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IRP Lectures Madison, WI, August 2008

Lecture 8, Tuesday, Aug 5th, 10.00-11.15am

Discrete Choice Models

1. Introduction

In this lecture we discuss multinomial discrete choice models. The modern literature

on these models goes back to the work by Daniel McFadden in the seventies and eighties,

(McFadden, 1973, 1981, 1982, 1984). In the nineties these models received much attention in

the Industrial Organization literature, starting with Berry (1994), Berry, Levinsohn, Pakes

(1995, BLP), and Goldberg (1995). In the IO literature the applications focused on demand

for differentiated products, in settings with relatively large numbers of products, some of

them close substitutes. In these settings a key feature of the conditional logit model, namely

the Independence of Irrelevant Alternatives (IIA), was viewed as particularly unattractive.

Three approaches have been used to deal with this. Goldberg (1995) used nested logit models

to avoid the IIA property. McCulloch and Rossi (1994), and McCulloch, Polson and Rossi

(2000) studied multinomial probit models with relatively unrestricted covariance matrices

for the unobserved components. BLP, McFadden and Train (2000) and Berry, Levinsohn

and Pakes (2004) uses random effects or mixed logit models, in BLP in combination with

unobserved choice characteristics and using methods that allow for estimation using only ag-

gregate choice data. The BLP approach has been very influential in the subsequent empirical

IO literature.

Here we discuss these models. We argue that the random effects approach to avoid IIA is

indeed very attractive, both substantively and computationally, compared to the nested logit

or unrestricted multinomial probit models. In addition to the use of random effects to avoid

the IIA property, the inclusion in the BLP methodology of unobserved choice characteristics,

and the ability to estimate the models with market share rather than individual level data

makes their methods very flexible and widely applicable. We discuss extensions to the BLP

set up allowing multiple unobserved choice characteristics, and the richness required for these
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models to rationalize general choice data based on utility maximization. We also discuss the

potential benefits of using Bayesian methods.

2. Multinomial and Conditional Logit Models

First we briefly review the multinomial and conditional logit models.

2.1 Multinomial Logit Models

We focus on models for discrete choice with more than two choices. We assume that

the outcome of interest, the choice Yi takes on non-negative, un-ordered integer values

between zero and J ; Yi ∈ {0, 1, . . . , J}. Unlike the ordered case there is no particular

meaning to the ordering. Examples are travel modes (bus/train/car), employment status

(employed/unemployed/out-of-the-laborforce), car choices (suv, sedan, pickup truck, con-

vertible, minivan), and many others.

We wish to model the distribution of Y in terms of covariates. In some cases we will

distinguish between covariates Zi that vary by units (individuals or firms), and covariates

that vary by choice (and possibly by individual), Xij . Examples of the first type include

individual characteristics such as age or education. An example of the second type is the

cost associated with the choice, for example the cost of commuting by bus/train/car, or the

price of a product, or the speed of a computer chip. This distinction is important from

the substantive side of the problem. McFadden developed the interpretation of these models

through utility maximizing choice behavior. In that case we may be willing to put restrictions

on the way covariates affect utilities: characteristics of a particular choice should affect the

utility of that choice, but not the utilities of other choices.

The strategy is to develop a model for the conditional probability of choice j given the

covariates. Suppose we only have individual-specific covariates, and the model is Pr(Yi =

j|Zi = z) = Pj(z; θ). Then the log likelihood function is

L(θ) =

N∑

i=1

J∑

j=0

1{Yi = j} · lnPj(Zi; θ).
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A natural extension of the binary logit model is to model the response probability as

Pr(Yi = j|Zi = z) =
exp(z′γj)

1 +
∑J

l=1
exp(z′γl)

,

for choices j = 1, . . . , J and

Pr(Yi = 0|Zi = z) =
1

1 +
∑J

l=1
exp(z′γl)

,

for the first choice. The γl here are choice-specific parameters. This multinomial logit model

leads to a very well-behaved likelihood function, and it is easy to estimate using standard

optimization techniques. Interestingly, it can be viewed as a special case of the following

conditional logit.

2.2 Conditional Logit Models

Suppose all covariates vary by choice (and possibly also by individual, but that is not

essential here). Then McFadden proposed the conditional logit model:

Pr(Yi = j|Xi0, . . . , XiJ ) =
exp(X ′

ijβ)
∑J

l=0
exp(X ′

ilβ)
,

for j = 0, . . . , J . Now the parameter vector β is common to all choices, and the covariates

are choice-specific.

The multinomial logit model can be viewed as a special case of the conditional logit

model. Suppose we have a vector of individual characteristics Zi of dimension K, and J

vectors of coefficients γj , each of dimension K. Then define for choice j, j = 1, . . . , J , the

vector of covariates Xij as the vector of dimension K × J , with all elements equal to zero

other than the elements K × (j − 1) + 1 to K × j which are equal to Zi:

Xi1 =




Zi

0
...
...
0




, . . . Xij =




0
...

Zi

...
0




, . . . XiJ =




0
...
...
0
Zi




, and Xi0 =




0
...
0
...
0




,
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and define the common parameter vector β, of dimension K · J , as

β =




γ1

γ2

...
γJ


 .

Then

Pr(Yi = j|Zi) =
exp(Z ′

iγj)

1 +
∑J

l=1
exp(Z ′

iγl)
=

exp(X ′

ijβ)
∑J

l=0
exp(X ′

ilβ)
= Pr(Yi = j|Xi0, . . . , XiJ),

for j = 1, . . . , J , and

Pr(Yi = 0|Zi) =
1

1 +
∑J

l=1
exp(Z ′

iγl)
=

exp(X ′

i0β)∑J

l=0
exp(X ′

ilβ)
= Pr(Yi = 0|Xi0, . . . , XiJ ).

2.3 Link with Utility Maximization

McFadden motivates the conditional logit model by extending the single latent index

model to multiple choices. Suppose that the utility, for individual i, associated with choice

j, is

Uij = X ′

ijβ + εij. (1)

Furthermore, let individual i choose option j (so that Yi = j) if choice j provides the highest

level of utility, or

Yi = j if Uij ≥ Uil for all l = 0, . . . , J,

(ties have probability zero because of the continuity of the distribution for ε).

Now suppose that the εij are independent accross choices and individuals and have type

I extreme value distributions. Then the choice Yi follows the conditional logit model. The

type I extreme value distribution has cumulative distribution function

F (ε) = exp(− exp(−ε)), and pdf f(ε) = exp(−ε) · exp(− exp(−ε)).
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This distribution has a unique mode at zero, a mean equal to 0.58, and a a second moment

of 1.99 and a variance of 1.65. See Figure 1 for the probability density function and the

comparison with the normal density. Note the assymmetry of the distribution.

Given the extreme value distribution the probability of choice 0 is

Pr(Yi = 0|Xi0, . . . , XiJ ) = Pr(Ui0 > Ui1, . . . , Ui0 > UiJ )

= Pr(εi0 + X ′

i0β − X ′

i1β > εi1, . . . , εi0 + X ′

i0β − X ′

iJβ > εiJ)

=

∫
∞

−∞

∫ εi0+X ′

i0
β−X ′

i1
β

−∞

. . .

∫ εi0+X ′

iJ
β−X ′

iJ
β

−∞

f(εi0) . . . f(εiJ )dεiJ . . . , dεi0

=

∫
∞

−∞

exp(−ε0i) exp(− exp(−ε0i) · exp(− exp(−εi0 − X ′

i0β + X ′

i1β)) . . .

× exp(− exp(−εi0 − X ′

i0β + X ′

iJβ))dεi0

=

∫
∞

−∞

exp(−ε0i) exp
[
− exp(−ε0i) − exp(−εi0 − X ′

i0β + X ′

i1β)) . . .

− exp(−εi0 − X ′

i0β + X ′

iJβ)
]
dεi0

=
exp(X ′

i0β)∑J

j=0
exp(X ′

j0β)
.

To see the different steps in this derivation note that

∫ c

−∞

exp(−ε) · exp(− exp(−ε))dε = F (c) = exp(− exp(−c)),

for the extreme value distribution. Also,

∫
∞

−∞

exp(−ε) · exp(− exp(−ε− c))dε
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=

∫
∞

−∞

exp(−η + c) · exp(− exp(−η))dη

= exp(c) ·

∫
∞

−∞

exp(−η) · exp(− exp(−η))dη = exp(c),

by change of variables, which we apply with

c = − ln (1 + exp(X ′

i1β − X ′

i0β) + . . . + exp(X ′

iJβ −X ′

i0β)) .

3. Independence of Irrelevant Alternatives

The main problem with the conditional logit is the property of Independence of Irrelevant

Alternative (IIA). Consider the conditional probability of choosing j given that you choose

either j or l:

Pr(Yi = j|Yi ∈ {j, l}) =
Pr(Yi = j)

Pr(Yi = j) + Pr(Yi = l)
=

exp(X ′

ijβ)

exp(X ′

ijβ) + exp(X ′

ilβ)
.

This probability does not depend on the characteristics Xim of alternatives m other than j

and l. This is sometimes unattractive. The traditional example is McFadden’s famous blue

bus/red bus example. Suppose there are initially three choices: commuting by car, by red

bus or by blue bus. It would seem reasonable be to assume that people have a preference

over cars versus buses, but are indifferent between red versus blue buses. One could capture

this by assuming that

Ui,redbus = Ui,bluebus,

with the choice between the blue and red bus being random. So, to be explicit, suppose that

Xi,bluebus = Xi,redbus = Xi,bus. Then suppose that the probability of commuting by bus is

Pr(Yi = bus) = Pr(Yi = redbus or bluebus) =
exp(X ′

i,busβ)

exp(X ′

i,bus
β) + exp(X ′

i,carβ)
,
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and the probability of choosing a red bus or blue bus, conditional on choosing a bus, is

Pr(Yi = redbus|Yi = bus) =
1

2
.

That would imply that the conditional probability of commuting by car, given that one

commutes by car or red bus, would differ from the same conditional probability if there is

no blue bus. Presumably taking away the blue bus choice would lead all the current blue

bus users to shift to the red bus, and not to cars.

The conditional logit model does not allow for this type of substitution pattern. Another

way of stating the problems with the conditional logit model is to say that it generates

unrealistic substitution patterns. Let us make that argument more specific. Suppose that

individuals have the choice out of three Berkeley restaurants, Chez Panisse (C), Lalime’s (L),

and the Bongo Burger (B). Suppose the two characteristics of the restaurants are price with

PC = 95, PL = 80, and PB = 5, and quality, with QC = 10, QL = 9, and QB = 2. Suppose

that market shares for the three restaurants are SC = 0.10, SL = 0.25, and SB = 0.65. These

numbers are roughly consistent with a conditional logit model where the utility associated

with individual i and restaurant j is

Uij = −0.2 · Pj + 2 · Qj + εij,

with independent extreme value εij, and individuals go to the restaurant with the highest

utility. Now suppose that we raise the price at Lalime’s to 1000 (or raise it to infinity,

corresponding to taking it out of business). In that case the prediction of the conditional

logit model is that the market shares for Chez Panisse and the Bongo Burger go to S̃C = 0.13

and S̃B = 0.87. That seems implausible. The people who were planning to go to Lalime’s

would appear to be more likely to go to Chez Panisse if Lalime’s is closed than to go to the

Bongo Burger, and so one would expect S̃C ≈ 0.35 and S̃B ≈ 0.65. The model on the other

hand predicts that most of the individuals who would have gone to Lalime’s will now dine

(if that is the right term) at the Bongo Burger.
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Recall the latent utility set up with the utility for individual i and choice j equal to

Uij = X ′

ijβ + εij. (2)

In the conditional logit model we assume independent εij with extreme value distributions.

This is essentially what creates the IIA property. (This is not completely correct, because

other distributions for the unobserved, say with normal errors, we would not get IIA exactly,

but something pretty close to it.) The solution is to allow in some fashion for correlation

between the unobserved components in the latent utility representation. In particular, with

a choice set that contains multiple versions of essentially the same choice (like the red bus

or the blue bus), we should allow the latent utilities for these choices to be identical, or at

least very close. In order to achieve this the unobserved components of the latent utilities

would have to be highly correlated for those choices. This can be done in a number of ways.

4. Models without Independence of Irrelevant Alternatives

Here we discuss three ways of avoiding the IIA property. All can be interpreted as relax-

ing the independence between the unobserved components of the latent utility. All of these

originate in some form or another in McFadden’s work (e.g., McFadden, 1981, 1982, 1984).

The first is the nested logit model where the researcher groups together sets of choices. In

the simple version with a single layer of nests this allows for non-zero correlation between

unobserved components of choices within a nest and maintains zero correlation between the

unobserved components of choices in different nests. Second, the unrestricted multinomial

probit model with no restrictions on the covariance between unobserved components, beyond

normalizations. Third, the mixed or random coefficients logit where the marginal utilities

associated with choice characteristics are allowed to vary between individuals. This gener-

ates positive correlation between the unobserved components of choices that are similar in

observed choice characteristics.

4.1 Nested Logit

One way to induce correlation between the choices is through nesting them. Suppose the
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set of choices {0, 1, . . . , J} can be partitioned into S sets B1, . . . , BS, so that the full set of

choices can be written as

{0, 1, . . . , J} = ∪S
s=1Bs.

Let Zs be set-specific characteristics. (It may be that the set of set specific variables is

empty, or just a vector of indicators, with Zs an S-vector of zeros with a one for the sth

element.) Now let the conditional probability of choice j given that your choice is in the set

Bs, or Yi ∈ Bs be equal to

Pr(Yi = j|Xi, Yi ∈ Bs) =
exp(ρ−1

s X ′

ijβ)∑
l∈Bs

exp(ρ−1
s X ′

ilβ)
,

for j ∈ Bs, and zero otherwise. In addition suppose the marginal probability of a chocie in

the set Bs is

Pr(Yi ∈ Bs|Xi) =
exp(Z ′

sα)
(∑

l∈Bs
exp(ρ−1

s X ′

ilβ)
)ρs

∑S

t=1
exp(Z ′

tα)
(∑

l∈Bt
exp(ρ−1

t X ′

ilβ)
)ρs

.

If we fix ρs = 1 for all s, then

Pr(Yi = j|Xi) =
exp(X ′

ijβ + Z ′

sα)
∑S

t=1

∑
l∈Bt

exp(X ′

ilβ + Ztα)
,

and we are back in the conditional logit model.

In general this model corresponds to individuals choosing the option with the highest

utility, where the utility of choice j in set Bs for individual i is

Uij = X ′

ijβ + Z ′

sα + εij,

where the joint distribution function of the εij is

F (εi0, . . . , εiJ) = exp

(
−

S∑

s=1

(∑

j∈Bs

exp
(
−ρ−1

s εij

)
)ρs
)

.
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Within the sets the correlation coefficient for the εij is approximately equal to 1−ρ. Between

the sets the εij are independent.

The nested logit model could capture the blue bus/red bus example by having two nests,

the first B1 = {redbus, bluebus}, and the second one B2 = {car}.

How do you estimate these models? One approach is to construct the log likelihood

and directly maximize it. That is complicated, especially since the log likelihood function

is not concave, but it is not impossible. An easier alternative is to directly use the nesting

structure. Within a nest we have a conditional logit model with coefficients β/ρs. Hence

we can directly estimate β/ρs using the concavity of the conditional logit model. Denote

these estimates of β/ρs by β̂/ρs. Then the probability of a particular set Bs can be used to

estimate ρs and α through

Pr(Yi ∈ Bs|Xi) =
exp(Z ′

sα)
(∑

l∈Bs
exp(X ′

ilβ̂/ρs)
)ρs

∑S

t=1
exp(Z ′

tα)
(∑

l∈Bt
exp(X ′

ilβ̂/ρt)
)ρs

=
exp(Z ′

sα + ρsŴs)∑S

t=1
exp(Z ′

tα + ρtŴt)
,

where

Ŵs = ln

(∑

l∈Bs

exp(X ′

ilβ̂/ρs)

)
,

known as the “inclusive values”. Hence we have another conditional logit model back that

is easily estimable. These two-step estimators are not efficient. The variance/covariance

matrix is provided in McFadden (1981).

These models can be extended to many layers of nests. See for an impressive example

of a complex model with four layers of multiple nests Goldberg (1995). Figure 2 shows the

nests in the Goldberg application. The key concern with the nested logit models is that

results may be sensitive to the specification of the nest structure. The researcher chooses

the choices that are potentially close, with the data being used to estimate the amount of

correlation. In contrast, in the random effects models, choices can only be close if they are

close in terms of observed choice characteristics, with the data being used to estimate the
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relative importance of the various choice characteristics. In that sense the nested logit model

can be more flexible, allowing the researcher to group together choices that are far apart in

terms of observed choice characteristics, but it is more demanding in requiring the researcher

to make these decisions a priori.

4.2 Multinomial Probit

A second possibility is to directly free up the covariance matrix of the error terms. This

is more natural to do in the multinomial probit case. See McCulloch and Rossi (1994)

McCulloch, Polson, and Rossi (2000) for general discussion.

We specify:

Ui =




Ui0

Ui1

...
UiJ


 =




X ′

i0β + εi0

X ′

i1β + εi1

...
X ′

iJβ + εiJ


 ,

with

εi =




εi0

εi1

...
εiJ



∣∣∣Xi ∼ N (0, Ω),

for some relatively unrestricted (J + 1) × (J + 1) covariance matrix Ω. We do need some

normalizations on Ω beyond symmetry. Recall that in the binary choice case (which corre-

sponds to J = 1) there were no free parameters in the distribution of ε, which implies three

restrictions on the symmetric matrix Ω.

In principle we can derive the probability for each choice given the covariates, construct

the likelihood function based on that, and maximize it using an optimization algorithm like

Davidon-Fletcher-Powell (Gill, Murray, and Wright, 1981) or something similar. In practice

this is very difficult with J ≥ 3. Evaluating the probabilities involves calculating a third

order integral involving normal densities. This is difficult to to using standard integration

methods. There are two alternatives.
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There is a substantial literature on simulation methods for computing estimates in these

models. See for an early example Manski and Lerman (1981), general studies McFadden

(1989), and Pakes and Pollard (1989), and Hajivassiliou and Ruud (1994) for a review.

Geweke, Keane, and Runkle (1994) and Hajivasilliou and McFadden (1990) proposed a way

of calculating the probabilities in the multinomial probit models that allowed researchers to

deal with substantially larger choice sets. A simple attempt to estimate the probabilities

would be to draw the εi from a multivariate normal distribution and calculate the probability

of choice j as the number of times choice j corresponded to the highest utility. This does

not work well in cases with many (more than four) choices. The Geweke-Hajivasilliou-

Keane (GHK) simulator uses a more complicated procedure that draws sequentially and

combines the draws with the calculation of univariate normal integrals so that the resulting

probabilities are smooth in the parameters.

From a Bayesian perspective drawing from the posterior distribution of β and Ω is

straightforward. The key is setting up the vector of unobserved random variables as

θ = (β, Ω, Ui0, . . . , UiJ ) ,

and defining the most convenient partition of this vector. Suppose we know the latent

utilities Ui for all individuals. Then the normality makes this a standard linear model

problem, and we can sample sequentially from β|Ω and Ω|β given the appropriate conjugate

prior distributions (normal for β and inverse Wishart for Ω). Given the parameters drawing

from the unobserved utilities can be done sequentially: for each unobserved utility given the

others we would have to draw from a truncated normal distribution, which is straightforward.

See McCulloch, Polson, and Rossi (2000) for details.

The attraction of this approach is that there are no restrictions on which choices are

close. In contrast, in the nested logit approach the researcher specifies which choices are

potentially close, and in the random effects approach only choices that are close in terms of

observed choice characteristics can be close. The difficulty, however, with the unrestricted

multinomial probit approach is that with a reasonable number of chocies this frees up a
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large number of parameters (all elements in the (J + 1) × (J + 1) dimensional covariance

matrix of latent utilities, minus some that are fixed by normalizations.) Estimating all these

covariance parameters precisely, based on only first choice data (as opposed to data where

we know for each individual additional orderings, e.g., first and second choices), is difficult

with the sample sizes typically available.

4.3 Random Coefficient (Mixed) Logit (or Probit)

A third possibility to get around the IIA property is to allow for unobserved heterogeneity

in the slope coefficients. This is a very natural idea. Why do we fundamentally think that if

Lalime’s price goes up, the individuals who were planning to go Lalime’s go to Chez Panisse

instead, rather than to the Bongo Burger? The reason is that we think individuals who

have a taste for Lalime’s are likely to have a taste for close substitute in terms of observable

characteristics, Chez Panisse as well, rather than for the Bongo Burger.

We can model this by allowing the marginal utilities to vary at the individual level:

Uij = X ′

ijβi + εij,

where the εij are again independent of everything else, and of each other, either extreme

value, or normal. We can also write this as

Uij = X ′

ijβ + νij,

where

νij = ε +ij +Xij · (βi − β),

which is no longer independent across choices. The key ingredient is the vector of individual

specific taste parameters βi. See for a general discussion of such models and their properties

in approximating general choice patterns McFadden and Train (2000). One possibility is to
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assume the existence of a finite number of types of individuals, similar to the mixture models

used by Heckman and Singer (1984) in duration settings:

βi ∈ {b0, b1, . . . , bK},

with

Pr(βi = bk|Zi) = pk, or Pr(βi = bk|Zi) =
exp(Z ′

iγk)

1 +
∑K

l=1
exp(Z ′

iγl)
.

Here the taste parameters take on a finite number of values, and we have a finite mixture. We

can use either Gibbs sampling with the indicator of which mixture an observations belongs

to as an unobserved random variable, or use the EM algorithm (Dempster, Laird, and Rubin,

1977).

Alternatively we could specify

βi|Zi ∼ N (Z ′

iγ, Σ),

where we use a normal (continuous) mixture of taste parameters. Just evaluating the likeli-

hood function would be very difficult in this setting if there is a large number of choices. This

would involve integrating out the random coefficients which could be very computationally

intensive. See McFadden and Train (2000). Using Gibbs sampling with the unobserved βi

as additional unobserved random variables may be an effective way of doing inference.

5. Berry-Levinsohn-Pakes

Here we consider again random effects logit models. BLP extended these models to allow

for unobserved product characteristics, endogeneity of choice characteristics, and developed

methods that allowed for consistent estimation without individual level choice data. Their

approach has been widely used in Industrial Organization, where it is used to model demand

for differentiated products, often in settings with a large number of products. See Nevo

(2000) and Ackerberg, Benkard, Berry, and Pakes (2005) for reviews and references.
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Compared to the earlier examples we have looked at there is an emphasis in this study,

and those that followed it, on the large number of goods and the potential endogeneity of

some of the product characteristics. (Typically one of the regressors is the price of the good.)

In addition the procedure only requires market level data. We do not need individual level

purchase data, just market shares and estimates of the distribution of individual characteris-

tics by market. In practice we need a fair amount of variation in these things to estimate the

parameters well, but in principle this is less demanding in terms of data required. On the

other hand, we do need data by market, where before we just needed individual purchases

in a single market (although to identify price effects we would need variation in prices by

individuals in that case).

The data have three dimensions: products, indexed by j = 0, . . . , J , markets, t =

1, . . . , T , and individuals, i = 1, . . . , Nt. We only observe one purchase per individual.

The large sample approximations are based on large N and T , and fixed J .

Let us go back to the random coefficients model, now with each utility indexed by indi-

vidual, product and market:

Uijt = β ′

iXjt + ζjt + εijt.

The ζjt is a unobserved product characteristic. This component is allowed to vary by market

and product. It can include product and market dummies (for example, we can have ζjt =

ζj + ζt). Unlike the observed product characteristics this unobserved characteristic does not

have a individual-specific coefficient. The inclusion of this component allows the model to

rationalize any pattern of market shares. The observed product characteristics may include

endogenous characteristics like the price.

The εijt unobserved components have extreme value distributions, independent across all

individuals i, products j, and markets t.

The random coefficients βi, with dimension equal to that of the observable characteristics

Xjt, say K, are assumed to be related to individual observable characteristics. We postulate
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the following linear form:

βi = β + Z ′

iΓ + ηi,

with

ηi|Zi ∼ N (0, Σ).

So if the dimension of Zi is L× 1, then Γ is a L×K matrix. The Zi are normalized to have

mean zero, so that the β’s are the average marginal utilities. The normality assumption

is not necessary, and unlikely to be important. Other distributional assumptions can be

substituted.

BLP developed an approach to estimate models of this type that does not require in-

dividual level data. Instead it exploits aggregate (market level) data in combination with

estimates of the distribution of Zi. Specifically the data consist of estimated shares ŝtj for

each choice j in each market t, combined with observations from the marginal distribution

of individual characteristics (the Zi’s) for each market, often from representative data sets

such as the CPS.

First write the latent utilities as

Uijt = δjt + νijt + εijt,

where

δjt = β ′Xjt + ζjt, and νijt = (Z ′

iΓ + ηi)
′Xjt.

Now consider for fixed Γ and Σ and δjt the implied market share for product j in market

t, sjt. This can be calculated analytically in simple cases. For example with Γjt = 0 and

Σ = 0, the market share is a very simple function of the δjt:

sjt(δjt, Γ = 0, Σ = 0) =
exp(δjt)∑J
l=0

exp(δlt)
.
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More generally, this is a more complex relationship. We can always calculate the implied

market share by simulation: draw from the distribution of Zi in market t, draw from the

distribution of ηi, and calculate the implied purchase probability (or even simulate the im-

plied purchase by also drawing from the distribution of εijt). Do that repeatedly and you

will be able to calculate the market share for this product/market. Call the vector function

obtained by stacking these functions for all products and markets s(δ, Γ, Σ).

Next, fix only Γ and Σ. For each value of δjt we can find the implied market share. Now

find the vector of δjt such that the implied market shares are equal to the observed market

shares ŝjt for all j, t. BLP suggest using the following algorithm. Given a starting value for

δ0
jt, use the updating formula:

δk+1
jt = δk

jt + ln sjt − ln sjt(δ
k, Γ, Σ).

BLP show this is a contraction mapping, and so it defines a function δ(s, Γ, Σ) expressing the

δ as a function of observed market shares, and parameters Γ and Σ. In order to implement

this, one needs to approximate the implied market shares accurately for each iteration in the

contraction mapping, and then you will need to do this repeatedly to get the contraction

mapping to converge.

Note that does require that each market share is accurately estimated. If all we have is

an estimated market share, then even if this is unbiased, the procedures will not necessarily

work. In that case the log of the estimated share is not unbiased for the log of the true share.

In practice the precision of the estimated market share is so much higher than that of the

other parameters that this is unlikely to matter.

Given this function δ(s, Γ, Σ) define the residuals

ωjt = δjt(s, Γ, Σ) − β ′Xjt.

At the true values of the parameters and the true market shares this is equal to the unob-

served product characteristic ζjt.
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Now we can use GMM or instrumental variable methods. We assume that the unobserved

product characteristics are uncorrelated with observed product characteristics (other than

typically price). This is not sufficient since the observed product characteristics enter directly

into the model. We need more instruments, and typically use things like characteristics of

other products by the same firm, or average characteristics by competing products. The

general GMM machinery will also give us the standard errors for this procedure. This is

where the method is most challenging. Finding values of the parameters that set the average

moments closest to zero can be difficult.

It is instructive to see what this approach does if we in fact have, and know we have, a

conditional logit model with fixed coefficients. In that case Γ = 0, and Σ = 0. Then we can

invert the market share equation to get the market specific unobserved choice-characteristics

δjt = ln sjt − ln s0t,

where we set δ0t = 0. (this is typically the outside good, whose average utility is normalized

to zero). The residual is

ζjt = δjt − β ′Xjt = ln sjt − ln s0t − β ′Xjt.

With a set of instruments Wjt, we run the regression

ln sjt − ln s0t = β ′Xjt + εjt,

using Wjt as instrument for Xjt, using as the observational unit the market share for product

j in market t.

So here the technique is very transparent. It amounts to transforming the market shares

to something linear in the coefficients so we can use two-stage-least-squares. More generally

the transformation is going to be much more difficult with the random coefficients implying

that there is no analytic solution. Computationally these things can get very complicated.

Note however that we can estimate these models now without having individual level data,
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and that at the same time we can get a fairly flexible model for the substitution patterns.

At the same time you would expect to need a lot of structure to get the parameters precisely

estimated just as in the other models. Of course if you compare the current model to the

nested logit model you can impose such structure by imposing restrictions on the covariance

matrix.

Comparisons of the models are difficult. Obviously if the structure imposed is correct it

helps, but we typically do not know what the truth is, so we cannot conclude which one is

better on the basis of the data typically available.

6. Models with Multiple Unobserved Choice Characteristics

The BLP approach allows for a single unobserved choice characteristic. This is essential

for their estimation strategy that requires only market share data, and exploits a one-to-one

relationship between market-specific unobserved product characteristics and market shares

given other parameters and covariates. With individual level data one may be able to, and

wish to allow for, multiple unobserved product characteristics. Elrod and Keane (1995),

Goettler and Shachar (2001), and Athey and Imbens (2007), among others, study such

models, in all cases with the unobserved choice characteristics constant across markets.

Athey and Imbens model the latent utility for individual i in market t for choice j as

Uijt = X ′

itβi + ζ ′

jγi + εijt,

with the individual-specific taste parameters for both the observed and unobserved choice

characteristics normally distributed:

(
βi

γi

)
|Zi ∼ N (∆Zi, Ω).

Even in the case with all choice characteristics exogenous, maximum likelihood estimation

would be difficult. Athey and Imbens show that Bayesian methods, and in particular markov-

chain-monte-carlo methods are effective tools for conducting inference in these settings.
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7. Hedonic Models and the Motivation for a Choice and Individual Specific

Error Term

Recently researchers have reconsidered using pure characteristics models for discrete

choices, that is models with no idiosyncratic error εij, instead relying solely on the presence

of a few unobserved product characteristics and unobserved variation in taste parameters

to generate stochastic choices. Such an error term is the only source of stochastic variation

in the original multinomial choice models with only observed choice and individual charac-

teristics, but in models with unobserved choice and individual characteristics their presence

needs more motivation. Athey and Imbens (2007) discuss two arguments for including the

additive error term.

First, the pure characteristics model can be extremely sensitive to measurement error,

because it can predict zero market shares for some products. Consider a case where choices

are generated by a pure characteristics model that implies that a particular choice j has

zero market share. Now suppose that there is a single unit i for whom we observe, due to

measurement error, the choice Yi = j. Irrespective of the number of correctly measured ob-

servations available that were generated by the pure characteristics model, the estimates of

the latent utility function will not be close to the true values corresponding to the pure char-

acteristics model due to the single mismeasured observation. Such extreme sensitivity puts

a lot of emphasis on the correct specification of the model and the absence of measurement

error, and is undesirable in most settings.

Thus, one might wish to generalize the model to be robust against small amounts of

measurement error of this type. One possibility is to define the optimal choice Y ∗

i as the

choice that maximizes the utility and assume that the observed choice Yi is equal to the

optimal choice Y ∗

i with probability 1 − δ, and with probability δ/(J − 1) any of the other

choices is observed:

Pr(Yi = y|Y ∗

i , Xi, νi, Z1, . . . , ZJ , ζ1, . . . , ζJ ) =

{
1 − δ if Y = Y ∗

i ,
δ/(J − 1) if Y 6= Y ∗

i .

This nests the pure characteristics model (by setting δ = 0), without having the disad-
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vantages of extreme sensitivity to mismeasured choices that the pure characteristics model

has. If the true choices are generated by the pure characteristics model the presence of

a single mismeasured observation will not prevent the researcher from estimating the true

utility function. However, this specific generalization of the pure characteristics model has

an unattractive feature: if the optimal choice Y ∗

i is not observed, all of the remaining choices

are equally likely. One might expect that choices with utilities closer to the optimal one are

more likely to be observed conditional on the optimal choice not being observed.

An alternative modification of the pure characteristics model is based on adding an

idiosyncratic error term to the utility function. This model will have the feature that,

conditional on the optimal choice not being observed, a close-to-optimal choice is more likely

than a far-from-optimal choice. Suppose the true utility is U∗

ij but individuals base their

choice on the maximum of mismeasured version of this utility:

Uij = U∗

ij + εij,

with an extreme value εij, independent across choices and individuals. The εij here can be

interpreted as an error in the calculation of the utility associated with a particular choice.

This model does not directly nest the pure characteristics model, since the idiosyncratic error

term has a fixed variance. However, it approximately nests it in the following sense. If the

data are generated by the pure characteristics model with the utility function g(x, ν, z, ζ),

then the model with the utility function λ · g(x, ν, z, ζ) + εij leads, for sufficiently large λ, to

choice probabilities that are arbitrarily close to the true choice probabilities (e.g., Berry and

Pakes, 2007).

Hence, even if the data were generated by a pure characteristics model, one does not lose

much by using a model with an additive idiosyncratic error term, and one gains a substantial

amount of robustness to measurement or optimization error.
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