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ABSTRACT

Regression analyses of compensatory educational programs have been
criticized on the grounds that the puplls were not randomly selected
for the program. Specifically, it has been argued that a spurious,
deleterious effect of the treatment will be observed when the selection
procedure systematically puts lower-ability subjects into the treatment
group and higher-ability students into the control group.

In this paper, we evaluate that argument in terms of a simple
test—-score model. Pretest score and posttest score are assumed to
be fallible measures of underlying true ability, the true treatment
effect being zero. Posttest score is regressed on pretest score and a
treatment dummy variable. We find that the spurious effect arises when
subjects are selected for treatment explicitly on the basis of true
ability. However, when subjects are selected .for treatment explicitly on
the basis of pretest score, the spurious effect vanishes. Thus the
criticism mentioned above is seriocusly misleading.

Our analysis is a formal one, regressions being expressed in terms
of population parameters. We also evaluate the statistical efficiency
of selection-on-the-basis-of-pretest relative to random selection. The
appendices contain some general results on conditional distributions,

moments, and regressions for various partitions of bivariate normal

distributions.



SELECTION BIAS IN EVALUATING TREATMENT EFFECTS: SOME
FORMAL ILLUSTRATIONS

Arthur S. Goldberger

l. Introduction.

When subjects are not assigned randomly to treatment and control
groups, the possibility arises that a spurious treatment effect may be
observed. This possibility has been emphasized in a recent critique of
the evaluation of compensatory educational programs. Campbell and

Erlebacher (1970) assert:

The compensatory program is made available to the most needy,
and the 'control' group then sought from among the untreated
children in the same community. Often this untreated popula-
tion is on the average more able than the 'experimental' group.
In such a situation, the usual procedures of selection,
adjustment, and analysis produce systematic biases in the
direction of making the compensatory program look deleterious.

But this critique may be misleading. The mere fact that the control
group is more able than the treatment group does not suffice to produce
bias in the evaluation of the treatment effect. We propose to demonstrate

this point in terms of a highly idealized setting, that is in terms of a

formal model.



2. The Basic Model

We suppose that true ability x* is normally distributed with expectation

zero and variance Q:
x* ~ N(C, Q).

Further, we suppose that pretest score x and posttest score y are erronecus

measures of true ability, more precisely, that
“ x=x*+u , y=x*+v

where u and v are normally distributed with expectation zero and common
variance. The common variance of the measurement errors can be written as

(1 - P)/P times the variance of x* for some 0 < P < 1; thus
u~ N(O, (1 - P)Q/P) , v ~ N(O, (1 - P)Q/P) .

(The motive for parameterizing in terms of Q and P will soon become clear).
Further, we suppose that x*, u, and v are independent.

Consequently, the test scores have expectations

E(x) = E(x* + u) = E(x*) + E(u) =0+ 0 =0 = E(y),
variances
V(x) = V(x* + u) = V(x*) + V(u) + 2 C(x*, u) = Q + (1-P)Q/P
= QP = V(Y)s

and covariance

C(x,y) = C(x* + u, x* + v) = V(x*) = Q ,



and are joint-normally distributed. 1In a joint-normal distribution any
regression function is linear and the slope(s) are readily calculated from

the variances and covariances. Specifically, the regression of y on x is
(1) E(y|x) = (C(x,y)/V(x)) x = (Q/(Q/P)) x = P x.
Note that

P = V(x*)/V(x) = V(x*)/(V(x*) + V(u)) = V(x*)/V(y).

This is the variance ratio which plays a key role in the subsequent analysis.
As a matter of fact, x*, u, v, x, vy are joint-normally distributed with

zero expectations and variance-covariance matrix

x* u v x .y
x| o 0 0 Q Q
ol ! (1-P)Q/P 0 (1-P)Q/P 0
v (1-P)Q/P 0  (1-P)Q/P
x] P Q
y| qQ/p

Thus, for example, the regression of posttest on true ability is
E(y|x*) = (C(x*,y)/V(x*)) x* = (Q/Q) x* = 1 x* .

Comparing this with (1) we see the familiar result that measurement error

attenuates slopes —~- here P < 1,



We now suppose that the population is split into two groups —-— one
which receives the treatment, the other which does not. Let z be

a binary variable which indicates whether or not an individual receives

the treatment:

1 if received treatment (i.e. selected for experimental group)

0 if did not receive treatment (i.e. selected for control group).

Further,; we suppose that the true effect of the treatment is nil. 1In terms

of the model, this amounts to saying that
(2) E(z, ¥) = 0 ,

or in other words, that a multiple regression of y on x* and z would yield
a zero coefficient on z, (This particular choice of a baseline is for
convenience only and involves no essential loss of generality,)

In practice, the multiple linear regression of y on x and z,

(3) E(ylx, z) = o + a x + Ay 2

will be run to assess the effect of the treatment. Since x is an erroneous
measures of x¥%*, this procedure may be biased —- o, may be nonzero.

Clearly, what is relevant is the selection procedure -— the basis on
which individuals were assigned to the treatment and control groups. If

the assignment had been random with respect to true ability, so that

C(z,x*) =0 ,

"and random with respect to the error component of pretest, so that



Clz,u) = 0,

then no bias would result. For in this situation,

]
o

C(z,y) = C(z, x* + v) = .C(z, x*) + C(z, V)

|
(=]

C(z,x) = C(z, x* + u) = C(z, x*) + C(z, u) =

Thus, the normal equations determining the regression slopes, namely

C(x, y)

]

V(x) 0. + C(x,2) 0y

1

(4)
C(x,2) a; +V(z) a,=C(z, y),

would specialize to

Q/P) oy + 0 o, = Q

Y o]

1 + V(z) o, =0,

the solution to which is ul =P, o, = 0.

As Campbell and Erlebacher indicate, such randomization is unlikely
to occur in non-~laboratory situations. Our main objective in this paper
is to evaluate the bias -~ the discrepancy of 0, from zero —— in two

idealized cases. The two cases are:

Case (i). Selection on basis of true ability. All individuals whose

true ability is below the average are assigned to the experimental group;
all those whose true ability is above the average are assigned to the

control group. In terms of our model



1 if x% <0

0 if x* > 0 .

Case (ii). Selection on basis of pretest score. All individuals

whose pretest score is below the average are assigned to the experimental
group; all those whose pretest score is above the average are assigned to

the control group. In terms of our mopdel

z =

; 1 £ x<0

0 i fx>0.

Case (i) is a variation on the model used by Campbell and Erlebacher
in their critique of Head Start evaluations. Our variation lies in splitting
a single normal population rather than using two distinct normal distributions.
Case (ii) seems very similar, but has strikingly different implicationms, as
shown by Barnow (1972). Neither case corresponds literally to reality.
For example, when true ability is unobserved, it can't really provide the
basis for selection. Bﬁt these two polar cases should suffice to clarify
the issues.

For future reference, note that either selection procedure splits the
population into two equal-sized groups, so that in both cases the marginal

distribution of z is given by

p_ = Prob {z = 0} = 1/2 , p; = Prob {z=1}=1/2 ,

(o}

whence



1]

E(z) = p 0 +p 1=1/2

()

it

V() = p, 0 - 1D +p (-1 =1/4 .

We shall see that the two cases differ with respect to the covariances of

z with the other variables.

3. Technical Digression

In general; the covariance of any variable z with another variable w
can be computed by taking the covariance of z with the conditional expectations

of w given z, that is
C(z,w) = C(z, E(wlz)) = E((z - E(z))E(wlz)).

1f z is a binary variable taking on the values 0 and 1 with probabilities

P, and Py respectively we have

C(z, w) = p_ (0 - E(2)) Ew[0) + p; (1 - E(2)) E(w|L)

= - p, Py [Ew|0) - Ew|D)];
where E(w|0) = E(w|z = 0) and E(w|1) = E(w|z = 1). In the present setting,

P, =P; = 1/2, so that

(o}

(%) C(z, w) = -(1/4) [E(w|0) - E(e|1)].

In words, the covariance of the treatment dummy with any variable is one-
fourth of the difference between the mean of the variable in the experimental

group and the mean of the variable in the control group.



To compute these group means and related measures, we draw on the

following theorem:
Let w ~ N(u, 02), that is, let the density function of w be

2
£ = (210D exp (- 3 LWy
Y

Then, given that a < w < b, the conditional density of w is

s 0 for w < a
@) p(wla <w <b) = { EW)/(F(b) - F(a)) for a <w < b
0 for b ? v 3

the conditional expectation of w is

2 f(a) - f£(b)
F(b) - F(a)

(8) E(wla <w<b)=u+ogo

and the conditional variance of w is

~ 2
| ) (a-Wf(a) - (b-wf(b) = 2[ f(a) - £(b) |"(,
(9 Vw|la <w < b) = o gl + F(b) - F(a) - [:F(b) - F(a)J g

Here F(t) denotes the cumulative normal distribution, i.e. F(t) = ft £ (w)dw,

-—C0
The theorem is proven in Appendix A. A numerical tabulation which
illustrates the formulas is provided in Appendix B,
For the purposes of this paper, we apply the theorem directly to the

upper half of a normal distribution. Setting a =Y and b = @, we find the

conditional density function given that w is above u:

. _ 0 for w < p
p(wlu <w) = p(wlu < W< oo = R

2f(w) for u.< w



using F(u) = 1/2, F(®) = 1; the conditional expectation given that w is

above U:
(10) E(wlp <w) =u+0vV2/m ,

using also f(u) = (2ﬂ02)_% and f£(«®) = 0; and the conditional variance given

that. w is above yu:

7774m7ﬁ77vmg4w):<i(ﬂi—i)/l

By symmetry, for the lower half of the normal distribution, we have:

plwlw < u) = { 2 f(w) forw< ,
0 for 4 < w
E(wlw <y =u-o0 2/ ,
and
- 5
Vewlw <p) =o(m - 2)/m .

Introducing the binary variable
0 if p<w
- — 1 if w<uy
we write the conditional expectations and variances compactly as

u+(1-22) V2/mo

(12) E(w|z)

Gz(ﬂ - 2)/7 .

(13) V(w|z)
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In conjunction with (6), the conditional expectation formula implies
(14) C(zyw) = (-1/4) 2 V2/m 0 = - o//2m

which means that the correlation between z and w is

b, = Clz,w) TG = (~a VI I/(1/6)0% = V2T .

As'is to be expected, the value of this correlation is entirely independent
of the wvalues of U and 02.

To summarize the results of our digression: We have split a normal
population into two groups, those above and those below the mean;
found the within-group means and variances; and also found the between-group
variance (expressed in terms of the covariance of the normal variable with
a binary variable depicting the split). In what follows, x* and x will

alternately take on the role of w.

4, Selection on Basis of True Ability

In case (i) the individuals are assigned to the control group or to
the experimental group according as their true ability is above or below
the mean true ability in the population. Thus x* plays the role that w
did in Section 3. Recalling that V(x*) = Q, we set 0 in (14) equal to

/Q and find

(15) C(z,x*) = -vQ/(2m) .

Furthermore, since z is determined exactly (i.e. nonstochastically) by x*,
it must be independent of u and v, which, as will be recalled, are

independent of x*, Thus



C(z,y) = C(z, x* + v) = C(z,x*) + C(z,v) = C{z,x*) = - ¥Q/(2m),
C(z,x) = C(z, x* + u) = C(z,x*) + C(z,u) = C(z,x*%) = - VQ/(ZET.

This gives us the moments we need to compute the slopes in the multiple

linear regression of y on x and z. Specifically, the normal equations

(4) specialize to

il
P )

@/r) o + (=/Q/(2M) a,

]

/7Dy o + (/4 o, = - RTCD

The solution to these normal equations is

o = P(m - 2)/(w - 27P) , oy = - (1 - P) vV8uQ/(m - 2P).
The intercept can then be obtained as o = E(y) - oy E(x) - o, E(z) = - a2/2

using E(y) = E(x) = E(x*) = 0 and E(z) = - 1/2, Note that with 0 < P < 1.
we have ul < P, az < 0, and 0 < ao for w= 3.,14... > 2> 2 P.

The solution value for o, shows that the selection procedure makes
the coefficient of z a biased measure of the true effect of the treatment
(which is zero). As the variance ratio P falls from 1 to 0, the value of

@, falls monotonically from 0 .to - V8Q/m = - 1.6 /Q , that is the magnitude

2

of the bias (iazl) rises. The regression spuriously attributes to the
treatment deleterious effects on posttest when in fact it had no effect
whatsoever. The source of this bias lies in the selection procedure which
assigned low-agbility individuals to the experimental group and high-ability
individuals to the control group. Those differences in true ability were

manifested in differences in posttest scores. The treatment variable z



gets a negative coefficient because it is proxying (inversely) for true
ability. This is the essence of the Campbell-Erlebacher argument, and we
see that it holds up in our case (i).

To round out the discussion of case (i), we consider what happens when
linear regressions of posttest on pretest are run separately in each of the
two .groups. To obtain those regressions we require the within-group
moments —— the conditional exceptions, variances, and covariance —— of post-
test and pretest, First, applying (12)-(13) with 4 = E(x*) = 0 and

02 = V(x*) = Q, we obtain

(1 - 2z) /2Q/m

(16) E(x*|z)

Qa7 V(x*|z) = (m - 2)Q/7

Next, recalling that u and v are independent of x* and thus of z (which

is an exact function of x*), we deduce

E(x|2z) = E((x* + u) |z) = E(x*|2) + E(u|z) = E(x*|z) + E(u)
= E(x*|z) = (1 - 22) V20/7 = E(y|2) ,
V(x|z) = V((x* + v)[2) = V(x*|2) + V(u|z) = V(x*|z) + V(u)
= (fﬁ;!Z)Q/ﬂ + (1L - P)Q/P = (m - 2P)Q/(mP) = V(y|z),
C(x,y|2z) = C((x* + u, x* + v)|z) = V(x*|z) = (7w - 2)Q/m.

Thus, within either group, the slope of the linear regression of posttest

on pretest will be

C(x,y|2) /V(x|z) = P(n - 2)/(n - 2 P) ,



which is exactly o the coefficient of x in the overall multiple regression.

l >
The intercepts of course will differ, that imn the control group being

E(v|0) ~ o Ex[0) = (1~ o)) Y2q/m
and that in the experimental group being
E(y|1) - o Ex[1) = -(1 - ;) /2Q/w.

The difference between these two intercepts coincides with the coefficient

of z in the overall multiple regression:

(1 - a)) (- Y2Q/m - /2Q/m) = - 2 j;‘—ig—gl /2Q/m = - (1 - P) /8mQ/(m - 2P)

=i a2 .
Thus the spurious effect of the treatment turns up again as a difference in

the level of the two within~group linear regressions, as the diagram indicates.

v -\sa —_—

e e S : - ona =
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We have relied on linear regression for this analysis, despite the
fact that the true regression of y on x is nonlinear in the present
situation, that is, E(ylx, z) is nonlinear in x. This complication is
examined in Appendix C and may be studied more closely in future work. But
for the present, there is no reason to believe that it would change our
qualitative conclusions. In any event, the results given above are still
valid for the best linear approximation to the true conditional expectation

function, which is presumably what is fitted in applied studies.

5. Selection on Basis of Pretest Score

In case (ii) the individuals are assigned to the control group or to
the experimental group according as their pretest score (not their true
ability) is above or below the mean pretest score in the population. Thus

x (not x*) plays the role that w did in Section 3, Recalling that

E(x) = 0 and V(x) = Q/P, we set U =0 and 0 = VQ/P in (12) and (14) to find

(18) E(x]z) = (1 - 2z) vY2Q/(wP)
and
(19) C(z,x) = - JQ?(ZHP).

In the present case, z is determined exactly by x, hence it will depend on
both x* and u, but will remain independent of v.

To obtain C(z,y), we proceed as follows. For the population at large,

we know that



(20) ECulx) = (1 - P) x ,

since C(u,x) = V(u) = (1 - P)Q/P and V(x) = Q/P together imply that in the
regression of these joint-normal variables, the slope is C(u,x)/V(x) = (1 ~ P),
while E(y) = 0 = E(x) implies that the intercept is zero. Since z is an

exact function of x, it follows that

(1 - P) E(x|z).

E(((1 ~ P)x)|z)

"E(u|z) = EQEQ|x))]|z)

Consequently,

z)

P E(x

Il
li

E((x - u)lz) E(xlz) - E(ulz)

@ - 2z) /2PQ/7 ,

(21) E(x*|z)

and, since v is independent of =z,

E((x* + v)lz) = E(x*lz) + E(Vlz) = E(x*lz) + E(v)

(22) E(y|z)
E(x*|z) = (1 - 2 z) V2PQ/m .

In conjunction with (6) this means that
(23) C(z,y) = (-1/4) 2 /2rQ/m = - V/PQ/(2m) .

Incidentally, (21) shows that the selectjon on the basis of pretest
scores has made the two groups different in mean true ability, but a comparison
of (21) with (15) shows that this difference is less (by the factor YP) than
it was when the selection was strictly on the basis of true ability. In case
(ii) the control group does not come entirely from the high-ability half of

the population; it also includes low-ability individuals who happened to score

unusually high on the pretest.



We now have the moments we need to compute the slopes in the multiple

linear regression of y on x and z. The normal equations (4) specialize to

(Q/P) oy + (~VQ/(21P)) @, = Q
(/7 (2mP)) ) +  (1/4) o, = ~/BQ/(2m).

The solution to these normal equations is simply

the intercept is a = E(y) - o, E(x) - o, E(z) = 0.

The solution values show that the selection procedure'égéé_ﬁgﬁ make the
coefficient of z a biased measure of the true effect of the treatment (which
is zero). In striking contrast to case (i), the regression correctly
attributes no effect to the treatment, Despite the faet that the selection
procedure tended to assign low-ability individuals to the experimental group
and high-ability individuals to the control group, no spurious effect arises.
Despite the fact that z by itself is an (inverse) proxy for true ability, it
fails to pick up, in the multiple regression, any credit for the effect of
true ability on posttest.

The explanation for this serendipitous result is not hard to locate.
Recall that z is completely determined by pretest score x. It cannot contain
any information about x* that is not contained in x. Consequently, when we
control on x as in the multiple regression, z has no explanatory power with
respect to y. More formally, the partial correlation of y and z controlling

on x vanishes although the simple correlation of y and z is nonzero.



To round out the discussion of case(ii), we consider what happens when
separate regressions of y on x are run for the experimental and control
groups. We already have the within-group means; it remains to find the
within-group variances and covariance. For pretest, we can apply (13)

directly, setting 02 = V(x) = Q/P to find

(24) S V(x|z) = (1 - 2)Q/(TP)

For posttest, the route is more roundabout; we start with the decomposition
of the marginal variance of x* into its between- and within-group components:
V(x*) = V E(x*|z) + E V(x*|z) .
z z
Using (21) we compute the between~group component:

VEGH|2) = p (EG*|0) - EGet))? + py (EGex|1) - Ex))?
VA

(1/2) 2 (2pQ/wm) = (2PQ/m) .

Since V(x*) = Q, it follows that the expected conditional variance is
EVGet|z) = Q- (2 20/m) = Q - 2) = (v - 2p)0/m.
z :

7B§7s§£mégr§:iEgiégﬁé;ﬁégiﬁgz
V(x*|z) = (m - 2P)Q/m.

Then, since v is independent of z and x*, we conclude that

Il

V(ylz) V((x#® + v)lz) = V(x*lz) + V(v) = V(x*}z) + (1 - P)Q/P

m-2P
m

I

e S LA C2)
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Further, the marginal covariance of x* and x decomposes into

C(x*,x) = C(E(x*|z), E(x|z)) + E C(x*, x|z).
Z V4

Using (18) and (21) we compute the between-group component:

]

C(E(x* |2), E(x]z))
A

P, (EGx*[0) - EGx*)) (E(x[0) - E(x))

+ py (B(x*]1) - Ex¥)) (B(x|1) - E(x))

(1/2)2 V2rQ/m V2Q/(wP) = 2Q/m.

Since C(x*,x) = Q, it follows by symmetry that

C(x*,x|z) = Q- 2q/m = Q (0 - 2/7) = (m - 2)Q/m.

Since v is independent of x and hence of z, we finally have
(25) C(x,y|2z) = C((x, x* + v)|2) = C(x,x*[z) = (v - 2)Q/7.

Taking together (24) and (25), we see that within either group, the

slope of the linear regression of posttest on pretest is
clx,ylz)/V(x|z) =P ,

which coincides with the value for the coefficient of x in the overall multiple

regression, The intercepts will also be the same, namely zero:

(1 - 2z) v2PQ/m - P (1 - 2z) v2Q/(wP)

E(ylz) - P E(x'z)

(1 - 22)0 = 0.
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As the diagram indicates, the two within-group regressions coincide

with the overall regression, confirming the absence cf a treatment effect.

WITHIN--GROUP REGRESSIONS or POS%TEST ON PRETEST

- . - (SELECTIOCH BASED ON PRETEST SCORE)
' . R 4 . "

Conirol

Trentment

: ) i
i s g s i i

IR ——— = IR D s T
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The discussion in Lord and Novick (1968, pp. 141-147) provides a very
simple derivation pf the fact that no spurious treatment effect can arise
in case (ii). Recall from (1) that for the population at large, the regression
of posttest on pretest is linear, The same'linear function holds over the
entire range of x, and will be observed no matter what subrange of x we
choose to observe, as long as we do not tamper with the conditional distri-
bution of y given x. (Nothing in the usual regression model requires that
the distribution of the explanatory variable be representative of its
distribution over the entire population. The only requirement is that the
conditional distribution of the dependent variable given the explanatory
variable,lbe preserved,) For the within-group regressions, in case (ii) we
have simply selected a range of x, we have not tampered with the distributicn
of y given x. Therefore within each group we must get the same regression
as we get overall., This argument, incidentally, demonstrates that the true
regression of y on x and z is linear (in contrast to case (i)). Note that
this is true even within groups, where the distributions of y and x are
clearly nonnormal.

Lord and Novick (1968, pp. 143-144) call attention to the fact that
correlation coefficients, unlike regression coefficients, are sensitive
to selection on the independent variable, In the present case, the overall

correlation between x and y is
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g = C(x,y)/NE)V(y) = Q//(Q/P)(Q/P) = P ,

while their within-group (i.e. partial givenm z) correlation is

Py.z = CCx,y|2) G| V(v 2) = B/em = 2)/(n - 222,

Since 0 < P < 1, we see that pxy - pxy s as might be expected.

6. Efficiency-

The basic results for cases (i) and (ii) may be brought together in
the following table, along with thosé for the random selection procedure

discussed at the end of Section 3 and identified here as case (o):

Variances and covariances

(0) (1) (i1)
y X Z 2 z
: Q/P Q 0 -/Q/ (2m) -vPQ/ (2m)
X Q/P 0 -vQ/(2m) vQ/ (27P)
2 1/4 1/4 1/4
Regression coefficients
% P | P(m-2)/(m-2P) | P
o, 0 - (1-P)V/8nQ/ (1~2P) 0

We are reminded that case (ii) -- selection on basis of pretest—-
produces the same unbiased regression results as case (o) -- purely random

selection. But we should not conclude that the two procedures are equally



desirable. Recall that our analysis has been couched in terms of population
parameters, so that sampling variability has been ignored. For finite
samples, the case (ii) regression will remain unbiased, but as we now show,
is subject to more saﬁpling variability than the case (o) regression. That
is, random selection provides a ﬁore efficient experimental design.

Inspecting the table we see that in case (o) the explanatory variables
are uncorrelated, that is, C(z,x) = 0, while in case (ii) they are correlated,
C(z,x) # 0. This suggests that the standard errors of the regression coefficient
estimates are larger in the latter case. Indeed, the usual formula for
regression on two explanatory variables shows that the variance of regression
coefficient estimators is multiplied by a factor 1/(1 - pz) in moving from
an uncorrelated to a correlated design, where p2 is the squared correlation
of the explanatory variables; cf. Xmenta (1971, p. 388). In our case (ii),

the relevant p2 is

2
X2z

02 = c2(x,2)/ (VE)V(2)) = (Q/(2mPW ((Q/P) (1/4))= 2/,

implying that the sampling variances of the regression coefficients in case

(ii) will be

1/(1 - (2/m) = w/(m - 2) = 2.75

times as large as they are in case (o). (It is interesting that this
numerical conclusion is entirely independent of the values of the parameters
of the model, P and Q.) Thus the efficiency of the random selection
procedure is confirmed -- a random sample of size 100 being as good as a

selected-on-pretest sample of size 275.
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In the preceding calculation we relied implicitly on the assumption
that the disturbance variance did not change with the change in experimental
design. This assumption is justified since in both cases V(y) = Q/P and
E(y|x, z) = E(y|x) = Px, which implies that

Viy|x,2) = VCy|x) = V(3) - V ECy|x) = Q/P - P V(x)
X

Q/p - p2(q/P) = (1 - ) (q/P)

in both cases,
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Appendix A. Conditional Density and Moments

To evaluate the density, expectation, and variance conditional on a
normally distributed variable lying within a specified interval, we begin
the case of standard normal distribution.

Let s ~ N(0, 1), that is let the density function of s be:
% : 2
fx(s) = (2m) “exp { - % s° 1.

The probability that s lies in the interval between a and b is F*(b) - F*(a),

where

Fx(s) = fs f5(r) dr = (Zﬂ)_% fs exp { - % r2} dr

~00 -0

denotes the cunulative standard normal distribution. Therefore the

conditional distribution of s given that a < s < b is given by the density

function
0 for s < a

(A1) p*(s|.) = p*(sla < s < b) = { f*(s)/(F*(b) - F*(a)}) for a<s <b
0 for b<s.,.

The moment-generating function for this distribution is

I

Soets p*(s|.) ds

-—C0

(A2) m(t) = E(e™®)

B 1
T F*(b) - F*(a)

-1 b . ' -
(2m) %S exp {ts} exp -{% sz}ds.
a



Completing the square in the exponent via
ts ~ks’ = -k (s - )2+ ¥t
we rewrite (Al) as
(F*(b) - F*(a)) m(t) = exp {%¢t7} [(2m) fa exp { - % (s - t)“}ds].

The term in square brackets will be recognized as the probability that a
N(t, 1)-variable lies in the interval between a and b, which is equal to
the probability that a N(0, 1)-variable lies in the interval between a - t
and b - t, namely F*(b - t) - F*(a - t).

Thus
(F*(b) - F*(a)) m(t) = exp { % t2} (F¥(b = t) - F¥(a - t)).

Differentiating with respect to t gives

(F5(b) - F*(a)) m'(t) = t exp {% t2} (F¥(b -~ t) — F*(a - t))

+exp {% e2} (=£*(b - t) + £%(a - t))

using F*'(s) = f*(s). Setting t = 0 to generate the first moment we find

(F*(b) = F2(a)) m'(0) = (~ £2(b) + £%(a));

that is

. f%(a) - f*(b
(A2) E(s|a < s <b) =m'"(0) = E*Eﬁi Z F*Ea;

Differentiating a second time with respect to t gives



(F*(b) - F*(a)) m'"(t) = t exp { % €2} (-£5(b - t) + F*(a - t))
+t2 exp (% t2) (Fx( - t) - F(a - t))
+ exp {% t2} (F4(b ~ t) - F*(a - t))
+  exp (% 7} (~(b-t)Ex(b-t) + (a-t)£*(a-t))

+t exp { % tz} (- £f%(b - t) + £*(a - t))

using f*'(s) = - s f*(s). Setting t equal to zero to generate the second

moment, we find

(F#(b) - F#*(a)) m''(0) = (F*(b) - F*(a)) + (a £%(a) ~ b £%(b));
that is,

2 . £%(a) ~ b £*(b
(A3) B(s’la < s <b) = w'(0) = 1+ EEE@ = B D)

The variance could now be computed as
2 2 = 5 2
V(s|la <s <b) =E(s"|a<s <b) -E(s|la<s<b)=m""(0)- (m"(0))".

Proceeding to the general case, let w ~ N(ﬁ, 02), that is the density

function of w is

. Z
f(w) = (21702)—% exp { _%(w;u y 1,

and the cumulative distribution of w is

-2
F(w) = I f(x) dr = (2N02)—% I exp { - % & ; Hy } ar.

—00

Note that

(a4) £w) = (/o) £5((w - W /o) , F(w) = F¥((w - w)/o) ,
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where f*(,) and F*(.) are the standardized functions defined above. We
introduce the standardized variable s = (w - u)/0. The event "a < w < b"

is identical with the event "a* < g < b*", where
a* = {a - W/o , b* = (b - u)/ag.

‘Therefore the probability that a < w < b is identical with the probability
that a* < s < b*, namely F*(b%¥) - F*(a*). From (A1) and (A4) it follows

that the conditional probability distribution of w given that a <w < b

is given by the density function

0 for w < a
p(wla < w<b) = {£w)/(F(b) - F(a)) for a<w<b
0 for b<w.
This is equation (7) in the text. Further, with w = p + oS everywhere,

it must be true that for any event
E(w|.) = u + 0 E(s].).

Specifically

£%(a%) - £*(b%)
F%(b*) - F*(a*)

E(wla < w <b) = u+0 E(s|a* < s < b*) = 0+ o

of(a) - of(b)

.-:u—}-o‘

F(b) - F(a)
- 2 £(a) - £(b)
(AS) = MU + 0 F(b) - F(a) H

using (A2) and (A4). This is equation (8) in the text. Similarly, it

must be true that for any event,
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E(wzl.) - o2 E(szl.) +2 U0 E(s|.) + u?,

SO
vew|.) = E@2].) - EX.) = o [E(s?].) - EX(s] 1.
Specifically,
V(wlé <w< b) = 02 [E(szla* < 8 < b¥%) -~ Ez(sla* < s < b*)]
2
2 a*f*(a*) — bkfx(b%) £x(ak) ~ f£*(b%)
=9 { 1+ =5 (%) — FF(an) 'G[F*(b*) - F*(a) ] }
_ 2 (a - WE(a) = (b - WE(b) 2[ £(a) - £(b) ]2
(26) =0 { 1+ F(b) - F(a) — R [F(b) - F(a)]

using (A2), (A3), and (A4).

This is equation (9) in the text.

|

7
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Appendix B, Illustration of Conditional Moments

The following tabulation may serve to illustrate the consequences of
selecting a subpopulation from a normal distribution. Constructed for a
standard normal distribution s ~ N(0, 1), the table indicates for various
values of a, the probability that a random drawing exceeds a, namely

1 - F*(3); the conditionalAexpectation given that it exceeds a, namely
E(sla< s) = £*(a)/(1 - F*(a));

and the conditional variance given that it exceeds a, namely

L2 [ £*(a) ]2

V(s|a < s) 1-7F*(a) | T-=F*(a

1+a E(sla < g) - Ez(sla < s)

1 - E(s|la< s) (E(sla< s) - a)).

The formulas here are obtained by taking b = « in (A2)-(A3).

Cutoff point Probability of Conditional Conditional
a Selection Expectation Variance
- ® 1.000 0 1.00
-2 977 .06 .88
-1 .841 +29 .62
= 35 .692 o ! « 49
0 .500 .80 .36
<5 .308 1.34 « 2
1 «+159 1.52 21

.023 2.38 .10



Our table may be compared with that in Lord and Novick (1968, p. 141),

which uses different cutoff points, reports conditional standard deviations

rather than variances, and does not report conditional expectations.

Appendix C. Exact Regressions When Selection is Based on True Ability

To develop the exact (nonlinear) regression functions of y on x when
selection is based on true ability we proceed as follows. For typographical

convenience in this appendix we denote x* by w and V(u) by
R = (1~ P)Q/P,.

For the population at large we have w ~ N(0, Q) and xlw ~ N(w, R). The

respective densities are

2

f(w) = (ZTTQ)-% exp { -% "g— },
-% : (x - W)2
p(x|w) = (2mR) “exp { - %—‘i——}

For the lower half of the true ability distribution (i.e. the treatment

group, for whom z = 1), the density of w is

2 f(w) forw< 0
P(Wll)z{o for 0< w ,

while the density of xlw is still p(xlw). Thus the joint density of x and
w is

2 p(x!w) f(w) for w< 0,
(c1) pGowlD) = plw) pewln = {77 for 0< u .
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Now
-% 1 ( )2 2
pCxw) £00) = (2nR)H(2mQ) "% exp { - ¥ [Fp—+ 51 )
-% Px2 %
(c2) = (21Q/P) * exp {~-% QO } (2r(@ - P)Q) " exp { i

where we have completed the square in the exponent via

2 2
x-w" v _(Q+R Qx_,2 1 .. __Q , 2
“x tg T @& “ogwr?) trU-gEr)*

B (w-P x)2 + sz
(1~ 2)0 Q ’

using the definition of R. Thus p(x,wll), the joint density of x and w
in the treatment group, is zero for 0 { w, and is twice the expression
in (C2) for w< 0.
The density of x in the treatment group can now be obtained as
e

S o px, w

-CO

0
p(x|1) 1) dv = £ 2p(x|w) f(w) dw

iy (w - Px)z}

P)Q

- Px)2~

(C3)

00

This distribution of pretest scores in the treatment group, sketched in the
diagram below, is clearly nonnormal. (High pretest scores are a rare
phenomenon in the treatment group, which by construction, has no high-

ability individuals,)

1 2 B 0 .
2 (2mQ/Y) *exp {- %—P%—} (27 (1-P)Q) ¥, exp{'_;z_gll’______

7)qQ °

ds



From (Cl) - (C3), the conditional density of w given x in the treatment

group now follows:

fx(w)/Fx(O) for w< O
p(w[x,l) = p(x,wll)/p(xll) = {
0 for 0 < w
where ‘
f()~(2(l—P))-% {-% Mﬁ}
= w) = il Q exp (1 - P)Q
w v

Fx(w) = [ fx(r) dr .

-0

We recognize fx(w) as the density of a N(Px, (1 - P)Q)- variable, which
means that fx(w)/Fx(O) is the conditional density of such a variable
given that the variable is less than zero. Consequently,

o]

E(wlx, ) =/S w p(wlx, 1) dw
0 0
S (w fx(w)/Fx(O)) dw = (1/FX(0)) fm w fx(w) dw

--00

is the expected value of a N(Px, (1 ~ P)Q) variable given that the variable

is less than zero. Applying (A5) we find
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| £ (-=) - fx(O)
E(wix, 1) =P x + (1 - %)4 - - F (=
bx(O) lx( )

(c4) =Px - (1-P)Qf (0)/F (0)

As in Appendix A, let £*(.) and F*(.) denote the standard normal

density and cumulative functions respectively. Then using (A4), write

£.00) = (V1 - P)Q) £*((w - Px)/V(1 - P)Q ),
and
FX(w) = Fx((w - Px)//(1 - P)Q ).

Introduce the transformation
(c5) s =Px//YO-P)Qq,
and write
£,(0)/F (0) = (1/V/(1 = P)Q) £%(-s) /F*(-s)
(C6) = (/@ =P)Q) £*(s)/ (L - F*(s)) ,

using f*(-s) = f*(s) and F*(~s) = 1 -~ F*(s). Finally, inserting (C6)

into (C4) we have
E(w|x,1) = P x = /(1T = P)Q £%(s)/(1 - F*(s)) ,

as the regression function of true ability on pretest in the treatment
goup. By symmetry, the regression function of true ability on pretest

in the control group (i.e. for z = 0) must be

E(wlx,O) =P x+ V(1 - P)Q f*(s)/F*(s).



That these last two equations are also the regression of posttest
on pretest for the two groups follows from the fact that y = x* + v with
v independent of x* (and hence of z). The shape of these curves is not
hard to charaéterize. Consider the treatment group., As X > -®, s > =%,
so £%(s) /(1 - F*(s)) > f%x(-©)/(1 - F*(~»o)) = 0/(1 - 0) = 0, which means
that E(ny,l) -+ Px, On the other hand, using L'Hospital's rule:

lim f*(s)/(1 = F*(s)) = lim £*'(s)/(-~ F*'(s)) = lim (-s £*(s)/ (- f*(s)) =
lim (-s). So as x + ©, s > o, and f*(s)/(1 - F*(s)) » -, which means that
E(y x,'l) is asymptotic to the horizontal axis. For the control group, we
have the mirror image, as sketched in the diagram on the next page.

The fact that E(ylx,z) is always negative for z = 1 and always positive
for z = 0 is an automatic consequence of the fact that the selection procedure
kept true ability always negative for the treatment group and always positive
for the control group.

We see that the exact regressions are nonlinear in x and that the
spurious treatment effect shows up in a non-additive manner. What can be
said about the spurious treatment effect in the exact (nonlinear) regressions
as compared with the spurious treatment effect in the approximate (linear)
regressions? 1In Section 4 we saw that the control group line was parallel

to the treatment group line and lay above it by the constant amount
~ ity = {1 = B} /8nQ/(m - 2P) = h ,

say. Now we see that the countrol group curve lies above the treatment group

curve by the variable amount
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EXACT AND APPROXIMATE WITHIN-GROUP
REGRESSIONS OF POSTTZST ON PRETEST

(SELECTION BASED ON TRUE ABILITY)
Q = 1 P = .8

Control

Treatment




V(1 - P)Q f*(s) <;?,.<%S) L s 1{,((59 = /(1 = P)Q £%(s)/(F*(s) (1 =~ F*(s)))

h(x) ,
say. In particular, at x = 0, the distance between the curves is

h(0) = /(I = B)q (2m) "3/ ((%) () = /8a(L = F)/n

h (v - 2P)/(n/(1 - P) = h g(P),

say. For 0< P < ,67, we find that .96 < g(P) < 1, so that h(0) is slightly
less than, but virtually indistinguishable from, h . For .67 < P< .80,
we find 1 < g(P) < 1.10, so that h(0) is slightly greater than h. Then
for .80 < P < 1, g(P) continues to rise and h(0) becomes substantially
greater than h. The picture is somewhat mixed, but on balance it seems
that the linear regressions may show less of a spurious treatment effect
than the curvilinear regressions. Admittedly, it is not clear that
x = 0 is a sensible point at which to compare the treatment and control
curves,

As noted at the end of Section 5,the complication of curvilinearity
does not arise when selection is on the basis of pretest scores rather

than true ability,
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