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EXTENSIONS OF MARKOV MODELS OF SOCIAL MOBILITY

TO HETEROGENEOUS POPULATIONS

1. INTRODUCTION

There is an extensive and diverse literature on the application of
discrete state Markov models to social processes. This formal structure
has been an important analytic device in the study of occupational and
industrial mobility (Matras 1960; Hodge 1966; Blumen, Kogan, and McCarthy
1955), income dynamics (Smith and Cain 1967; McCall 1971), and geographic
migration (Rogers 1966; Tarver and Gurley 1965; Brown 1970). The key
features of a problem which suggest the use of Markov models as a baseline
or for projection are (a) a specified list of system states which may be
occupations, industries, income categories, or geographic regions, (b) the
availability of repeated observations on population movéments among the
states, and (c) an interest in the dynamics of the transition process.

In applications of Markov models it is frequently assumed (often
implicitly) that the population can be considered to be homogeneous, and
therefore is representable by a single Markov process. However, where
investigators have obtained data at several time points so that n-step
matrices could be observed and compared With the Markov predictions (i.e.,
checking the wvalidity of %(n) = [ﬁ(l)]n), it has often been found that the
projections deviate from the observed values, and do so in a characteristic
manner. Blumen, Kogan, and McCarthy (1955) were the first to suggest
that the tendency 6f the Markov model to underpredict the main diagonal

entries of an observed matrix can be attributed, in many research contexts,

to population heterogeneity.
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Blumen, Kegan, and McCarthy introduced the "mover—stayerﬁ model
to contend with this phenomenon. They postulated the presence of two
types of persons: movers, who transfer according to a single Markov
chain, and stayers, who remain permanently rooted in their origin states.
Using this extremely restrictive form of the notion of heterogeneity,
they constructed a simple mathematical model for the evolution of the
total population and devised estimation procedures for its parameters.
Recent work on extending the Markov framework to incorporate population
heterogeneity in a more flexible manner has proceeded in two directions.
The difference between them derives from the particular strategy adopted
to accommcdate heterogeneity; what they share in common is an assumption
that the individual level process can be considered Markovian.

In one approach (McFarland 1970; Spilerman 1971a) each persen is
assumed to move according to a Markov chain, but follows a transition
matrix which is unique to him. DPopulation heterogeneity is therefore
attributed to individual differences in the tendency to select particular
destination states at a move. In the second approach (Ginsberg 1971;
Spilerman l972b% heterogeneity is accommodated by permitting individual
differences in the rate at which transition events occur. At each
transition, however, it is assumed that a single matr%E common to all
persons governs choice of destination. Thus, in this formulation, the
burden of explaining heterogeneity is cast entirely upon variations in
the rate of movement.

With regard to the utility of these extensions,l each provides a
suitable framework for analyzing certain processes. Investigations into

job mobility (Palmer 1954, p. 50) and geographic migration (Taeuber,
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Chiazze, and Haenszel 1968) have concluded that substantial individual
differences exist in rate of movement. The second formulation would
be appropriate for studying these processes and forecasting changes in
their state distributions. In contrast, there are social phénomena for
which population heterogeneity is primarily a consequence of individual
differences in the probability of making particular transitioms.
Intergenerational occupational mobilicy is the most apparent instance;
indeed, the very notion of different rates of movement seems inappropriate
so that all population heterogeneity would have to arise from individual
proclivities for certain transitions. A more detailed comparison of
these complementary perspectives is presented in Spilerman (1972a).

In the present paper we present a unified framework in which to
view the models menticned above as well as more intficate social mobility
models. The essence of our conceptual apparatus involves a formal
distinction between the individual level or microscopic process, which
is usually unobserved, and the population level or macroscopic process.
An individual will be identified by a collection of rates which describe
the average times he stays in particular states before moving, or by a
stochastic matrix whose entries can be interpreted as propensities to
favor transitions to certain states. It is also conceivable that an
individual be classified by specifying both a matrix of rates of movement
and a stochastic matrix listing probabilities of making particular
transitions when a move occurs.

From a description of individual level behavior and a specification
of the form which heterogeneity takes, we show how the population level
process can be constituted. From a data analysis perspective, however,

our situation is usually the reverse; we generally lack sufficient



information to identify the individual level process. Instead,a -
researcher is constrained to sample the population at a few points in
time and obtain counts of the number of persons making particular

- transitions, as well as other statistics concerning the population
level process. From these observations we wish to infer the parameters
of the unobserved, individual level process. One reason for recovering
these parameters is that they can be used to reject a model-by showing
the implied, individual level description to be unrealistic for the
problem at hand. Another reason is that they provide the basic
ingredients for making statements about future trends in the population.

Our program is to first describe a class of Markov and semi-Markov
processes which will serve as models for the evolution of individual
behavior. In addition, the ideas involved in identification of non-
directly observable parameters are illustrated by examples with the
simplest Markov chain models (section 2). In section 3 we again proceed
via a sequence of examples to show how the above mentioned population
processes can be described mathematically. The basic mathematical
structures characterizing the observable macroscopic level processes
are mixtures of Markov and semi~Markov models. This notion is explained
from the point of view of weighted averages of stochastic processes and
from the alternative perspective of observable histories.

Finally we present some examples in section 4 of an "inverse
problem'" where gross macroscopic level information is used to obtain
partial, and in a few instances complete, information about the mechanics
of the individual level process. This aspect of our study involves
an independent mathematical development which will be presented else-

where in a joint paper by the authors. Our purpose here is simply to
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illustrate the ideas involved and communicate their relevance for the
study of social mobility.

2. MARKOV CHAINS —- TRANSITION PROBABILITIES

2.1 Discrete time processes

The simplest mathematical caricature that we will employ to describe
the evolution of an individual (or a homogeneous population) is a discrete
time Markov chain. This stochastic process {X(k), k = 1,2,3,...} should
be viewed as detailing state transitions by an individual, where the system
states might be geographic regions, occupations, industries, or income
categories, depending upon the particular substantive problem. Probability

statements about the process are governed by the analytical recipe,

Prob (X(k+n) = §|X(k) = %) = mij(n)

™ s the (1,1)

for k=0,1,2,..., and n = 0,1,2,.... The element mij
entry in the stochastic matrix M#_(n—fold matrix multiplication of M).

M is itself a stochastic matrix and describes single transitions by an
individual; its (i,j) entry mij has the interpretation, ''probability of
moving from state i to state j in one step."

The typical empirical setting in which mobility'data are gathered does
not allow the matrix M to be estimated directly from the movements of an
individual. An investigator usually observes the locations of many persons
at a few time points nO = 0, nl,nz,..., and estimates stochastic matrices
%(nl), ﬁ(nz),..;, where the (i,j) entry in ﬁ(nk) denotes? the proportion

of individuals from among those in state i at time nO‘Who are in state j

ti n, .
at me X
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One assumption which is frequently made is that the population is
thqgéhedus'in its movements. This permits the matrix §(nk), estimated
from the observed locations of the population at times n, and oy to be
associated with the evolution of a single individual. We also make this
assumption in the present section. A second specification which is often
adopted is to identify the smallest observational time interval (no,nl)
with the unit interval of the process. Thus, we might define M = ﬁ(nl)

in which case, if n, = hnl for some integer h, we have

- pra VB -
P(nk) = P(nl) = Mh .

The above identification is often used when a discrete time mathematical
model is desired for a process evolving continuously in time but having no
natural unit time interval which can be associated with it. On the other
hand, when a discrete sequence of times can be identified as spaced at sub-
stantively meaningful intervals, it sometimes happens that the unit time
interval is smaller than the minimum observation interval.s That is; while we
observe a populatién at times n, and nis the unit interwval of the process.could
be (no,[l/h]nl) for some integer h > 1. A problem of this sort might arise if
we collected data on respondent's occupation (nl = 2) and grandfather's occupa-
tion (no = (), but neglected to obtain information on father's occupation. Given
the observed §(2) matrix we might inquire into whether it can be represented
in the form §(2) = M2 for some stochastic matrix M. A question of this very
nature was posed by Robert W. Hodge (1966) in an inquiry into the extent of
inheritance of occupational status beyon& a single generation.

The problem of deciding whether a particular observed matrix ﬁ(n)

may be represented in the form P(n) = M” for some stochastic matrix M is




the simplest version of what we will refer to as the embeddability
Eroblem. This is equivalent to asking whether or not the observed data
are compatible with a discrete time Markov model. 1If the answer to this
question is affirmative then we require a procedure for recovering the

one-step transition matrix M. This is a statement of the inverse problem.

In the present context it entails tabulating the n-th roots of ﬁ(n) in
order to determine all transition matrices M which are compatible with
our observations.

To illustrate these ideas in a simple mathematical setting suppose

we are in a substantive situation which allows observations to be made

only at times n, = 0 and n, = 3, and that we estimate the stochastic matrix

0 1

/3 2/3
P(3) = o (2.1)
2/3  1/3

Computing cube roots of this matrix we find that

1 1 1 1

| = T e

313 = - M (2.2)
1 1. 1, _ _1 4
o+ ) - 3

is the unique stochastic matrix which is a cube root of §(3). Thus the
empirically determined matrix ﬁ(B) is~embedda51e in a discrete time Markov
chain with one-step transition matrix M given by (2.2).

In general, we will be able to ascertain embeddability without having
to compute the n-th roots of ﬁ(n) [see section 4]. If the matrix is

found to be embeddable in a discrete time Markov process then we should
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be able to identify at least one stochastic matrix M such that E(n) = MF,
" In Ehe above example, the inverse problem reduced to calculating all
cube roots of %(3) which are stochastic matrices. An explicit analytical
recipe for calculating the roots of an arbitrary stochastic matrix is
described in Appendix I.

If the natural time scale of the problem is such that the matrix (2.1)
corresponds to observations at times n = 0 and n = 2, then the process is
incompatible with a discrete time Markov chain theory.3' This is because
(2.1) has no square rodts which are stochastic matrices; thus the observa-
tions in this new tiﬁe scale cannot be represented in the form §(2) = Mz,
and the process is not embeddable in a discrete time Markov chain structure.

A further illustration of the complexity of inverse problems can be
seen from the following mathematical example. Suppose you initially take

" observations at times n = 0 and n = 2 and that you estimate

_ 1 0 0
P(2) ={0 1 o0f-°
0 0 1,

On the surface it might appear as though you are observing a population
in which there is no mobility between states. However, P(2) has three

distinct square roots all of which are stochastic matrices:
~

Vo) = {

O H O H O O O © =
o O - O - O O =B o
H O O o o B +H O o©
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Each square root has a different substantive interpretatiqn, and only
the first of these (i.e., the identity matrix) corresponds to no-mobility.
The second matrix in the above list corresponds to a situation in Which'
individuals starting in either state 1 or state 3 cycle back and forth
between these states while an individual starting in state 2 never moves.
The third matrix may be identified with a population in which individuals
either cycle back and forth between states 1 and 2 or remain stationary
in state 3. Discrimination between these alternatives may be either on
substantive grounds or on the basis of a further set of observations.

If additional observations are possible, they should be taken at
one of the times 3,5,7,..., etc. and not at an éven time period. In
particular, if %(2) is the identity and a Markov model adequately describes
the process then the pair of matrices (§(2), §(3)) must be one df the

following distinct sets:

1 0 0 1 0 0
Sl: 0 1 0 0 1

0 0 1/ s 0 0 1

1 0 1
Sz: | 0 1

0 s 0 0

1 0] 0 \ 0 1 0
83: 0 1

0 >

while the pair (P(2), P(4)) must be

1 o0 O L
S4: 0 1 0 : 0 1
0 o0 1 | s 0 o0 17 . 1

The set S1 is compatible with a unique Markov chain model with M =0 1

= o O
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Similarly, S, is only compatible with

2
0 0 1
M = 0 1 0
1 0 0
and S3 is only compatible with
0 1
M = 1
0 O

On the other hand, S4 is counsistent with all three models. This inddicates

that it is often desirable to take observations at time points which are

not evenly spaced if vou want to discriminate between substantively distinct

stochastic models all compaﬁible with data from a few periods.

A further point is that if (§(2), §(3)) with §(2) equal to theb
identity deviates from all of the three sets Sl’ SZ’ S3 then the data
are not consistent with a discrete time Markov structure. You can also
rule out a Markov model by obtaining empirical matrices (§(2), %(4)) with
%(2) equal to the identity but §(4) being a stochastic matrix not equal
to the identity. These examples illustrate the importance of not regard-
ing compatibility of observations with a particular model during a small
number of time periods as strong evidence for validity of the model as
a description of the underlying process. Nevertheless, examination.of
alternative solutions of the inverse problem based on observations at
a few time points can be a useful exploratory tool for calling attention
to possibly unsuspected mobility mechanisms M and for suggesting more

realistic models.

2.2. Continuous time processes

The natural time scale for many mobility processes is not a discrete

sequence of intervals such as generations or decades, but a continuum
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of time points. In particular, geographic migration (Brown 1972;
Spilerman 1972b) and occupational mobility (Blumen, Kogan and McCarthy
1955) can be viewed more realistically as processes in which stéte
changes occur at random time points, and probabilities of moves between
particular states are governed by Markov transition matrices. Several
extensions of this formulation which are appropriate for heterogeneous
environments appear in section 3. In the present discussion we establish
a framework for the extensions by indicating three alternative descrip-
tions of continuous time Markov chains; the level of generality and

substantive utility of each is delineated.

I. Q-Matrices

Consider a stochastic process with a finite number of states whose

transition probabilities are governed by the system of ordinary differ-

ential equations

EL - @, kO =1 (2.3)

where Q is an r X r matrix whose entries satisfy -« < 44 <0, qij > 0 for

r
T A = 0, and r = number of states. The system (2.3) has a unique

3=1

solution given by the exponential formula

i+43,

p(t) = o0, £ >0 (2.4)

and the matrices Q and P(t) have the following substantive interpretations:

probability that an individual in state i at time t
exits from that state during the time interval

J (t, t + dt)

[

f —qiidt

qi.dt = probability that an individual in state i at time t
J moves to state j (j # i) during the interval
(t, t + dt)

pi.(t) = probability that an individual starting in state i .
J at time 0 is in state j at time t [(i,j) entry in

P(t)].
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Mobility processes whose transition probabilities are governed by
(2.3) have the property that their state at time t+s given the complete
history of the process up to time t is only dependent on the last
observation, namely the state at time t. This is a statement of the
Markov property. Furthermore, the holding time until exiting from a
particular sgate i is exponentially distributed with parameter ~q4qe
ﬁThis is the most general formulation of continuous-time finite-state
Markov chains arising in social mobility studies.

When continuous histories are available on all population movements
during the time interval (0O,t), the matrix Q can be estimated directly
from the observed transitions. A maximum likelihood procedure has been

reported by Meier (1955) and involves the following calculations:

A N,.
= =l . .
qij Y for j # i
i.
q,, = =.5L. 4., . . for j =1
. . 1 ..
P jAL ‘ |
where . A, =  total occupation time in state i during (0,t) by all
e individuals in the population '
Nij =  total number of transitions from state i to state j

during (0,t).

In addition, availability of individual histories allows the suitability

of a continuous time Markov model to be examined on several different

grounds.

. . . t+s
(i) Estimate Q from individual histories up to time t, compute e( )Q,

and compare this theoretically-based transition matrix with the
observed matrix P(t+s). This is a check on compatibility of the

data with the mathematical structure (2.3) and (2.4).
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(ii) Check the goodness of fit of an exponentia} distribution to the
holding time distribution in each state. |
(iii) Assess the strength of longer range depéndence on past histdf?
if there are sufficient time series records.

The above general formulation of continuous time Markov transition
matricés has been used in numerous sociological contexts (e.g., Coleman
1964, pp. 177-182; Bartholomew 1967, pp. 77-78). However, the analysis
of social mobility in a heterogeneous population is greatly facilitated
by the alternative formulations presented in the next two sections. 1In
particular, they provide the basis for a classification scheme which allows
individuals (or sub-populations) to be characterized according to eithef
their rate of movement, their propensity to move to particular states, or
both simultaneously. This kind of classification also leads to a straight-
forward mathematical caricature of mobility processes in a heterogeneous
context when individual histories are not directly observable. Neverthe-
less, even in the present formulation, substantial information about
individual level behavior can be inferred by an extension of the inverse
problem arguments already presented and solving (2.4) for Q. This

analysis is described in section 4.

II. Subordination

A starting point for the development of mobility models appropriate
to-a heterogeneous population is to consider Q-matrices of the special
form Q = A(M-I), where A is a positive constant and M is a stochastic
matrix. Populations in which transition probabilities evolve according

-etk (M-I)

to may be given the following substantive interpretation. An

individual starting in state i at time O stays there for an exponentially

distributed length of time 5 with
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Prob (TO >t) = e—kt . . tf.t >,O; ]

At the end of this period he makes a transitlon to state j with
probability m, i3° the (i,j) entry in the stochastic matrix M. It'is not
assumed that m,, = 0; hence, the individual may have a positive prob-
ability of staying in the same state4 after tlme To ane an individual
has moved accordlng to M, he stays in hils new state fqr apother exponen—
tially distributed length of time T which is inde?pndent of To and of

the state he is in, but again satisfies
Prob (Tl >t) = e s S ,”ft },0;

Now he makes another move according to LI énd_t#g:ptévidusrprochs of
waiting an exponentially distributed length qf timgiéﬁd.méﬁﬁﬁg,éécor&ing
to the entries in M is repeated. B

In this imagery the constant %-describes anfindiVidqal's mean.waiting
time before mov1ng (or before making a dec1s1on to possibly move), while
M characterlzes hlS propen51ty to transfer to partlcular states. -An
alternative formulation of the process derlves from an intgrpretat;on of

A as measuring rate of movement. The random varlables {Y(t), t > 0} which

describe an individual's hiétory may be Writtgn 1n the’ sgecial fprm

() = KT, (0) | | 4(2'.’5)'.

where Prob (Y(t) = j|Y(0) = i) is the (i,3) entry in P(t) = tk(MFI)

T (t) is a Poisson process with parameter A, and X(k), , 0 l 2,... is

a discrete time Markov chain with ene-step transition p;obabll;tlﬁs

governed by M.
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Representation of stochastic processes by a récipe suéh_as (2.5)

is known in the mathematics literature as subordinétion (Feiler i971?
PP. 345-349); more precisely, the process Y(t) ig séid;?o ﬁewgubﬁrdinated
to X(k) using Tx(t) as an operational or intrinsic’ clqek, :ﬁlgkq;é#ing v
further, expression (2.5) says that you can also thipk df iﬁdiyiduals‘,_-

whose transition probabilities are governed by etA( I)

as. eyplving
according to the prescription: :
(i) Wait in an initial state i until the firsﬁlsﬁmp;uigg'Qf w
a Poisson process. SN |
(ii) At this instant, change state once accordiﬁg Fé}the"lévs;
of a discrete time Markov chain whose one—sfeéxﬁfgﬁsitiénv
matrix is M. ) o
(iii) Wait in the new state j until the Poisson p%qcésg'j@@gs ':'
for the second time. | L R
(iv) Now change state again according to M.
(v) Repeat the above procedure for successivé-EQis§0nbijp o
times. | )
In this seﬁting, the cdﬁstant X gové?ningkréte-dffmbﬁement.gppears'
only in the description of the Poisson process or,:if yqu like;zﬁﬁgl
intrinsic clock. Specifically, | o .

Prob (exactly v moves up to time t)

Prob (exactly v jumps in a P01sson process wlth_w3~
parameter A during (0,t)) o

Vet

v!

Prob (T (t) =v) =
Likewise, the matrix M governing the propensity to mcve tq particplar

states appears only in the description of the dlscrete tlme Marknv chain

X(k) according to
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Prob (X(kt1) = j[X(k) = i) = myy o

This matrix provides a static picture of the population at an instant
of movement. The dynamics are regulated by the intrinsic clock Tl(t)'

A final point is that the interpretation (2.5) gives rise to a

series representation for etA(MFI) in the form
— ® . v |
etA(M D I e At (AL) 7 MY, (2.6)
' v=0 v

The individual terms in this series indicate that rate of movement and
propensity to move to particular states are factors regulated by two
independent sociologically identifiable quantities, A and M. It is useful
to contrast this isolation of rate of movement and propensity to move in
the factored matrix A(M-I) with the more general formulation involving

Q-matrices. The two formulations are related according to

probability of leaving state i

-qiidt = -A(mii—l)dt =

. : " during the time interval (t, t 4 dt)
q..dt = Ami.dt = probability of a move from state
+J J i to state j [j # i] during

(t, t + dt).

We wish to emphasize that mobility processes .in a statfonary
environment are most usefully described by waiting times in states together
with transition probabilities which are independent of the waiting times,
but allow for the possibility of remaining in the current state at a
move. Q-matrices permit descriptions in terms of tramsition mechanisms
and waiting time distributions as independent quantities, but this

'ﬁould naturally take the form




qi"

T describes jumps without allowing for further
ii

i#3

holding in the origin state; in particular,

The matrix

Q..
—=L = "{probability of a move from state i to state j given
934 a departurel.

The diagonal matrix —q has entries interpretable as holding time
rates in the sense that
: q,.t
Prob (&(u) =i, s <u<s+ t,Y(s) = i) = e 1,

Nevertheless, this formulation seems less sociologically meaningful than
expressing Q in the factored form A(M-I). If you start with a fixed Q,
which means that you are viewing Q as the bésic ingredient in the model,
infinitely many such factorizations are possible. However, our attitude
here is that the natural starting point for a description of mobility

processes is A and M, with Q defined in terms of these basic ingredients.

The present description of mobility in which an individual is charac-

terized by a rate A, a transition matrix M, and evolves according to

probabilities etA(M—I) was the starting point for Spilerman's (1972b)
extension of the mover-stayer model to a population with a continuum of
types. A limitation of this extension is that the waiting time distribu-~
tions until transition according to M do not depend on a person's state;

rather, an individual is compelled to move ait the same rate irrespective
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of his location (Spilerman 1972b, p. 609). The description of section
III provides a basis for eliminating this restriction and presents the
most general continuous time Markov chain formulation of mobility by

an individual.

ITI. A General Factored Representation of Q

Consider Q-matrices of the form A(M-TI) where

A= b s Ai >0 for i=1,2,.0.,r

O :
_ r
and M is a stochastic matrix. The evolution of individuals governed by

the transition matrix etA(M}I) may be described more concretely as follows:
(1) An individual starting in state i at time 0 stays there for
an exponentially distributed length of time Ty with

' : -A.t
Prob (TO Z_tIX(O) =1i) = e * R ‘ t >0,

(ii) At the.end of this time period he makes a decision to move
to state j with probability e In general, m, # 0.
(iii) Now he waits in state j for an exponentially distributed length

" of time T with

Prob (rl z_th(l) =j) = e .
(iv) Then he makes another decision to move to state h with prob-

ability mjh'

(v) The above sequence is repeated.
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| The waiting times T only depend on the current state X(k), not
on the past h:tstory5 X(®), X(1)...,X(k-1) and T 11,..¢,Tk;1.--However
an individual's rate of movement is now characterized by the diagomnal
matrix A rather than a single constant A as in the previous section. The
present description reduces to that of .section II when Al = Az = eeee = Ar

Again, it should be observed that a given Q-matrix has infinitely

many factorizations of the form A(M-I) with

q..

ii >\i(mii“l)

ce = .m, . f i

14 Ay 14 or i # j
However, the basic ingredients of mobility models with individuals
evolving according to continuous time Markov chains are the matrices A

and M, with Q defined in terms of them. When individual histories are

available, M and A can be estimated from observed movements according to

the recipe

el Ni‘
iy T N,
' (2.7)
A, = —
i .
i.
where N., = number of transitioms from i to j during the
* observation period (0,t)
N, = JN,. = total number of moves from state i (including
L i - within-state moves) during (0,t)
Ai = total occupation time in state i by all individuals

during (0,t).

Qur representation of the random variables Y(t) in section II,

which describe individual histories by

T(E) = X(T,(t)
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with TA(t) a Poisson process, does not carry over to the more general

formulation indicated here. We could, in principal, write

Y(t) = X(T"(t))

where

* .
T (t) = {number of transitions up to time t in a

Markov chain governed by etA(M“I)};

however, T*(t) does not have a simple family of formulas analogous to
the Poisson distribution describing its evolution. Thus we will retain
our first interpretation of alternating exponential holding times and
decisions to possibly move as the simplest generic caricature of mobility
for an individual.
From an analytical point of view the simplicity of the Poisson

series representation

o k

etA(NPI) - 3 e—xt gii%__Mk

k=0 )
with the terms describing rate of movement and those describing transi-
tions appearing as separate multiplicative factors does not carry over to

our more general formulation. ITn particular

etA(M—I) "

. - K

SEMM -EA 4 5 ohe gAE% M
k=0 )

The nonequivalence of the three expressions is due to the fact that A and M do

not commute, i.e., AM # MA, and it is this algebraic point which makes

EAQM-T)

computations with e considerably more difficult than with the model

of section 2.II. We will return to this issue again in section 3 when we

compare this description of individual level mobility in a heterogeneous

population with a description where Xl = Az = ,.. = A
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3. HETEROGENEITY AND MIXTURES OF STOCHASTIC PROCESSES

3.1. Mixtures of Markov processes and inversion formulas

Thus far we have discussed Markov chain models as'they pertain to
repeated moves by a single individual or to the movemeﬁts of a homogeneous
population.- In the context of social mobility, observable populations
are rarely homogeneous with respect to the frequency with which individuais
move or their propensity to transfer to particular states. However, in
early studies (Prais 1955; Matras 1960; Tarver and Gurley 1965), it was
tacitly assumed that the population under consideration could be viewed
as a homogeneous unit and that histories associated with a single Markov
process could be thought of as typical of all segments of the population.

In usiﬁg discrete time Markov transition matrices as a baseline forf
comparison with particular data sets, a standard strategy is to estimate
an n-step transition matrix %(n) from the data, calculate the n-th roots6
[}L,;(n)]l/n = M viewing these as one-=step transition matrices, and then
compare Mp+k with the observed matrix ﬁ(n+k). For many social phenomena
" a substantial discrepancy was noted between‘Mn+k and ﬁ(n+k), and it was
_isﬁggééﬁed that this is because the population should really be viewed as
heterogeneous. with different stochastic processes describing the evolution
 of different sub-populations. The first detailed discussion of this kind
of inadequacy of Markov models to depict social mobility was by Blumen,
Kogan, and McCarthy (1955). They.documented the phenomenon of "lumping
- on the main diagonal" (the presence of more individuals in these cells
of an n-step transition matrix than predicted by a Markov model), and
showed that it can derive from treating a heterogeneous population as

though it was homogeneous. Furthermore, they constructed a discrete time
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model in which two types of persons were distinguished, each evolving
independently according to a different Markov process. Efficient
estima;ion procedures for the parameters of this model were subsequently
developed by Leo Goodman (1961).

The analytic confext for which the mover-stayer model was developed
is one where evolution of each distinct type of individual is not
directly observable. An investigator is constrained to sample the total
pooled population (also referred to as a macroscopic level description)
at a few time points and obtain counts of the number of individuals
starting in a particular state who are in any other state at the end of
a sampling interval. This situation is typical of all mobility environ-
ments discussed in the present work. A key step in understanding the
underlying mobility process and the appropriateness of particular models,
then, is an identification of the non-directly observable quantities
(one-step transition matrices and rates of movement for continuous time
processesj by avmathematical analysis relating information about the
pooled population back to the behavior of individuals. This is another
instance of an inverse problem, analogous to the discussion of section
2.1 but complicated by the fact that we are treating several types of
individuals simultaneously.

In order to clarify these ideas, we present four examples which
form the simplest mathematical caricatures of the notion of a mixture of
stochastig processes and which are also substantively meaningful in the

context of social mobility.

Example 1:

Consider a population consisting of two kinds of individuals.

Persons of each type evolve independently according to a discrete time
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Markov chain. - We denote by Xl(k) and Xz(k), k=0,1,2,..., the random
variables describing the movements among states by persons of each type."'
Probability -statements about Xl(k) and Xz(k) are assumed to follow the

theoretical recipe

)

Prob (X, (k) = 3|%,(0) = 1) = m .5

is the (i,j) entry

for k = 0,1,2,..., and A = 1 or 2. The element mi§§;
in the stochastic matrix Mﬁ (k~fold matrix multiplication of MA)' We will
refer to the bivariate process (Xl(k), Xz(k)) as a microscopic or
individual-level description of a mobility process.

In empirical situations we usually observe values of a random

variable Y(k) which are possible states of either the process Xl(k) or

Xz(k); that is, we can observe how an individual sampled from the population

evolves through time although we cannot assign him to a particular person

type. We also assume that we can estimate

8; = {proportion of individuals from among those in
state 1 at time O who are classified as type 1}.-

Procedures for estimating 8, have been reported by Blumen, Kogan, and

McCarthy (1955) and Goodman (1961).

Evolution of the stochastic process Y(k), k = 0,1,2,..., is described

by the transition probabilities

Prob (Y(k) = j|Y(0) = i) = Simi§?i + (1_si)mi§?2

or in matrix form

P(k) = SM11< + (I-s)Mlz‘ (3.1)

with
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The univariate process Y(k) is referred to as a macroscopic or populatién—
level description of a mobility process. Its interpretation.in this
sense arises from the fact that an observer who can only see histories -
Y(0), Y(1), Y(2),..., and the family of matrices P(1), P(2), P(3),...,
cannot discover that in fact Y(k) is generéted by a composite of two types
of indiyiduals evolving according to Xl(k) and Xé(k) respectively.
However, once the interpretation of a heterogeneous population is brought
in, you can formulate a theory of evolution of a mixture of two types of
individuals as in equation (3.1), with Y(k) describing the composite or
pooled population. Hence the term, '"mixture of stochastic progesses.f

The particular theory (3.1) describes a population in which the mixing
distribution remains constant through time and is identified with the
proportions of individuals in each state (which may be a job category or a
geographic region) who are of type 1 at the reference time k = 0. This
theoretical description reduces to the classical mover-stayer model when

1
Ml =1= <: l‘ O:). It should also be emphasized that the macroscopic level
o "1

process Y(k) is not Markovian even though the components of the pooled popu-

lation are assumed to evolve according to discrete time Markov processes.
With this theoretical picture at hand, we illustrate the notions

of embeddability and inverse problem for mixtures of stochastic processes

within the context of the mover-stayer model.

For the simplest mathemat-

ical structure consider a 2-state mobility process where you are constrained
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to observe the pooled population at times n = 0 and'n = 2. Denote the
2 x 2 stochastic matrix estimated from the data by

- a l-a '
P(2) = 0<a,b<1l.
1-b b
The entry in row i, column j (i,j = 1 or 2) has the interpretation,
"proportion of individuals in state i at time 0 who are in state j at

time 2." Our first task is to determine necessary and sufficient

conditions so that P(2) is compatible with the theoretical description
i} gy
P(2) = 8 + (I-S)M" , (3.2)

To further simplify the calculations while still retaining a
substantively meaningful description of a pooled population of movers
and stayers, suppose that 8, = 8, = some s > 0. Then solve the matrix

“equation (3.2) for M and obtain
M= (-9 e@-91Y2 (3.3)

Replacing the theoretical P(2) by the emﬁirically detéfmined £(2) we ‘can
check, using the calculétions in Appendix I, that the inversion formula
,(3.3) (which is'the_solution'of the inverse problem) will yield a iegitimate
<-stoch;stié matrix M if and only if a + b >.l,+ s. Putting this another
way, an empirically determined 2 x 2 matrix %(2) is said to be embeddable

in a mover—stayer framework if and énly if the inequality is satisfied.

It is also important to notice that if you alter what you régard as the
a 1l-a
1-b b

natural time scale of the mobility process so that the matrix

is thought of as P(n) for any even number n, then the condition a + b-> 1 + s

is still necessary and sufficient for the data to be compatible with
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the theoretical. framework of. (3.1). TIn fact, in the 2 x 2 case this
condition also ensures a unique inverse.

The criterion a + b > 1 + s becomes more meaningful if you recall
that the original data sets examined by Blumen, Kogan, and McCarthy gave
rise to ﬁ(n) having diagonal elements larger than those predicted by a
simple Markov chain model. TFor a two state process a criterion for ﬁ(n),
n even,7 to be compatible with the Markov structure M is just a + b > 1;
however, once you postulate two types of individuals, stayers and movers,
in proportions s and 1l-s respectively, you are describing evolution via
transition matrices whose diagonal elements must be larger than the
corresponding one-type Markov model by precisely the mixing fraction s.
An analogous condition also holds for processes with more than 2 states

s 0

and for rather general matrices S = l.n . A full mathematical

0 ‘s
r
discussion, however, is somewhat intricate and will appear in Singer and -

‘Spilerman (1973). A final point with regard to the criterion a+b>1+s

is that even if you cannot estimate the mixing fraction s directly, you
can still indicate the largest possible value of s which allows the matrix
P(n) to be compatible with a mover-stayer theoretical framework; namely

maximum s such that 1 + s < a + b,

Example 2:

Let Xl(k),...,XN(k) be independent discrete time Markov chains

describing the movements of N types of individuals each evolving according -

to a distinct stochastic matrix Mﬁ, A= l,...,N, For individuals of each
type?
(k)

ijsA

Prob (X, (k) = j]X)\(O) = 1) m
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(k)
where m, . , is the (i,3) entry in Mk . Let

1332 ™
O
| Y
3, = ) , s, = I,
A . . = A
O |
where Sy = {proportion of the population in state i at time Q which con~

sists of type A persons}. Analogous to example 1 the individual .or micfoscopic
level vector process (Xl(k),...,XN(k)), k= 0,1,2,..., is not directly
observable; however, the pooled population is observable at a few time

points and it is from this data that information about the matrices

N&,...,Mﬁ, postulated by the theoretical structure, must be inferred.

The population level process may be described by a family of random

“variables Y(0), Y(1),..., whose values are the possible states of each

of the individual sub-populations. The evolution of Y(k) is governed by

the stochastic matrices
N
P(k) = )} S e, : k=0,1,2,0... »
o] ATA

This formulation of a mixture of Markov pfocesses can be extended
to the case where each individual in the population hés his own Mk matrix.
This approach was suggested by McFarland (1970) in recognition of the
fact that heterogeneity in socidl mobility is attributable to an assortment
of individual differences--in race, ethnicity, parental SES, educational
attainment, and so forth. Spilerman (l972a)‘hés presented a regression
method for estimating the individual MA matrices from-an obéerved popula~-

tion level matrix P(1l) and data on the determinants of heterogeneity.

Because of its complexity, a discussion of embeddability and inversion
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methods for this model will be deferred to the companion mathematical

.paper (Singer and Spilerman 1973).

Example 3:

Let'{XA(t)} be a continuum of independent continuous time Markov

A>0

chains whose transition probabilities are governed by the exponential

formula

LA OET) A>0,t>0 , (3.4)

]

The processes'{XA(t)}A>0 should be thought of as describing the evolution
of infinitely many different types of individuals, each type being
identified by a number A which specifies its rate of movement. For a
fixed value of X (one type of person) this is just the continuous time
ﬁarkov chain model described in (2.II).. Now, however, we envision a
heteroéeneous population where a type~X individual has waiting times
between moves which are exponentialiy disfributed:ﬁith paraméter A
independent‘of his‘previous‘statef All types of individuals are treated
as having theiéaﬁé.ﬁrbbénéity to moﬁe among fhefétatés;‘preSCribed by

the matrix M.

As in our previous examples, the vector process'{XA(t)}x>o is not
directly observable, but we postulate that type-A individuals oceur in

the total population with a frequency described by a probability density

g()). Then the observable macroscopic level process, which consists of
the mixture (or pooling) of all types of individuals, can be described
by random variables Y(t), t > O whose values are the possible states of

the component types'{XA(t)}A>0, and whose transition probabilities are

governed by the mixture of Markov transition matrices
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P(t) = f C D yan. ' (3.5)
0
The entries of P(t) have the usual interpretation,
pi;(8) = Prob (¥(t) = ilyeo) =1i).

This formulation may be viewed as an extension of the mover-stayer

-

model, and it was developed in that light by Spilerman (1972b). In

applications, g(A) is commonly specified as a gamma density .

o,0~1 =BX
_ BA e
g(x) = 1—:(0{’) H 0‘38 > O (3'6)

because of the ability of this functional form to describe a variety of
.unimodai curves, unimodality being a reasonable chafacterizatién of the
frequency of occurrence of different types of persons (with respect to
rate of mobility) in heterogeneous populations (Palmer 1954, p. 50;
Taeuber, Chiazze and Haenszel 1968, p. 46).

Subject to the hypothesis (3.6), the integral (3.5) may be

" evaluated as

R ..‘ _ -0 o :
o =GN e

where the ~o" root of the above matrix is defined by the power series

\

in M,
n Q k
. B t k
P(t) = lim S <——) (——) M. (3.8)
o> = B+t B+t

Equation (3.7) is amenable to two substantive interpretations

depending upon the role assigned to the parameters o and B:
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Formulation 1. View the population as heterogeneous with the

gamma family of distributions describing the proportion of individuals
of type-) in the total population. Then the macroscopic level process

Y(t) may be represented as
Y(6) = (T, oy(0)) . . (3.9)

where X(k){ k =0,1,2,..., is a discrete time Markov chain with pne-step
transition matrix M and T(a,B)(t) is a negative binomiallprocess acting
as the intrinsic clock for the pooled populatioﬁ. T(d,B)(t) may be
thought of as a Poisson process with gamma distributed parameter. It

has the probability distribution

_ _ _ [ atv-1 é v §] @ |
Prob (T(a,S)(t) =v) = < v ><B+t> <B+t> (3.10)

in which the term for v denotes the proportion of the population making

'

exactly v transitions in the time interval (0,t). This is just another-

instance of the notion of subordination already discussed in section 2.II,

except that now X(T )(t)) is no longer a Markov process.

(a,8
From the point of view of available data, information on T(a,B)(t)
often can be obtained Without'collecting individual histories. For
instance, daté on the distribution of number of moves in mobility processes
are reported in Palmer (1954, p. 50) and Lipset and Bendix (1959, p. 158).
Using“the mean and variance of fhe negatiye binomiél variate T(a,B)(tl)’
v.whére tl‘is an arbi;;ary observation time, estimates of the gamma
ﬁarameters o and Btéaﬁ be cbﬁpﬁted from these obserﬁed population
disfributibns.v This pfbéedureﬂwas employed by Spilerman (1972b, p. 614)

in an example using data which was artificial, but constructed to

simulate the nature of heterogeneity in occupational mobility. He
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reports the.values o ¥Al.37, B = 0.92 whose ramifications we will now
discuss.

The value & = 1.37 is especially interesting8 if you consider the

following alternative description of the negative binomial process.

(1) Consider a special clock starting in position 0 and remain~-

ing there for a random length of time Ty governed by9
A g \“
Prob (TO >t) = EIE) , | t >0,

At the end of the epoch T the special clock moves to
position 1.

(ii) The special clock remains in position 1 for a random length
of time v, independent of 0 but having the samé-distribution:

1

o

- B8
Prob (Tl > t) B4t s t > 0.

At the end of the epoch Ty the special clock moves to
position 2.

(iii) The above steps are repeéted and at‘any particuiar time, the
position of the special clock should be identified with the
number of moves up to time t of a negative binomial process
T(a,) (O

The important point about the waiting time distribution for Tge Tpoeee»
is that with 1 < o < 2 it has an infinite variance (and finite mean).
This means that a substantial portion of the pooled population moves
very rarely or not at éll, which is another way of saying that there

is considerable heterogeneity.

. Formulation 2. View the population as homogeneous but evolving

according to the following recipe.
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(1) An individual starting in state i remains there for a

length of time T

0 governed by the 2-parameter family of

distributions

s \*
Prob (TO >t) = —B-_;E> .

At the end of the epoch Ty he makes a decision to move
to state j (j may be equal to i) according to the stochastic
matrix M.

(i1) The individual remains in state j for a new random length

of time 7 independent of Ty but having the same distribu-

1

tion. At the end of the epoch Ty he again makes a decision
to move according to the stochastic matrix M.

(iii) The above steps are repeated, and individuals in the
homogeneous population evolve according to a continuous
time stochastic process X(t) with transition probabilities
given by (3.7)} This is a speeial fofmhof semi-Markov
process; a more general treatment of this class of processes
in the context of social mobility models appears in
section 3.3.

A key point about this formulation is that it is suitable for
describing processes where individual histories are not available to the
observer and a mere flexible class of waiting time distributions than
just exponential is desired. As we remarked earlier, exponential
waiting times guarantee that your mathematical model is a Markov process§

however this requirement seems unnecessarily stringent for describing

mobility.10 The 2-parameter family of distributions
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- & Y e
T, =L (5+t o wEr0t>0 (D)

which arose in the above discussion describes a more general family of

densities f )(t) all of which have the same form as the exponential

(a8
density (see Figure 1). Indeed, the exponential with parameter XA arises

as a limiting case of F (t) whenll o> @, 8> o, and = A,
(a5 8) 8

Figure 1 about here

The simplest mathematical caricature of embeddability and an
inverse problem for the model (3.7) arises again for a 2-state process.

For this special situation an empirically determined stochastic matrix

~ a 1-a
P(tl) = 0<a,b <1
1-b b A

corresponding to observations at times 0 and tl is compatible with the
theoretical framework (3.7) if and only if a + b > 1. For a fixed o
and B in (3.7) this condition also ensures a unique solution to the

inverse problem which is given by

' | B, . - -1/
M = 5 I- E;EI_ P(tl) 1. (3.12)

NééésSary and sufficient conditions for an observed r x r stochastic

matrix %(tl) to be fepresentabie in the form. (3.7) can be determined in
principle. -Howéﬁéf,.the‘criteria becomeﬂvery compiicated as r increases
and computational algoriéhms to test for embeddabilitf ére needed. In
section 4.1 we present séme general embeddability criteria for r = 3

and indicate conditions valid for arbitrary r when the sociélogical

context permits stronger assumptions about the structure of M than just

requiring it to be a stochastic matrix. A full discussion of the
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computational problems arising from embeddability tests will appear
in Singer and Spilerman (1973).

In concluding our discussion of the present example, it should
be pointed out that a simple strategy to check for embeddability and
uniqueness of M is to calculate an r x r matrix according to (3.12)
and check whether or not the computation process yields a stochastic
matrix as opposed to a complex valued one. If this matrix is stochastic
and if the observed %(tl) satisfies the condition i?f[;ii(tl)] > 1/2,
you can verify that the computed matrix M is in faci the unique stochastic
M compatible with the data. This test was used by Spilerman (1972b,
p. 607). It should be emphasized that, in general, embeddable matrices
ﬁ(tl) can give rise to drastically different M arrays when i?f[;ii(tl)] < 1/2.
Examples of this situation are presented in section 4.1. :

One interpretation of empirically determined matrices for which the
diagonal elements afe all greater than 1/2 is that on the natural time
scale of the mobility process the observations are sufficiently close to

time 0 so that many moves away from the origin state have not yet occurred.

In a mathematical context inf[pii(tl)] > 1/2 is a condition which guarantees
i

/

that in computing (P(tl))—l ¢ you are on the principal branch of the
-1/a~-th root of the matrix, thereby ruling out complex matrices as well
as other real stochastic matrices M in the inversion formula (3.12). A

complete mathematical treatment of these issues will appear in Singer

and Spilerman (1973).

Example 4:

From a substantive point of view, a principal defect of the

individual level description in example 3 is the requirement that a
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person's waiting time distribution be the same in every state. We
should like tb eliminafe this constraint and permit a full Markov
model to characterize the.movements of an individual. This is
desirable since there are many instances in which rate of movement
is a function of system state; for example, industries differ in their
rates of employee separation (Blauner 1964, pp. 198-203).

We therefore classify a person according to the diagonal matrix

A= ’ A, >0, 1=1,2,...,r

where l/)\i has the interpretation, "average waiting time in state i."

Then let'{XA(t)} be a continuum of independent continuous time

A>0

Markov chains whose transition probabilities are governed by

LHAAED) t>0, (3.13)

This is.jﬁst thé'formﬁlé#ion of section (Z.III)AexcéptAthaf now the
family'{XA(t)}A>0 is tﬁoughf.df aé Aéscriﬁiné the e&olution éf‘infinitely
many different types of individuéls, each type beiﬁé'idéntifiéd by a
distinct positive diagonal matrix A. Individuals of tyfe A afé?viéwed.
as occurring in the-fotal population with a proportionzspecifiea by a
joiﬁt ﬁrobabiiity dehéity g(kl,..,,Ar). 'The'macroscopic level (pooled
population) is theﬁ'aescribed by random variables Y(t), t > 0 whose |
values are the possible states of the component types'{Xh(t)} and whose

transition probabilities are governed by the mixture of Markov transition

matrices
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[ee]

P(t) = ”[

SAED) o A . (3.14)
0 0 i SORS RN RO o

A flexible 2r~parameter family of distributions analogous to (3.6)

and useful for describing heterogeneity in the full population is

o,
B ey Byl
g()\l’...’Ar) = I—ﬂ F(CL,) }\i e (3-15)
i=1 i

where ui,Bi >0, and 1 = 1,2,...,r.

A major analytical difficulty arises in dealing with the represen-
tation (3.14), even for specializations such as (3.15), because simple
evaluations of the integrals in terms of rational functions of M or
finite linear combinations of éxponentials cannot be carried out. The
socurce of this mathematical difficulty is the fact that the matrices A
and M are non-commutative, i.e., AM # MA. A discussion of numerical
methods for evaluating expressions such as (3.14) will appear in Singer
and Spilerman (1973).

Although we cannot obtain a convenient expression for P(t), analogous
to (3.7) in the case where the rate of movement parameter was specified .
by a scalar, or even an efficient computational algorithm, we can
evaluate P(t) numerically for illustrative purposes. In particular,

equation (3.14) may be written

o

o) © k_ :
e Y DD R G )
, , 3 k! 1 b 1 T
0 n k=0

U

P(t)

8

tk -Xlull e Aqug
= Kl . . g(Al,..,,Ar)dAl.....dkr

il

o
>
=

Au one
r rl r rr
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where U = M-I, i.e., uij = mij - Gij' Specifying g(kl,..,,Kr) as a

product of gamma densities (3.15), we obtain

i1

oy t2 (ai+1)ui o o
P(t) =1+t '=uij Bi e | o ET'”‘———;E*——'uiiuij + E;' - E;.uikukj" + ... (3.16)
‘ i

where the entfies in matrices represent the (i,j) terms. Although the
corresponding terms of higher order arrays increase rapidly in complexity,
the calculations can be carried out by computer for a few terms of the series.
Artificial data were prepared in order to compare this model with
ones in the earlier examples. The underlying structure of the constructed
data is revealed in Table 1. Panel A shows the individual-level matrix M
which was assumed to govern the movements of all persons. The waiting
time distributions are displayed in panel B; they were constructed by
assuming that a gamma density with parameters (ai,Bi) describes the
population heterogeneity in state i with respect to rate of movement. By
varying these parameters over the system states we have built into the

data the full range of generality consistent with the present model.

Tahle 1 about here

Using the information in Table 1 in conjunction with equation (3.16)
the matrices %(l), %(2), and §(3) were constructed for the process. These
arrays are reported in row 1 of Table 2. We will interpret them as
"observed data;" they depict a mobility process in which there is population

heterogeneity with respect to rate of movement, and an individual's rate

can depend on the state he is in.

Table 2 about here
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How good a fit would the mover~stayer ektension or the Markov chain
model provide to these data? To investigate this matter the §(1) matrix
in Table 2 together with (&,é), the parameters of the waiting time
distribution for the pooled population, were used to estimate M via (3.12).
Equation (3.7) was then employed to calculate P(2) and P(3), the matrices
predicted by the mover—stayer model. These arrays are presented in the
second row of Table 2. Markov chain estimates were obtained by raising
%(1) to the 2-nd and 3-rd powers (which provides identical results to
projection from (2.4)). These matrices are reported in row 3 of Table 2.

The two models produce different kinds of errors when compared with
the "observed data." The Markov model permits the waiting time distribu-—
tions to vary by state but constrains them to be exponential. This
produces an underestimation of the proportions on the main diagonal when
population heterogeneity in a state is considerable (as it is for state
l),12 but accurate results where the heterogeneity is small (state 2).
The mover-stayer extension permits the waiting times to bec other than
exponential but constrains them to be represented by a single distribution,
With the present data the mover-stayer projections overestimate both
main diagonal entries.

Tt should be noted that the mover-stayer model is not completely speci-

fied in the example. Both the general model of this.section. (equation 3.16)
and the Markov model are insensitive to the proportion of the total

population in an origin state. This is not true for the mover-stayer

_extension when the assumption concerning state independent waiting times
is violated, as it is here. Since the parameters (a,B) are calculated

from the movements of all individuals, the estimated values will differ

according to the origin state distribution of the population. What this
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means is that there are a variety of mobility situations, all consistent
with the data in Table 1 and with the matrices in rows 1 and 3 of

Table 2, which will produce different arrays with the mover-stayer
model. The particular matrices reported in row 2 are based on the
additional assumption that the population was evenly distributed

between states 1 and 2 at time 0 (footnote b of Table 1).

Rather than pursue computational details our intention here is
simply to point out that the theoretical framework (3.14) provides the
most general macroscopic level description of a heterogeneous population
with individuals classified in terms of their rates of movement, the
rates being state dependent, and evolving according to independent Markov
chains. As in example 3, the observable process i§>a particular case of
a semi-Markov process and this provides a second interpretation for
(3.16), as a homogeneous population with non-~exponential waiting times.
Here the waiting time distributions depend on the state according to

o

B, i

s _ 1
Prob (t, > t|X(k) = 1) = B . (3.17)

The particular formula (3.17) arises when the family (3.15) is used to
describe the proportion of type-A individuals in the pooled population.
The variable X(k), k = 0,1,2,..., denotes a discrete time Markov chain
governed by the stochastic matrices M, Mz, M?,..a, and only describes
the jumps of Y(t), not its waiting times in particular states.

In applying this model it should be noted that the data requirements
are more extensive than was the case previously. First, until inverse

procedures are developed, we must have available M rather than P(t),

although the latter is the more commonly published datum. Second, we
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demand a separate waiting time distribution for each system state in
order to estimate the parameters (ai,Bi), i=1,...,r. This is in
contrast to the estimation of o and B in example 3 using the subordina-
tion representation Y(t) = X(T(a,g)(t))' There we required either the
waiting time distribution for the entire population or, what is more
generally available, the distribution of number of moves in the
population during (0,t). A similar readily computable description of
Y(t) in the present case, governed by (3.14) and (3.15), is not possible
due to the state dependence of the waiting times. In principle we
could write Y(t) = X(T*(t)) where T*(t) = {number of transitions in
Y(t) up to time t}; however there is no simple 2r-paramzter family of
processes, analogous to the negative binomial process, which enables us
to solve for (ai,Bi), i=1,...,r in terms of number of transitions in
a sampling interval. For these reasons, in contrast with the mover-
stayer extension (example 3), individual—level data files will be
necessary to exploit this model. They could derive from either retro-
spective histories (e.g., the Taeuber data file 6n residence change |
(Taeuber, Chiazze and Haenszel 1968)) or from panel étudies (e.g., the
New Jersey Negative Income Tax Experiment conducted by the Institute
for Research on Poverty of the University of Wisconsin).

Embeddability and inverse problems for the present model, given
observations at several time points ﬁ(tl), ﬁ(tz),...,ﬁ(tk) and varying
degrees of information about (di,Bi), i=1,...,r (ranging from estimation
of all 2r constants down to rough inequalities about their range), are
also complicated by the fact that A and M'are non—commutative. In
particular, no simple representation for M in terms of logarithms and

rational funcitions of P(ti) analogous to (3.12) is available. Numerical
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inversion methods involving special multi~dimensional eﬁtensions of
the classical Lagrange inversion formula for scalar valued analytic
functions will be discussed in the context of mobility models in Singer
and Spilerman (1973). It should also be pointed out that a complete
discussion of the inverse problem and non-uniqueness of M in the present
setting poses substantial mathematical difficulties which are unresolved
as of this writing. The interested reader should consult Singer and

Spilerman (1973) for precise statements of these questions.

3.2. Identification of the determinants of population heterogeneity

Let {XA,M(t)}A>O,M>O be a collection of independent continuous time

Markov chains whose transition probabilities are governed by the prescrip-

tion

etA(M-—I)

&

We therefore classify a person in terms of a diagonal matrix of movement
rates and a stochastic matrix which specifies his transition propensities
at a move. For convenience we will subscript individual q's parameters
and write (Aq,Ma). We make no assumption regarding particular distributions
for {A_} and {M_} in the population; however, we do require the availability
of individual-level attribute data. QOur intention is to discuss a method
for ascertaining the determinants of population heterogeneity with
respect to both rate of movement and propensity to favor transitions to
certain states.

(a) Heterogeneity in the rate of movement: Consider the regression
equation,

K

Aie=agt I obyXet ey i=1,...,r (3.18)
k=1 I |
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where Aic is the c~th waiting time interval in state i during-(Q,tl),
(Xl,...,XK) are variables Which‘are.e%pected to e%plain.individual.differ—
ences in rate of movement, and the error terms.are assumed.to.Be independently
distributed. The observations in this regression are the Chwa?ting times in
state i. A person will contribute more than one observation if he made
several moves during (O,tl) which originated in state i; if.he was.in this
state throughout the interval (and failed to move) he will appear once with Aic = tl'
This specification is intimately related to the rate of movement

parameter of the continuous time Markov model according to

C
- 1
Aic TN, ZAic B
1. C

1

N,
1.

(3.19)

Q0 MO
>—J>l|—l

i

where the sums are taken over all waiting time intervals in state i
during (O,tl), and Ni. denotes the number of moves originating in state
i. The first equality results from the least squares procedure of
fitting a regression plane (Aic is the predicted c-th waiting time, the
prediction having been made from the attribute profile Cch”"’XKc) of
the individual associated with this waiting time). The second equality
is just equation (2.7) restated in terms of waiting times. The Xi
value pertains to the single Markov chain that would be estimated if

heterogeneity were ignored; it provides a suitable reference in terms

of which population heterogeneity may be described. Combining (3.18)

and (3.19),
C
1 ~C K. ixkc ) .
‘Xi a; N, + Elbik Ni“ ) i=1,...,r (3.20)

and this indicates how the regression produces a decomposition of the
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Markov parameter'ii. The term in parentheses in (3}20);lincidently,
can be interpreted as the "typical' individual profile associated with
a waiting time interval.
(b) Heterogeneity with respect to choice of destination state:
Define a variable yijc which equals 1 if the c~th move originating in

state i during (O,tl) resulted in a transition to state j, and 0 if it

did not. Now consider the equation

H
yijc = aij + hfl bithhc + eij’ ) i,j =1,...,r (3.21)
where (Xl,...,XH) are variables which are expected to relate to choice of

destination at a move, and the error terms eij are independently distributed.

The observations for this regression are all C moves which originated in state

i. Ap individual will appear more than once if he made several moves from

state i during (O,tl); he will not contribute an obeervation if he failed to move.
The relatijon between this equation and the corresponding Markov

parameters is given by

N N,

i i N
1 ~ 1 %
N, L Yi5e TN, LYie N, = Myy (3.22)
1. C 1. C 1.

where Nij equals the number of state i to state j transitions. The
equality-between the first two terms follows from the regression
procedure; the second equality deriﬁes from the definition of yijc’ and
the third from equation (2.7). Again, the value ;ij refers to the single
Markov chain that would result from treating the population as though

it were homogeneous; it provi&es a useful benchmark from which to
characterize heterogeneity. Combining (3.21) and (3.22) the decomposition

A

of the Markov parameter mij may be expressed as-
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N,

l'
H . . iAth
My = aij + S bijk ——ﬁ;—— , i,j = 1,...,r, (3.23)

This equation describes the population heterogeneity with respect to
choice of destination state at a move. The term in parentheses in
(3.23) depicts the typical individual profile associated with a move.

The two regression equations (3.18) and (3.21) therefore lead to
a decomposition of population heterogeneity in a way that is intimately
related to the continuous time Markov chain formulation. Further
elaboration of this procedure, in the context of a discrete time Markov
model, may be found in Spilerman (1972a).

In theory these regressions could be used to construct a Aq and
M for each individual in the population as was done in Spilerman (1972a).

If this is carried out the population level transition matrix would be

written

tA (M -I)
P(t) = Vizve & 4 (3.24)
. a

where V. is a matrix with entry 1 on the main diagonal of the i-th row
and zero in all other cells (i demoting individual q's location at time

0) and V = X Vq' Expression (3.24)13 describes the population level : |
q .
process when each individual g evolves independently according to a

continuous time Markov chain with parameters (Aq,Mq). it is the
continuous time analog of McFarland's (1970) formulation to accommodate
heterogeneity, which was summarized in example 2 of section 3.1l.

In practice, the estimates for this construction are likely to be
poor since we would be computing Mq matrices for non-movers during

(O,tl) using only information on chéice of destination state by
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movers (3.21). Consequently, the utility of this formulation lies
mainly in its contribution to analyzing heterogeneity, rather than to

estimating individual level parameters for projection.

3.3. Semi-Markov processes and their mixtures

When the multivariate density g(kl,...}kr) in equation (3.14) is
specified as a product of univariate density functions, ngi(Ai), then
the same mathematical formalism (3.14) applies to (a) a heterogeneous
population in which each individual moves according to a Markov process
with transition matrix M, the heterogeneity in rate of movement being
described by gi(ki) in state i; and (b) a homogeneous population in

which an individual waits in state i according to the distribution

function
t o

F (D) = f [ 2 yarae
0 0

before transferring according to M.
For the macroscopic level process Y(t) of example 4,‘{gi(li)} were

specified as gamma densities (3.15), and the corresponding waiting time

distributions were given by

Fi(t) = Prob | waiting time until a transition | present state
is less than t is i
a, -
Bi i o
= 1- \ g+ s 0,8, 20, 1=1,2,...,1,
it

In the Y(t) process of example 3 gi(ki) = g(A) [equation 3.6] and
Fi(t) = F(t) [equation 3.11]; that is, the description of population
heterogeneity in the first perspective, and the waiting time to a move in

the second, are independent of the state of the process.
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These macroscopic level processes are special cases of what are
known as semi-Markov processes (Pyke 196la, 1961b; Ginsberg 1971). This
model is usually presented in the conceptual imagery of a homogeneous
population with waiting time distributions which need not be exponential.
For an explicit formulation consider a stochastic process Z(t), t > O,
with a finite number of states which, again, may be occupational cate—~
gories, geographic regions, or income levels. The transition probabilities
for the semi-Markov processes treated here are the unique solutions of

the system of integral equations

r t
by (8) = 6, (1-F,(©)) + kzl ‘[; £y (8)my by s (-9)ds (3.25)

where pij(t) = Prob (Z(t) = j|2(0) = i); 6;5=1if 1 =3, 04f & # 33

and 1 < 1, 2 re

Fi(t) is a distribution function which has the interpretation,
"probability that a move has occurred by time t;" we assume that it has
a density fi(t). The stochastic matrix M with entries mij describes the
propensity to move to particular states. Equation (3.25) is therefore
amenable to the following interpretation: (a) When i # j, pij(t) consists
of the sum of products of three factors: the probability of a first
transition out of state i at time s, the probability of a state i to
state k transition at that move, and the probability of tramsferring to
state j by.some combination of moveé during (s,t). The summation is
over all intermediate states k and over all time points s in the interval
(0,t). (b) When i = j, then, in addition .to the above factor, there is
a possibility of not transferring out of state i during (0,t). The

associated probability is specified by the first term.
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When fi(t) = Aié .l', then the system (3.25) is equivalent to the
differential equations (2.3) with Q written in the factored form Q = A(M-I).
Thus the integral equation formulation (3.25) is a very transparent way
of saying that a stochastic process governed by these equations behaves
like a Markov process except that the waiting time distributions cam be
represented by general density functions fi(t)°

With these preliminary notions at hand we now indicate two contexts

in which semi-Markov processes are a natural description of social

mobility.

Example 1:

R. McGinnis (1968) refers to a phenomena which he calls cumulative
inertia and which has the interpretation that the longer a person remains
in a particular state (occupation, geographic region, etc.) the less
likely he is to move out of that state in the immediate future. Presumably,
with increaéing duration a person establishes social linkages and in other
ways acclimates to his setting so that the attractiveness of remaining
is igcreased. Ginsberg (1971) has pointed out that a semi-Markov process
with decreasing event rate provides a formalization of this notion. A
mathematical caricature of cumulative inertia can be stated in terms of
the waiting time distributiomns Fi(t) via the function

£, ()

ri(t) = E:EE?ES' (3.26)

The expression ri(t)dt can be interpreted as the probability that a

person known to be in state i at time t will exit from that state in the

next dt units of time. Then cumulative inertia simply means that r(t) is
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a monotone decreasing function of t.l4n:A simple 2-paraméter family of

waiting time distributions with monotone decreasing cumulative inertia

is given by
1
—Ait
Fi(t) =1-e with A, > 0, 0« vy < 1. (3.27)

For this specification, ri(t) = AiyitYi—l . Now classification of an
individual evolving according to a semi~Markov process would be to

characterize him by the family of distributions F = {fl(t),...,Fr(tj}
describing his waiting times in any state and the stochastic matrix M

e O T Vs iy UV S PP ST RSP,
aescribing nis propensSiily to move to particular states.

Example 2:

In the framework of mixtures of stochastic processes we can consider
'{%F(t)} as a continuum of independent semi-Markov processes describing
the mobility of individuals whose rates of movement are governed by (3.27).
It is assumed that the indiviaual rates are distributed in the total
population with proportions governed by a probability density g(Al,...,Ar;
yl,...,yr). Then the macroscopic level process Y(t) is defined as a

stochastic process whose possible states coincide with those of:{XF(t)}

but whose transition probabilities are governed by

=] [+ l l
P(t) = -[5 ...]; .n,j; .n:]; ﬂ}(t; Al,..,,kr; yl,...,yr;M)

g(Apsmesh s yl,...,Yr;A drje..dd dyp...dy (3.28) |

where S(t;_Al,...,Ar; yl,...,yr;M) denotes the stochastic matrix solution
of (3.25) with.{Fi(t)} specified by (3.27). In general we must appeal to-

numerical integration methods to evaluate S(t; Kl,...)kr; yl,...,yr;M)
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as explicit simple representations analogous to (3.7) are a rarity for
semi-Markov processes. Again, a useful 2r-parameter family of densities
describing the composition of the pooled population is given by

A, .
1L

r B, a.~1 -8, :

- i . 1 41

g(xl,...,xr) l‘}:il F(“i)' Ai e . oci,Bi > Q

In this simple setting we treat Yl""’Yr as fixed; although this
is certainly not an essential conceptual restriction. The rationale for
using the gamma distributions in the present context remains the same as
that presented for mobility processes where individuals evolved according
to Markov rather than semi-Markov processes. The question of computa-
tionally effective solutions of the inverse problem for mixtures of
semi-Markov processes is at present unresolved; an indication of the
mathematical difficulties and some suggested lines of attack will be
presented in Singer and Spilerman (1973).

This very general process (32.28), incidentally, provides us with a
formulation in which both a duration of residence effect and population
heterogeneity can be postulated. In the preceding models, and in the few
other discussions of semi~Markov models as they pertain to social mobility
(Ginsberg 1971, p. 254), one was compelled to specify individual-level
behavior as Markovian if the heterogeneity perspective was adopted, and
the population as homogeneous if a duration effect mechanism was postulated.
Clearly, both processes could be operative and we should prefer a model
in which they can be incorporated simultaneously.

A final point concerning semi-Markov processes which should be
mentioned is that the formulation given by equation (3.25) does not

describe the most generai process of this kind as treated in the mathematics
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literature. In particular, the original semi~-Markov framework allowed
for waiting time distributions which could depend on the neit future
state as well as the current state of the process. This level of
generality, however, does not seem appropriate for most social mobility
situations; hence we have restricted our attention to a subclass of

semi-Markov processes which requires the estimation of fewer parameters.

4. INVERSE PROBLEMS

In the previous sections we have‘indicated a few examples of
inverse problems and their associated embeddability questions. This
aspect of our study really involves an independent mathematical develop-
ment which also seems to be of considerable importance outside the
context of social mobility models, and which will be elaborated in a
separate publication. In the present section we simply illustrate the
flavor of inverse problems and give some indication of general diagnostic
strategies for recovering partial information about the fine structure of
a mobility process from information about its behavior at a few points
in time.

Before proceeding to the examples, we would like to point out where
the inverse problems of the present study fit into a larger mathematical

framework. To fix the ideas, recall the matrix differential equation

O - e, P(0) = I

whose solutions are the transition probabilities for continuous time
Markov chains. Rather than being given a particular differential

equation (i.e., a fixed Q) and asked to compute a solution P(t)
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(a "direct problem"), an inverse problem has a ¢lass of differential
equations and partial information ahout a solution (usually g(ti) for
a few values of 1) as given ingredients. From this information the
problem is to find the particular differential equation which is
compatible with the observed solution.

The overall strategy of inverse problem formulation and interpre-
tation in the context of social mobility will now be described entirely
within the context of a homogeneous population evolving according to a
continuous time Markov chain. The key point is that all of the issues
which must be faced in the more complicated mixtures of Markov and

semi-Markov formulations are already present in this setting.

Step 1--Embeddability

From an empirical point of view, the most primitive question to be
asked about a stochastic matrix P(tl), estimated from observations at

times 0 and tl’ igs whether or not it is compatible with the theoretical

framework
t.Q
> 1
P(tl) = e

where Q is an r x r matrix satisfying

q,.. = 0, (4.1)
1 M

1 B

—° < gy < 0, qij > 0 for i # j, .
J

'This problem has a long history in the mathematics literature (see Singer
and Spilerman 1973 for references), and our purpose here is to indicate

its solution for 2 and some 3-state processes as well as general finite

state birth and death processes.
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Case 1:

o a 1l-a
If P(tl) is a 2 x 2 stochastic matrix denoted by‘(j :> ,
. 1-b b

t.Q

0 < a,b <1, then it can be represented as e 1 with Q satisfying (4.1)

if and only if a + b > 1. (See Appendix T for a proof.)

1/3 2/3
It is interesting to note that the matrix which, as
2/3  1/3

indicated in (2.1), is compatible with a discrete time Markov model for

t1 = 3 is not compatible with a continuous time Markov model for any

positive time t Another interesting feature of the condition a + b » 1

1
is that this automatically guarantees uniqueness of Q. In the 2 x 2 case
we therefore have a single criterjon which ensures both embeddability

and uniqueness; note also that this is a weaker requirement than the

general sufficiency condition for uniqueness, inf[pii(tl)] > 1/2.
i

When the inequality a + b > 1 is satisfied the unique Q matrix
governing the evolution of the continuous time Markov chain is given by

n a-1 1—a.
Q = 1 log P = log(ath-1) . (4.2)
t 1-b  b-1

tl(a+b—2)

A further ramification here is that compatibility of the data with a
continuous time Markov model and unique identification of Q can be
checked by observations at time 0 and only one other time point; this
time point may be chosen arbitrarily by the experimenter. As subsequent |
examples indicate, this simplicity of embeddability tests and fdentifi-
cation of Q no longer holds even for 3-state processes.

Case 2:

(a) If P(tl) is a 3 x 3 stochastic matrix with distinct real
£.Q

eigenvalues 1 > Al > AZ > 0 then it can be represented as e for at
|




53~

least one Q satisfying (4.1) if and only if

2 2
> (2) , o (G, ~Llog A;~(r; -1jlog 2,

where pi§2) is the (i,j) entry in [P(tl)]z.

(b) If P(tl) has eigenvalues 1, A, A where A is real and 1 > X > 0,

£.Q
then it can be represented as e for at least one Q satisfying (4.1)
if and only if
@ 5 2 Z10g a2 - 5
og A~ = A" 4+ 1 . .
Pij | S Py T rr T all 1 # 3, (4.4)

Similar criteria can be given for 3 x 3-matrices having complex
eigenvalues as well as for general r-state matrices. The explicit
inequalities become very intricate as r increases; however, they are all
established by observing that log P may always be evaluated in principle
as a polynomial in P of degree at most r-1 [Caley-Hamilton Theorem

(Stein 1967, p. 196)]. Then inequalities such as (4.3) and (4.4) arise

by requiring that

log P = COI + ClP + .00+ Cr—lP

be real and a matrix satisfying (4.1).

Case 3:

If a sociological context alléws us to restrict consideratiomn to
continuous time models where the only allowable transitioms are to
nearest neighbor states6 then we have a simpler criterion for.ﬁ(tl) to

£ C
be representable as e L for at least ome @ such that (4.1) holds but

|
|
with qij = (0 for ]i - jl >1 (i.e., Q is a Jacobi intensity matrix). J
I
|
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. o ' tlQ
In particular, an r x r stochastic matrix P(tl) is representable as e ~ with
Q a Jacobi intensity matrix if and only if all of its entries and the following

2 x 2 sub-determinants are strictly positive (Karlin and MeGregor 1957):

Choose il < i2’ j1 < j2 arbitrarily and check
P. P.
t1091 1032 .
det >0 (4.5)

-~ A

P. . P. .
12331 12’32

1 5-11 < 12 <r, 1 f-jl < j2 < T,

It is important to notice that the class of models etQ with Q a
Jacobi matrix has been widely used in sociological investigations even
outside the context of social mobility (e.g., Coleman 1964, chapters 10,
11, and 14). In the mathematics literature these processes are referred
to as finite state birth and death processes (W. Feller 1968, chapter 17),
and they also have a long history of use as baseline models in parficle
physics, chemistry, and biology. The criteria (4.5) provide a simple,
readily computable test for compatibility of a stochastic matrix with a
birth and death model for an arbitrary finite number of states. The
interested reader can check that in Coleman's (1964, pp. 462-465)
appiication of a birth and death structure to English mobility data
there are numerous violations of this embeddability condition.

With these examples at hand, we should emphasize that the above
inequality tests can be considered as devices for isolating the class of
stochastic matrices compatible With.partiéular continuous time Markov
structures15 from the class of all stochastic matrices. Oﬁce it is

concluded that a matrix is embeddable in a Markov structure, the next
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step is to identify all intensity matrices Q which could have given

rise to the observed P(tl).

Step 2--Identification of Q

If the observed matrix P(tl) is embeddable and the condition

inf[pii(tl)] > 1/2 is satisfied, then we can calculate a unique Q,
i

Q = i—llog P(e,). 4.6)

In order to illustrate the methodological difficulties which might
arise when dealing with matrices %(tl) which are embeddable in a
continuous time Markov structure, but do not satisfy the condition
i#f[;ii(tl)] > 1/2, we consider the following example.

* 16
Suppose you estimate

1,2 1 _ e 1 _ e
3 3 3 3 3 3
5 _ 4y l_e L,2 1 _¢g
Pty 373 3t73 373 (4.7
1_e 1l_e& 1,2
3 3 3 3 3 3
where ¢ = e_ZHJg énd t, = éﬂ-gﬁ 7.26. This stochastic matrix has a
VY
t.Q
representation e for the following intensity matrices:

-1 1 0 -1 1/2  1/2
Ql = 0 -1 1L ' Q, = 1/2 -1 1/2
1 0 -1 1/2 1/2 -1

If a researcher is constrained to estimating just this P(tl) from data,
then he will find these two substantively distinct matrices compatible
with his observations and with a continuous time Markov model. In

particular, Ql and Q2 correspond to processes where the holding times
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between moves are exponentially distributed with paramefer 1, regardless
of state; however, a process governed by Ql only allows transitions
through states in the cyclic pattern 1 + 2 »~3 > 1 = 2+ 3,..etc. On
the other hand, a process governed by Q2 allows equally likely transitions
from any one state to any other state. Soclological argument must decide
which of these two alternatives is substantively meaningful if a single
observation beyond t = 0 is a constraint on the study.

£Q, tQ

Alternatively if you compute e and e for general times t, you

tQ
find that Pl(t) = e 1 is a 3 x 3 stochastic matrix with entries

-3t/2 cos y/§t/2, i=1,2,3

-3
1/3 + 2/3 e 3t/2 cos (?%E-— %ﬂi>

b, Pty =1/3+2/3 e

Dy = p, P oy =9, P 0

P12 = Po3 =

p D) = p i) = p M ey = 1/3 + 2/3 32 cog (?35-+ 3ﬂ:)
32 2 3
th
while Pz(t) = e is a 3 x 3 stochastic matrix with entries

(2) 1,2 -3t/2 i =

P, (t) = 3 + 3 e s i=1,2,3
(2) _1_1 -3t/2 . 4 s

P,y (t) 3 -3¢ for i ¢+ j.

When t = Akm (k = 0,1,2, .),'Pl(t) = Pz(t) and you cannot discriminate

/3
between these two processes. The difficulty to be highlighted here is
that the observation time dictated by the experiment turned out to be
‘inconvenient for unique identification of Q. However, if one more

observation is allowed, the above calculatlons 1nd1cate that 1f it is

taken at t1me F (i.e., k = 3/2), then log P< )and log P( )must be
3
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constant multiples of either Ql or Q2‘ Whichever is observed will
identify the unique Q-matrix compatible with a continuous ¥time Markov
model for the mobility process under ekamination.

The phenomenon described above arises due to non-uniqueness of the
logarithm of a stochastic matrix. As indicated earlier, a sufficient

condition for uniqueness in the Markov case is that inf[pii(tl)] > 1/2;

however, there is no apriori reason to believe that this condition will
hold in environments where Markov models might be applied. Hence a

more thorough understanding of the nature of non-uniquencss as illustrated
by the above example is clearly needed. Some progress in thls direction
both for the Markov and semi-Markov models arising as mixtures according
to the recipes of section 3 is described in Singer and Spilerman (1973);

however, substantial mathematical difficulties are still unresolved with

regard to these questions.

5. CONCLUSIONS

We conclude with an overview of diagnostic strategies for the
social mobility models formulated in the previous sectiong. Many of our
rémarks should be viewed as suggestions for future research; however, a
discussion of several mobility data sets from this point of view together
with a presentation of appropriate data analytic techniques will appear
in a separate publication of the authors.

(A) Select a class of Markov or semi-Markov models, such as those

in section 3, which seem to corréspond to prior evidence and

theories about the nature of heterogeneity in the population

you are observing.



(B)

(©)
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Check for embeddability. Necessary and sufficient conditions
for an observed 2 i 2 matrix to be embeddable in a continuous
time Markov process, and for an observed r-state matrix to be
embeddable in a birth and death structure were reported in

section 4.

Check for a unique solution to the inverse problem. A
sufficient condition for uniqueness in the‘continuous time
models we have explored is the criterion i?f[pii(tl)] > 1/2.
The non-uniqueness phenomena illustrated i; our previous
example frequently occurs for logarithms, roots, and more
general inverse formulas of matrices with repeated eigen-—
values. Thus a useful strategy in dealing with empirically
determined matrices %(tl) having distinct ejgenvalues some

of which are within several significant digjits of each other,
is to adjust ﬁ(tl) to force equality of the eigenvalues and
compute all M-matrices or Q-matrices (depending on the context)
compatible with both a repeated eigenvalue estimate and a
distinct eigenvalue estimate. The point here is that much
sociological data involves severe "noise," and you may miss
an opportunity to examine and interpret a substantively
meaningful matrix M by treating the observed matrix ﬁ(tl) as
though it was error free. Indeed, because of sampling error
in the observed matrix §(tl) you may have computed the wrong
M for the process! The numerical analysis problems connected

with these adjustments will also be indicated in Singer and

Spilerman (1973).
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(D) The calculation of coinpatible_ matrices M via numerical
inversion algorithms should be followed by a determinétion
- of t‘ime‘ points heyond thét of the original observations tO
‘and t; at which it would be possible to discriminate among
competing candidates. An instance of this was the identi-

fication of the time %—11 in the previous section where an
3

estimated P(%) could be used to discriminate between Ql
3.

and Q2. This portion of the diagnostic process really falls
under the framework of experimental designs for mobility
processes, an area which to. the best of our knowledge is '

completely unexplored.




APPENDIX I. COMPUTING FUNCTLONS OF MATRIX ARGUMENT

A key step in the production of inversion formulas is often the
evaluation of an analytic function of matrix argument. TIn the continuous
time Markov case we required a computation of Q from an observed § and
a postulated structure etQ. This involves calculation ofvlog ﬁ vhere ﬁ
is a stochastic matrix. Analogously, in the discrete time Markow model:
we required a recipe for computing the n-th roots of %. |

A natural formulation of analytic functions £(z) with z replaced

by a matrix is the contour integral definition

e - i [Lern e

where I' is a smooth closed curve which encloses the eigenvalues of P and

f(z) is single-valued and analytic. The components of (CI--P)"l are of

the form
4
g DT
(¢I-P).. =
ij 6 (2)
where ¢(z) = determinant of (ZI-P), and
¢ij = determinant of the (n~l) x (n-1) matrix obtained by

deleting the jth row and ith column of ¢zI-P.

To illustrate the use of. this formulation we calculate log P when

R is the 2 x 2 stochastic matrix

P = : 0 <a,b<1,

The steps in the computation are




z-a a-l . z=b  1-a
(cI"P) = s l l (_l)l+J¢ij =
b-1 b 1-b  z-a
2

6(z) = 7 - g(ath) + (atb-1).

The eigenvalues of P are the roots of ¢(Z) = 0'and are given by
= 1, t, = a + b~ 1.

-1, Tog (o)

. 1 f .
Residue evaluation of 5— [, (o) (2= (atb-1)) for 1 < i,j < 2 yields

log P = log(atb=-1) a-1 1-a ’
a+b-2 < 1-b b1 .

For this to be a legitimate Q-matrix we require simply that log(a+b-1)

is real. This will happen if and only if a + b > 1. Thus we obtain the
condition that P is representable as eQ if and only if a + b > 1.
For a second application of the contour integral we calculate the

cube roots of

1/3  2/3
P(3) =
2/3  1/3

which is (2.1) in the text. Here

r-1/3 -2/3 L z-1/3
(c1-p) = : ||<—1>1+3¢i.
-2/3  ¢=1/3 J 2/3
5(2) = g2 - 2¢/3 - 1/3 = (z-1)(z+l/3) = 0.

ik 1/3 ..
Residue evaluation of 5T r N CSYE)) for 1 5_;,j < 2 yields

2/3

z-1/3



A-3

1/2 - 1/2 ?/3“ 1/2 + 1/2 ?/97
~21/3 , .
[P(3)] =\ - :
1/2 + 1/2 }3/97 1/2 - 1/2 ;3/3" '

as the only real valued root. This matrix is (2.2) in the text.
A more extensive discussion of the role of contour integral
formulations in producing inversion formulas for the models of

section 3 is given in F. John (1965, pp. 103-118).




FOQTINOTES

lWe assume that the reader is familiar with the four papers cited
in the preceding paragraph and with the rudiments of discrete and

continuous time Markov processes.

2 . . . '
The symbol " over a stochastic matrix means that it should be
thought of as a quantity estimated directly from data; matrices without

~ should be viewed as obtained from a mathematical model.

3Incompatibility with a discrete time Markov chain implies
incompatibility with a continuous time Markov structure. The converse

is not true.

4The utility of tﬁis formulation can be illustrated by an example.
If the process concerns geographic migration and the system states are
regions of the county, a state i to state i transition would represent
change of residence within a region. Even if it is unreasonable concep-~

tually to "move'" and not change state (as in movements among marital

1

statuses) we might still want to speak of "exposures to movement" or

"decisions to possibly move."

5{X(k)} are again the random variables of a discrete time Markov

chain governed by M which describes_moves when they occur.

6In most applications to mobility it has been assumed that the
natural time scale of the process is such Fhat n = 1, thus eliminating
the need for computing roots of matriées. This assumption is tantamount
to saying that the natural time scale has intervals which are the same

length as a sampling interval, thereby obscuring consideration of



6 (Cont')alternative underlying time scales and transition

mechanisms M which might be compatible with the data and substantively

meaningful.

7It should be observed that a 2 x 2 stochastic matrix g(n) with
n odd is always compatible with a discrete time Markov structure. Thus
if you are restricted to taking observations only at time 0 and one
other time, the additional measurement should be made at an even time
to provide the most elementary test of compatibility with a Markov model.
This same discussion also applies to 2 x 2 stochastic matrices ﬁ(n)

thought of as observations generated by a mover-stayer model.
8 . .
The second parameter, B8, is merely a scaling factor.

9This distribution is obtained by assuming a mixture of exponential

waiting times,
P(1. > t) = [mf(t)dt = fmf re Ao (n)drdt
0 — t t /0 R

where g(A) is a gamma density.

10In fact, sociological hypotheses which invoke the Markov property
(independence of future state from past locations, given current state) to
describe state changes at the occurrence of a move often place no
requirement on the waiting time distributions. It would be incorrect

to test such a thesis by fitting a Markov chain to the data.

11This can be seen by expanding both (3.11) and the cumulative distri-

. -At . .
bution function for an exponential, F%(t) =1 - e ", in power series.




12The variance of the gamma density, Eiﬁ-, provides a measure of
i

the extent of heterogeneity in state i. For state 1 the variance equals

2.6, for state 2 it equals .039.

13The formula is defined only if V is non-singular. This condition

will hold if one or more persons occupy each origin state at time zero.
-t
Ae &
In the Markov case ri(t) = —3;———j:;——— = Ai for i = 1,...,r.

. * t
1-[1~-e ]

14

1

This says that the rate of movement is constant, irrespective of duration

in the state.

lsIf a matrix is embeddable in a Markov structure this means that

it could have been generated by a Markov process; further tests of the

sort outlined in section 2.2-I are necessary to confirm this possibility.

16This example is originally due to J. Speakman (1967).




*
FIGURE 1. Family of Compound Exponential Curves

f(t)

exponential
density |

o
* , .y = |[-© _E_)
The family of densities f(t) = (B+t)(6+t was constructed by

the integration

£(t) =f re Mg (1) dx
0

where g()) is a gamma density with parameters (o,B).



Table 1.
in the Population, Simulated Data

Structure of Heterogeneity

A. Individual-level transition matrix

.83 .17

.20 .80

B. Cumulative waiting time distribution, by statea

(1) (2)

State 2
(0=1.4, B=6.0)

State 1

Waiting
(0=2.1, B=0.9)

time

. 044
.086
.125
.161
.194
.225
254
.282
.307
.332
.354
.376
.396
LA415

344
.538

°°°‘*\N°°°°‘\~'-\Noaoé\l\;\,o

AN el N S

(3)

Pooled
populatlon
(8=0.61, 8=0.49)

0
194
312
.391
<449
<493
.503

aThe entries in columns (1) and (2) were generated from the cumulative

distribution, .
B. i
i .
1 - ) i
Bi+t

HONE

using the indicated (u s B, ).

in states 1 and comblned states, for F (t) <
entries exceeding these figures.

Values are reported for Fi(t) <
-400, and for the first

1,2
.500

bAn identical number of persons was assumed to be present in each state

at t = 0.
across the states and dividing by 2.

population
empirical distribution in colummn 3 (Mood 1950, p. 387).

The entries in this column were therefore obtained by summing
The parameters (a B) for the pooled
were estimated using the median and interquartile range of the



Table 2. Population~Level Transition Matrices
Estimated from the Simulated Data

P(D) P(2) . P(3)

Postulated population 702 .298 | -|.528 .472 422 .578
structure (equation
3.16) .,037 .963 .062 ,938 .079 .921
. i -
Projections from . - _
Mover—?tayer ) # 574 426 .501 .499
extension (equation
3.7)8 L0546 .946 .063  .937
- 4 L B
Projections from N B 7] ~ 9
Markov model i .504  .496 .372 .628
(P(n) = [P()]) .062 .938 .079 .921
- N - N

8procedure uses §(l) and (o,B) from column (3) of Table 1 as
input data.
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