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Abstract 

A common concern of evaluation studies is to learn the distribution of outcomes when each 

member of a population receives a treatment resulting from a specified treatment policy. Many recent 

studies have used controlled experiments to evaluate policies mandating the same treatment for all 

members of the population. Policies mandating homogeneous treatment are of interest, but so are 

policies that make treatment vary across the population. This paper examines the use of experimental 

evidence to infer the outcomes that would occur when treatment may vary across the population. 

Experimental evidence from the Perry Preschool Project is used to illustrate the inferential problem 

and the main findings of the analysis. 



What Do Controlled Experiments Reveal about Outcomes 
When Treatments Vary? 

1. Introduction 

A common concern of evaluation studies is to learn the distribution of outcomes when each 

member of a population receives a treatment resulting from a specified treatment policy. Many recent 

studies have used controlled experiments to evaluate policies mandating the same treatment for all 

members of the population. In the classical experiment, random samples of the population are drawn 

and formed into treatment groups, all of whose members are assigned the same treatment. The 

empirical distribution of outcomes realized by a treatment group is then ostensibly the same (up to 

random sampling error) as would be observed if the treatment in question were mandatory for the 

entire population. For example, see Manski and Garfinkel (1992), some of whose chapters describe 

recent experimental evaluations of mandatory welfare and training programs. 

Policies mandating homogeneous treatment are of interest, but so are policies that permit 

treatment to vary across the population. We often see voluntary treatment policies, calling on persons 

to select their own treatments. Policies intended to mandate homogeneous treatment sometimes turn 

out to be voluntary in practice, as compliance with the mandated treatment is not enforced. And 

resource constraints sometimes prevent universal implementation of desirable treatments. 

Consider the following inferential questions: 

(S) What do observations of outcomes when treatments vary across the population reveal about 

the outcomes that would occur if treatment were homogeneous? 

(M) What do observations of outcomes when treatment is homogeneous reveal about the outcomes 

that would occur if treatment were to vary across the population? 

Question (S), usually called the selection or switching problem, has drawn considerable attention and 

much has been learned; see Maddala (1983), Heckman and Robb (1985), and Manski (1993). 
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Question (M), which has remained unexplored and unnamed, is the subject of this paper. Formally, 

question (M) asks what inferences about mixtures of two random variables can be made given 

knowledge of their marginal distributions. Hence, I refer to the question as the mixing problem. 

SELECTION AND MIXING PROBLEMS: To formalize these inferential questions, let each member 

of the population be described by values for [(yl,yo),(z,,m~M),x]. Here x is a vector of covariates, 

an element of some space X. There are two feasible treatments, labeled 1 and 0.' The set M gives 

the treatment policies of interest. A treatment policy determines which treatment each person 

receives. The indicator variable z, denotes the treatment that a given person receives under policy m; 

z, = 1 if the person receives treatment 1 and z, = 0 otherwise. Associated with the treatments are 

outcomes &,,yo), a pair of elements of some outcome space Y. The outcome a person realizes under 

policy m is 

The distribution of outcomes realized by those persons sharing the same value of x is 

(2) P(wm l x) = P[y1zm+y0(l-z$ I XI 

= P(yl I x,z,=l)P(z,=l ( x) + POt, I x,z,=0)P(z,=0 I x). 

For example, a welfare recipient might be treated by job training or by the "null" treatment of 

no training intervention. The relevant outcome might be earned income following treatment. One 

treatment policy might mandate job training for all welfare recipients and enforce the mandate. A 

second policy might attempt to mandate job training but not be able to enforce compliance. A third 
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policy might permit a person's caseworker to select the treatment expected to yield the larger net 

benefit, measured as earned income minus training costs. 

Suppose one wishes to learn the distribution P(w, I x) of outcomes that would be realized by 

persons with covariates x if a specified treatment policy m were in effect. Inference is 

straightforward if one can enact policy m and observe the realized outcomes. The interesting 

inferential questions concern the feasibility of learning P(w, I x) when one observes realizations under 

policies other than m. 

Selection problems arise when policy m mandates homogeneous treatment, but the available 

data are realizations under some other policy yielding heterogeneous treatments. Suppose that m 

makes treatment 1 mandatory, so P(w, 1 x) = P(yl I x). Suppose that the observable policy is some 

p E M, so the available data are a random sample of (w,,z,,x).~ The sampling process identifies the 

censored outcome distributions P(y, 1 x,z,= 1) and P(yo I x,z,=O), as well as the treatment 

distribution P(z, I x). Thus, inferential question (S) formalizes as: 

(S) What does knowledge of [P(yl I x,z,= l),P(yo I x,z,=O),P(z, I x)] imply about P(yl I x)? 

Mixing problems arise when policy m may yield heterogenous treatments, but the available 

data are from controlled experiments imposing homogenous treatments on random samples of the 

population. The classical model of experimentation presumes that experimental evidence is available 

for both treatments, so the experiments identify P(yl ( x) and POI, I x). Thus, question (M) 

formalizes as: 

(M) What does knowledge of [P(yl I x),P(yo I x)] imply about P[ylz,+yo(l-z,) I x ] ? ~  

ORGANIZATION OF THE PAPER: Section 2 uses empirical evidence from a famous social 

experiment, the Perry Preschool Project, to illustrate the mixing problem and the main findings of this 

paper. Fifteen years after their participation in this early-childhood educational intervention, 67 



4 

percent of an experimental group were high school graduates. At the same time, only 49 percent of a 

control group were graduates. Our interest is to determine what the experimental evidence and 

various forms of prior information imply about the rate of high school graduation that would prevail 

under treatment policies applying the intervention to some children but not to others. 

Sections 3 through 5 present the analysis yielding the empirical results reported in Section 2. 

To begin, Section 3 examines the mixing problem in the absence of any prior information on the 

distribution of [(y,,yo),zm,x]. The basic finding is a proposition giving sharp bounds on conditional 

probabilities of the form P(wmeB I x), B C Y. When outcomes are real-valued, this finding is easily 

transformed into sharp bounds on quantiles of P(wm ( x), given in a ~oro l l a ry .~  

Sections 4 and 5 explore the identifying power of several forms of prior information that 

might plausibly be invoked in empirical s t u d i e ~ . ~  Section 4 imposes restrictions on the joint 

distribution of the outcomes (y,,yo). Section 4.1 assumes that y, and yo are statistically independent, 

conditional on the covariates x. In contrast, Section 4.2 supposes that the outcomes are shifted 

versions of one another. Section 4.3 assumes that the outcomes are ordered. 

Section 5 imposes restrictions on the treatment policy. Section 5.1 assumes that the treatment 

received by each person with covariates x is statistically independent of the person's outcomes @,,yo). 

Section 5.2 considers the polar opposite situation in which treatment is a known function of outcomes; 

I focus on the case in which outcomes are real-valued and the treatment policy always selects the 

treatment yielding the smaller outcome (or, symmetrically, the larger outcome). Section 5.3 assumes 

that the fraction of the population receiving each treatment is known. 

Taken one at a time, each of these assumptions on the distribution of outcomes or on the 

treatment policy implies a distinctive bound on P(wm I x), but none of the assumptions is strong 

enough to identify the distribution. Combinations of assumptions do identify P(w, I x). Two such 

are stated in Section 5.4. 
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IDENTIFICATION AND SAMPLE INFERENCE: The mixing problem, like the selection problem, 

is a failure of identification rather than a difficulty in sample inference. To keep attention focused on 

identification, Sections 3 through 5 maintain the assumption that the conditional distributions 

identified by classical controlled experiments, [P(yl I x),P(yo 1 x)], are known almost everywhere on 

the covariate space. The identification findings reported in these sections can be translated into 

consistent sample estimates of identified quantities by replacing P(y, ( x) and P(yo I x) with consistent 

nonparametric estimates, as is done in Section 2. 

For the sake of simplicity, I often refer to P(yl I x) and P(yo I x) simply as the distributions of 

y, and yo, rather than as the distributions conditional on x. One could similarly shorten the notation 

by denoting these distributions as P(yl) and P(yo). I do not take this step because I want the reader to 

keep in mind that the analysis of this paper holds for any specification of the covariates x. 

CAVEATS ON CLASSICAL EXPERIMENTATION: This paper maintains the classical assumption 

that experimental regimes operate exactly as would mandatory treatment policies. I have elsewhere 

discussed some of the many reasons why this central tenet of experimental analysis may fail to hold 

when applied to welfare and training programs (see the introduction to Manski and Garfinkel, 1992). 

Experiments may be administered differently from actual programs. Macro feedback effects ranging 

from information diffusion to norm formation to market equilibration may make the full-scale 

implementation of a mandatory treatment policy inherently different from the small-scale 

implementation of an experiment. Strictures on forcing human subjects into experiments may make it 

impossible to form random treatment groups. The present analysis assumes away all of these very 

real concerns. 
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2. An Illustration: The Perrv Preschool Exweriment 

Beginning in 1962, the Perry Preschool Project provided intensive educational and social 

services to a random sample of black children in Ypsilanti, Michigan. The project investigators also 

drew a second random sample of such children, but provided them with no special services. 

Subsequently, a variety of outcomes were ascertained for most members of the experimental and 

control groups. Among other things, it was found that 67 percent of the experimental group and 49 

percent of the control group were high school graduates by age nineteen (see Berrueta-Clement et al., 

1984). This and similar findings for other outcomes have been widely cited as evidence that intensive 

early-childhood educational interventions improve the outcomes of children at risk (see Holden, 

1990). 

For purposes of discussion, let us accept the Perry Preschool Project as a classical controlled 

experiment, with 

x = black children in Ypsilanti, Michigan 

z, = 1 if early-childhood intervention received, = 0 otherwise 

y, = 1 if high school graduate by age 19, = 0 otherwise; intervention received 

yo = 1 if high school graduate by age 19, = 0 otherwise; intervention not received. 

Moreover, ignoring attrition and sampling error in the estimation of outcome distributions, let us 

accept the experimental evidence as showing that the high school graduation rate among children with 

covariate value x would be .67 if all such children were to receive the intervention, and would be .49 

if none of them were to receive the intervention. That is, let us accept the experimental evidence as 

showing that POI,= 1 I x) = .67 and P(yo= 1 I x) = .49.6 

What would be the rate of high school graduation if some children with covariates x were to 

receive the intervention, but not others? Table 1 summarizes the inferences that can be made in a 
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TABLE 1 

The Perry Preschool Project: Implied Rates of High School Graduation 
under Different Scenarios 

Ex~erimental Evidence 

P(y,=l 1 x) = .67 P(y,=l 1 x) = .49 

Scenario 

no prior information (Proposition 1) 

independent outcomes (Proposition 2) 

ordered outcomes (Proposition 4) 

treatment independent of outcomes (Proposition 5) 

treatment with smaller outcome (Proposition 6A) 

treatment with larger outcome (Proposition 6B) 

+ independent outcomes (Proposition 9A) 

+ ordered outcomes (Proposition 9A) 

1/10 population receives treatment 0 (Proposition 7) 

+ treatment independent of outcomes (Proposition 9B) 

5/10 population receives treatment 0 (Proposition 7) 

+ treatment independent of outcomes (Proposition 9B) 

9/10 population receives treatment 0 (Proposition 7) 

+ treatment independent of outcomes (Proposition 9B) 
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variety of scenarios. In each case, the table cites a proposition implying the estimate shown. These 

propositions are developed in Sections 3 through 5. 

If the experimental evidence is the only information available, we can conclude that the 

graduation rate must lie between .16 and 1, but we cannot say more. In other words, there exist 

treatment policies and distributions of (yl,yo) that are consistent with the known values of P(yl ( x) 

and POI, 1 x) and that imply graduation rates as low as .16 and as high as 1. 

If prior information about the distribution of outcomes is available, then we can narrow the 

range of possibilities. If y, and yo are known to be statistically independent conditional on x, then the 

graduation rate must lie between .33 and .83; where the graduation rate falls within this range 

depends on the treatment policy. On the other hand, suppose that receiving the early-childhood 

intervention can never be harmful to a child; that is, y, and yo are known to be ordered, with y, = 0 

* YO = 0. Then the graduation rate must lie between those observed in the control and experimental 

groups, namely .49 and .67. 

Information restricting the treatment policy offers its own identifying power. If treatment is 

known to be statistically independent of outcomes, then the graduation rate must again lie between .49 

and .67. On the other hand, if a child always receives the treatment yielding the larger outcome, then 

the graduation rate must lie between .67 and 1. 

Suppose that one knows the fraction of the population receiving each treatment. Knowing that 

1/10 or 5/10 or 9/10 of the population receives treatment 0 implies that the graduation rate lies in the 

interval [.57, .77] or [. 17, .99] or [.39, .59] respectively. Observe that the first and third intervals are 

relatively narrow but the second is rather wide, almost as wide as the interval found in the absence of 

prior information. This pattern of results reflects the fact that the power of treatment policy to 

determine who receives which treatment is much more constrained when P(z,=O I x) is fixed at a 

value near zero or one than it is when P(z,=O I x) is fixed at 5/10. 
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The scenarios considered thus far bring to bear enough empirical evidence and prior 

information to bound the high school graduation rate but not to identify it. If stronger restrictions are 

imposed, then the high school graduation rate may be identified. For example, if it is known that 

outcomes are statistically independent and that each child receives the treatment yielding the larger 

outcome, then the implied high school graduation rate is .83. If it is known that 5/10 of the 

population receives treatment 0 and that treatment is independent of outcomes, then the implied 

graduation rate is .58. 

The general lesson is that experimental evidence alone permits only weak conclusions to be 

drawn about the high school graduation rate when treatments vary. Experimental evidence combined 

with prior information allows stronger conclusions. The nature of these stronger conclusions depends 

critically on the prior information asserted. This lesson is analogous to the one learned over the past 

twenty years about the conclusions that can be drawn about mandatory programs from observations of 

outcomes when treatments vary. Mixing and selection are distinct identification problems, but they 

are closely related. 

3. Identification Using onlv the Experimental Evidence 

Our objective in this section is to characterize the restrictions on P(w, I x) implied by 

knowledge of [POI, I x),P(yo I x)]. No other information is assumed available. 

PROBABILITIES OF EVENTS: Consider the probability that the realized outcome w, falls in 

some set B, conditional on x; that is, P(w,eB I x). Given that w, always equals either y, or yo, one 

might think that P(w,eB I x) must lie between P(y,eB I x) and P(yoeB 1 x). This is not the case. It 

turns out that when P(y,cB 1 x) + P(yoeB 1 x) I 1, then P(w,eB I x) must lie in the interval 
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[O,P(y,eB I x)+POI,eB ( x)]. When P(yleB I x) + P(yoeB I x) 2 1, P(w,eB 1 x) must lie in the 

interval [P(y,eB I x)+P(yoeB I x)-l,l]. Proposition 1 gives the result. 

Pro~osition 1: Let P(yl I x) and P(yo I x) be known. Then 

PROOF: We first determine the treatment policies that minimize and maximize P(w,eB ( x). Observe 

that if y, and yo both fall in the set B, then w, must fall in B. Moreover, if neither y, nor yo falls in 

B, then w, cannot fall in B. That is, 

(4a) y, E B n y 0 e B  =, W , E B  

and 

(4b) y, t! B n yo t! B =, w, dB, 

whatever treatment-policy m may be. The treatment policy is relevant in those cases where one of 

the two outcomes falls in B and the other does not. The treatment policy minimizes P(w,eB ( x) if it 

always selects the treatment yielding the outcome not in B; that is, if 
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Hence, the smallest possible value of P(w,eB I x) is P(y,eB II yoeB I x). The treatment policy 

maximizes P(w,eB 1 x) if it always selects the treatment yielding the outcome in B; that is, if 

So the largest possible value of P(w,eB I x) is P(y1eB U yoeB I x). 

The above shows that if P(y,eB n yoeB I x) and P(y,eB U yoeB I x) are known, then 

is a sharp bound on P(w,eB I x). But the only available information is knowledge of P(y, I x) and 

P(yo I x). Therefore, the best computable lower bound on P(w,eB I x) is the smallest value of P(y,eB 

n yoeB 1 x) that is consistent with the known P(yl I x) and P(yo 1 x). Similarly, the best computable 

upper bound is the largest feasible value of P(y,eB U yoeB I x). 

The second step is to determine these best computable bounds. This is simple to do, because 

Frechet (1951) proved this sharp bound on P(y,eB f7 yoeB 1 x):' 

(8) max[O,P(y,eB ( x)+P(yoeB I x)-1] I P(y1eB n yoeB I x) 

I min[P(yleB I x),P(yoeB I x)]. 

It follows immediately from (8) that the best computable lower bound on P(w, I x) is 

max[O,P(y,eB ( x)+P(yoeB I x)-11. To obtain the best computable upper bound, observe that 



Applying the Frechet lower bound on P(y1eB fl yoeB I x) to (9) shows that 

(10) P(y l~B U y0eB I x) S min[P(y,~B ( x)+P(y,eB ( x), 11. 

Hence, min[P(y,~B 1 x)+P(y0eB I x), I.] is the best computable upper bound on P(wm ( x). 

Q.E.D. 

QUANTILES: Suppose that Y is the real line. Let u E R1 and B = (-00 ,u]. By Proposition 1, 

Let a E (0,l) and let &(a I x) denote the a-quantile of w,, conditional on x. Corollary 1.1 inverts 

the bound (1 1) to obtain a sharp bound on %(a I x). 

Corollary 1.1: Let P(yl I x) and P(yo I x) be known. Let Y be the real line. Let 

r,(a 1 x) = in t s . t .P (y , Iu  I x) + P(yoIu I x) 2 a 

s,(a I X) = inf,s.t.P(y,Iu 1 x) + P(yo<u ( x ) -  1 2 a. 

Then 
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PROOF: By the upper bound on P(wm l u 1 x) in (1 I), 

Hence, r,(a 1 x) I %(a I x). By the lower bound on P(w,Iu I x) in (1 I), 

Hence, %(a 1 x) I s,(a I x). These bounds on %(a I X) are sharp because the bounds in (1 1) are 

sharp. 

Q.E.D. 

It is of interest to note that these bounds on quantiles of P(wm I x) are always informative both 

above and below. This is so even though the bound on P(w,lu I x) used to derive Corollary 1.1 is 

only informative above or below, the informative direction depending on the value of u. 



4. Restrictions on the Outcome Distribution 

In the course of proving Proposition 1, we showed that if P(ylcB f l  yocB I x) and P(ylcB U 

yocB I x) are known and if no restrictions are imposed on the treatment policy m, then inequality (7) 

provides a sharp bound on P(w,cB I x). One may sometimes have prior information that, when 

combined with empirical knowledge of [POI, I x),P(y, I x)], makes the bound (7) computable. This 

section presents three leading cases. 

4.1. INDEPENDENT OUTCOMES 

Suppose it is known that the outcomes y, and yo are statistically independent, conditional on 

x. Then 

Our second proposition follows immediately: 

Pro~osition 2: Let P(y, I x) and P(yo I x) be known. Let it be known that y, and yo are statistically 

independent, conditional on x. Then 

Whereas the bound obtained in Proposition 1 was generically one-sided, the present bound is 

generically two-sided. The new lower bound on P(w, I x) is informative whenever P(y,cB ( x) > 0 
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and P(yOcB I x) > 0. The upper bound is informative whenever P(y1cB I x) < 1 and P(yOcB I x) < 

1. 

Suppose that Y is the real line. By Proposition 2, 

for all u E R1. Corollary 2.1 inverts (15) to obtain sharp bounds on quantiles of P(w, I x). The 

proof uses the same argument as was applied to prove Corollary 1.1, and so is omitted. 

Corollary 2.1: Let P(y, I x) and P(yo ( x) be known. Let it be known that y, and yo are statistically 

independent, conditional on x. Let Y be the real line. Let 

r2(a ( X) = in6 s.t. P(y,<u I x) + P@,,su I x) - P(y,<u 1 x)P(yOlu 1 x) 2 cx 

s2(a 1 X) = inf, s.t. P (y , l u  ( x)P(y ,~u  I x) 2 a 

Then 

(16) r2(a ( x) 5 %(a 1 x) 5 s2(a 1 x). 

4.2. SHIFTED OUTCOMES 

Evaluation studies often assume that y1 and yo are not only statistically dependent but 

functionally dependent. It is especially common to assume that real-valued outcomes are shifted 

versions of one another; that is, 

for some 6 E R1. For example, see Heckman and Robb (1985) or Robinson (1989). 
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Suppose that (17) holds.' Knowledge of P(y, I x) and P(yo 1 x) implies knowledge of 6. So 

the joint distribution P(yl,yo ( x) is known and the bound (7) is computable. Thus, we have 

Pro~osition 3: Let P(yl I x) and P(yo 1 x) be known. Let Y be the real line. Let it be known that 

P(yl=yo+6 1 x) = 1, for some 6 e R1. Then 6 is identified and 

(18) P[(yo+6)eB n yoeB 1 x] I P(w,eB ( x) 

I P[(y0+6)€B ( x] + P(yoeB I x) - P[(yo+6)eB n yoeB 1 x]. 

When B = (-00 ,u], this bound takes a very simple form. Assume, without loss of generality, 

that 6 2 0. Then (18) becomes 

or, equivalently, 

(19') P(y1Iu 1 x) I P(w,Iu 1 x) I P(yoIu  ( x). 

Corollary 3.1 inverts (19') to obtain sharp bounds on quantiles of P(w, 1 x). 

-3.1: Let P(y, I x) and POr, I x) be known. Let Y be the real line. Let it be known that 

P(y, =yo+6 I x) = 1, for some 6 2 0. Let 

r3(a I x) = inf, s.t. P ( y O l u  I x) 2 CY 

s3(a I X) = inf, s.t. P ( y , l u  I x) 2 CY. 



Then 

4.3. ORDERED OUTCOMES 

Outcomes y, and yo are said to be ordered with respect to a given set B if yo almost always 

falls in B when y, does; that is, 

For example, let the outcomes be binary, taking the value 0 or 1. If P(yl =0  I x,yo=O) = 1, then the 

outcomes are ordered with respect to the set B = (0). As another example, suppose that the 

outcomes are real-valued and that 

Then y, and yo are ordered with respect to the sets B = (-a ,u], as y, 5 u * yo 5 u . ~  

The assumption of ordered outcomes might be invoked in analyzing a preschool educational 

intervention such as the Perry Preschool project. Let z, = 1 if a child receives the intervention and 

z, = 0 otherwise. Let the outcome of interest be high school graduation (1 = yes, 0 = no). One 

may believe that receiving the intervention cannot possibly diminish a child's prospects for 

graduation. If so, then any child who receives the intervention and does not graduate would not 

graduate in the absence of the intervention. That is, P&=O I x,yl=O) = 1. So the outcomes are 

ordered with respect to the set B = (0). 
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The assumption might also be invoked in analyzing a cancer treatment such as chemotherapy. 

Let z, = 1 if a patient is treated by chemotherapy and z, = 0 if by placebo. Let the outcome of 

interest be life-span following each treatment. If chemotherapy is never harmful, then y, r yo for all 

patients. 

If y, and yo are ordered with respect to B, then 

(23) P@,cB n yocB I x) = P@,eB I x), 

so the bound (7) is computable. In particular, we have 

-4: Let P(y, I x) and P(yo I x) be known. Let it be known that P(yocB I x,y,eB) = 1. 

Then 

(24) P(y1cB 1 x) I P(w,eB 1 x) I P(y,eB 1 x). H 

An interesting result emerges when (24) is applied to real-valued outcomes satisfying (22). 

Letting B = (-oo ,u], we find that (24) coincides with the bound (19') that holds when outcomes are 

known to be shifted. Thus, it turns out that assumptions (17) and (22) have the same identifying 

power.'O 



5. Restrictions on the Treatment Policy 

To prove Proposition 1, we constructed two extreme treatment policies, one minimizing 

P(wmeB 1 x) and one maximizing it (see equations 5 and 6). In this section, we examine the 

identifying power of prior information implying that m is not one of these extreme policies. 

5.1. TREATMENT INDEPENDENT OF OUTCOMES 

Suppose it is known that, under policy m, the treatment zm received by each person with 

covariates x is statistically independent of the person's outcomes @,,yo). That is, 

and 

(25b) P(yo 1 x) = P(yo 1 x,zm= 1) = P(yo 1 x,zm=O). 

Then equation (2) reduces to 

(26) P(w, I x) = P(yl I x)P(z,=l 1 x) + POr, 1 x)P(z,=O 1 x). 

If the fraction of the population receiving each treatment (i.e., P(z, I x)) is known, then 

P(wm I x) is identified. Our present concern, however, is with the situation in which (25) is the only 

prior information available. In this case, the only restriction on the treatment distribution is that 

P(z,= 1 ( x) and P(z,=O I x) must lie in the unit interval and add up to one. Hence, Proposition 5 

follows immediately: 
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Proposition 5: Let P(yl ( x) and P(yo 1 x) be known. Let it be known that z, is statistically 

independent of (y,,yo), conditional on x. Then 

(27) min[P(yleB ( x),P(yoeB I x)] l P(w,eB 1 x) 5 max[P(y,eB 1 x),P(yoeB I x)]. rn 

Observe that the present bound on P(w,cB I x) is a subset of the bound reported in 

Proposition 2, which assumed that y, and yo are statistically independent. This fact has a simple 

explanation. Equation (26) shows that, if z, is statistically independent of (y,,yo), then P(w, 1 x) 

depends on the distribution of (y,,yo) only through the two marginal distributions P(yl I x) and 

P(yo I x). Hence, if one knows that z, is independent of (y,,yo), then knowing that y, and yo are 

statistically independent adds no identifying power. 

Suppose that Y is the real line. The bound obtained in Proposition 5 can be inverted to 

produce the following bound on quantiles of P(w, I x): 

Corollary 5.1: Let P(y, I x) and P(yo 1 x) be known. Let it be known that z, is statistically 

independent of (y,,yo), conditional on x. Let Y be the real line. Let 

r,(a I X) = inf, s.t. max[P(yllu 1 x),P(yOsu ( x)] r a. 

s,(a I X) = inf, s.t. min[P(yl l u  1 x),P(yo l u  ( x)] r a. 

Then 

(28) r,(a 1 x) I %(a ( x) l s,(a 1 x). 
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5.2. TREATMENT A KNOWN FUNCTION OF THE OUTCOMES 

Suppose that, under policy m, the treatment z, received by each person with covariates x is a 

known function of the person's outcomes (yl,yo). That is, 

for some known function zm(.,.): YxY - (0,l). Assumption (29) is essentially the polar opposite of 

the independence assumption just examined in Section 5.1. It follows from (29) that the realized 

outcome wm is a known function of (yl,yo), namely 

Hence, P(w, ( x) is completely determined by the joint distribution of @,,yo). 

Clearly, P(wm I x) is identified if assumption (29) is combined with knowledge of the joint 

distribution of (yl,yo). For example, (29) might be combined with the assumption invoked in 

Proposition 2, where it was assumed that y, and yo are statistically independent, or with the 

assumption invoked in Proposition 3, where it was assumed that y, and yo are shifted outcomes. Our 

present concern, however, is with the situation in which (29) is the only prior information available. 

It appears difficult to characterize the identifying power of assumption (29) in general terms. 

Consider the event probability P(wmeB I x). By (30), 
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The restrictions on this probability implied by knowledge of [POI, I x),P(yo 1 x)] depend on the form 

of the set B and of the function %(.,.) determining treatment selection. 

On the other hand, it is easy to analyze two symmetric special cases often assumed in 

empirical studies. The remainder of this section focuses on these cases. 

SELECTION OF THE TREATMENT WITH THE SMALLERILARGER OUTCOME: One case is 

the competing risks model applied widely in survival analysis (see Kalbfleisch and Prentice, 1980). 

Here, Y is the real line and the treatment yielding the smaller outcome is selected, so 

At the other extreme, economic analyses of voluntary treatment policies often assume that the 

treatment yielding the larger outcome is selected, so 

In the labor-economics literature on occupation choice, assumption (33) is often called the Roy model 

(see Heckman and Honore, 1990). 

Proposition 6 gives sharp bounds for event probabilities of the form P(wm 5 u  ( x), assuming 

that (32) or (33) holds: 

Pro~osition 6: Let P(y, 1 x) and POI, I x) be known. Let Y be the real line. 

A. Let it be known that wm = min(yl,yo). Then 



B. Let it be known that w, = max(yl,yo). Then 

(35) max[O,P(yl < u  I x)+P(yo lu  I x)-1] I P(w,lu 1 x) 

I min[P(yl l u  1 x),P(yo I u  I x)]. . 
PROOF: 

A. In this case, 

The Frechet bound on P(yl S u n yo l u I x), given in (8), is 

max[O,P(y,lu I x)+P(y,lu 1 x)-1] I P ( y l l u  fl y o S u  I x) 

S min[P(y, l u  1 x),P(y,,lu I x)]. 

The result follows. 

B. Here 

P(w,lu 1 x) = P[max(y,,y,) l u  1 x] = P(yl su  n y o l u  1 x). 

So the result is an immediate application of Frechet bound (8). 

Q.E.D. 
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It is interesting to compare these bounds with those reported earlier under other assumptions. 

The lower bound on P(w, l u  ( x) under the assumption that w, = min(yl,yo) coincides with the 

upper bound under the assumption that treatment is independent of the outcomes (see Proposition 5). 

The new upper bound coincides with the upper bound in the absence of prior information (see 

Proposition 1). So the competing-risks model strongly constrains P(w, l u  1 x) from below but does 

not constrain it from above. 

Conversely, the lower bound on P(w, l u  1 x) under the assumption that w, = max(yl,yo) 

coincides with the lower bound in the absence of prior information (see Proposition 1). The new 

upper bound coincides with the lower bound under the assumption that treatment is independent of the 

outcomes (see Proposition 5). So the Roy model does not constrain P(w, l u  I x) from below but 

strongly constrains it from above. 

Corollary 6.1 inverts the bounds in Proposition 6 to produce bounds on quantiles of 

P(w, I 4. 

Corollarv 6.1: Let P(yl I x) and P(yo 1 x) be known. Let Y be the real line. 

A. Let it be known that w, = min(yl,yo). Then 

B. Let it be known that w, = max(yl,yo). Then 

(37) s5(a 1 x) I %(a 1 x) I sl(a 1 x). 
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5.3. KNOWN TREATMENT DISTRIBUTION 

Suppose that under policy m, a known fraction p of the persons with covariate value x receive 

treatment yo, the remaining fraction (1-p) receiving treatment y,. That is, 

where p is known. Also suppose that no information is available on the composition of the 

subpopulation receiving each treatment. 

For example, one treatment may be universally preferred to the other, but the available supply 

of the preferred treatment may suffice to treat only a fraction of the persons with covariates x. This 

fraction may be known, but the rule used to allocate the supply of the preferred treatment may not be 

known. 

Given (38), P(w, I x) may be written 

The distributions [P(y, ( x),P(y, 1 x)] identified by the experimental evidence may be written 

(40a) PO1 I x) = POI1 1 x,zm= l)(l-P) + P(y1 1 x,zm=0)p 

and 

(40b) P(yo ( x) = P(yo 1 x?zm=l)(l-p) + P(YO I x?zrn=O)p. 
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Knowledge of P(y, 1 x) and p restricts POI, I x,z,= 1) and P(y, I x,z,=O) to pairs of distributions that 

satisfy (40a); similarly, knowledge of P(yo I x) and p restricts P(yo I x,z,= 1) and P(yo I x,z,=O) to 

pairs of distributions that satisfy (40b). Examination of the feasible pairs shows that POI1 1 x,z,= 1) 

and POIo I x,z,=O) must lie in the following sets of distributions: 

and 

where * denotes the set of all distributions on Y. It follows that P(w, I x) is a (1-p,p) mixture of a 

distribution in *,,(p) and one in *,(p). That is, 

Relation (42) completely characterizes the restrictions on P(w, 1 x) implied by knowledge of 

[P(yl I x),P(yo ( x),P(z, 1 x)], but the characterization is not transparent. Horowitz and Manski 

(1992) have analyzed the sets *,,(p) and *,(p) in their recent study of the contaminated sampIing 

problem, whose formal structure is similar to the problem studied here. In particular, their Corollary 

1.2 proves the following sharp bounds on P(y,eB ( x,z,= 1) and PQ0eB I x,z,=O): 
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and 

This and (39) imply Proposition 7: 

Proposition 7: Let P(yl 1 x) and P(yo 1 x) be known. Let P(z,=O I x) = p, for known p. Then 

(44) max[O,P(y,eB 1 x)-p] + max[O,P(y,eB 1 x)-(l-p)] I P(w,eB 1 x) 

I min[l-p,P(y1eB I x)] + min[p,P(y,~B I x)]. . 
Inverting this bound yields Corollary 7.1. 

Corollary 7.1: Let P(yl 1 x) and POI, I x) be known. Let P(z,=O I x) = p, for known p. Let Y be 

the real line. Let 

r7,(a, I x) =- inf,, s.t. min[l-p,P(ylIu I x)] + min[p,P(y,<u I x)] 2 a, 

s,(a I x) = in& s.t. max[O,P(yl l u  ( x)-p] + max[O,P(y, I u  ( x)-(l-p)] 2 a .  

Then 
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EXPERIMENTAL EVIDENCE ON ONE TREATMENT: Throughout this paper, I have assumed 

that experimental evidence is available for both treatments. Suppose now that such evidence is 

available for only one treatment, say treatment 1; so P(y, ( x) is known and P(yo I x) is u~estricted. 

In the absence of information on the fraction of the population receiving each treatment, nothing can 

be learned about P(wm 1 x). After all, P(zm=O ( x) = 1 might hold, in which case P(w, ( x) = 

P(yo I x). On the other hand, inference on P(wm I x) is possible if the treatment distribution is 

known. Proposition 8 and Corollary 8.1 provide the results. 

Pro~osition 8: Let P(y, ( x) be known. Let P(zm=O I x) = p, for known p. Then 

PROOF: The present problem is a mirror image of the corrupted sampling problem studied by 

Horowitz and Manski (1992). There the concern was to characterize the restrictions on P(yl I x) 

implied by knowledge of P(w, 1 x) and p. Inspection of (39) and (40a) shows that the two problems 

are formally equivalent. So Corollary 1.2 of Horowitz and Manski (1992) gives the result. 

Q.E.D. 

Corollary 8.1: Let P(yl 1 x) be known. Let P(z,=O ( x) = p, for known p. Let Y be the real line. 

Let 

rgp(a ( X) = in& s.t. min[P(y,lu 1 x)+p,l] 2 a 

sSp(a 1 X) = inf, s.t. max[O,P(y, ~u I x)-p] 2 a. 

Then 



The lower bound on P(w,eB I x) is informative if P(y,eB I x) > p; the upper bound is 

informative if P(y,eB I x) < 1- p. When the bound is informative both above and below, it restricts 

P(w,eB I x) to an interval of width 2p, centered at P(y,eB I x). In contrast to the case when 

experimental evidence is available for both treatments, the present bounds on quantiles are not always 

informative. The lower bound on %(a I x) is informative if p < a; the upper bound is informative 

i f p  < 1 -a .  

5.4. ASSUMPTIONS IDENTIFYING THE OUTCOME DISTRIBUTION 

Propositions 1 through 8 assume enough empirical evidence and prior information to bound 

event probabilities P(w,eB 1 x), but not enough to identify them. In Section 5.1 and 5.2, we noted in 

passing some assumptions that do suffice to identify P(w,eB ( x). Proposition 9 presents these simple 

findings formally. 

Provosition 9: Let P(y, I x) and P(yo I x) be known. 

A. Let z, = z,(y,,y,) for some known function z,(.,.): YxY -. (0, l) .  Let it be known that 

y, and yo are either statistically independent, shifted, or ordered outcomes, conditional on x. Then 

is identified. 

B. Let it be known that z, is statistically independent of (yl,yo), conditional on x. Let 

P(z,=O I x) = p, for known p. Then 



is identified. 



3 1 

Notes 

'In practice there often are multiple feasible treatments, but this paper restricts attention to the 

two-treatment case assumed in most of the literature. It is common to call one of these the 

"treatment" or "experiment," and the other the "control." 

'Of course, one might observe realizations under more than one policy. Most work on selection 

problems has focused on the case in which only one policy is observed. 

T h e  mixing problem should not be confused with the converse problem: What does knowledge 

of P[ylzm+yo(l-zJ 1 x] imply about [P(yl ( x),P(yo I x),P(zm I x)]? The latter is sometimes referred 

to as a mixture problem. 

4A more demanding technical challenge, not addressed here, is to determine the identifiability of 

the conditional mean E(wm I x). 

5Not all forms of prior information have identifying power. Restrictions on [P(yl ( x),P(y, 1 x)] 

are superfluous, as these distributions are identified by the experimental evidence. Such restrictions 

may improve the precision of sample estimates of [P(yl I x),P(yo ( x)]. This usage is distinct from the 

identification concerns of the present paper. 

61t would be easy to take sampling error into account. All of the estimated bounds on 

P(wm= 1 I x) reported in Table 1 are smooth functions of the estimates of [POI, = 1 I x),P(y,,= 1 ( x)], 

which are based on sample sizes of fifty-eight and sixty-three respectively. Conventional sampling 

confidence bands can be placed around the estimates in Table 1. Manski et al. (1992) presents 

confidence bands of this kind in an empirical study concerned with the selection problem. 

7See Ord (1972) for a brief exposition of the Frechet bounds, and Ruschendorf (1981) for a rather 

general analysis. 
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'Experimental evidence makes the shifted-outcome assumption a testable hypothesis. If (17) 

holds, the known distributions P(y, I x) and P(yo I x) must be the same up to a translation of location. 

In contrast, the statistical independence assumption of the preceding section is not testable, as it 

implies no restrictions on P(y, I x) and P(yo 1 x). 

?Experimental evidence makes the ordered-outcomes assumption a testable hypothesis. If (21) 

holds, P(y0eB I x) must be at least as large as P(y,eB 1 x). 

10Assumptions (17) and (22) are not formally equivalent; they just have the same identifying 

power in the present setting. In the context of the selection problem, the two assumptions have 

different implications. See Manski (1993). 
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