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ABSTRACT

When individuals of varying true ability are non-randomly assigned
to treatment and control groups, biased effects of treatment may be
observed, In this paper, we assess the possibilities in terms of a
simple test-score model which allows for an interaction between treatment
and true ability. For the control group, pretest score and posttest score
are assumed to be fallible measures of true ability. For the treatment
group, pretest score is a fallible measure of true ability, while posttest
score is a linear function of true ability, plus a random error. Posttest
score 1s regressed on pretest score within each of the two groups.

We find that both the additive and non-additive effects of the treat-
ment are biased when individuals are selected for treatment explicitly on
the basis of true ability. However, when individuals are selected for
treatment explicitly on the basis of pretest score, only the non-~additive
effect is biased. Furthermore, this bias is the same as that which would
arise under random selection.

Our analysis is a formal oné, regressions being expressed in terms
of population parameters. We also evaluate the statistical efficilency

of selection-on-the-basis-of-pretest relative to random selection.



SELECTION BIAS IN EVALUATING TREATMENT EFFECTS:
THE CASE OF INTERACTION

Arthur S. Goldberger

1. Introduction

The argument that a spurious treatment effect will be observed when
individuals of varying true ability are non-randomly assigned to treatment
and control, was examined by Goldberger (1972). The examination ran in
terms of a simple test-score model, with normally distributed true ability,
pretest, and posttest. Regressing posttest on pretest and treatment, we
found that the spurious effect arose when selection was based on true ability
but not when selection was based on pretest. Although the analysils was
confined to the situation where the true effect of the treatment was nil, it
was clear that the findings would carry over to the situation where the true

effect of the treatment was additive.

In the present paper we extend the discussion to the case of interaction --
where the true effect of the treatment may be nonadditive, varying linearly
with true ability. We find that the favorable conclusions about pretest

selection hold up, albeit in weakened form.

2. The Basic Model

We suppose that true ability x* is normally distributed with expectation
0 and variance Q, and that pretest score X is an erroneous measure of true

ability in the sense that

L) X =x*+u,



where u is normally distributed with expectation 0 and variance (1 - P)Q/P
with 0 < P < 1., Posttest score is determined by true ability and treatment

via
(2) y=xtt+toaz+Bazxk+v=az+ (1+82) xx+v

where v is normally distributed with expectation 0 and variance (1 - P)Q/P.
Here z is the binary variable indicating whether or not the individual

received the treatment:

[ 1l if received treatment

z = . . . .
0 if did not receive treatment (i.e. control).

We suppose that x*, u, and v are independent and that v is independent of z.
Our selection procedures will be such that half of the population

receives the treatment and half are control, so that

p = Prob {z = 0} = = Prob {z = 1} = 4,
(o]

Py

E(z) = % , V(z) = 1/4 .

Our assumptions imply that x is normally distributed with expectation

E(x) E(x*) + E(u) 0,

and variance

V(x) V(x*) + V(u) Q/P.

The distribution of y will in general be non-normal with expectation



E(y) = E(x*) + o E(z) + B E(zx*) + E(v) =% a + B C(z,x¥%);

the covariance on the right depends on the selection procedure.
The present model permits the treatment to have both an additive and

a nonadditive effect on posttest score. Specifically, (2) says that

"

(3) E(y|x*, 2) = o z + (1 + Bz) x*,

For the treatment group(z l)the regression of posttest on true ability

is
E(y|x*,1) = E(y|x*,z=1) = o + (1 + B) x*,

while for the control group(z = O)the regression of posttest on true

ability is
E(y|x*,0) = E(y|x*,z=0) = x*,

These two lines differ in general. If B = 0 their slopes are the same
(no nonadditive effect), if 0 = 0 their intercepts are the same (no
additive effect). If both o = Oﬂand B = 0, the two lines coincide (no
effect at all) and we are reduced to the situation examined in Goldberger
(1972).

Whatever the true effects may be, they would show up if y were
regressed on x*, z, and zx* (equivalently, if y were regressed
on x* within each group separately). But in practice, with x* unobserved,
one can regress y on X, 2, and zXx to assess the treatment effect. Since

X 1s an erroneous measure of x*, this assessment may be biased. The bias



presumably depends on the selection procedure -- the basis on

which individuals were aésigned to the treatment and control groups. We
will consider three procedures: (o) random selection, (i) selection on
true ability, and (ii) selection on pretest score. For each, we develop
the within-group regressions of posttest on true ability and of posttest
on pretest., The within-group regressions are translated into an overall
regression with, and without, interaction.

When the need arises, we will presume that the true effects of the

treatment are nonnegative, that is o > 0 and B > 0.

3. Technical Digression

We first record some general results on the relation between within-
group and overall regressions. Consider the joint distribution of three
random variables r, s, z,where z is a binary variable taking on the value
0 with probability P, and the value 1 with probability Py = 1 - P, The

linear regression of s on r given that z = 0 we denote by

= + .
E(slr,O) aoo aio T ;

the linear regression of s on r given that z = 1 we denote by

E(s|r,1) = + a Tt

Collectively, these within-group linear regressions will be denoted by

(4) E(s|r,z) =a, + a, T (z = 0,1),

or equivalently as



5 E = - -
(5) (s]r,z) o + o4 T + (aol aoo)z + (all alo) zr.

The latter form is the one which arises when a single linear regression of

s on r, z, and the interaction term zr, is run over the full population.

For simplicity, we use E(.|.) to denote linear regressions regardless of
whether the true regression function is in fact linear.
From the general theory of linear regression we know that the within-

group slopes and intercepts can be’expressed in terms of within~group moments

as

Q
]

(6) 1z = Cr,s]2)/V(x|2),

R
i

oz E(s|z) - alz_E(r’z) (z = 0,1).

Now consider the result of running a single linear-additive regression

of s on r and z without interaction term over the entire population:

(7) E*(slr,z) = ao + 0o, r+ o, z.

1 2

These parameters can also be expressed in terms of within-group moments:

o = E(s|0) - o E(r|0)
al = E C(r,slz)/E V(r,z),
A A
o, = (E(s|1) ~ E(s]0)) - a;(E(r|D) - E(x]|0)),

where

(8) E C(r,s]z) =P, C(r,le) + 1 C(r,sll)
z

and



€)] E V(r|z) = p_ V(z|0) + Py V(r|1)
Z (¢]

are the average within-group covariance and variance respectively.
The parameters in the additive regression are related to those in

the nonadditive regression as follows: Using (8), (9), (6) we write

w C(r,s|0)/V(r]0) + (1-w) C(r,s|1)/V(x|1)

Q
il

11°
where

w=p_ V(r|0)/§ v(r|z), 1-w) = Py V(r|1)/§ v(r|z).

Thus the overall r-slope in (7) is a weighted average of the within-group

r-slopes in (4) or (5). Proceeding, we find

E(s|0) = (wa + (1=-w a,) E(|0)

Q
]

(E(s]0) - o) E(z[0)) + (1 - w) (g - all)E(r|0)

6, @ -wy, - all)E(r|O),

and

ay = (ay —a )+ (4 - o )W E(r|1) + (1 - w) E(r]0)).

These formulas simplify in special cases. If the variance of r is the
same within each of the two groups, V(r|0) = V(r’l), then w = P, and

l-w=1- P, = Py, SO that



A = Py %y TPy %

0Lo - OLoo + pl(alo - 0L11>E(rlo)

a, = (aol - aoo)‘+ (all - OLlo)(po E(rll) +pq E(r|0)).
If further P, = % = Py then
(10) a =a +% (4 - all)E(r'O),
(11) a = E (alo + all)

Q
[

g = (g m ey, + (e - ey ) E(o).
If also E(r) = O then this last expression simplifies to

(12) a, = (aol - aoo).

Tn our applications we will have V(r|z)’ constant, P, = 3, E(r) = 0, so
that (10)-(12) hold. The overall r-slope is'just the average of the
within-group r-slopes, and the overall z-coefficient is just the difference

of the within-group intercepts.

4, Random Selection

In case (o), individuals are assigned to the treatment and the
control groups in a manner which is random both with respect to true ability

and the error component of pretest.

Regressions on true ability. Since z is independent of x*, we

immediately have



E(x*|z) = E(x*) = 0, V(x*|z) = V(x*) = Q.
Then writing

y=az+ (1+Bz)x*+v,
we use the independence of z, x*, and v to find

E(y'z) =az + (1 + Bz) E(x*|z) =0q z ,

C(x*,y|z) = (1 + Bz) V(x*|z) = (1 + Bz) Q.

Applying (6) with y taking the role of s, and x* taking the role of r,
we obtain the slopes and intercepts of the within-group regressions of

posttest on true ability:

(1 +82)Q/Q = (1 + Bz) ,

Q
i}

(13) 1z

oz - (1 + Bz) 0 = az (z =0, 1.

Q
1

0oz

As was to be expected, these accurately capture both true effects of the
treatment: S P B, the interaction effect, and a1 7 %, T o, the
additive effect. Applying (11)-(12) with y taking the role of s, and x*

taking the role of r, we obtain the r- and z- coefficients of the overall

additive regression of y on x*:

(14) o, = 1+%B, az =0 .

The z-coefficient directly captures the additive effect of the treatment,

and the interaction effect can be recovered from the r-coefficient as

B = 2(0Ll - 1.



Regression on pretest score, With z independent of u as well as of

x*, it is independent of x, so that
E(x|z) = E(x) = 0, V(x|z) = V(x) = Q/P,

and
C(x,y|2z) = C((x* + u,y)|2z) = C(x*,y|z) = (1 + Bz) Q.

Applying (6) with y taking the role of s, and x taking the role of r, we
obtain the slopes and intercepts of the within-group regressions of posttest

on pretest:

(15) (1 + B2)Q/(Q/P) = P(1L + Bz),

Q
1]

1z

o z+P(1l+Bz) 0=q0z (z =0, 1).

R
1l

oz

The interaction effect of the treatment is attenuated but the additive
effect is accurately captured: all P P B but QT %p, T @
Attenuation of the slopes is of course inevitable with P < 1 even when the
selection is random. Applying (11)-(12) with y for s, and x for r, we

obtain the coefficients in the overall additive regression of posttest on

pretest:

(16) a, = P(1+%8), A, = O

A comparison with (14) confirms that under random selection the measurement

error does not bias an additive treatment effect.



10

5. Selection on Basis of True Ability

In case (i), individuals are assigned to the treatment group or the
control group according as their true ability is below or above the mean
true ability in the population:

141if x*¥ <0

z=1{4 it x* >0 °

Since z is determined exactly by x* it will be independent of u as well as v,

but not of x.

Regressions on true ability. To start, we have the following results

from Goldberger (1972, p. 12):
E(x*|z) = (1 - 22)/2Q/7 , V(x*|z) = (7w - 2)Q/m,
where T = 3,14159... . Proceeding, we find

E(y|z) = az + (1 + Bz) E(x*|z) = a z + (1 + Bz) (1 - 2z)Y2Q/7 ,

C(x*,ylz) = (1 + Bz) V(x*|z) = (1 + Bz) (w - 2)Q/7.

Applying (6) with y taking the role of s, and x* taking the role of r, we

obtain the slopes and intercepts of the within-group recressions of y on x*:

(17) a,, = 1+ Bz, a, =0z (z = 0,1)

Once again, these accurately capture both true effects of the treatment.
The non-randomness of the selection procedure does not distort effects
when x* is used as the explanatory variable. Similarly, the coefficients

in the overall additive regression of y on x* are
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(18) a, =1 +%RB, a, = a .

Regressions on pretest score. In view of the independence of u and

z, we have immediately:

E(x|z) = E(x*|z) + E(u|2z) = E(x*|z) + E(u) = (1 - 22) /2Q/m,
V(x|z) = V(x*|z) + V(u|z) = V(x*|z) + V(u) = (1 - 2P)Q/(wP),

cf. Goldberger (1972, p. 12). Similarly,
C(x,ylz) = Clx*,y|z) = (1 + 82) (7 - 2)q/m

Applying (6) with y for s,and x for r, we obtain the slopes and intercepts

of the within-group regressions of y on x:

3 T~ 2
oy, = P (m) (1 + Bz),
(19) a, =0z + (1 + Bz) E(x*lz) - oy, E(x*|z)

az+ (1 + Bz)(L - 22z) n(l - P) v20/m /(m - 2P) (z = 0,1).

]

Both treatment effects are biased. The difference in slopes, namely

T -2
(20) Oy = %y, = PG By

is a doubly-attenuated measure of the true interaction effect {: all - alo < B,
since B > 0. The factor P < 1 arises from measurement error (cf. (15)), and
the factor (m - 2)/(m - 2P) < 1 arises from the conjunction of measurement

error and non-random selection. The difference in intercepts, namely

(21) @, -—a =oa-1+%B (1-P)ysnQ/(r - 2p),

ol 00
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will understate the true additive treatment effect o: with B > 0,

a1~ aoo < 0. As in Goldberger (1972, pp. 11-12) these spurious deleterious
effects of the treatment are attributable to a selection procedure which
systematically puts low-ability individuals in the treatment group and high-~

ability individuals in the control group.

From (11)-(12), an overall additive regression of y on x, 2z yields

(22) o, = P @Ry eB),0, = a - (L + % 8)(L - P)/ETQ/ (1-2P).

Note that if a = 0 = B, o, reduces to the result reported by Goldberger

(1972, p. 11) for a no-true-effect situation.

6. Selection on Basis of Pretest Score

In case (ii), individuals are assigned to the treatment group or the
control group according as their pretest score is below or above the mean

pretest score in the population:

z= {

1if x< 0
0if x> 0 °

Since z is determined exactly by x it will be dependent on both x* and u,
but remains independent of v.

Regressions on true ability. We start with

E(x*|z) = (1 - 2z) /2PQ/m, V(x*|z) = (7 - 2P)qQ/m,
given in Goldberger (1972, pp. 15, 17). Then we find

E(y|z) = o z + (1 + Bz)E(x*|z) = a z + (1 + Bz)(1 - 2z)/2PQ/m,

C(x*,y|z) = (1 + Bz) V(x*|z) = (1 + Bz)(m - 2P)Q/T.

Applying (6) yields the slopes and intercepts of the within-group regressions

of y on x*:
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=1+ Bz, o =0 z (z =0, 1).

(23) Ole oz

Once again these accurately capture both treatment effects. The non-randomness
of the selection procedure does not distort effects when x* 1s used as the
explanatory variable., Similarly, the coefficients in the overall additive

regression of y on x* and z are

(24) o, =1+%B, a,=a.

Regressions on pretest. We have

E(x|z) = (1 - 2z) ¥2Q/("P) , V(x|z) = (m - 2)Q/(TP),

and

C((x, oz + (1L + Bz) x* + v)|z) = C((x, (1 + Bz)x*)|z)

C(X,Y'Z)

(1 + Bz)C(x, x*|z) = (1L + Bz) (7 - 2)Q/m;

cf. Goldberger (1972, pp. 14, 17, 18). Thus the slopes and intercepts of

the within-group regressions of y. on x are

alz P(1 + Rz),

(25)
oz + (1 + Bz)E(x*|z) - P(1 + Bz)E(x|z) =a 2z (z =0, 1).

Cl
0z

These are identical with the random-selection results in (15). The interaction

effect is attenuated: all'— alo = P B, but the additive effect is correctly

captured: aol - aoo = . Despite the fact that selection on pretest tends

to assign low-ability individuals to the treatment and high-ability individuals
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to the control, it generates the same measures of the treatment effect

as does random selection. Because of the inevitable slope attenuation
(due to measurement error) we can no longer say (as we did in the earlier
paper) that pretest selection yields unbiased estimates of the treatment
effect, but rather that it yields the same estimates as does random
selection. In this weakened form, the results of our previous analysis
hold up in the presence of interaction effects. The contrast to true-
ability selection is still striking. Finally, we record the coefficients

for the overall regression of y on x and z,
(26) a. = P(L+%B) , 0, = o,

which coincide with the random-selection results in (16).

7. Efficiency

While the same parameters are estimated under pretest selection as

under random selection, efficiency is reduced. To see this explicitly,

consider the within-group regressions of posttest on pretest when the (total)

sample size is 2T. The moment matrix of explanatory variables (the constant

and the pretest score x) has expectation equal to T times

1 E(x’z)

E(x|z) E(x”|2)

The inverse of this is
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E(x2|z) -E(x|z)
1

Vix|z) —E(x,z) 1

In case (o), random selection, the diagonal elements of this inverse, namely

no° E(lez)/V(xlz) =1 + Ez(xlz)/V(xlz)

L 1/V(x]z),

=]
!

take on the values

ol o) = /s

n°°G0) = 1,

cf. p. 9 above. In case (ii), pretest selection, they take on the values

n%0(11) = 1 + ((1-22)% 2Q/(WB))/((m-2)Q/ (1B)) = 1 + 2/(m-2)
= m/(1-2),
11,
m (ii) = ®P /((m-2)Q) = (w/(m-2))P/Q;

cf. p. 13 above. Thus
2% (11) /m®®(0) = mr (i) /mit (o) = T/ (n1-2)

which implies that the sampling variances of the within-group regression

coefficients under pretest selection are
m/(m-2) = 2.75

times as large as they are under random selection; this is the same efficiency
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loss as was found in the no-effect case, Goldberger (1972, p. 22). Our
calculation presumes that the within-group disturbance variance does not
change with the change in experimental design. That presumption is correct,

since it can be shown that
2
V(ylx,2) = (1-P)Q(1+ 2)" + 1/P) (z =0, 1),
whether the selection is random or based on pretest.

8. Comments

1. Our assumption that E(x*) = 0 is not entirely innocent. Indeed it
may appear that the assessment of treatment effects will be contaminated
when true ability has a nonzero expectation. For example, consider the
random selection case (o). If E(x*) = y, then E(x*‘z) = | so that E(x|z) = u,

E(y|z) = qaz + (1 + Bz)u, and the second line of (15) will change to

aoz = az + (1+Bz)u - P(1+Bz)u = az + (1-P) (1+Rz)u.

This says that the difference between the within-group regression intercepts

is

@y = % =0 + B (1-P)u

Does this mean that the difference in intercepts no longer captures the
true additive effect o when there is a nonzero interaction effect (B#0)?
If so, all our earlier conclusions would be seriously misleading.
A resolution of the difficulty runs as follows. When there is an inter-

action effect the measure of the additive effect is essentially arbitrary.
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What, after all, is the vertical distance between two non-parallel straight
lines? The arbitrariness can be resolved by conventionally measuring the
additive effect as the difference between the ordinates of the within-group
lines when the abscissa is E(x*). (This lies in the middle of the relevant
range of the datg.) But that is just the difference in intercepts, provided
that x* 1s measured in terms of deviations about its expectation. Thus our
assumption E(x*) = 0 did not limit the domain of the analysis but rather
adopted, in effect, the convention that additive effects are to be measured
at E(x*), The entire problem, of course, disappears when there is no
interaction.

2, Our presumption that both true effects of the treatment are non-

negative may be somewhat misleading. If o > 0 and 8 > 0, then the lines

E(ylx*, 1) = a+ (1+B)x* , E(ylx*, 0) = x*

will cross, at the point
x* = - o/B < 0.
o}

Consequently, while the treatment may be beneficial to individuals whose

true ability exceeds xg, it would be detrimental to individuals whose true
ability lies below xg. This specification may be objectionable in that it
fails to do justice to one's notions about a beneficial treatment. To avoid
the objection, we must fall back on an assumption that the relevant range

of the data is =x* > xg; with a > 0 and B8 > O the treatment is then beneficial
(or at least non-detrimental) for everyone. (The entire problem disappears

when there is no interaction). Alternatively, one could incorporate the
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presumption that the treatment has a nonnegative effect from the start by

replacing (3) by
E(y|x*,z) = gz + x* + Bzx**

where
0 if x* < x*
xk% = {

x* if x* > x*
with x* being a prespecified value of true ability (perhaps 0). Analysis of
this "kinky-interaction'" formulation, however, lies outside the scope of the
present paper.

3. To conclude, we provide some information on the magnitude of the

bias which arises when selection is based on true ability. Confining attention

to the no~interaction situation (B=0), we have from (22):

- o = - (1-P)/8mQ/ (m-2P).

%

To obtain meaningful units, we measure the bias in terms of standard deviations

of pretest score (= standard deviations of control posttest score); thus
Bias = (a2 - a)/vQ/P = - (1-P)vV8mP/(m-2P).
The bias is tabulated below for selected values of P:

P .50 .60 .70 .75 .80 .85 .90 .95 1.0

Bias -.83 -.80 -.72 -.66 -.58 -.48 -.35 -.20 0.
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