incompatible with a discrete time Markov chain theory. This is because

(2.1) has no square roots which are stochastic matrices; thus the observa-
,., 2

tions in this new time scale cannot be represented in the form P(2) = M ,

and the process is not embeddable in a discrete time Markov chain structure.

A further illustration of the complexity of inverse problems can be

seen from the following mathematical example. Suppose you initially take

observations at times n = 0 and n = 2 and that you estimate

P(2) = G: ~}
On the surface it might appear as though you are observing a population

in which there is no mobility between states. However, P(2) has three

distinct square roots all of which are stochastic matri.ces:

G
0

D1

0

G
0

~)
--

/P(2) = 1

0

(:
1 n0

0 ~
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Each square root has a different substantive interpretation, and only

the first of these (i.e., the identity matrix) corresponds to no mobility.

The second matrix in the above list corresponds to a situation in which

individuals starting in either state 1 or state 3 cycle back and forth

between these states while an individual starting in state Z never moves.

The third matrix may be identified with a population in which individuals

either cycle back and forth between states land Z or remain stationary

in state 3. Discrimination between these alternatives may be either on

substantive grounds or on the basis of a further set of observations.

If additional observations are possible, they should be taken at

one of the times 3,5,7, ... , etc. and not at an even time period. In

particular, if P(Z) is the identity and a Markov model adequately describes

the process then the pair of matrices (P(Z), P(3)) must be one of the

following distinct sets:

(~
0 0

) (
1 0

~ )81 : 1 0 0 1

0 1 0 0

n0

~) (
0 0

~)8Z: 1 0 1

0 1 0

(~
0

~) (
0 1

~)83 : 1 1 0

0 0 0
,,;..

while the pair (P(Z), P(4)) must be

(~
0

~ ) (~
0

~) .84 : 1 1

0 0

with M .(~
0

~) .The set 81 is compatible with a unique Markov chain model 1

0
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Similarly, Sz is only compatible with

(~
0

~)M = 1

0

and S3 is only compatible with

M =

On the other hand, S4 is consistent with all three models. This indicates

that it is often desirable to take observations at time points which are

not evenly spaced if you want to discriminate between substantively distinct

stochastic models all compatible with data from a few periods.

A further point is that if (P(Z), P(3)) with P(2) equal to the

identity deviates from all of the three sets Sl' SZ' S3 then the data

are not consistent with a discrete time Markov structure. You can also

rule out a Markov model by obtaining empirical matrices (p(Z), P(4)) with

P(Z) equal to the identity but P(4) being a stocha~tic matrix not equal

to the identity. These examples illustrate the importance of not regard-

ing compatibility of observations with a particular model during a small

number of time periods as strong evidence for validity of the model as

a description of the underlying process. Nevertheless, examination of

alternative solutions of the inverse problem based on observations at

a few time points can be a useful exploratory tool for calling attention

to possibly unsuspected mobility mechanisms M and for suggesting more

realistic models.

Z.Z. Continuous time processes

The natural time scale for many mobility processes is not a discrete

sequence of intervals such as generations or decades, but a continuum
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of time points. In particular, geographic migration (Brown 1972;

Spilerman 1972b) and occupational mobility (Blumen, Kogan and McCarthy

1955) can be viewed more realistically as processes in which state

changes occur at random time points, and probabilities of moves between

particular states are governed by Markov transition matrices. Several

extensions of this formulation which are appropriate for heterogeneous

environments appear in section 3. In the present discussion we establish

a framework for the extensions by indicating three alternative descrip-

tions,of continuous time Markov chains; the level of generality and

substantive utility of each is delineated.

I. Q-Matrices

Consider a stochastic process with a finite number of states whose

transition probabilities are governed by the system of ordinary differ-

ential equations

dP(t)
dt

QP(t) , P(O) I (2.3)

where Q is
r

i;!j,2:
j=l

an r x r matrix whose entries satisfy _00 < q .. < 0, q .. > ° for
1.1. 1.J -

qij = 0, and r = number of states. The system (2.3) has a unique

solution given by the exponential formula

pet) = tQ
e t > ° (2.4)

and the matrices Q and pet) have the following substantive interpretations:

-q .. dt
1.1.

q .. dt
1.J

= probability that an individual in state i at time t
exits from that state during the time interval
(t, t + dt)

probability that an individual in state i at time t
moves to state j (j ;! i) during the interval
(t, t + dt)

probability that an individual starting in state i
at time 0 is in state j at time t [(i,j) entry in
P (t)] .
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Mobility processes whose transition probabilities are governed by

(2.3) have the property that their state at time t+s given the complete

history of the process up to time t is only dependent on the last

observation, namely the state at time t. This is a statement of the

Markov property. Furthermore, the holding time until exiting from a

particular state i is exponentially distributed with parameter -qii.

This is the most general formulation of continuous-time finite-state

Markov chains arising in social mobility studies.

When continuous histories are available on all population movements

during the time interval (O,t), the matrix Q can be estimated directly

from the observed transitions. A maximum likelihood procedure has been

reported by Meier (1955) and involves the following calculations:

=
N..
-2:J.
A.
1.

for j :p i

qii = -L; qij for j = i
j:pi

',".

where A. = total occupation time in state i during (O,t) by all
1. individuals in the population

Nij = total number of transitions from state i to state j
during (O,t).

In addition, availability of individual histories allows the suitability

of a continuous time Markov model to be examined on several different

grounds.

(i) Estimate Q from individual histories up to time t, compute e(t+s)Q,

and compare this theoretically-based transition matrix with the

observed matrix P(t+s). This is a check on compatibility of the

data with the mathematical structure (2.3) and (2.4).
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(ii) Check the goodness of fit of an exponential distribution to the
I

holding time distribution in each state.

(iii) Assess the strength of longer range dependence on past history

if there are sufficient time series records.

The above general formulation of continuous time Markov transition

matrices has been used in numerous sociological contexts (e.g., Coleman

1964, pp. 177-182; Bartholomew 1967, pp. 77-78). However, the analysis

of social mobility in a heterogeneous population is greatly facilitated

by the alternative formulations presented in the next two sections. In

particular, they provide the basis for a classification scheme which allows

individuals (or sub-populations) to be characterized according to either

their rate of movement, their propensity to move to particular states, or

both simultaneously. This kind of classification also leads to a straight-

forward mathematical caricature of mobility processes in a heterogeneous

context when individual histories are not directly observable. Never the-

less, even in the present formulation, substantial information about

individual level behavior can be inferred by an extension of the inverse

problem arguments already presented and solving (2.4) for Q. This

analysis is described in section 4.

II. Subordination

A starting point for the development of mobility models appropriate

to a heterogeneous population is to consider Q-matrices of the special

form Q = A(M-I), where A is a positive constant and M is a stochastic

matrix. Populations in which transition probabilities evolve according

tA(M-I) .
to e may be glven the following substantive interpretation. An

individual starting in state i at time 0 stays there .for an exponentially

distributed length of time TO with



-At= e '" t '>, ,0.

At the end of this period he makes a transition ,to' ~t~te ~wi1th
" ..' '

the (i ,j) entry in the stoGh~et~cmatr~x11. " I~is notprobability m.. ,
J.J

assumed that m..
J.J.

= 0; hence, the individu~l m~rh~ve apoe~t':tv~p;1:'ob..,

4 ,'" '
ability of staying in the same state after time Tp~ ,9rtc(!an' individual

has moved according to M, he stays in his new state f~r ~~Qt~~r ex~onen-

tially distributed length of time T 1 which is ,irtd:~f.~ndell~ 9£,1'0 an4 of
I'. ' .. ,

the state he is in, but again satisfies

-At= e t > O.

Now he makes another move according to m
jh

, and the: prev;Lou/il prOCeSS of
. ,

waiting an exponentially distributed length of tim~ an~ mQv:lng, ac,cording, ,

to the entries in M is repeated.

In this imagery the constant ~ describes an~ndivid4a~'smean,waiting

time before moving (or before making a decision '1;oposs:l.b~Y.' move), while

M characterizes his propensity to transfer to pqrticQlar sta~es~An

alternative formulation of the process derivesfrQm ,all,int~rpretlilt~onof

A as measuring rate of movement. The random Via1;'iab~es {Y(t) ~ t> ·O} which

describe an individual's history may be writt~n :I.~ the' sRee:l.~~ fo~m

yet) = ,(2,5)

where Prob (Y(t) = j IY(O) = i) is the (i,j) entt'yin~J:!(t) 9' fi!tA(M~I' ,

TA(t) is a Poisson process with parameter A,and ~(~), k=0,1,2, ••. is

" '

a discrete time Markov chain with one~step tra~s~t:l.on p~oQabi~~~~~s-
. , .. .

" ."

governed by M.
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Representation of stochastic processes by a t'ec:ip~ s~Gr ~s<2.~)

is known in the mathematics literature as subordinaU9n CFe~J,e~ 1,,97:l.,

pp. 345-349); more precisely, the process Y(t) is I;l~;f,d~p ~~' ~Ub9rM,nqted

to X(k) using TA(t) as an operational or intrinsic, q:!l.q~1f.. ~;J.~~Q.r?~in.g

further, expression (2.5) says that you can also thi~~ 0.£ in4~y~puals

h b b I ' d by etA, (M:",,!) "w ose transition pro a i lties are governe , ' as eyg+v~ng

according to the prescription:

(i) Wait in an initial state i until the first;:, j4tl1l?,}\i,m7 C!)f

a Poisson process.

(ii) At this instant, change state once accordi~p fO thel,8'Ws'

of a discrete time Markov chain whose on~-step~):'91ns;l~~Ql'l

matrix is M.

(iii) Wait in the new state j until the Poisson prQc~~~ j~p~ ,
1-.

for the second time.

(iv) Now change state again according to M.

(v) Repeat the above procedure for successive ~Qisson jrmp

times.

In this setting, the constant A governing rate 0fmovemf!'!lt !3.ppears

only in the description of the ~oisson process or,~:f; you li~e"tn~

intrinsic clock. Specifically,
......

Prob (exactly v moves up to time t)

= Prob (exactly v jumps in a Poisson proce~13 w,:Lth- .
parameter A during (O,t»

= Prob (TA(t) = v) =

Likewise, the matrix M governing the propensity t:o,mQVe t~ particp,la,r

states appears only in the description of the discr~tEf time:Mcp;:kpv:' Fhain

X(k) according to
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Prob (X(k+l) = j IX(k) = i) = mij •

This matrix provides a static picture of the population at an instant

of movement. The dynamics are regulated by the intrinsic clock TACt).

A final point is that the interpretation (2.5) gives rise to a

series representation for etA(M-I) in the form

tA(M-I)
e =

00

E

v=o
(2.6)

The individual terms in this series indicate that rate of movement and

propensity to move to particular states are factors regulated by two

independent sociologically identifiable quantities, A and M. It is useful

to contrast this isolation of rate of movement and propensity to move in

the factored matrix A(M-I) with the more general formulation involving

Q-matrices. The two formulations are related according to

-q .. dt =
1.1.

-ACm .. -l)dt =
. 1.1.

probability of leaving state i
during the time interval (t, t+ dt)

q .. dt
1.J

Am .. dt
1.J

= probability of a move from state
i to state j [j # i] during
(t, t + dt).

We wish to emphasize that· mobility processes in a st1;l.tionary

environment are most usefully described by waiting times in states together

with transition probabilities which are independent of the waiting times,

but allow for the possibility of remaining in the current state at a

move. Q-matrices permit descriptions in terms of transition mechanisms

and waiting time distributions as independent quantities, but this

would naturally take the form
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-qll 0
qij

. -qii -IQ = •
i

0 -qrr 0

The matrix
i :f j

describes jumps without allowing for further

holding in the origin state; in particular,

. {probability of a move from state i to state j given
a departure}.

The diagonal matrix II -qii II has entries interpretable as holding time

rates in the sense that

Prob (Y(U) = i, s < u < s + tly(s) = i) =
q .• t
~~e

Nevertheless, this formulation seems less sociologically meaningful than

expressing Q in the factored form A(M-I). If you start with a fixed Q,

which means that you are viewing Q as the basic ingredient in the model,

infinitely many such factorizations are possible. However, our attitude

here is that the natural starting point for a d~scription of mobility

processes is A and M, with Q defined in terms of these basic ingredients.

The present description of mobility in which an individual is charac-

terized by a rate A, a transition matrix M, and evolves according to

probabilities etA(M-I) was the starting point for Spilerman's (1972b)

extension of the mover-stayer model to a population with a continuum of

types. A limitation of this extension is that the waiting time distribu-

tions until transition according to M do not depend on a person's state;

rather, an individual is compelled to move at the same rate irrespective
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of his location (Spilerman 1972b, p. 609). The description of section

III provides a basis for eliminating this restriction and presents the

most general continuous time Markov chain formulation of mobility by

an individual.

III. A General Factored Representation of Q

Consider Q-matrices of the form A(M-I) where

o
!I. =

o A
r

A. > 0 for i
~

1,2, ... ,r

and M is a stochastic matrix. The evolution of individuals governed by

h . . . til. (M-I) b d .b d 1 f 11t e trans~t~on matr~x e may e escr~ e more concrete y as 0 ows:

(i) An individual starting in state i at time 0 stays there for

t > O.= eProb (TO ~ tIX(O) = i)

an exponentially distributed length of time TO with

-A.t
~

(ii) At the. end of .this time period he makes a decision to move

to state j with probability m..• In general, m~i ~ O.
. ~J .l-

(iii) Now he waits in state j for an exponentially distributed length

of time T1 with

eProb (Tl ~ t/X(l) = j) =
-A.t

J

(iv) Then he makes another decision to move to state h with prob-

ability mjh.

(v) The above sequence is repeated.
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The waiting times Tk only depend on the current state X(k), not

5
on the past history X(O), X(l) ••• ,X(k-l) and TO' TI" • 'fTk~i' However

an individual's rate of movement is now characterized by the diagonal

matrix A rather than a single constant A as in the previous section. The

present description reduces to that of section II when Al = A2 = •••• =

Again, it should be observed that a given Q-matrix has infinitely

many factorizations of the form A(M-I) with

A •
r

=

=

A.(m .. -l)
J. J.J.

A.m ..
J. J.J

for i =f j

However, the basic ingredients of mobility models with individuals

evolving according to continuous time Markov chains are the matrices A

and M, with Q defined in terms of them. When individual histories are

available, M and A can be estimated from observed movements according to

the recipe

N..
m•• = .2:J.

J.J N.
J..

N.
A. J..

=
J. A.

J..

(2.7)

where N..
J.J

= number of transitions from i to j during the
observation period (O,t)

N.
J..

L:N .•
. 1J
J

= total number of moves from state i (including
within-state moves) during (O,t)

,
A.

1.
= total occupation time in state i by all individuals

during (O,t).

Our representation of the random variables Y(t) in section II,

which describe individual histories by

Y(t) =
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with TA(t) a Poisson process, does not carryover to the more general

formulation indicated here. We could, in principal, write

where

yet)

*T (t)

*= X(T (t))

{number of transitions up to time t in a

k h · d b tA(M-I) }Mar ov c aln governe y e ;

*however, T (t) does not have a simple family of formulas analogous to

the Poisson distribution describing its evolution. Thus we will retain

our first interpretation of alternating exponential holding times and

decisions to possibly move as the simplest generic caricature of mobility

for an individual.

From an analytical point of view the simplicity of the Poisson

series representation

tA (1'1-1)
e

00 k
" - At -Cltl:. Mk
w e k!

k=O

with the terms describing rate of movement and those describing transi-

tions appearing as separate multiplicative factors does not carryover to

our more general formulation. In particular

tA(M-I)
e

tAM -tA
e e

00 -At iAt)k Mk
I: e k!

k=O

The nonequDTalence of the three expressions is due to the fact that A and M do

not commute, L e., .1\1'1 T NA, and :i.t is this algebraic point which makes

computations with etA (1'1-I) considera.bly more difficult than "rith the model

of section Z.lI. We will return to this issue again in section 3 when we

compare this description of individu.al level mobility in a heterogeneous

population ,·lith a description Hhere Al :: AZ = ... = Ar ·
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3. HETEROGENEITY AND MIXTURES OF STOCHASTIC PROCESSES

3.1. Mixtures of Markov processes and inversion formulas

Thus far we have discussed Markov chain models as they pertain to

repeated moves by a single individual or to the movements of a homogeneous

population.' In the context of social mobility, observable populations

are rarely homogeneous with respect to the frequency with which individuals

move'or their propensity to transfer to particular states. However, in

early studies (Prais 1955; Matras 1960; Tarver and Gurley 1965), it was

tacitly assumed that the population under consideration could be viewed

as a homogeneous unit and that histories associated with a single Markov

process could be thought of as typical of all segments of the population.

In using discrete time Markov transition matrices as a baseline for

comparison with particular data sets,a standard strategy is to estimate

an n-step transition matrix Pen) from the data, calculate the n-th roots6

[P(n)]l/n = M viewing these as one~step transition matrices, and then

compare MP+k with the observed matrix P(n+k). For many social phenomena

. '+k A

a substantial discrepancy was noted between MP and P(n+k), and it was

sugg~~ted that this is because the population should really be viewed as

heterogeneous. with different stochastic processes describing the evolution

of different sub-populations. The first detailed discussion of this kind

of inadequacy of Markov models to depict social mobility was by B1umen,

Kogan, and McCarthy (1955). They documented the phenomenon of "lumping

on the main diagonal" (the presence of more individuals in these cells

of an n-step transition matrix than predicted by a Markov model), and

showed that it can derive from treating a heterogeneous population as

though it was homogeneous. Furthermore, they constructed a discrete time
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model in which two types of persons were distinguished, each evolving

independently according to a different Markov process. Efficient

estimation procedures for the parameters of this model were subsequently

developed by Leo Goodman (1961).

The analytic context for which the mover-stayer model was developed

is one where evolution of each distinct type of individual is not

directly observable. An investigator is constrained to sample the total

pooled population (also referred to as a macroscopic level description)

at a few time points and obtain counts of the number of individuals

starting in a particular state who are in any other state at the end of

a sampling interval. This situation is typical of all mobility environ­

ments discussed in the present work. A key step in understanding the

underlying mobility process and the appropriateness of particular models,

then, is an identification of the non-directly observable quantities

(one-step transition matrices and rates of movement for continuous time

processes) by a mathematical analysis relating information about the

pooled population back to the behavior of individuals. This is another

instance of an inverse problem, analogous to the discussion of section

2.1 but complic~ted by the fact that we are treating several types of

individuals simultaneously.

In order to clarify these ideas, we present four examples which

form the simplest mathematical caricatures of the notion of a mixture of

stochastic processes and which are also substantively meaningful in the

context of social mobility.

Example 1:

Consider a population consisting of two kinds of individuals.

Persons of each type evolve independently according to a discrete time
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Markov chain. We denote by Xl(k) and X2(k), k = 0,1,2, .•• , the random

variables describing the movements among states by persons of each type.

Probability statements about Xl(k) and X2 (k) are assumed to follow the

theoretical recipe

for k = 0,1,2, .•. , and A = 1 or 2.

(k)
= mij;A

The element m.~k~ is the (i,j) entry
1.J ;./\

in the stochastic matrix ~ (k-fold matrix multiplication of M
A
). We will

refer to the bivariate process (Xl(k), X2 (k» as a microscopic or

individual-level description of a mobility process.

In empirical situations we usually observe values of a random

variable Y(k) which are possible states of either the process Xl(k) or

X
2

(k); that is, we can observe how an individual sampled from the population

evolves through time although we cannot assign him to a particular person

type. We also assum~ that we can estimate

S.
1.

{proportion of individuals from among those in
state i at .time °who are. classified as type l}.

Procedures for estimating s. have been reported by Blumen, Kogan, and
1.

McCarthy (1955) and Goodman (1961).

Evolution of the stochastic process Y(k), k = 0,1,2, .•• , is described

by the transition probabilities

Prob (Y(k) = jIY(o) = i)

or in matrix form

= +

with

P(k) = (I-S)M~ (3.1)
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sl 0
s2

S =

0 sr

The univariate process Y(k) is referred to as a macroscopic or population-

level description of a mobility process. Its interpretation in this

sense arises from the fact that an observer who can only see histories

yeO), Y(l), Y(2), ..• , and the family of matrices pel), P(2), P(3), ••• ,

cannot discover that in fact Y(k) is generated by a composite of two types

of individuals evolving according to Xl(k) and X2(k) respectively.

H9wever, once the interpretation of a heterogeneous population is brought

in, you can formulate a theory of evolution of a mixture of two types of

individuals as in equation (3.1), with Y(k) describing the composite or

pooled population. Hence the term, "mixture of stochastic processes."

The particular theory (3.1) describes a population in which the mixing

distribution remains constant through time and ia identified with the

proportions of individuals in each state (which may be a JOD category or a

geographic region) who are of type 1 at the reference time k = O. This

theoretical descri.ption reduces to the classical mover-stayer model when

Ml = I = (1 1.. 0). I h Id 1 b h· d h h . 1 1t s ou a so e emp aSlze t at t e macroscoplC eve
o 41

process Y(k) is not Markovian even though the components of the pooled popu-

lation are assumed to evolve according to discrete time Markov processes.

With this theoretical picture at hand, we illustrate the notions

of embeddability and inverse problem for mixtures of stochastic processes

within the context of the mover-stayer model. For the simplest mathernat-

ical structure consider a 2-state mobility process where you are constrained
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to observe the pooled population at timesn = 0 and·n = 2. Denote the

2 x 2 stochastic matrix estimated from the data by

P(Z) = (a I-a)
l-b b

o < a,.b < 1 .

The entry in row i, column j (i,j = 1 or 2) has the interpretation,

"proportion of individuals in state i at time 0 who are in state j at

time 2." Our first task is to determine necessary and sufficient

conditions so that P(2) is compatible with the theoretical description

P(2) = S + (I-S)MZ , (3.2)

To further simplify the calculations while still retaining a

substantively meaningful description of a pooled population of movers

and stayers, suppose that sl = s2 = some s > O. Then solve the matrix

equation (3.2) for M and obtain

(3.3)

Replacing the theoretical P(2)·by the empirically determined P(Z) we can.

check, using the calculations in Appendix I, that the inversion formula

(3.3) (which is the solution of the inverse problem) will yield a legitimate

stochastic matrix M if and only if a + b > 1 + s ~ Putting this another·

way, an empirically determined 2 x 2 matrix P(Z) is said to be embeddable

in a mover-stayer framework if and only if the inequality is satisfied.

It is also important to notice that if you alter what you regard as the

natural time scale of the mobility process so that the matrix (a I-a)
l-b .b

is thought of as Pen) for any even number n, then the condition a + b> 1 + s

is still necessary and sufficient for the data to be compatible with
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the theoretical· framework of (3.1). In fact, in the 2 x 2 case this

condition also ensures a unique inverse.

The criterion a + b > 1 + s becomes more meaningful if you recall

that the original data sets examined by Blumen, Kogan, and McCarthy gave

rise to Pen) having diagonal elements larger than those predicted by a

simple Markov chain model. For a two state process a criterion for Pen),

n even,7 to be compatible with the Markov structure MF is just a + b > 1;

however, once you postulate two types of individuals, stayers and movers,

in proportions s .and l-s respectively, you are describing evolution via

transition matrices whose diagonal elements must be larger than the

corresponding one-type Markov model by precisely the mixing fraction s.

An analogous condition also holds for processes with more than 2 states

__ (Sl.... 0).and for rather general matrices S . A full mathematical
o ·s

r
discussion, however, is somewhat intricate and will appear in Singer and

Spilerman (1973). A fiilal point with regard to the criterion a + b > 1+ s

is that even if you cannot estimate the mixing fraction s directly, you

can still indicate the largest possible value of s which allows the matrix

Pen) to be compatible with a mover-stayer theoretical framework; namely

maximum s such that 1 + s < a + b.

Example 2:

Let Xl(k)""'XN(k) be independent discrete time Markov chains

describing the movements of N types of individuals each evolving according

to a distinct.stochastic matrix Mt.' t..= 1, ... ,N. For individuals of each

typ~,

=
(k)

m.• ,
1J ; 1\
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(k)

~where mij ;11. is the (i;j ) entry in Let

sn 0
N

SA = 23 SA = I,

0
11.=1

sAr

where sAi = {proportion of the population in state i at. time °which con-

sists of type A persons}. Analogous to example 1 the individua1.or microscopic

level vector process (X1 (k)""'XN(k)), k = 0,1,2, ... , is not directly

observable; however, the pooled population is observable at a few time

points and it is from this data that information about the matrices

M1 , ... ,MN, postulated by the theoretical structure, must be inferred.

The population level process may be described by a family of random

variables YeO), Y(l), ..• , whose values are the possible states of each

of the individual sub-populations. The evolution of Y(k) is governed by

the stochastic matrices

P(k) k = 0,1,2, •••• r

This formulation of a mixture of Markov processes can be extended

to the case where each individua1.in the population has his own Mil. matrix.

This·approach was suggested by.McFar1and (1970) in recognition of the

fact that heterogeneity in social mobility is attributable to an assortment

of individual differences-~in race,ethnicity, parental SES, educational

attainment, and so forth. Spi1erman (1972a)·has presented a regression

method for estimating the individual Mil. matrices from·an observed popula­

tion level matrix pel) and data on the determinants of heterogeneity.

Because of its complexity, a discussion of embeddability and inversion
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methods for this model will be deferred to the companion mathematical

paper(Sing~r and Spilerman 1973).

Example 3:

Let {XA(t)}A>O be a continuum of independent continuous time Markov

chains whose transition probabilities are governed by the exponential

formula

tA (M-I)e , A > 0, t ~ 0 • (3.4)

The processes {XA(t)}A>O should be thought of as describing the evolution

of infinitely many different types of individuals, each type being

identified by a number A which specifies its rate of movement. For a

fixed value of A (one type of person) this is just the continuous time

Markov chain model described in (2. II) '. Now, however, we envision a

heterogeneous population where a type-A individual has waiting times

between moves which are exponentially distributed with parameter A,

independent of his previous state. All types of individuals are treated

as having the same propensity to move among the. states, prescribed by

the matrix M.

As in our previous examples, the vector process· {XA(t)}A>O is not

directly observable, but we postulate that type-A individuals occur in

the total population with a frequency described by a probability density

g(A). Then the observable macroscopic level prOCeSS, which consists of

the mixture (or pooling) of all types of individuals, can be d~scribed

by random variables yet), t >·0 whose values are the possible states of

the component types· {XA(t)}A>O' and whose transition probabilities are

governed by the mixture of Markov transition matrices
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pet) = i etA (M-I) g(A)d:\.
a

The entries of pet) have the usual interpretation,

Pij(t) = Prob (Y(t) = j IY(O) = i).

(3.5)

29

This formulation may be viewed as an extension of the mover-stayer

model, and it was developed in that light by Spilerman (1972b). In

applications, g(A) is commonly specified as a gamma density.

g(A)
-SAe a,S> a (3.6)

because of the ability of this functional form to describe a variety of

unimodal curves, unimodality being a reasonable characterization of the

frequency of occurrence of different types of persons (with respect to

rate of mobility) in heterogeneous populations (Palmer 1954, p. 50;

Taeuber, Chiazze and Haenszel 1968, p. 46).

Subject to the hypothesis (3.6), the integral (3.5) may be

evaluated as

(3.7)

where the -ath root of the above matrix is defined by the power series

in M,

pet) = lim
n -+- 00

(3.8)

Equation (3.7) is amenable to two substantive interpretations

depending upon the role assigned to the parameters a and B:
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Formulation 1. View the population as heterogeneous with the

gamma family of distributions describing the proportion of individuals

of type-A in the total population. Then the macroscopic level process

yet) may be represented as

yet) = X(T(a,S) (t» (3.9)

where X(k), k = 0,1,2, ... , is a discrete time Markov chain with one-step

transition matrix M and T(a,S)Ct) is a negative binomial process acting

as the intrinsic clock for the pooled population. T(a,S)(t) may be

thought of as a Poisson process with gamma distributed parameter. It

has the probability distribution

= (a+v-l) (~)V (_s)aProb CTCN,S)Ct) = v)
~ v S+t f3+t ,

(3.10)

in which the term for v denotes the proportion of the population making
, ' '

exactly v transitions in the time interval CO~t). This is just another

instance of the notion of subordination already discussed in section 2.II~

except that now X(TCa,S)Ct» is no longer a Markov process.

From the point of view of available data~ information on T(a~S)(t)

often can be obtained without collecting individual histories. For

instance, data on the distribution of numbet of moves in mobility processes

are reported in Palmer (1954, p. 50) and Lipset and Bendix (1959, p. 158).

Using the mean and variance of the negative binomial variate T(a,s)(tl ),

where t l is an arbitrary observation time, estimates of the gamma

parameters a and S can be computed from these observed population

distributions. This procedure ,was employed by Spilerman (1972b, p. 614)

in an example using data which was artificial, but constructed to

simulate the nature of heterogeneity in occupational. mobility. He
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1.37, ~ = 0.92 whose ramifications we will now

The value a = 1.37 is especially interesting8 if you consider the

following alternative description of the negative binomial process.

(i). Consider a specialC10ck starting in position a and remain­

ing there for a random length of .time TO governed by9

. (s)CtProb (TO':" t) = S+t ' t > O.

At the end of the epoch TO the special clock moves to

position 1.

(ii) The special clock remains in position 1 for a random length

of time Tl independent of TO but having the same distribution:

= t > O.

At the end of the epoch Tl , the special clock moves to

position 2.

(iii) The above steps are repeated and at any particular time, the

position of the special clock should be identified with the

number of moves up to time t of a negative binomial process

T(a,S)(t).

The important point about the waiting time distribution for TO' 'I"'.'

is that with 1 < Ct < 2 it has an infinite variance (and !inite mean}.

This means that a substantial portion of the pooled population moves

very rarely or not at all, which is another way of saying that there

is considerable heterogeneity.

Formulation 2. View the population as homogeneous but evolving

according to the following recipe.
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(i) An individual starting in state i remains there for a

length of time TO governed by the 2-parameter family of

distributions

Prob (TO ~ t) = (~tJ'
At the end of the ~o~ ~ he makes a decision to m~e

to state j (j may be equal to i) according to the stochastic

matrix M.

(ii) The individual remains in state j for a new random length

of time '1 independent of TO but having the same distribu­

tion. At the end of the epoch Tl he again makes a decision

to move according to the stochastic matrix M.

(iii) The above steps are repeated, and individuals in the

homogeneous population evolve according to a continuous

time stochastic process X(t) with transition probabilities

given by (3.7). This is a special form of semi-Markov

process; a more general treatment of this class of processes

in the context of social mobility models appears in

section 3.3.

A key point about this formulation is that it is suitable for

describing processes where individual histories are not available to the

observer and a more flexible class of waiting time distributions than

just exponential is desired. As we remarked earlier, exponentia~

waiting times guarantee that your mathematical model is a Markov process;

however this requirement seems unnecessarily stringent for describing

b 'l' 10mo ~ ~ty. The 2-parameter family of distributions
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(3.11)

which arose in the above' discussion, describes a more general family of

densities f(a,S)(t) all of which have the same form as the exponential

density (see ~igure 1). Indeed, the exponential with parameter A arises

11 . ' 'a
as a limiting case of ~(a,S)(t) when a + 00, B + 00, and B= A.

Figure 1 about here

The simplest mathematical caricature of embeddability and an

inverse problem for the model (3.7) arises again for a 2-state process.

~or this special situation an empirically determined stochastic matrix

(
a I-a)

l-b b
o < a,b < 1

corresponding to observations at times 0 and t l is compatible with the

theoretical framework (3.7) if and only if a + b > L ~or a fixed a

and S in (3.7) this condition also ensures a unique solution to the

inverse problem which is given by

M= C::l) [1 - C+:J Q<t1)}l/. J. (3.12)

Necessary and sufficient conditions for an observed r x r stochastic

matrix P(t
l

) to be representable in the form (3.7) can be determined in

principle. However, the criteria become very complicated as r increases

and computational algorithms to test for embeddability are needed. In

section 4.1 we present some general embeddability criteria for r = 3

and indicate conditions valid for arbitrary r when the sociological

context permits stronger assumptions about the structure of M than just

requiring it to be a stochastic matrix. A full discussion of the
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computational problems arising from embeddability tests will appear

in Singer and Spilerman (1973).

In concluding our discussion of the present example, it should

be pointed out that a simple strategy to check for embeddabi1ity and

uniqueness of M is to calculate an r x r matrix according to (3.12)

and check whether or not the computation process yields a stochastic

matrix as opposed to a complex valued one. If this matrix is stochastic

and if the observed P(tl ) satisfies the condition inf[p .. (t
l
)] > 1/2,. ].].

].

you can verify that the computed matrix M is in fact the unigue stochastic

M compatible with the data. This test was used by Spilerman (1972b,

p. 607). It should be emphasized that, in general, embeddable matrices

"P(t
l

) can give rise to drastically different M arrays when inf[p .. (tl )] < 1/2.
.].]. -
].

Examples of this situation are presented in section 4.1.

One interpretation of empirically determined matrices for which the

diagonal elements are all greater than 1/2 is that on the natural time

scale of the mobility process the observations are sufficiently close to

time 0 so that many moves away from the origin state have not yet occurred.

In a mathematical context inf[p .. (tl )] > 1/2 is a condition which guarantees. ].].
].

that in computing (P(tl»-l/a you are on the principal branch of the

-l/a-th root of the matrix, thereby ruling out complex matrices as well

as other real stochastic matrices M in the inversion formula (3.12). A

complete mathematical treatment of these issues will appear in Singer

and Spilerman (1973).

Example 4:

From a substantive point of view, a principal defect of the

individual level description in example 3 is the requirement that a
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person's waiting time distribution be the same in every state. We

should like to eliminate this constraint and permit a full Markov

model to characterize the movements of an individual. This is

desirable since there are many instances in which rate of movement

is a function of system state; for example, industries differ in their

rates of employee separation (Blauner 1964, pp. 198-203).

We therefore classify a person according to the diagonal matrix

=(~., .~)
r

A. .::. 0, i = 1,2, ••• ,r
1.

where 1/1... has the interpretation, "average waiting time in state
1.

Then let {XA(t)}A>O be a continuum of independent continuous time

Markov chains whose transition probabilities are governed by

. "1..•

t1\.(M-I)
·e , t > 0 (3.13)

This is just the formulation of section (2.111) except that now the

family' {X1\.(t)}1\.>O is thought of as describing the evolution of infinitely

many different types of individuals, each type being' identified by a

distinct positive diagonal matrix 1\.. Individuals of type A are viewed

as occurring in the total population with a proportion specified by a

joint probability density g(Al, ... ,A ) .. The macroscopic level (pooled. r

population) is then described by random variables yet), t.::. 0 whose

values are the possible states of the component types' {X1\.(t)} and whose

transition probabilities are governed by the mixture of Markov transition

matrices
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(3.14)

A flexible 2r-parameter family of distributions analogous to (3.6)

and useful for describing heterogeneity in the full population is

r
IT
i=l

(3.15)

where a.,S. > 0, and i = 1,2, ... ,r.
1. 1.

A major analytical difficulty arises in dealing with the represen-

tation (3.14), even for specializations such as (3.15), because simple

evaluations of the integrals in terms of rational functions of }1 or

I

finite linear combinations of exponentials cannot be carried out. The

source of this mathematical difficulty is the fact that the matrices A

and }1 are non-commutative, i.e., AH # MA. A discussion of numerical

methods for evaluating expressions such as (3.14) will appear in Singer

and Spilerman (1973).

Although we cannot obtain a convenient expression for pet), analogous

to (3.7) in the case wher.e the rate of movement parameter was specified

by a scalar, or even an efficient computational algorithm, we can

evaluate pet) numerically for illustrative purposes. In particular,

equation (3.14) may be written

pet) :::

00 00

~ ····1
00

Z
k.=O

{A(M-I»k k
1 , t go.1"" ,A )dAl •••• .dAc. r r

00

S
k=O C

·A(n ...
A u
r rl

A)klUlr
: g(;\J, ... ,A )dAl·····dA. - r r

A u
r rr
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where U = M-I, Le., u .. = m.. - 8... Specifying g.o..l'" •. ,Ar ) as a
1J :LJ 1J

product of gamma densities (3.15), we obtain

pet) = I + t (
.u .. Cl i ). +

1J S.
1

+ ... (3.16)

where the entries in matrices represent the (i,j) terms. Although the

corresponding terms of higher order arrays increase rapidly in complexity,

the calculations can be carried out by computer for a few terms of the series.

Artificial data were prepared in order to compare this model with

ones in the earlier examples. The underlying structure of the constructed

data is revealed in Table 1. Panel A shows the individual-level matrix 11

which was assumed to govern the movements of all persons. The waiting

time distributions are displayed in panel B; they were constructed by

assuming that a gamma density with parameters (Cli,Si) describes the

population heterogeneity in state i with respect to rate of movement. By

varying these parameters over the system states we have built into the

data the full range of generality consistent with the present model.

Table 1 about here

Using the information in Table 1 in conjunction with equation (3.16)

the matrices pel), P(2), and P(3) were constructed for the process. These

arrays are reported in row 1 of Table 2. We will interpret them as

"observed data;" they depict a mobility process in which there is population

heterogeneity with respect to rate of movement, and an individual's rate

can depend on the state he is in.

Table 2 about here
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How good a fit would the mover-stayer extension or the Markov chain

model provide to these data? To investigate this matter the P(l) matrix

in Table 2 together with (a,S), the parameters of the waiting time

distribution for the pooled population, were used to estimate Mvia (3.12).

Equation (3.7) was then employed to calculate P(2) and P(3), the matrices

predicted by the mover-stayer model. These arrays are presented in the

second row of Table 2. Markov chain estimates were obtained by raising

pel) to the 2-nd and 3-rd powers (which provides identical results to

projection from (2.4». These matrices are reported in roi'T 3 of Table 2.

The two models produce different kinds of errors when compared with

the "observed data." The Markov model permits the waiting time distribu-

tions to vary by state but constrains them to be exponential. This

produces an underestimation of the proportions on the main diagonal when

population heterogeneity in a state is considerable (as it is for state

121), but accurate results where the heterogeneity is small (state 2).

The mover-stayer extension permits the waiting times to be other than

exponential but constrains them to be represented by a single distribution.

With the present data the mover-stayer projections overestimate both

main diagonal entries.

It should be noted that the mover-stayer model is not completely speci-

fied in the example. Both the general model of this.section .. Cequation 3.16)

and the Markov model are insensitive to the proportion of the total

population in an origin state. This is not true for the mover-stayer

extension when the assumption concerning state independent waiting times
A A

is violated, as it is here. Since the parameters (a,S) are calculated

from the movements of all individuals, the estimated values will differ

according to the origin state distribution of the population. What this
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means is that there are a variety of mobility situations, all consistent

with the data in Table 1 and with the matrices in rows 1 and 3 of

Table 2, which will produce different arrays ~nth the mover-stayer

model. The particular matrices reported in row 2 are based on the

additional assumption that the population was evenly distributed

between states 1 and 2 at time 0 (footnote b of Table 1).

Rather than pursue computational details our intention here is

simply to point out that the theoretical framework (3.14) provides the

most general macroscopic level description of a heterogeneous population

with individuals classified in terms of their rates of movement, the

rates being state dependent, and evolving according to independent lfurkov

chains. As in example 3, the observable process is a particular case of

a semi-Markov process and this provides a second interpretation for

(3.16), as a homogeneous population with non-exponential waiting times.

Here the waiting time distributions depend on the state according to

Prob (Lk ~ tIX(k) = i) (3.17)

The particular formula (3.17) arises when the family (3.15) is used to

describe the proportion of type-~ individuals in the pooled population.

The variable X(k), k = 0,1,2, ..• , denotes a discrete time Markov chain

governed by the stochastic matrices M, liZ, ;, .•• , and only describes

the jumps of yet), not its waiting times in particular states.

In applying this model it should be noted that the data requirements

are more extensive than was the ca.se previously. Fh':st, until inverse

procedures are developed, we must have available M rather than pet),

although the latter is the more commonly published datum. Second, we
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demand a separate waiting time distribution for each system state in

order to estimate the parameters (a.,S.), i = 1, •.• ,r. This is in
1. 1.

contrast to the estimation of a and S in example 3 using the subordina-

tion representation yet) = X(T(a,S)(t». There we required either the

waiting time distribution for the entire population or, what is more

generally available, the distribution of number of moves in the

population during (O,t). A similar readily computable description of

yet) in the present case, governed by (3.14) and (3.15), is not possible

due to the state dependence of the waiting times. In principle we

* *could write yet) = X(T (t» where T (t) =' {number of transitions in

yet) up to time t}; however there is no simple 2y.-param~ter family of

processes, analogous to the negative binomial process, which enables us

to solve for (a.,S.), i = l, .•• ,r in terms of number of transitions in
1. 1.

a sampling interval. For these reasons, in contrast with the mover-

stayer extension (example 3), individual-level data files will be

necessary to exploit this model. They could derive from either retro-

spective histories (e.g., the Taeuber data file on residence change

(Taeuber, Chiazze and Haenszel 1968» or from panel studies (e.g., the

New Jersey Negative Income Tax Experiment conducted by the Institute

for Research on Poverty of the University of Wisconsin).

Embeddability and inverse problems for the present model, given

observations at several time points P(tl ), P(t2), ••• ,P(tk) and varying

degrees of information about (a.,S.), i = l, ..• ,r (ranging from estimation
1. 1.

of all 2r constants down to rough inequalities about their range), are

also complicated by the fact that A and M are non-commutative. In

particular, no simple representation for M in terms of logarith..ms and

rational functions of P(t.) analogous to (3.12) is available. Numerical
1.
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inversion methods involving special multi-dimensional extensions of

the classical Lagrange inversion formula for scalar valued analytic

functions will be discussed in the context of mobility models in Singer

and Spilerman (1973). It should also be pointed out that a'complete

discussion of the inverse problem and non-uniqueness of M in the present

setting poses substantial mathematical difficulties which are unresolved

as of this writing. The interested reader should consult Singer and

Spilerman (1973) for precise statements of these questions.

3.2. Identification of the determinants of p"£p'ulation heterogen~ity

Let' {XA,M(t)}A>O,M>O be a collection of independent continuous tj.me

Markov chains whose transition probabilities are governed by the prescrip-

tion

tA(M-I)e

We therefore classify a person in terms of a diagonal matrix of movement

rates and a stochastic matrix which specifies his transition propensities

at a move. For convenience we will subscript individual q' s parameters

We make no assumption regarding par.ticular distributionsand

for

write (A ,M ).
q q

{A } and' {H} in the population;
q q

however, we do require the availability

of individual-level attribute data. Our intention is to discuss a method

for ascertaining the determinants of population heterogeneity with

respect to both rate of mo'rement arid propensity to favor transitions to

certain states.

(a) Heterogeneity in the rate of movement: Consider the regression

equation,

A.
lC

K
a. + Lb. kx.. + e

1
.,

1 k=l 1, --k.C
i = 1, ... ,r (3.18)
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where A. is the c-th waiting time interval in state i during (O,t
l

) ,
~c

(Xl" •. ,2)z) are variables which are. expected to explain .indiyidual. differ­

ences in rate of movement, and the error' terms. are assumed.. to ..be independently

distributed. The observations in this regression are the C.waiting times in

state i. A.person will contribute more than one observation ·if he made

several moves during (O,tl ) which originat'ed in state i; if. he was .. in this

state throughout the interval (and failed to move) he will appear once vnth A
ic

= t
l

.

This specification is intimately related to the rate of movement

parameter of the continuous time Markov model according to

I
N.
~.

C
L: A.

~c
c

I
= N.

~.

C
L: A.

1C
c

I
"
\

(3.19)

where the sums are taken over all waiting time intervals in state i

during (O,t l ), and N. denotes the number of moves originating in state
~.

i. The first equality results from the least squares procedure of

fitting a regression plane (A. is the predicted c-th waiting t~e, the
~c

prediction having been made from the attribute profile (Xl ""'~_ ) of'.. c --Kc

the individual associated with this waiting time). The second equality

is just equation (2.7) restated in terms of waiting times. The A.
~

value pertains to the single Markov chain that would be estimated if

heterogeneity were ignored; it provides a suitable reference in terms

of which population heterogeneity may be described. Combining (3.18)

and (3.19),

1
"
A.

1

=
C

a. N
~ .

1.
+ i = 1, ... ,r (3.20)

and this indicates how the regression produces a decomposition of the
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Markov parameter Ai' The term in parentheses in (3·.20), incidently,

can be interpreted as the "typic·al" individual· profile associated with

a waiting time interval.

(b) Heterogeneity with respect to choice of destination state:

Define a variable y .. which equals 1 if the c-th move originating in
1.J c

state i during (O,tl ) resulted in a transition to state j, and 0 if it

did not. Now consider the equation

=
H

a .. + L: b .. hX. + e .. ,
1.J h=l 1.J -nc 1.J

i,j = l, ... ,r (3.21)

where (Xl""'~) are variables which are expected to relate to choice of

destination at a move, and the error terms e .. are independently distxibuted.
1.J

The observations for this regression ar.e all C~ which orj.ginated in state

1. An indi\ddual will appear more than once if he made several mmres from

state i during (O,tl ); he will not contribute an observation if he failed to move.

The relation between this equation and the corresponding }furkov

parameters is given by

N. N. Nii1 1.. "-
_1_

1..

L: Y' j
= L: y. = = m.. (3.22)N. 1. c N. 1.C N. 1.J

1.. C 1.. C 1..

where N.. equals the number of state i to state j transitions. The
1..1

equality between the first two terms follows from the regression

procedure; the second equality derives from the definition of y .. , and
1.J c

the third from equation (2.7). Again, the value m
ij

refers to the single

Markov chain that would result from treating the population as though

it were homogeneous; it provides a useful benchmark from which to

characterize heterogeneity. Combining (3.21) and (3.22) the decomposition

of the Markov parameter m.. may be expressed as·
1.J



m.. = a .. +
1J 1J

(

N. )
Ii • . rl'nc
L: b"k N '
h 1J .

1.

i,j = l, •.. ,r. (3.23)"

This equation describes the population heterogeneity with respect to

choice of destination state at a move. The term in parentheses in

(3.23) depicts the typical individual profile associated with a move.

The two regression equations (3.18) and (3.21) therefore lead to

a decomposition of population heterogeneity in a way that is intimately

related to the continuous time Markov chain formulation. Further

elaboration of this procedure, in the context of a discrete time Markov

model, may be found in Spilerman (1972a).

In theory these regressions could be used to construct a /I. and
q

M for each individual in the population as was done in Spi1erman (1972a).
q

If this is carried out the population level transition matrix would be

written

pet)
-1 til. (M -I)

V L: V e q q
q q

(3.24)

0) and V

where V is a matrix with entry 1 on the main diagonal of the i-th row
q

and zero in all other cells (i denoting individual q's location at time

L: V. Expression (3.24) 13 describes the population level
q q

process when each individual q evolves independently according to a

continuous time Markov chain with parameters (/I. ,M). It is the
q' q

continuous time analog of McFarland's (1970) formulation to Cl.ccornmodate

heterogeneity, which wa.s summarized in example 2 of section 3.1.

In practice, the estimates for this construction ar.e likely to be

poor since we would be computing M matrices for non-movers during
q

(O,t
l

) using only information on choice of destination state by
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movers (3.21). Consequently, the utility of this formulation lies

mainly in its contribution to analyzing heterogeneity, rather than to

estimating individual level parameters for projection.

3.3. Semi-Markov processes and their mixtures

When the multivariate density gOl , .•. ,A
r

) in equation (3.14) is

specified as a product of univariate density functions, IT g. (A.), then
. 1: 1.

the same mathematical formalism (3.14) applies to (a) a heterogeneous

population in which each individual moves according to a Markov process

with transition matrix M, the heterogeneity in rate of movement being

described by g.(A.) in state i; and (b) a homogeneous population in
1.. 1.

which an individual wa.its in state i according to the distribution

function

F. (t)
1.

-AtAe g. (A)dAdt
1.

before transferring according to M.

For the ma.croscopic level process yet) of example 4,· {g. (A.)} were
1. 1.

specified as gamma densities (3.15), and the corresponding waiting time

distributions were given by

F. (t)
1.

= Prob (waiting time until a transition
is less than t

present
is ~tat~

(

{3 Ja ..
= 1 - {3i~t 1., a.,S. ~ 0,

1.. 1.
i = 1,2, ••• ,r.

In the yet) process of example 3 gi(Ai ) = ~(A) [equation 3.6] and

F.(t) = F(t) [equation 3.11]; that is, the description of population
1.

heterogeneity in the first perspective, and the waiting time to a move in

the second, are independent of the state of the process.
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These macroscopic level processes are special cases of what are

known as semi~Markov processes (Pyke 1961a, 1961b; Ginsberg 1971). This

model is usually presented in the conceptual imagery of a homogeneous

population with waiting time distributions which need not be exponential.

For an explicit formulation consider a stochastic process Z(t), t ~ 0,

with a finite number of states which, again, may be occupational cate-

gories, geographic regions~ or income levels. The transition probabilities

for the semi-Markov processes treated here are the unique solutions of

the system of integral equations

(3.25)

where p .. (t) = Prob (Z(t) = j Iz(O) = i); 8 .. = 1 if i = j, 0 if i 1- j;
~ ~

and 1 .s.. i, j .s.. r.

F.(t) is a distribution function which has the interpretation,
J.

"probability that a move has occurred by time t;" we assume that it has

a density f.(t). The stochastic matrix M with entries m.. describes the
J. J.J

propensity to move to particular states. Equation (3.25) is therefore

amenable to the following interpretation: (a) When i 1- j, Pij(t) consists

of the sum of products of three factors: the probability of a first

transition out of state i at time s, the probability of a state i to

state k transition at that move, and the probability of transferring to

state j by some combination of moves during (s,t). The summation is

over all intermediate states k and over all time points s in the interval

(O,t). (b) When i = j, then, in addition.to the above factor, there is

a possibility of not transferring out of state i during (O,t). The

associated probability is specified by the first term.
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. 1

When f i (t) =. A.ie ,then the system (3.25) is equivalent to the

differential equations (2.3) with Q~~,itten in the factored form Q = A(M-I).

Thus the integral equation formulation (3.25) is a very transparent way

of saying that a stochastic process governed by these equations behaves

like a Markov process except that the waiting time distributions can be

represented by general density functions f.(t).
1

With these preliminary notions at hand we now indicate two contexts

in which semi-Markov processes are a natural description of social

mobility.

Example 1:

R. McGinnis (1968) refers to a phenomena which he calls cumulative

inertia and which has the interpretation that the longer a person remains

in a particular state (occupation, geographic region, etc.) the less

likely he is to move out of that state in the immediate future. Presumably,

with increasing duration a person establishes social linkages and in other

ways acclimates to his setting so that the attractiveness of remaining

is increased. Ginsberg (1971) has pointed out that a semi-Markov process

with decreasing event rate provides a formalization of this notion. A

mathematical caricature of cumulative inertia can be stated in terms of

the waiting time distributions F.(t) via the function
1

r. (t)
1

=
f. (t)

1

l-F. (t)
1

(3.26)

The expression r.(t)dt can be interpreted as the probability that a
1

person known to be in state i at time t will exit from that state in the

next dt units of time. Then cumulative inertia simply means that ret) is
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d . f . f 14. A • 1 2 f 1a monotone ecreas;mg unct1-on 0 t. .. A S;uTI,j? e-pf3.rameter ami y of

waiting time distributions with monotone decreasing cumulative inertia

is given by

1 - e

y.
-A..t 1­

~

with \ > 0, °<: y. < 1.
~

(3.27)

For this specification, r.(t)
~

y.-l
~= A.y.t

~ J.
Now classification of an

individual evolving according to a semi-Markov process would be to

characterize him by the family of distributions W = [Fl(t), ••• ,Fr(t~

describing his waiting times in any state and the stochastic matrix 11

describing his propensity to move to particular states.

Example 2:

In the framework of mixtures of stochastic processes we can consider

{~(t)} as a continuum of independent semi-Markov processes describing

the mobility of individuals whose rates of movement are governed by (3.27).

It is assumed that the individual rates are distributed in the total

population with proportions governed by a probability density g(A
1

, .•. ,A
r

;

Y1""'Yr)' Then the macroscopic level process yet) is def.ined as a

stochastic process whose possible states coincide with those of' {J)p(t)}

but ~~hose transition probabilities are governed by

pet) roo 00 1 (1

= • °...fo .. ·fo .. ·.Po ~(t;

(3.28)

where S(t; AI"'" Ar ; y1" .. , Yr ;:M) denotes. the stochastic matrix solution

of (3.25) with {F.(t)} specified by (3.27). In general we must appeal to·
1

numerical integration methods to evaluate Set; A. 1 ,···,A ; y1""'y ;M). r r
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as explicit simple representattons analogous to (3.7) are a rarity for

semi-Harkav processes. Again, a useful 2r-parameter family of densities

describing the composition of the pooled population is given oy

r

11
i=l

a.
S. ~
~

r(a.}
~

a.,S. ~ 0
~ ~

In this simple setting we treat Yl'''''Yr as fixed; although this

is certainly not an essential conceptual restriction. The rationale for

using the gamma distributions in the present context remains the same as

that presented for mobility processes where indi,riduals e,robred according

to Markov rather than semi-Markov processes. The question of computa-

tiona1ly effective solutions of the inverse problem for mixtures of

semi-Markov processes is at present unresolved; an indication of the

mathematical difficulties and some suggested lines of attack 'to7il1 be

presented in Singer and Spi1erman (1973).

This very general process (3.28), incid.enta11y, prmrides us 'with a

formulation in which both a duration of residence effect and population

heterogeneity can be postulated. In the preceding models, and in the few

other discussions of semi-Markov models as they pertain to social mobility

(Ginsberg 1971, p. 254), one was compelled to specify ind.ividua1-1eve1

behavior as Markovian if the heterogeneity perspective was adopted, and

the population as homogeneous if a duration effect mechanism was postulated.

Clearly, both processes could be operative and we should prefer a model

in which they can be incorporated simultaneously.

A final point concerning semi-Markov processes which should be

mentioned is that the formulation given by equation (3.25) does not

describe the most general process of this kind as treated in the mathematics
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literature. In particular, the origtnal sernt-Markov framework allowed

for waiting time distributions which could depend on the next future

state as well as the current state of the process. This level of

generality, however, does not seem appropriate for most social mobility

situations; hence we have restricted our attention to a subclass of

semi-Markov processes which requires the estimation of fewer parameters.

4. INVERSE PROBLEMS

In the previous sections we have indicated a few examples of

inverse problems and their associated embeddability questions. This

aspect of our study really involves an independent mathematical de\relop-

ment which also seems to be of considerable importance outside the

context of social mobility models, and which will be elaborated in a

separate publication. In the present section we simply illustrate the

flavor of inverse problems and give some indication of general diagnosti.c

strategies for recovering partial information about the fine structure of

a mobility process from information about its behavior at a few points

in time.

Before proceeding to the examples, we would like to point out where

the inverse problems of the present study fit into a larger mathematical

framework. To fix the ideas, recall the matrix differential equation

dP(t)
dt

QP (t) , P(O) = I

whose solutions are the transition probabilities for continuous time

Markov chains. Rather than being given a particular differential

equation (i.e., a fixed Q) and asked to compute a solution pet)
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(a "direct problem"), an inverse problem has a' class of differential

"equations and partial information about a solution (usually P(t.) for
. ~

a few values of i) as given ingredients. From this information the

problem is to find the particula~ differential equation which is

compatible with the observed solution.

The overall strategy of inverse problem formulation and interpre-

tation in the context of social mobility will now be described entirely

within the context of a homogeneous population evolving according to a

continuous time Markov chain. The key point is that all of the issues

which must be faced in the more complicated mixtures of Marko,r and

semi-Markov formulations are already present in this setting.

Step l--Embeddability

From an empirical point of view, the most primitive question to be

asked about a stochastic matrix P(tl ), estimated from obser.\Tations at

times 0 and t
l

, is whether or not it is compatible with the theoretical

framework

where Q is an r x r matrix satisfying

-00 < qii < 0, qij > 0 for i ~ j,
r

~ qiJ'
j=l

= O. (l~.1)

. This problem has a long history in the mathematics literature (see Singer

and Spilerman 1973 for references), and our purpose here is to indicate

its solution for 2 and some 3-state processes as well as general finite

state birth and death processes.
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Case 1:

If P(tl ) is a 2 x 2 stochastic matrix

o < a,b < 1, then it can be represented as

(
a l-ba) ,denoted By
l-b

tlQ
e with Q satisfying (4.1)

if and only if a + b > 1. (See Appendix I for a proof.)

It is interesting to note that the matrix (1!3
2!3

2!3) which, as
1!3

indicated in (2.1), is compatible with a discrete time Markov model for

t l = 3 is not compatible with a continuous time Markov model for Cl.ny

positive time t l . Another interesting feature of the condition a ~ b > 1

is that this automatically guarantees uniqueness of Q. In the 2 x 2 case

we therefore have a single criterion which ensures both embeddahility

and uniqueness; note also that this is a weaker requirement than the
....

general sufficiency condition for uniqueness, it;f[Pii(t
1
)] > 1!2.

J.

When the inequality a + b > 1 is satisfied the unique Q matrix

governing the evolution of the continuous time Markov chain is given by

Q
1 ....

= - log P
t
l

= (

a-llog (a+b-12
t l (a+b-2) l-b

I-a.)" •

b-1
(4.2)

A further ramification here is that compatibility of the data with a

continuous time Markoy model and unique identification of Q can be

checked by observations at time 0 and only one other time point; this

time point may be chosen ~~bjt~arily' by the experimenter. As subsequent

examples indicate, this simplicity of: embeddability tests and ioentifi-

cation of Q no longer holds even for 3-state processes.

Case 2:

"(a) If P(tl ) is a 3 x 3 stochastic matrix with distinct real
t Q

eigenvalues 1 > Al > A2 > 0 then it can be represented as e 1 for at
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least one Q satisfyinge4.l) if and only if

(2)
Pij <

2 2°2 ~l) log, "'1~("'l ":'1)lcig;\2

(A2~1)10g Al~C"'l-l)log A2
all i :f j (4.3)

where p. ~2) is the (i,j) entry in [PCt
l
)]2.

~J
....

(b) If petl) has eigenvalues 1, 'A" A where A is real and 1 > A > 0,
t Q '

then it can be represented as e 1 for at least one Q satisfying (4.1)

if and only if

< " , 21 ,2 _ ,2 + 1
p .. ~I.-..:..:.I\_---..;.I\.:..-..:.-=.

~J A log A - A + 1 all i ~ J.r" • (4.4)

Similar criteria can be given for 3 x 3-matrices ha,ring complex

eigenvalues as well as for general r-state matrices. The explicit

inequalities become very intricate as r increases; howe,rer, they are all

established by observing that log P may always be evaluated in principle

as a polynomial in P of degree at most r-l [Caley-Hamilton Theorem

(Stein 1967, p. 196)]. Then inequalities such as (4.3) and (4.4) arise

by requiring that

be real and a matrix satisfying (4.1).

Case 3:

If a sociological context allows us to restrict consideration to

continuous time models where the only allowable transitions are to
....

nearest neighbor states~ then we have a simpler criterion for petl) to
t 01 '

be representable as e for at least one Q such that (4.1) holds but

with q .. = 0 for Ii - j I > 1 (i.e., Q is a Jacobi intensity matrix).
~J
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~ tlQ
~(tl) is representable as ~with

Q a Jacobi intensity matrix if and only if all of its entries and the following

2 x 2 sub-determinants are strictly positive (Karlin and McGregor 1957):

Choose i l < i 2 , jl < j2 arbitrarily and check

(

Po.
1. l ,J l

det ,.,
p. .

1.2 ,J l

p. .
1.1 , J 2 ) > a (4.5)

It is important to notice that the class of models etQ with Q a

Jacobi matrix has been widely used in sociological investigations even

outside the context of social mobility (e.g., Coleman 1964, chapters la,

11, and 14). In the mathematics literature these processes are referred

to as finite state birth and death processes (W. Feller 1968, chapter 17),

and they also have a long history of use as baseline models in particle

physics, chemistry, and biology. The criteria (4.5) provide a simple,

readily computable test for compatibility of a stochastic matrix with a

birth and death model for an arbitrary finite number of states. The

interested reader can check. that in Coleman's (19M, pp. l~62-465)

application of a birth and death structure to English mobility data

there are numerous violations of this embeddability condition.

With these examples at hand, we should emphasize that the above

inequality tests can be considered as devices for isolating the class of

stochastic matrices compatible with particular cont:i.nuous time Markov

structures15 from the class of all stochastic matrices. Once it is

concluded that a matrix is embeddable in a Markov structure, the next
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step is to identify all inten~ity matrtcesQ whicQ could have given

rise to the observed petl).

Step 2--Identificationof Q

If the observed matrix P(t l ) is embeddable and the condition
.-

inf[p .. (t1)] > 1/2 is satisfied, then we can calculate a unique Q,. ~~
~

Q
1 A

= -- log P(t1).
t
1

(4.6)

In order to illustrate the methodological difficulties which might
.-

arise when dealing with matrices P(t1) which are embeddable in a

continuous time Markov structure, but do not satisfy the condition

(4.7)

This stochastic matrix has a~ 7.26.

. 16
est~mate

/1+kI 3 3

1 €- --
3 3

-27f13
€ = e

Suppose you

"-

inf[p . . (t
1
)] > 1/2, we consider the following example.. ~~

~

where

t
1
Q

representation e for the following intensity matrices:

(1 1

-:) (-1 1/2 1/2)
Q1 = 0 -1 Q2 = 1/2 -1 1/2 •

1 0 1/2 1/2 -1

.-
If a researcher is constrained to estimating just this P(t1) from data,

then he will find these two substantively distinct matrices compatible

with his observations and with a continuous time Markov model. In

particular, Q
1

and Q2 correspond to processes where the holding times
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between moves are exponentially d~stributed with parameter 1, regardless

of state; however, a process governed by Ql only allows transitions

through states in the cyclic pattern 1 + 2 + 3 + 1 + 2 + 3 ••• etc. On

the other hand, a process governed by Q2 allows equally likely transitions

from anyone state to any other state. Sociological argument must decide

which of these two alternatives is substantively meaningful if a single

observation beyond t = 0 is a constraint on the study.
tQ

1
tQ

2Alternatively if you compute e and e for general times t, you
tQ

lfind that Pl(t) = e is a 3 x 3 stochastic matrix with entries

p.~l)(t) 1/3 + 2/3 -3t/2 cos I3t/2, i = 1,2,3e11

PI?) (t) p (1) (t) = P (l)(t) = 1/3 + 2/3 -3t/2 cos (I3t _21T)e23 31 2 3

P (1) (t) P (1) (t) p (1) (t) 1/3 + 2/3 -3t/2 (l3t + 21T)= = e cos .. "2- . '3-13 21 32

tQ
2while P

2
(t) = e is a 3 x 3 stochastic matrix with entries

p.~2)(t) = 1. + 1. e-3t/ 2 i = 1,2,3
11 3 3

p.~2)(t) 1 1 -3t/2 for i J. j .=---e ,-
1J 3 3

When t
4k1T= --- (k = 0,1,2, ... ), Pl(t) = P2(t) and you cannot discriminate

between these two processes. The difficulty to be highlighted here is

that the observation time dictated by the experiment turned out to be

'inconvenient for unique identification of Q. However, if one more

observation is allowed,

k . 61T (.ta en at t1me-- 1.e.,
/3

the above calculations indicate that if it is

(
41T ) (. 61T )k = 3/2), then log P '/3 and log P ./3 must be
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constant multiples of either Q1 or QZ' Whichever is observed will

identify the uni~le Q-matrix compatible with a continuous 'time Markov

model for the mobility process under examination.

The phenomenon described above arises due to non-uniqueness of the

logarithm of a stochastic matrix. As indicated earlier, a sufficient

"
condition for uniqueness in the Markov case is that inf[p •• (t

1
)] > l/Z;. ~~

~

however, there is no apriori reason to believe that this condition will

hold in environments where Markov models might be applied. Hence a

more thorough understanding of the nature of non-uniqueness as illustrated

by the above example is clearly needed. Some progress in this direction

both for the Markov and semi-Markoy models arising as mixtures according

to the recipes of section 3 is described in Singer and Spilerman (1973);

however, substantial mathematical diffi.cu1ties are still unresolved with

regard to these questions.

5. CONCLUSIONS

We conclude with an overview of diagnostic strategies for the

social mobility models formulated in the previous sections. Many of our

remarks should be viewed as suggestions for future research; however, a

discussion of several mobility data sets from this point of view together

with a presentation of appropriate data analytic techniques will appear

in a separate pub1icati.on of the authors.

(A) Select a class of Markov or. semi-Markov models, such as those

in section 3, which seem to correspond to prior evidence and

theories about the nature of heterogeneity in the population

you are observing.
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(B) Check for embeddability. Necessary and sufficient conditions

for an observed 2 x 2 matrix to be embeddable in a continuous

time Markov process, and for an obsenred r-state matrix to be

embeddable in a birth and death structure were reported in

section 4.

(C) Check for a unique solution to the inverse pr.oblem. A

sufficient condition for uniqueness in the continuous time

models we have explored is the criterion

The non-uniqueness phenomena illustrated

inf[p .. Ct
l
)] > 1/2.

i 1.1.

in our previous

example frequently occurs for logarithms, roots, and more

general inverse formulas of matrices with repeated eigen-

values. Thus a useful strategy in dealing with empirically

determined matrices P(tl ) having distinct eigemralu.es some

of which are within several significant digits of each other,

is to adjust P(tl ) to force equality of the eigenvalues and

compute all M-matrices or Q-matrices (depending on the context)

compatible with both a repeated eigenvalue estimate and a

distinct eigenvalue estimate. The point here is that much

sociological data involves severe "noise," and you may miss

an'opportunity to examine and interpret a substantively

meaningful matrix M by treating the observed matrix P(t l ) as

though it was error free. Indeed, because of sampling error

in the observed matrix P(tl ) you may have computed the wronlS.

M for. the process! The numerical analysis problems connected

with these adjustments will also be indicated in Singer and

Spilerman (1973).
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CD) The calculation of compatible matrices'M via numerical

inversion algorithms should De followed by a determination

of time points beyond that of the originaloDservations to

and t l at which it would be possible to discriminate among

competing candidates. An instance of this was the identi­

fication of the time 6~ in the previous section where an
13

estimated p(6~) could be used to discriminate between Q
I13.

and Q2. This portion of the diagnostic process really falls

under the framework of experimental designs for mobility

processes, an area which to the best of our knowledge is

completely unexplored.
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~PENDIX I. COMJ.,'UTING :lrUNCTI:ONS O:lr MATRIX MGmmNT

A key step in the production of inversion formulas is often the

evaluation of an analytic function of matrix argument. In the continuous

time Markov case we required a computation of Q from an observed P and

tQa postulated structure e . This involves calculation of log P uhere P

is a stochastic matrix. Analogously, in the discrete time Harko~T model

we required a recipe for computing the n-th roots of P.

A natural formulation of analytic functions fez) with z replaced

by a matrix is the contour integral definition

where r is a smooth closed curve which encloses the eigenvalues of P and

£(1;;) is single-valued and analytic. The components of (1;I_P)-l are of

the form

-1
(I;;I-P) ij

(_l)i+j~..
:q

where ¢(I;;)

~ ..
1.J

= determinant of (I;;I-P), and

= determinant of the (n-l) x (n-l) matrix obtained by

deleting the jth row and i th column of I;;I-P.

To illustrate the use of this formulation we calculate log P when

F is the 2 x 2 stochastic matrix

P = (a I-a)

l-b b

The steps in the computation are

O<a,b<l.



A-2

= G~: a....l) ,
1';-0

=. (1';-b

I-b

I-a),
1';-a

1'; (a+b) + .Ca+b-l).

The eigenvalues of P are the roots of ~(1';) = 0 and are given by

a+b-l.

(1';-1) (.1';-(a+b-l» for 1 ~ i,j < 2 yields

'+'(_1)J. J~, . log (1';) d 1';
J.J

Residue evaluation of ~~i ~r

log P = .!£.g(a+b-l)
a+b-2 (

a-l

·l-b

I-a) .
b-l •

For this to be a legitimate Q-matrix we requ.ire simply that log(a+b-l)

is real. This will happen if and only if a + b > 1. Thus we obtain the

condition that P is representable as eQ if and only if a + b > 1.

For a second application of the contour integral we calculate the

cube roots of

P(3) = C;~ 2/3)

1/3

which is (2.1) in the text. Here

(1';I-P)
(

1';-1/3

-2/3

-2/3)

1';-1/3 ~

= (1';-1/3

2/3

2/3)
1';-1/3 '

~ (1';) = 1/3 = (1';-1)(1';+1/3) = o.

Residue evaluation of ~~i ~
C· l)i+j.. 1/3 ..
-. . ~ij1';· .. d1';
(1';-1) (1';+1/3) for 1 ~ i,j < 2 yields



[P (3") J1/3
(

1/2 - 112 7.3­

=1/2 + 1/2' 73

':3 .
1/2 + 1/2 13

3
1/2 ... 1/2 13)

A...3

as the only real valued root. This matrix is (2.2) in the text.

A more extensive discussion of the role of contour integral

formulations in producing inversion formulas for the models of

section 3 is given in F. John (1965, pp. 103-118).
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IWe assume that the reader is familiar with the four papers cited

in the preceding paragraph and with the rudiments of discrete and

continuous time Markov processes.

2The symbol A over a stochastic matrix means that it should be

thought of as a quantity estimated directly from data; matrices without

A should be viewed as obtained from a mathematical model.

3Incompatibility with a discrete time Markov chain implies

incompatibility with a continuous time Markov structure. The converse

is not true.

4The utility of this formulation can be illustrated by an example.

If the process concerns geographic migration and the system states are

regions of the county, a state i to state i transition would represent

change of residence within a region. Even if it is unreasonable concep­

tually to "move" and not change state (as in movements among marital

statuses) we might still want to speak of "exposures to movement" or

"decisions to possibly move."

5{X(k)} are again the random variables of a discrete time Markov

chain governed by M which describes moves when they occur.

6In most applications to mobility it has been assumed that the

natural time scale of the process is such that n = 1, thus eliminating

the need for computing roots of matrices. This assumption is tantamount

to saying that the natural time scale has intervals which are the same

length as a sampling interval, thereby obscuring consideration of

, '.
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2

6 (cont.) 1 ' d l' , . 1 . d i ia ternatl-ve un er yl-ng t1.me sca es an trans t 'on

mechanisms M which might be compatible with thcdata and substantively

meaningful.

7It should be observed that a 2 x 2 stochastic matrix Pen) with

n odd is always compatible with a discrete time Markov structure. Thus

if you are restricted to taking observations only at time °and one

other time, the additional measurement should be made at an even time

to provide the most elementary test of compatibility \-7ith a Markov model.

This same discussion also applies to 2 x 2 stochastic matrices Pen)

thought of as observations generated by a mover-stayer model.

8The second parameter, $, is merely a scaling factor.

9This distribution is obtained by assuming a mixture of exponential

waiting times,

where gO.) is a gamma density.

lOIn fact, sociological hypotheses which invoke the Markov property

(independence of future state from past locations, given current state} to

describe state changes at the occurrence of a move often place no

requirement on the waiting time distributions. It would be incorrect

to test such a thesis by f;i.tting a. Mar.k.ov chain to the c1.atc9.•

11Th , b b d' b th ('3 1J) d th 1 t' di t •1.S can e seen y expan :Lng 0 ". an .e cnmu a .;LVe s r1.-

b . f ' f . 1 F C) I -h. .ut1.on unct1.on or an exponent1.a , 'A t ; - e . , In power serl-CS.

--_._--_ ....._......_-------_._..__... --......_._-- --_...__........ - ... _......... ".



the extent of heterogeneity in state i.

3

12The variance of the gamma density, ,_a_i _ , provides a measure of
B.2

1.

For state 1 the variance equals

2.6, for state 2 it equals .039.

13The formula is defined only if V is non-singular. This condition

will hold if one or more persons occupy each
-A..t

t...e 1.
14 1.

In the Markov case ri(t) = -=------t..-.-t-

l-[l-e 1.]

origin state at time zero.

= t... for i = 1, ••• , r.
1.

This says that the rate of movement is constant, irrespective of duration

in the state.

151f a matrix is embeddable in a Markov structure this means that

it could have been generated by a Markov process; further tests of the

sort outlined in section 2.2-1 are necessary to confirm this possibility.

16This example is originally due to J. Speakman (1967).



*FIGURE 1. Family of Compound Exponential Curves

f (t)

;\ =
a
S exponential

density

t

-

*The family of densities f (t) = (S:t) (S~t) a was constructed by

the integration

J
co

-Atf(t) = ;\e g(;\)d;\
o

where g(;\) is a gamma density with parameters (a,S).



Table 1. Structure of Heterogeneity
in the Population, Simulated Data

A. Individual~le'Tel transition matrix

(

,83 .17)
M =

.20 .80

B. Cumulative waiting time distribution, by statea

(1) (2) (3)

Waiting
time

State 1
(a=2.l, (3=0.9)

State 2
(a=1.4, (3=6.0)

Pooled b
p~pulatio~

_(a=O. <i."h-(3=O. 492

o
.2
.4
.6
.8

1.0
1.2
1.Lf
1.6
1.8
2.0
2.2
2.4
2.6
2.8

o
.344
.538

o
.044
.086
.125
.161
.19Lf
.225
• 25L~
.282
.307
.33?
. 35l~
.376
.396
.415

o
.19!~

.3J.2

.391

.M19
• L~93
.503

are reported for F.(t) < .500
1

for :F2cq < .400,) and for the first

aThe entries in columns (1) and (2) were generated from the cumulative
distribution,

(
S. )a i

Fi(t) ::: 1 - S:+t

using the indicated (a., (3.). Values
1 1

in states 1 and combined states,
entries exceeding these figures.

bAn identical number of persons was assumed to be present in each state
at t = O. The entries in this column were therefore obtained by summing
across the states and dividing by 2. The parameters (a,S) for the pooled
population were estimated using the median and interquartile range of the
empirical distribution in column 3 (Mood 1950, p. 387).



Table 2. Population-Level Transition Matrtces
Estimated from the Simulated Data

P(l) P(2) P(3)

Postulated population [- 702 .298] [528 .472J [ .422 .578 ]structure (equation
3.16) .037 .963 .062 .938 .079 .921 I

Projections from
Mover-Stayer

* [574 .426] l·501 .499Jextension (equation
3.7)8. .051+ .946 I~ .063 .937

-' ,

Projections from
* 1~504 .

496l r· 372 .628JMarkov model
(P(n) = [pel) ]n) ._.06? . 938 • 079 • 921 .

--

a '"Procedure uses pel) and (a,S) from column (3) of Table 1 as
input data.



REFERENCES'

Bartholomew, D. J.

1967 Stochastic Models for Social processes. New York: Wiley.

Blauner, Rob ert.

1964 Alienation and Freedom. Chicago: University of Chicago Press.

Blumen, I., M. Kogan, and P. J. McCarthy.

1955 The Industrial Mobility of Labor as a Probability Process.

Cornell Studies of Industrial and Labor Relations, Vol. 6.

Ithaca, New York: Cornell University.

Brown, Lawrence.

1970 "On the use of Markov chains in movement research." Economic

GeograEhy 46 (June-supplement) :393-403.

Coleman, James S.

1964 Introduction to Mathematical Sociolo&l' New York: Free Press.

Feller, William.

1968 Introduction to Probability Theory and its APElications. Vol. I.

New York: Wiley (3rd edition).

1971 Introduction to Probability Theory and its Applications. Vol. II.

New York: Wiley.

Ginsberg, R.

1971 "Semi-Markov process and mobility." Journal of Mathematical

Sociology 1:233-263.

Goodman, L. A.

1961 "Statistical methods for the mover-stayer model." .. Journal of

the American Statistical Association 56:841-868.



1971

1970

2

Hodge, R.. W.

1966 "Occupational mobility as a probability process."· ·DemograE&

3: 19-3/+.

John, Fritz.

1965 Ordinary Differential Equations. New York: Courant Institute

Lecture Notes.

Karlin, S. and J. McGregor.

1957 "The differential equations of birth and death processes and

the Stieltjes moment problem." Transactions of the American

Mathematical Society- 85:489-546.

Lipset, Seymour M., and R. Bendix.

1959 Social Mobility in Industrial Society. Berkeley: University

of California Press.

Matras, J.

1960 "Comparison of intergenerational occupational mobility patterns."

Population Studies 14:163-169.

McCall, John J.

"An analysis of poverty: Some preliminary findings." Journal

of Business 44 (April):125-l47.

McFarland, David D.

"Intra-generational social mobility as a Markov process:

Including a time-stationary Markovian model that explains

observed declines in mobility rates over time." American

Sociological Review 35:463-476.

McGinnis, R.

1968 "A stochastic model of social mobility."· American "Sociological

Review 33 (October):7l2-22.



3

Mood, Alexander M.

1950 Introduction to·the Theot~ of Statistics. New York: McGraw-Hill.

Palmer, G.

1954 Labor Mobi1ityirt Six Cities. New York: Social Science Research

Council.

Prais, S. J.

1955 "Measuring soda1 mobility.'" Joutrta1ofthe Royal Statistical

Society 118 (Series A):5S-66.

Pyke, R.

1961a "Markov renewal processes: Definitions and preliminary properties. II

Annals of Mathematical Statistics 32:1231-1242.

1961b "Markov renewal processes with finitely many states. 'I Annals of

Mathematical Statistics 32:1243-125~.

Rogers, Andrei.

1966 "A Markovian analysis of migration differentials." Proceedings

American Statistical Association, Social Science Section,

Washington, D. C.: American Statistical Association.

Singer, Burton and Seymour Spi1erman.

1973 "Identification of a class of semi-Markov processes." To appear.

Smith, James D. and Glen Cain.

1967 "Markov chain applications to household income distribution.. "

University of Wisconsin. Mimeo.

Speakman, J.

1967 "Two Markov chains with a common,ske1eton."· Zeitschtifft'fur

Wahtschein1ichkeitstheotie 7:224.



4

Spilerman, Seymour.

1972a "The analysis of mobility processes by the introduction of

independent variables into a Markov chain."· American Socio­

logical Review 37 (June):277-94.

1972b "Extensions of the mover-stayer modeL"· Merie-an Journal of

Sociology 78:599-627.

Stein, F. Max.

1967 Introduction to Matrices and Determinants. Belmont, Calif.:

Wadsworth.

Taeuber, Karl E., L. Chiazze, Jr., and W. Haensze1.

1968 ~ration in the United States. Washington, D~ C.: Government

Printing Office.

Tarver, James D. and William R. ~lr1ey.

1965 "A stochastic a.na1ysis of geographic mobility and populat.ion

projecti.ons of the census divisions in the United States."

De~ra.T2hy 2 :13A-139.


