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Abstract

Recent research has identified situations in which instrumental variables (IV) estimators are

severely biased and has suggested diagnostic tests to identify such situations. We suggest a number of

alternative techniques for choosing a set of instruments that satisfy these tests from a universe of a priori

plausible candidates, and we apply them to a study of the effects of adolescent childbearing on the

educational attainment of young women. We find that substantive results are sensitive to instrument

choice, and make two recommendations to the practical researcher: First, it is prudent to begin with a large

set of potential instruments, when possible, and pare it down through formal testing rather than to rely on a

minimal instrument set justified on a priori grounds. Second, the application of more restrictive tests of

instrument validity and relevance can yield results very different from those based on less restrictive tests

that produce a more inclusive set of instruments, and is the preferred, conservative approach when

improper instrument choice can lead to biased estimates.



See Mroz 1987 for an exception.1

Instrument Selection:
The Case of Teenage Childbearing and Women’s Educational Attainment

I. INTRODUCTION

All students of econometrics learn that instrumental variables (IV) methods yield consistent

parameter estimates when a regressor is correlated with the error. However, recent research that has

identified situations in which IV estimators are severely biased has shaken confidence in the application of

this technique. A number of diagnostics have been suggested to identify applications in which inference

based on IV may be misleading. These include F-tests of instrument relevance and tests of overidentifying

restrictions (OIR). Such tests, though not new, have not been routinely applied to IV estimates in the past,

but are rapidly becoming a standard part of the reported statistics. An obvious question arises as these tests

of instrument admissibility enter common usage: What do we do if a possible instrument set fails one or

more of the tests?

In general, econometricians have provided little guidance to the practical researcher who must

choose a set of valid and useful instruments from a large set of potential instruments. Instrument choice in

empirical work has been based almost entirely on a priori considerations: instruments are assumed to be

valid if economic theory suggests that they are unlikely to be correlated with the structural error.  The1

possibility that a set of instruments attractive on a priori grounds may fail an essential diagnostic test

suggests that researchers may resort to prescreening instruments or to fishing expeditions that may

compromise the integrity of the reported results.

We consider possible approaches to instrument choice in a non-artificial setting: a study of the

effects of adolescent childbearing on the educational attainment of young women. The effect of early

childbearing on the ability of young mothers to support themselves and their children is an issue of

considerable policy importance, because an early departure from formal schooling is a likely source of

economic disadvantage for teenage mothers. Our OLS estimates, using a sample of over 1700 young
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women from the National Longitudinal Survey of Youth (NLSY), suggest that childbirth before age 18

reduces final educational attainment by 1.5 years. However, human capital theory predicts that women

plan their childbearing and education decisions jointly, so OLS estimation of an educational attainment

equation with teenage fertility as a regressor is likely to yield biased estimates. Early work on this topic

employed a small number of instruments (sometimes one) and found that the effect of fertility on

education was not significantly different from zero. For our reexamination of this question, we use a

conventional data source augmented by a rich set of potential instruments describing the community and

policy environment. The problem that arises in this context is how to select an instrument set from such a

universe.

We suggest a number of alternative techniques for choosing a set of instruments that satisfy the

standard diagnostic requirements from a universe of a priori plausible candidates. We choose mechanical

procedures for eliminating potential instruments to avoid discretion in the screening process, and we try to

balance the competing needs to exclude instruments that may generate inconsistent estimates and to

maintain enough valid instruments to yield a powerful test of the substantive hypothesis. Conditional on

the instrument set, we also implement endogeneity tests to aid the interpretation of the results.

Our first result is that a just-identified model with one excluded instrument (assumed to be

exogenous) generates imprecise parameter estimates and a hypothesis test with low power. Expanding the

instrument set increases our ability to explain variation in fertility, and increases the precision of the

estimated effect on education, which becomes significantly negative. We also find, however, that another

set of problems arises in overidentified models: estimates are likely to be sensitive to the method used for

choosing a set of valid instruments. In our application, point estimates of the coefficient of interest, which

corresponds to years of education lost due to teenage motherhood, range from -4.5 to -1.7 as the

restrictiveness of the instrument criteria changes. This range, combined with the insignificant coefficient in

the just-identified model, presents a challenge in statistical inference for those charged with developing

policy concerning teenage childbearing.
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(1)

The sensitivity of IV estimates to alternative, a priori reasonable methods of choosing an

instrument set is a disturbing result. Since the final models in each case satisfy standard diagnostic criteria,

our concern that instrument choice provides an opportunity for researchers to fish for desired results seems

to be a valid one. The statistical properties of IV estimators in finite samples are not well understood and

the formal consequences of alternative instrument choice algorithms have only recently become a topic of

interest among econometricians.

The results reported in this paper suggest two recommendations for the practical researcher facing

an instrument-choice problem: First, when possible, it is prudent to begin with a large set of potential

instruments and to pare it down through formal testing, rather than to rely on a minimal instrument set

justified on a priori grounds.  Second, the application of very restrictive tests of instrument validity and

instrument relevance can yield results very different from those based on a more inclusive set of

instruments, and is the preferred, conservative approach when improper instrument choice might lead to

biased estimates.

II. INSTRUMENTAL VARIABLES AND THE CHOICE OF AN INSTRUMENT SET

We can begin with a single-equation linear regression model

where X is an n-by-k matrix of explanatory variables and the error u is distributed IID(0, s I). For the OLS 
2

estimator  to be consistent for  the error must be asymptotically uncorrelated with X, although there

are many situations in which we expect some elements of X to be correlated with u. These include

simultaneous equations models, where some elements of X are endogenous, and errors in variables. Our

application, in which y is years of schooling and the matrix X contains an indicator of adolescent fertility,
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This discussion follows that in Davidson and MacKinnon 1993.2

(2)

provides an example in which the suspected correlation is due to a joint decision process. In such cases, the

technique of instrumental variables is often applied to arrive at a consistent estimate of  

To implement instrumental variables (in this linear model, two-stage least squares) we require a

matrix of acceptable instrumental variables, Z. Instruments are acceptable if they are correlated with X, but

uncorrelated with the error term in (1). If Z is n-by-m and includes all exogenous variables in X, then

identification of the model requires that m  k, or that there are at least as many instruments as there are

explanatory variables in (1). Every set of valid instruments Z will yield a consistent estimate of   but in

finite samples estimates will differ. The question of how to choose a set of instruments arises when

applying instrumental variables in cases where the universe of potential instruments is large.

The first, and most important, criterion is that the instruments must be valid, in the sense of being

orthogonal to the structural error.  In general, a priori arguments based formally or informally on economic

theory justify the choice of particular instruments, and in the case of just-identified models, this is the best

one can do. If the model is overidentified (that is, there are more instruments than regressors) we can test

the validity of the instrument set. The intuition behind tests of overidentifying restrictions, as they are

called, can be seen by considering the alternative (2) to the specification in (1):2

where Z  is a matrix of m-k columns of Z whose validity as instruments is in question. If (1) is a correctly*

specified model, then if (2) is estimated by IV with Z as the matrix of instruments, g should equal zero:  Z*

should not explain any variation in y not explained by X. If some columns of Z  should have been included*

in X or are correlated with u, then g will not be zero. Tests of overidentifying restrictions are tests of the

joint hypothesis that (1) is correctly specified and that Z is a valid matrix of instruments.

A number of tests to determine the validity of potential instruments are available (Godfrey 1988;

Hausman 1978; Hausman and Taylor 1981; MacKinnon 1992; Ruud 1984; White 1982). Godfrey’s (1988)
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straightforward test of overidentifying restrictions involves regressing the residuals from an IV equation on

the full set of instrumental variables Z. The term n*R  from this regression is distributed as  with m-k2

degrees of freedom and is used to test the null hypothesis that Z is a valid set of instruments without

specifying the set Z  .*

Tests of overidentifying restrictions have a long history, but in recent years concerns about the

small-sample properties of IV estimators have affected the instrument-choice problem. A number of

Monte Carlo studies have identified conditions in which IV estimators are severely biased and have small-

sample distributions very different from their asymptotic distributions. Two completely different situations

appear to give rise to this problem: a large number of good instruments, and instruments with very little

explanatory power for the endogenous regressor (low relevance).

For the former case, Davidson and MacKinnon (1993) present a set of Monte Carlo results

showing that increasing the number of “good” instruments may increase the small-sample bias of an IV

estimator, even though it increases asymptotic efficiency. This occurs as a result of over-fitting the data; as

the number of instruments approaches the sample size, the IV estimator gets closer and closer to the OLS

estimator. In large cross-section and panel studies (such as ours), the number of observations is large

compared to the number of instruments, so this source of finite sample bias is unlikely to be a problem.

The case in which the instruments have little relevance for the endogenous regressors has received

more attention in recent years. A number of papers have identified specific cases in which the IV estimator

is severely biased. Nelson and Startz (1990a, 1990b) find that, when the correlation between a single

instrument and single regressor is low, the IV estimate of the coefficient on the regressor may appear to be

highly significant when the true coefficient is zero. Bound, Jaeger, and Baker (1993) show that, in general,

if a set of instruments is weakly correlated with the endogenous regressor, even a small correlation

between the instruments and the error can seriously bias estimates. Shea (1993) and Staiger and Stock

(1993) present similar results. 
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Use of simple diagnostic statistics, such as the R  of the first-stage regression, or the F-statistic on2

the joint significance of all instruments in a first-stage regression, has been suggested to measure

instrument relevance and as a guide to the reliability of inference from an IV estimate. However, Hall,

Rudebusch, and Wilcox (1994) present evidence that the use of such diagnostics as a method of

prescreening potential instruments can exaggerate finite-sample biases. This occurs because “those

instruments that are identified as having high relevance for the regressors in the sample are also likely to

have higher endogeneity in the sample” (p. 3). The practical implications for instrument selection of this

literature on finite-sample bias are at present unclear.

The application of IV methods for equation (1) requires a set of instruments that are (a) valid or

exogenous, and (b) have some relevance for the endogenous regressor. As we have seen, these properties

are testable (in the case of (a), in an overidentified model only), but it is not clear how such tests should be

applied in an instrument-selection problem. In most applications of IV, instrument selection is based

entirely on a priori grounds and no diagnostic tests are reported. Given the biases reported for IV estimates

in a variety of situations, this is likely to be an important omission, and inference based on such estimates

may be misguided.

Given a set of acceptable instruments, it is possible to test another assumption implicit in the

choice of IV methods: that some elements of X are correlated with the error. If this assumption is

incorrect, the IV estimator is still consistent, but it is less efficient than OLS. If analysts have to choose

between efficiency and consistency, most would prefer consistency and employ IV methods if they are

uncertain whether X is correlated with the error. However, the cost of using IV methods may be quite high

if the resulting imprecision substantially lowers the power of the test on b, or if the use of invalid

instruments causes bias in the IV estimates.

Endogeneity tests can help determine whether the use of IV methods is warranted. Several such

tests have been developed: Hausman (1978) and Hausman and Taylor (1981) present one of the best
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For example, see Hausman 1978; Hausman and Taylor 1981; Ruud 1984; White 1982 and Wu3

1973. For a summary of these measures, see Godfrey 1988 or MacKinnon 1992.

known.  The Hausman test compares a set of parameter estimates known to be unbiased with another set3

that is more efficient but possibly biased. Using the above example, the Hausman test compares the OLS

estimates  to the IV estimates  Conditional on  being consistent, the Hausman procedure tests

whether  is unbiased. If the test indicates that, at some reasonable confidence level,  is unbiased, the

more efficient OLS estimates may be preferred to the IV estimates. As noted by Nakamura and Walker

(1994), however, inferences from specification tests can be misleading and automatic acceptance of test

results may be unwise. Several issues should be considered with respect to interpreting test results for the

significance of instrumental variables estimates and endogeneity tests. First, both the IV estimates and the

endogeneity tests are conditional on the set of instruments chosen. If the instruments are correlated with

the error term, the IV estimates may be more biased than OLS and the endogeneity tests will be biased.

Second, the instruments may not be adequately correlated with the endogenous regressor, resulting in

specification tests with low power. If the power of the tests is low, a false null hypothesis—that the IV

estimates are equal to zero or that the endogenous regressor is exogenous—may be accepted. Finally, in

the case of the endogeneity tests, we are testing the null hypothesis that the potentially endogenous

regressor is exogenous. Failure to reject this null hypothesis is subject to Type II errors, which typically

are not bounded in the way that Type I errors are. Thus, the probability of accepting the null hypothesis of

exogeneity may be much higher than the analyst suspects.

In the next section, we propose a number of alternative procedures for instrument selection that are

responsive to the possible sources of bias outlined above. First, tests of overidentifying restrictions are

used to identify sets of valid instruments. These are followed by tests of instrument relevance, in response

to the Bound, Jaeger, and Baker, and Nelson-Startz results. The prescreening bias that may result from

selecting instruments based on relevance alone should be attenuated by this two-step procedure. We note
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that prescreening tests may be applied to the set of potential instruments jointly or individually, and

examine the sensitivity of resulting IV estimates to this choice.

III. TESTING, TESTING. . .

We propose several multistep approaches for selecting acceptable instruments in an empirical

setting. Instruments are considered acceptable if they are both valid according to a test of overidentifying

restrictions and relevant in explaining the endogenous regressor. We assume that there is a rich set of

theoretically plausible potential instruments, but that the a priori arguments for their acceptability are not

so compelling as to preclude testing. This is becoming a common situation in labor economics and related

fields, as data on a variety of community characteristics, local economic conditions, and policy

environments are appended to the individual records of cross-section and panel data sets. We assume that

there are enough instruments assumed exogenous to identify the model, but we wish to add more valid

instruments to generate more efficient estimates and sufficient power to test the substantive hypothesis. 

The first step is to choose a set of valid instruments from the full set using a test of overidentifying

restrictions (OIR). Following Godfrey (1988), we regress the residuals calculated using the IV estimates of

the coefficients in (1) on all the instruments. The R  for this equation times the sample size is distributed as2

x  with m-k degrees of freedom. The test itself is straightforward, but its use in constructing a set of valid2

instruments is not. If the full set of theoretically plausible instruments fails the OIR test, there are at least

three general ways we could proceed:

(1)  We could exclude the instrument with the highest t-statistic from the set of potential

instruments and rerun the OIR test, and repeat until a subset of the instruments passes the

test. This procedure involves using the test of overidentifying restrictions as a joint test

applied to the entire instrument set. 
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(2)  We could exclude all instruments that achieved some fixed level of significance in the

initial regression. This individual screening of suspicious instruments is much more

restrictive and is likely to result in excluding more instruments than the joint test.

(3)  We could divide the instrument set into classes based on our a priori expectations about

their exogeneity (for example, put state policy variables into one class, county-level

measures of medical services into another) and use the results of the initial test to update

our expectations. We could then exclude an entire class of instruments if one or more

members would be excluded on the basis of an OIR test. 

Any of these methods will result in a set of instruments that passes a test of overidentifying

restrictions, but they may result in different instrument sets, and different estimates of the coefficient of

interest in finite samples. (We pursue the first two approaches in this paper, deferring the third to future

work.)

The second step is to use goodness-of-fit tests to determine whether a set of valid instruments is

relevant to the endogenous regressors. Simple F or likelihood-ratio tests can be used to test whether the

selected instruments significantly improve model fit in the first-stage estimation. With a large number of

instruments, we cannot test all possible combinations. The best testing procedure would be a mechanical

one that allows systematic consideration of a large number of possible predictive models and eliminates

unintended investigator bias in selecting the instruments in the final first-stage model. An approach that

satisfies these criteria is to use backward-stepwise regression to select the best-fitting model that passes the

goodness-of-fit test. Backward-stepwise methods are preferred to forward-stepwise methods because they

tend to yield better-fitting final models when the set of potential instruments is not orthogonal. As an

individual counterpart to this joint test of instrument relevance, we apply backward-stepwise regression

until each identifying instrument remaining in the first-stage model achieves some set level of significance

in the first-stage equation.
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(3)

Once a final set of acceptable instruments is selected, an endogeneity test determines the

likelihood that IV estimation is warranted on the basis of correlation between the regressor and the error.

We employ Hausman’s (1978) alternative test. This involves estimating the first-stage equation for the

possibly endogenous regressor X , saving the estimated residuals  and including them as regressors in the1

second-stage equation:

A test of a = 0 tests the hypothesis that X  is exogenous. Hausman suggests constructing an x  test but an1
2

F- or t-test (if X  is of dimension 1) is asymptotically equivalent (Godfrey 1988; MacKinnon 1992; Vella1

1993). An equivalent test for the case in which the first-stage model is a probit consists of calculating the

generalized residuals from the probit and including them in the second-stage equation (Card and Vella

1994).

Following the procedures outlined above presupposes a large set of potential instruments. In a just-

identified model one must rely on a priori arguments to justify exclusion restrictions. The relevance, but

not the validity, of the identifying instruments can be tested. In the application presented below, a just-

identified model passes a test of instrument relevance but generates estimates that are very imprecise in

comparison to those produced by a more extensive set of instruments. The substantive inferences based on

these contrasting results are likely to be very different, though no diagnostic criteria are violated by the

former. The endogeneity test is also conditional on the instrument set chosen, and may fail to reject the

exogeneity of X  if the instrument set cannot generate a test of sufficient power. The prudent course in IV1

estimation is to begin with an extensive set of instruments when possible and apply diagnostic tests, rather

than to begin with a parsimonious model justified on a priori grounds.

IV. AN EMPIRICAL EXAMPLE
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Waite and Moore 1978. Also see the summary in Hofferth 1987.4

We use an empirical example to demonstrate the alternative approaches for selecting a valid and

relevant instrument set. We show that failing to employ tests of OIR, of instrument relevance, and of

endogeneity can affect substantive conclusions, and that these conclusions may be sensitive to the

particular method used in selecting a valid instrument set.

The example considers the impact of teenage childbearing on women’s educational attainment.

This issue provides fairly typical problems researchers may encounter in estimating models with

endogenous regressors. This issue is also apt because a relatively large body of research has generated

estimated fertility effects that vary widely, and therefore has not resolved the debate concerning the impact

of teen childbearing. A number of theoretical perspectives predict that childbearing will affect educational

attainment. Since children increase the opportunity costs of remaining in school, women with children are

less likely to continue in school than similar women without children. The effect may be particularly large

for women less than 18 years old because they have not yet finished high school.

Early empirical work treated fertility as exogenous and found large negative impacts of a teen

birth on various measures of educational attainment.  However, human capital theory predicts that women4

who intend to have children early in their life rationally choose to invest less in education because the

expected return on that investment would be lower for them than for other women. Thus, human capital

theory predicts that women plan their childbearing and education jointly. Regardless of whether

educational intentions directly affect fertility intentions, the presence of unobservable determinants (for

example, intentions regarding both fertility and education, fecundity, and other opportunity costs) of

observed educational and fertility outcomes imply that fertility is likely to be correlated with the error term

in the education equation. Both arguments imply that OLS estimates of an education equation containing

fertility as a regressor will be biased.

Further research on the impact of teenage childbearing on educational attainment has addressed the

potential endogeneity of fertility by either controlling for unobserved heterogeneity or using IV methods.
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See Geronimus and Korenman 1992 for an example of empirical work employing5

heterogeneity corrections.

Examples of studies that found no significant effect of fertility on education are Olsen and6

Farkas 1989; Ribar 1992, 1994; and Moore et al. 1993.

See Klepinger et al. 1995.7

This paper focuses on the IV solution.   Instrumental variable approaches attempted to estimate the impact5

of a teen birth by relying on small sets of instrumental variables, and sometimes on only one instrument:

age at menarche. These studies yielded insignificant coefficients on the instrumented teen fertility

variable.  Researchers and policy analysts tended to conclude that a teen birth has no impact on6

educational attainment or, more cautiously, that earlier OLS estimates were upwardly biased. Typically,

these studies did not formally test the validity of the selected instruments or the endogeneity of teenage

childbearing.

Sample and Variables

The data were obtained from the National Longitudinal Survey of Youth (NLSY), the Alan

Guttmacher Institute (AGI), and other public sources. In 1979 the NLSY interviewed 12,686 male and

female youths who were between the ages of 14 and 21 on January 1, 1979. In the version of the NLSY

available for this study, re-interviews were conducted in succeeding years through 1991. The sample for

this analysis includes all white women aged 14 to 20 in 1979, excluding those in the special military

subsample and the oversample of economically disadvantaged whites. Adolescent fertility is defined as a

birth before the respondent’s 18th birthday. Educational attainment is measured as completed years of

schooling at time of interview in the year the respondent turned age 25 or, if this is missing, years of

schooling at age 26. We have reported elsewhere results for other race-ethnic groups and for other

measures of adolescent fertility.  Here we have chosen a single sample and specification to illustrate the7

effects of alternative instrument selection procedures.

The education equations include a large set of personal and family background characteristics as

well as measures of employment opportunities. Table 1 lists the variables and their means. Personal and
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family background variables include highest grade completed by mother and father, a set of variables for

different living arrangements experienced as a child, number of siblings and older siblings, whether there

was an adult female working for pay in the household when the respondent was age 14, whether the

respondent or her parents were born outside the United States, whether the respondent was born in the

South, whether the respondent lived in the South or an urban area at age 14, whether a non-English

language was spoken at home when the respondent was age 14, whether her household subscribed to

magazines or newspapers, whether anyone in her household had a library card, the respondent’s religious

affiliation (omitted category is “none”), and frequency of attendance at religious services (omitted

category is “never”). We measure employment opportunities open to adolescents by the percentage of

workers employed in services and in wholesale and retail trade for the state where the respondent lived at

age 14. A set of county-level variables is also included, and measures aspects of the distribution of income,

religious affiliation, education, and school enrollment in the county in which the respondent resided in

1979.

Instruments included in the fertility equation but excluded from the education model are shown in

the lower part of Table 1 along with their means and sources. One instrument is maintained to be

exogenous: age at menarche is an individual characteristic likely to affect fertility but not educational

attainment. State policy variables likely to affect fertility are measured for the state in which the

respondent resided at age 14. These include the maximum AFDC payment for a family of two, the

presence of restrictive abortion provisions, the ages at which parental consent is no longer needed for a

young woman to have an abortion or use contraception, and similar variables indicative of state policies on

abortion and family planning funding and services. We measure the state-level instruments at age 14, when

residential location can be regarded as
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TABLE 1
Sources and Descriptive Statistics

Variables Mean Source

Endogenous
Years of schooling at age 25 13.2 NLSY
Birth before age 18 .07 NLSY

Exogenous: Education and Fertility Models
Mother's education 11.6 NLSY
Mother’s education missing .03
Father's education 11.6 NLSY
Father's education missing .06
Living arrangements at age 14 NLSY

Mother only .08
Mother and stepfather .07
Other .05
Both parents .80

Years with mother only .66 NLSY
Years with mother and stepfather .52 NLSY
Years in other living arrangements .31 NLSY
Ever experienced divorce .12 NLSY
Number of siblings 3.1 NLSY
Number of older siblings 1.8 NLSY
Number of older siblings missing .06
Mother worked .52 NLSY
Foreign born .02 NLSY
Mother foreign born .04 NLSY
Father foreign born .04 NLSY
Foreign language at home .07 NLSY
Born in South .25 NLSY
South residence at age 14 .25 NLSY
Urban residence at age 14 .75 NLSY
Magazines in home at age 14 .75 NLSY
Newspapers in home at age 14 .89 NLSY
Library card at age 14 .80 NLSY
Employment in state of residence at age 14 NLSY

Percentage in services .18
Percentage in wholesale/retail trade .22
Percentage in other .60

Religion NLSY
Baptist .16
Catholic .31
Other Protestant .30
Jewish/Other .13
None .10

   Attendance at religious services
Never .17 NLSY
Rare .27
Occasional .19
Often .37

(table continues)
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TABLE 1, continued

Variables Mean Source

County-level Variables
Educational spending per 1000 students 1623 CCDB
Median household income in 1979 17320 CCDB
Median gross rent in 1980 233 CCDB
Percentage of population moved into county 10.0 CCDB
Proportion of county population CCM

Catholic .22
Conservative Protestant .20
Jewish and other . 003

Percentage of county population
Education 12 or more years 67 CCDB
Education 16 or more years 15 CCDB

Percentage of families female-headed 13 CCDB
Percentage of labor force female 42 CCDB
Percentage of children in poverty families 14 CCDB
Unemployment rate in 1980 6.8 CCDB
School enrollment rate: 5–17 year olds .78 CCDB
Proportion of 16–17 year olds in school (state) .90 CENS
Proportion of 18–19 year olds in school (state) .52 CENS

Excluded Instruments
Individual
Age at menarche 12.9 NLSY

State level
Maximum AFDC payment to 2 person family $211 HEW1
Restrictive abortion provisions .07 HEW2
Restrictive laws on the sale/advertisement of
  contraception .41 HEW2
Restrictions on Medicaid funding of abortion .20 HEW2
Maximum percent of state median income for
  eligibility under Title XX family planning services .54 HEW2

No maximum .02
Age of consent for abortion 16.4 HEW2
No age of consent .64
Age of consent for contraception 16.5 HEW2
No age of consent .69

County level
Abortion rate per 1000 women 21.4 AGI
Abortion provider providing more than 400 abortions .49 AGI
Presence of abortion provider .70 AGI
Proportion of women 15–19 using family planning services .13 AGI
Proportion of family planning patients aged 15–19 .35 AGI
Family planning clinics per 1000 women aged 15–19 .43 AGI
Number of patients per family planning clinic 1363 AGI
Hospital expenditures per 1000 population 48 CCDB
Number of doctors per 1,000,000 population 1590 CCDB
Number of nurses per capita  .005 CCDB

(table continues)
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TABLE 1, continued

Variables Mean Source

County level fertility rates and sex ratio
Marital fertility rate women aged 15–19 370 AGI
Nonmarital fertility rate women aged 15–19 16 AGI
Ratio of men 15–19 to women 15–19 94.6 AGI

Number of observations 1728

Notes:
NLSY: Data were obtained from the National Longitudinal Survey—Youth Cohort.
AGI: Data were obtained from the Alan Guttmacher Institute.
HEW1: Data were obtained from the U.S. Department of Health, Education, and Welfare.
HEW2: Data were prepared for the U.S. Department of Health, Education, and Welfare by the Alan

Guttmacher Institute.
CCDB: Data were obtained from the City-County Data Book.
CCM: Data were obtained from Quinn et al.1982.
CENS: Data were obtained from the 1980 Census of the United States.
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The 2SLS estimator is consistent when the stochastic regressor is dichotomous (see Heckman8

1978 for a discussion). The 2SPR model is identical to a model of treatment effects, where the
predicted probability of a teen birth is the only excluded instrument in the model.

In addition to the observed or instrumented measure of fertility, all models include the large set9

of personal, family background, and economic control variables reported in Table 1. The second-stage
regressions have R  of about .35. Complete regression results are available upon request.2

exogenous. County-level indicators of the availability of abortion and family planning services are likely to

be good measures of the costs of abortion and contraception, but they may also reflect local demand for

such services and may be correlated with unobserved local norms and attitudes that also affect educational

decisions. We measure these instruments for the county in which the respondent was living at the time of

interview in 1979 (or in 1980 if data are not available for 1979). We would prefer to measure these

variables at uniform early age (as we did for the state-level ones), but county of residence is not available

prior to 1979. The county-level instruments are the abortion rate, whether there is an abortion clinic

performing more than 400 abortions, the proportion of women aged 15 to 19 using family planning

services, hospital expenditures, and similar variables listed at the end of Table 1. Finally, measures of the

social context within which fertility decisions are made include marital and nonmarital fertility rates for

women aged 15 to 19 and the ratio of young men to young women in the county.

Econometric Procedures and Findings

We consider three estimators: ordinary least squares (OLS), in which observed fertility by age 18

is assumed exogenous; the standard two-stage least squares (2SLS) procedure that employs an OLS first-

stage for birth by age 18; and a two-stage probit-regression procedure (2SPR) that uses the predicted

probability from a first-stage probit as the excluded instrument for the linear second stage.8

Table 2 displays the key parameter estimates for these estimators and results from the statistical

tests discussed earlier.  Row 1 displays the OLS point estimate for the effect of having a birth prior to age9

18 on highest grade completed at age 25. The second and third rows present corresponding 2SLS and

2SPR



TABLE 2

Effect of a Birth Before Age 18 on Educational Attainment:
Instrument Choice with Tests of Overidentifying Restrictions and Instrument Relevance

                                                               Method for Choosing Instruments                                                         
      

(1) (2) (3) (4) (5) (6)
Menarche Full set of Joint Joint Joint Relevance Individual

only instrument instruments Relevance OIR & OIR Relevance &
OIR

Coefficients on Fertility Dummy a

OLS -1.56 (.17)**
Two-Stage Least Sq. (2SLS) -2.19 (3.01) -4.24 (1.34)** -3.59 (1.29)** -4.50 (1.38)** -4.45 (1.38)** -2.66 (1.58)*
Two-Stage Probit (2SPR) -2.04 (1.37) -2.47 (.88)** -2.19 (.89)** -1.76 (.92)* -1.99 (.93)** -1.68 (1.02)*

Overidentifying Restrictions (OIR) (  Test)2 b

2SLS 41.82 (23)** 26.70 (17)* 21.77 (21) 18.66 (16) .69 (5)
2SPR 49.59 (23)** 30.07 (17)** 26.96 (21) 12.79 (13) 1.21 (5)

 
Instrument Relevance (F-Test) 4.89 (1)** 1.26 (24) 1.65 (18)** 1.32 (22) 1.71 (17)** 3.21 (6)**b

Endogeneity of Fertility (t-test)
2SLS .21 2.18** 1.56 2.34** 2.29** .71
2SPR .35 1.93** .71 .57 1.33 .92

* = Significant at the 10 percent level.
** = Significant at the 5 percent level.

Standard errors in parentheses.a

Degrees of freedom in parentheses.b
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Godfrey (1988), MacKinnon (1992), and Vella (1993) point out that in this form of the10

Hausman test, the F-test (or t-test, with one potentially endogenous regressor) is equivalent to the chi-
square test suggested by Hausman and is easier to calculate since the necessary information for
calculation is part of the standard output.

Since age at menarche is the only instrument, the model is exactly identified. Consequently,11

tests of overidentifying restrictions cannot be applied because the test statistic will have zero degrees of
freedom.

estimates. Rows 4 and 5 present the tests of overidentifying restrictions—the x  values for the regressions2

of the 2SLS and 2SPR error terms on the set of instrumental variables (instruments and controls). Row 6

displays the F-statistic for testing the improvement in model fit when the selected instruments are added to

an OLS model of childbearing prior to age 18 which includes the extensive set of control variables. The

last two rows display the t-statistics for the tests of whether birth prior to age 18 is exogenous.10

For comparisons with prior empirical work on the impact of a teen birth, the results in column 1

use age at menarche as the only instrument. As shown in the first row, the OLS estimate is statistically

significant (t = 9.2) and large. A birth prior to age 18 is associated with more than 1.5 years less education

by age 25. The 2SLS and 2SPR estimates are not statistically significant, although the point estimates are

somewhat larger than in row 1. The F-test indicates that including age at menarche in the first-stage

regression significantly improves the fit. Age at menarche passes the diagnostic test for instrument

relevance suggested in Bound, Jaeger, and Baker. The last two rows indicate that we cannot reject the null

hypothesis that having a child by age 18 is exogenous in the just-identified model.11

What can the analyst conclude from column 1? If we consider only the IV estimators, we might

conclude that a teen birth does not affect educational attainment. However, the endogeneity tests imply a

small probability that fertility is endogenous, and so it is not clear that we should base inference on the IV

estimates, rather than the OLS results. The OLS estimates show that early fertility has a significant, large

negative impact on educational attainment. 

How can we reconcile these contradictory test results? The answer lies with the power of the tests.

Although the statistical significance of age at menarche in predicting fertility suggests that it is an

acceptable instrument, the IV estimators have standard errors about 8, that is, 17 times larger than the one
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from the OLS model. While it is not surprising that IV procedures produce larger standard errors than

OLS, the difference is quite large. Moreover, the standard error for the more efficient 2SPR is 1.37,

implying that the t-test for birth before age 18 is not powerful enough to detect effects at the .05 level of

less than 2.68 years (2.68/1.37 = 1.96). Similarly, the endogeneity test based on the just-identified model is

not powerful enough to detect effects at less than 2.04 years deviation from OLS. Evidently, using age at

menarche as the sole instrument does not generate statistical tests with sufficient power to assess the

impact of fertility on educational attainment or the endogeneity of fertility.

An obvious solution to this problem is to obtain more instruments. Column 2 displays results when

we use the full set of 24 excluded instruments from Table 1. The point estimates in rows 2 and 3 are

significant. They are larger than the OLS estimate and larger than those obtained when age at menarche is

the only instrument. If the analyst considers only the results with the full instrument set, the conclusion

would be that having an early birth reduces a woman’s educational attainment by between 2.5 and 4.2

years—the latter a very large estimate. Both the 2SLS and 2SPR models fail the test for overidentifying

restrictions, suggesting that this instrument set may be overinclusive. The F-test in row 6 indicates that the

full set of instruments does not significantly improve the predictive ability of the first-stage regression, so

the small sample bias discussed by Bound, Jaeger, and Baker, and Nelson and Startz may be a problem.

Finally, the endogeneity tests in rows 7 and 8 indicate that we can reject the null hypothesis of exogenous

fertility for both models.

To examine the separate effects of failing the tests of overidentifying restrictions and instrument

relevance, we reestimate the IV models using different criteria for selecting the final instruments. Column

3 displays results when we use only the test of instrument relevance to select acceptable instruments.

Starting with the full set of 24 potential instruments, we use backward-stepwise regression to delete

variables until we obtain a first-stage model that passes the joint goodness-of-fit test. Removing 6

instruments achieves this goal. The resulting point estimates in rows 2 and 3 are somewhat smaller than

those in column 2, but again are statistically significant. However, the tests for overidentifying restrictions
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in rows 5 and 6 reject the hypothesis that the 18 instruments passing the goodness-of-fit test are

uncorrelated with the error term. Hence, this subset of 18 instruments may still yield biased estimates.

Column 4 displays results based on an instrument set that passes the overidentifying restrictions

test at a .10 level. To identify this set, we start with all 24 instruments and exclude the one with the highest

t-value in the regression of the second-stage residuals on the set of selected instruments and control

variables. We then reestimate the IV model without this instrument. This process is repeated until we

obtain a model that passes the test of overidentifying restrictions. In this case, the final set includes 22

instruments. The difference between the resulting fertility coefficients and those in column 3 is statistically

significant: the 2SLS coefficient increases in absolute value, while the 2SPR coefficient falls. This set of

instruments fails the instrument relevance test.

Column 5 shows results for models based on a set of instruments that passes both the instrument

relevance test and the test of overidentifying restrictions. To select this set, we first regress the second-

stage residuals on the full set of instruments to test the overidentifying restrictions. If the model fails the

test at a .10 significance level, we exclude the instrument with the highest t-test in the regression and retest

the new subset. This procedure is followed until we find a set of instruments that pass the test. Beginning

with this subset of instruments, we estimate a backward-stepwise regression model for fertility and delete

variables until we obtain a model that passes the joint relevance test. Finally, we apply the test of

overidentifying restrictions to this new subset to confirm that we have a set of instruments that passes both

criteria of acceptability. 

This process yields a 2SLS model based on 17 instruments, a 2SPR model with 14 instruments,

and estimates that are not significantly different from those obtained using the full set of instruments. The

exogeneity of fertility is rejected in the 2SLS model. Based on the 2SLS model in column 5, the analyst

would conclude that fertility is endogenous and that having a birth before age 18 is associated with 4.5

years less completed education. The estimated substantive effect is rather high, but a reasonably prudent

investigator is likely to stop with these results, based on instruments that pass the standard diagnostic tests.
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We estimated an alternative model in which the less restrictive significance level of .20 was12

applied to the instrument relevance test. This resulted in an identical instrument set in this sample.

Columns 3, 4, and 5 are based on the application of F and x  tests to groups of instruments. Using a2

joint test to determine the acceptability of a set of instruments may fail to exclude individual instruments

that are invalid or of low relevance. The joint test for overidentifying restrictions tests whether a set of

instruments is correlated with the error term. A potential instrument that is highly correlated with the error

term might be included among a group of variables that jointly pass the test if the other variables have very

low correlations with the error term. Similarly, a potential instrument with little predictive power may

escape exclusion under a joint relevance test if other instruments in the group have considerable predictive

power. In an empirical setting, we do not know whether the inclusion of such instruments is likely to result

in a biased IV estimator.

An alternative approach for identifying acceptable instruments is to test each one individually. To

explore whether individual tests and joint tests generate different results, we estimate IV models that

include only instruments that pass the acceptability criteria individually. For the results reported in column

6, we excluded a potential instrument if its coefficient in the overidentifying restrictions regression was

significantly different from zero at a .10 significance level or if its coefficient in the regression predicting

fertility was not significantly different from zero at the .10 significance level. These individual tests are

more conservative than the joint tests and consistently yield fewer acceptable instruments.12

Only 6 instruments pass muster in column 6. The IV point estimates suggest that having a birth

prior to age 18 is associated with acquiring 1.7 to 2.7 fewer years of schooling by age 25. The point

estimates in column 6 are significantly different from those produced by the full instrument set (column 2)

and, for the linear model, by the joint tests in column 5. Further review of column 6 suggests a surprising,

perhaps awkward, conclusion. Rows 7 and 8 do not reject the hypothesis that fertility is exogenous with

respect to educational attainment, which, ironically, implies that the original OLS estimate is unbiased and

the IV results are not needed. Although the endogeneity test for the 2SPR is capable of detecting
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deviations from the OLS estimate in excess of 1.57 years at the .05 level, the 2SPR point estimate is nearly

identical to the OLS estimate.

This stringent, formalized procedure for selecting the final set of instruments should give one

confidence in the unbiasedness of the resulting IV estimates. The sensitivity of the 2SLS coefficient to a

choice among instrument sets that pass standard diagnostic tests is somewhat disturbing. Since the

individual tests are more conservative in excluding potentially unacceptable instruments than the joint

tests, we consider the estimates in column 6 less likely to be biased than those in column 5, though they are

somewhat less precisely estimated.

The results in column 6 leave the analyst with a sizable range of estimates for the effect of a birth

prior to age 18 on years of education by age 25, but one that is significantly lower than that implied by the

full instrument–set IV estimates in column 2. Rejection of the endogeneity of fertility in the education

equation, however, brings our attention back to the precisely estimated OLS coefficient. If early

childbearing is an outcome independent of the unobserved determinants of a young woman’s educational

objectives, then a reasonable estimate of the penalty it exacts on educational attainment is 1.6 years, with a

standard error of only .17 years.

Though the findings in Table 2 are contingent on a particular substantive issue and the data used to

examine it, several lessons emerge from looking across the six columns. Choosing only enough

instruments to identify the model exactly may not yield statistical tests with sufficient power to assess the

substantive effect of the endogenous regressor or to test whether, in fact, it is endogenous (column 1).

Amassing a large number of potential, theoretically sensible instruments may well lead to biased results if

one does not test the instruments’ acceptability (column 2). Column 5 and the intermediate analyses in

columns 3 and 4 seem to demonstrate that conducting tests of acceptability can give one confidence that

the estimates are unbiased, while confirming the theoretical view that the regressor being instrumented is,

indeed, endogenous. However, applying more restrictive tests for acceptability can result in substantively

different estimates (column 6). Finally, our results support the argument made by Nakamura and Walker
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(1994) that specification tests should be interpreted cautiously and that other relevant information should

be considered. In particular, our results show that it is important to consider both the power of the

specification tests and the quantitative size of the parameter differences generated by different estimators.

V. CONCLUSION

Models with endogenous regressors are commonplace in labor economics and other applied fields,

and instrumental variables has been a popular technique for consistently estimating the parameters of

interest. However, recent research has identified a number of situations in which IV estimators are

severely biased. Diagnostics that have been suggested to identify applications in which inference based on

IV may be misleading include F-tests of instrument relevance and tests of overidentifying restrictions. In

this paper, we suggest alternative techniques for choosing a set of instruments that satisfy the standard

diagnostic requirements from a universe of a priori plausible candidates. The results are sensitive to our

choice among apparently reasonable selection procedures.

We apply these techniques to a question of considerable policy relevance: the effects of adolescent

childbearing on the educational attainment of young women. Early work on this topic employed a small

number of instruments (sometimes one) and found that the effect of fertility on education was not

significantly different from zero. For our reexamination of this question, we use a conventional data source

augmented by a rich set of potential instruments describing community characteristics and the policy

environment. We choose mechanical procedures for eliminating potential instruments to avoid discretion

in the screening process, and try to balance the competing interests in excluding instruments that may

generate inconsistent estimates and in maintaining enough valid instruments to yield a powerful test of the

substantive hypothesis.

Our first result is that restricting our instrument set to one, assumed exogenous, excluded

instrument generates imprecise parameter estimates and a hypothesis test with low power. Expanding the

instrument set increases our ability to explain variation in fertility, and increases the precision of the
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estimated effect on education, which is now significantly negative. Our results suggest that researchers

should, when possible, devote resources to expanding the set of potential instruments beyond what is

minimally required to identify the model.

We also find that eliminating potential instruments that explain little of the variation in fertility or

that appear to be correlated with the error in the education equation may cause a significant decline in the

absolute magnitude of the fertility coefficient. Our most restrictive technique, which excludes potential

instruments that fail diagnostic tests individually, yields estimated coefficients that are reasonably precise,

of consistent magnitude, and at the low end of the range of point estimates. In fact, these estimates are not

significantly different from the OLS estimate, and the hypothesis that fertility is exogenous cannot be

rejected in a model with a highly restrictive set of instruments.

Researchers applying IV methods in overidentified models need to choose a method for selecting

instruments that avoids the biases known to be associated with invalid instruments and with low instrument

relevance. Our results demonstrate the importance of considering the power of specification tests in

interpreting results and selecting a model. Our results also suggest that applying more restrictive criteria in

the instrument-choice process may materially affect the resulting estimates and is the preferred,

conservative approach. 
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