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Cluster and Stratified Sampling

These notes consider estimation and inference with cluster samples and samples obtained

by stratifying the population. The main focus is on true cluster samples, although the case of

applying cluster-sample methods to panel data is treated, including recent work where the sizes

of the cross section and time series are similar. Wooldridge (2003, extended version 2006)

contains a survey, but more recent work is discussed here.

1. The Linear Model with Cluster Effects
This section considers linear models estimated using cluster samples (of which a panel data

set is a special case). For each group or cluster g, let ygm,xg, zgm : m  1, . . . ,Mg be the

observable data, where Mg is the number of units in cluster g, ygm is a scalar response, xg is a

1  K vector containing explanatory variables that vary only at the group level, and zgm is a

1  L vector of covariates that vary within (as well as across) groups.

1.1 Specification of the Model

The linear model with an additive error is

ygm    xg  zgm  vgm,m  1, . . . ,Mg;g  1, . . . ,G.     (1.1)

Our approach to estimation and inference in equation (1.1) depends on several factors,

including whether we are interested in the effects of aggregate variables  or

individual-specific variables . Plus, we need to make assumptions about the error terms. In

the context of pure cluster sampling, an important issue is whether the vgm contain a common
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group effect that can be separated in an additive fashion, as in

vgm  cg  ugm,m  1, . . . ,Mg,     (1.2)

where cg is an unobserved cluster effect and ugm is the idiosyncratic error. (In the statistics

literature, (1.1) and (1.2) are referred to as a “hierarchical linear model.”) One important issue

is whether the explanatory variables in (1.1) can be taken to be appropriately exogenous.

Under (1.2), exogeneity issues are usefully broken down by separately considering cg and ugm.

Throughout we assume that the sampling scheme generates observations that are

independent across g. This assumption can be restrictive, particularly when the clusters are

large geographical units. We do not consider problems of “spatial correlation” across clusters,

although, as we will see, fixed effects estimators have advantages in such settings.

We treat two kinds of sampling schemes. The simplest case also allows the most flexibility

for robust inference: from a large population of relatively small clusters, we draw a large

number of clusters (G), where cluster g hasMg members. This setup is appropriate, for

example, in randomly sampling a large number of families, classrooms, or firms from a large

population. The key feature is that the number of groups is large enough relative to the group

sizes so that we can allow essentially unrestricted within-cluster correlation. Randomly

sampling a large number of clusters also applies to many panel data sets, where the

cross-sectional population size is large (say, individuals, firms, even cities or counties) and the

number of time periods is relatively small. In the panel data setting, G is the number of

cross-sectional units andMg is the number of time periods for unit g.

A different sampling scheme results in data sets that also can be arranged by group, but is

better interpreted in the context of sampling from different populations are different strata

within a population. We stratify the population into into G ≥ 2 nonoverlapping groups. Then,
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we obtain a random sample of size Mg from each group. Ideally, the group sizes are large in

the population, hopefully resulting in large Mg. This is the perspective for the “small G” case

in Section 1.3.
1.2. Large Group Asymptotics

In this section I review methods and estimators justified when the asymptotic

approximations theory is with The theory with G →  and the group sizes, Mg, fixed is well

developed; see, for example, White (1984), Arellano (1987), and Wooldridge (2002, Chapters

10, 11). Here, the emphasis is on how one might wish to use methods robust to cluster

sampling even when it is not so obvious.

First suppose that the covariates satisfy

Evgm|xg, zgm  0,m  1, . . . ,Mg;g  1, . . . ,G.     (1.3)

For consistency, we can, of course, get by with zero correlation assumptions, but we use (1.3)

for convenience because it meshes well with assumptions concerning conditional second

moments. Importantly, the exogeneity in (1.3) only requires that zgm and vgm are uncorrelated.

In particular, it does not specify assumptions concerning vgm and zgp for m ≠ p. As we saw in

the linear panel data notes, (1.3) is called the “contemporaneous exogeneity” assumption when

m represents time. Allowing for correlation between vgm and zgp,m ≠ p is useful for some

panel data applications and possibly even cluster samples (if the covariates of one unit can

affect another unit’s response). Under (1.3) and a standard rank condition on the covariates,

the pooled OLS estimator, where we regress ygm on 1,xg, zgm,m  1, . . . ,Mg;g  1, . . . ,G, is

consistent for  ≡ ,′, ′ ′ (as G →  withMg fixed) and G -asymptotically normal.

Without more assumptions, a robust variance matrix is needed to account for correlation

within clusters or heteroskedasticity in Varvgm|xg, zgm, or both. When vgm has the form in
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(1.2), the amount of within-cluster correlation can be substantial, which means the usual OLS

standard errors can be very misleading (and, in most cases, systematically too small). Write Wg

as the Mg  1  K  L matrix of all regressors for group g. Then the

1  K  L  1  K  L variance matrix estimator is

Avar̂POLS  ∑
g1

G

Wg
′Wg

−1

∑
g1

G

Wg
′ v̂gv̂g′Wg ∑

g1

G

Wg
′Wg

−1

    (1.4)

where v̂g is the Mg  1 vector of pooled OLS residuals for group g. This asymptotic variance

is now computed routinely using “cluster” options.

Pooled OLS estimation of the parameters in (1.1) ignores the within-cluster correlation of

the vgm; even if the procedure is consistent (again, with G →  and the Mg fixed), the POLS

estimators can be very inefficient. If we strengthen the exogeneity assumption to

Evgm|xg,Zg  0,m  1, . . . ,Mg;g  1, . . . ,G,     (1.5)

where Zg is the Mg  L matrix of unit-specific covariates, then we can exploit the presence of

cg in (1.2) in a generalized least squares (GLS) analysis. With true cluster samples, (1.5) rules

out the covariates from one member of the cluster affecting the outcomes on another, holding

own covariates fixed. In the panel data case, (1.5) is the strict exogeneity assumption on

zgm : m  1, . . . ,Mg that we discussed in the linear panel data notes The standard random

effects approach makes enough assumptions so that the Mg  Mg variance-covariance matrix

of vg  vg1,vg2, . . . ,vg,Mg ′ has the so-called “random effects” form,

Varvg  c2jMg′ jMg  u2IMg ,     (1.6)

where jMg is the Mg  1 vector of ones and IMg is the Mg  Mg identity matrix. In the standard

setup, we also make the “system homoskedasticity” assumption,
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Varvg|xg,Zg  Varvg.     (1.7)

It is important to understand the role of assumption (1,7): it implies that the conditional

variance-covariance matrix is the same as the unconditional variance-covariance matrix, but it

does not restrict Varvg; it can be anyMg  Mg matrix under (1.7). The particular random

effects structure on Varvg is given by (1.6). Under (1.6) and (1.7), the resulting GLS

estimator is the well-known random effects (RE) estimator.

The random effects estimator ̂RE is asymptotically more efficient than pooled OLS under

(1.5), (1.6), and (1.7) as G →  with the Mg fixed. The RE estimates and test statistics are

computed routinely by popular software packages. Nevertheless, an important point is often

overlooked in applications of RE: one can, and in many cases should, make inference

completely robust to an unknown form of Varvg|xg,Zg.

The idea in obtaining a fully robust variance matrix of RE is straightforward and we

essentially discussed it in the notes on nonlinear panel data models. Even if Varvg|xg,Zg does

not have the RE form, the RE estimator is still consistent and G -asymptotically normal under

(1.5), and it is likely to be more efficient than pooled OLS. Yet we should recognize that the

RE second moment assumptions can be violated without causing inconsistency in the RE

estimator. For panel data applications, making inference robust to serial correlation in the

idiosyncratic errors, especially with more than a few time periods, can be very important.

Further, within-group correlation in the idiosyncratic errors can arise for cluster samples, too,

especially if underlying (1.1) is a random coefficient model,

ygm    xg  zgmg  vgm,m  1, . . . ,Mg;g  1, . . . ,G.     (1.8)

By estimating a standard random effects model that assumes common slopes , we effectively
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include zgmg −  in the idiosyncratic error; this generally creates within-group correlation

because zgmg −  and zgpg −  will be correlated for m ≠ p, conditional on Zg. Also, the

idiosyncratic error will have heteroskedasticity that is a function of zgm. Nevertheless, if we

assume Eg|Xg,Zg  Eg ≡  along with (1.5), the random effects estimator still

consistently estimates the average slopes, . Therefore, in applying random effects to panel

data or cluster samples, it is sensible (with large G) to make the variance estimator of random

effects robust to arbitrary heteroskedasticity and within-group correlation.

One way to see what the robust variance matrix looks like for ̂RE is to use the pooled OLS

characterization of RE on a transformed set of data. For each g, define

̂g  1 − 1/1  Mg̂c2/̂u21/2, where ̂c2 and ̂u2 are estimators of the variances of cg and

ugm, respectively. Then the RE estimator is identical to the pooled OLS estimator of

ygm − ̂gȳg on 1 − ̂g, 1 − ̂gxg, zgm − ̂gz̄g,m  1, . . . ,Mg;g  1, . . . ,G;     (1.9)

see, for example, Hsiao (2003). For fully robust inference, we can just apply the fully robust

variance matrix estimator in (1.4) but on the transformed data.

With panel data, it may make sense to estimate an unrestricted version of Varvg,

especially if G is large. Even in that case, it makes sense to obtain a variance matrix robust to

Varvgm|xg,Zg ≠ Varvg, as the GEE literature does. One can also specify a particular

structure, such as an AR(1) model for the idiosyncratic errors. In any case, fully robust

inference is still a good idea.

In summary, with large G and relatively small Mg, it makes sense to compute fully robust

variance estimators even if we apply a GLS procedure that allows Varvg to be unrestricted.

Nothing ever guarantees Varvgm|xg,Zg  Varvg. Because RE imposes a specific structure
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on Varvg, there is a strong case for making RE inference fully robust. When cg is in the error

term, it is even more critical to use robust inference when using pooled OLS because the usual

standard errors ignore within-cluster correlation entirely.

If we are only interested in estimating , the “fixed effects” (FE) or “within” estimator is

attractive. The within transformation subtracts off group averages from the dependent variable

and explanatory variables:

ygm − ȳg  zgm − z̄g  ugm − ūg,m  1, . . . ,Mg;g  1, . . . ,G,     (1.10)

and this equation is estimated by pooled OLS. (Of course, the xg get swept away by the

within-group demeaning.) Under a full set of “fixed effects” assumptions – which, unlike

pooled OLS and random effects, allows arbitrary correlation between cg and the zgm –

inference is straightforward using standard software. Nevertheless, analogous to the random

effects case, it is often important to allow Varug|Zg to have an arbitrary form, including

within-group correlation and heteroskedasticity. For panel data, the idiosyncratic errors can

always have serial correlation or heteroskedasticity, and it is easy to guard against these

problems in inference. Reasons for wanting a fully robust variance matrix estimator for FE

applied to cluster samples are similar to the RE case. For example, if we start with the model

(1.8) then zgm − z̄gg −  appears in the error term. As we discussed in the linear panel data

notes, the FE estimator is still consistent if Eg|zg1 − z̄g, . . . , zg,Mg − z̄g  Eg  , an

assumption that allows g to be correlated with z̄g. Nevertheless, ugm,ugp will be correlated for

m ≠ p. A fully robust variance matrix estimator is

Avar̂FE  ∑
g1

G

Z̈g′ Z̈g

−1

∑
g1

G

Z̈g′ ûgûg′ Z̈g ∑
g1

G

Z̈g′ Z̈g

−1

,     (1.11)
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where Z̈g is the matrix of within-group deviations from means and ûg is the Mg  1 vector of

fixed effects residuals. This estimator is justified with large-G asymptotics.

One benefit of a fixed effects approach, especially in the standard model with constant

slopes but cg in the composite error term, is that no adjustments are necessary if the cg are

correlated across groups. When the groups represent different geographical units, we might

expect correlation across groups close to each other. If we think such correlation is largely

captured through the unobserved effect cg, then its elimination via the within transformation

effectively solves the problem. If we use pooled OLS or a random effects approach, we would

have to deal with spatial correlation across g, in addition to within-group correlation, and this

is a difficult problem.

The previous discussion extends immediately to instrumental variables versions of all

estimators. With large G, one can afford to make pooled two stage least squares (2SLS),

random effects 2SLS, and fixed effects 2SLS robust to arbitrary within-cluster correlation and

heteroskedasticity. Also, more efficient estimation is possible by applying generalized method

of moments (GMM); again, GMM is justified with large G.
1.3. Should we Use the “Large” G Formulas with “Large” Mg?

Until recently, the standard errors and test statistics obtained from pooled OLS, random

effects, and fixed effects were known to be valid only as G →  with eachMg fixed. As a

practical matter, that means one should have lots of small groups. Consider again formula

(1.4), for pooled OLS, when the cluster effect, cg, is left in the error term. With a large number

of groups and small group sizes, we can get good estimates of the within-cluster correlations –

technically, of the cluster correlations of the cross products of the regressors and errors – even

if they are unrestricted, and that is why the robust variance matrix is consistent as G →  with
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Mg fixed. In fact, in this scenario, one loses nothing in terms of asymptotic local power (with

local alternatives shrinking to zero at the rate G−1/2) if cg is not present. In other words, based

on first-order asymptotic analysis, there is no cost to being fully robust to any kind of

within-group correlation or heteroskedasticity. These arguments apply equally to panel data

sets with a large number of cross sections and relatively few time periods, whether or not the

idiosyncratic errors are serially correlated.

What if one applies robust inference in scenarios where the fixedMg, G →  asymptotic

analysis not realistic? Hansen (2007) has recently derived properties of the cluster-robust

variance matrix and related test statistics under various scenarios that help us more fully

understand the properties of cluster robust inference across different data configurations. First

consider how his results apply to true cluster samples. Hansen (2007, Theorem 2) shows that,

with G andMg both getting large, the usual inference based on (1.4) is valid with arbitrary

correlation among the errors, vgm, within each group. Because we usually think of vgm as

including the group effect cg, this means that, with large group sizes, we can obtain valid

inference using the cluster-robust variance matrix, provided that G is also large. So, for

example, if we have a sample of G  100 schools and roughly Mg  100 students per school,

and we use pooled OLS leaving the school effects in the error term, we should expect the

inference to have roughly the correct size. Probably we leave the school effects in the error

term because we are interested in a school-specific explanatory variable, perhaps indicating a

policy change.

Unfortunately, pooled OLS with cluster effects when G is small and group sizes are large

fall outside Hansen’s theoretical findings: the proper asymptotic analysis would be with G

fixed, Mg → , and persistent within-cluster correlation (because of the presence of cg in the
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error). Hansen (2007, Theorem 4) is aimed at panel data where the time series dependence

satisfies strong mixing assumptions, that is, where the correlation within each group g is

weakly dependent. Even in this case, the variance matrix in (1.4) must be multiplied by

G/G − 1 and inference based on the tG−1 distribution. (Conveniently, this adjustment is

standard in Stata’s calculation of cluster-robust variance matrices.) Interestingly, Hansen finds,

in simulations, that with G  10 and Mg  50 for all g, using the adjusted robust variance

matrix estimator with critical values from the tG−1 distribution produces fairly small size

distortions. But the simulation study is special (one covariate whose variance is as large as the

variance of the composite error).

We probably should not expect good properties of the cluster-robust inference with small

groups and very large group sizes when cluster effects are left in the error term. As an

example, suppose that G  10 hospitals have been sampled with several hundred patients per

hospital. If the explanatory variable of interest is exogenous and varies only at the hospital

level, it is tempting to use pooled OLS with cluster-robust inference. But we have no

theoretical justification for doing so, and reasons to expect it will not work well. In the next

section we discuss other approaches available with small G and large Mg.

If the explanatory variables of interest vary within group, FE is attractive for a couple of

reasons. The first advantage is the usal one about allowing cg to be arbitrarily correlated with

the zgm. The second advantage is that, with large Mg, we can treat the cg as parameters to

estimate – because we can estimate them precisely – and then assume that the observations are

independent across m (as well as g). This means that the usual inference is valid, perhaps with

adjustment for heteroskedasticity. Interestingly, the fixed G, large Mg asymptotic results in

Theorem 4 of Hansen (2007) for cluster-robust inference apply in this case. But using
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cluster-robust inference is likely to be very costly in this situation: the cluster-robust variance

matrix actually converges to a random variable, and t statistics based on the adjusted version of

(1.11) – that is, multiplied by G/G − 1 – have an asymptotic tG−1 distribution. Therefore,

while the usual or heteroskedasticity-robust inference can be based on the standard normal

distribution, the cluster-robust inference is based on the tG−1 distribution (and the cluster-robust

standard errors may be larger than the usual standard errors). With small G, inference based on

cluster-robust statistics could be very conservative when it need not be. (Also, Hansen’s

Theorem 4 is not completely general, and may not apply with heterogeneous sampling across

groups.)

In summary, for true cluster sample applications, cluster-robust inference using pooled

OLS delivers statistics with proper size when G andMg are both moderately large, but they

should probably be avoided with large Mg and small G. When cluster fixed effects are

included, the usual inference is often valid, perhaps made robust to heteroskedasticity, and is

likely to be much more powerful than cluster-robust inference.

For panel data applications, Hansen’s (2007) results, particularly Theorem 3, imply that

cluster-robust inference for the fixed effects estimator should work well when the cross section

(N) and time series (T) dimensions are similar and not too small. If full time effects are allowed

in addition to unit-specific fixed effects – as they often should – then the asymptotics must be

with N and T both getting large. In this case, any serial dependence in the idiosyncratic errors

is assumed to be weakly dependent. The similulations in Bertrand, Duflo, and Mullainathan

(2004) and Hansen (2007) verify that the fully robust cluster-robust variance matrix works

well.

There is some scope for applying the fully robust variance matrix estimator when N is
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small relative to T when unit-specific fixed effects are included. Unlike in the true cluster

sampling case, it makes sense to treat the idiosyncratic errors as correlated with only weakly

dependent. But Hansen’s (2007, Theorem 4) does not allow time fixed effects (because the

asymptotics is with fixed N and T → , and so the inclusion of time fixed effects means adding

more and more parameters without more cross section data to estimate them). As a practical

matter, it seems dangerous to rely on omitting time effects or unit effects with panel data.

Hansen’s result that applies in this case requires N and T both getting large.

2. Estimation with a Small Number of Groups and
Large Group Sizes

We can summarize the findings of the previous section as follows: fully robust inference

justified for large G (N) and small Mg (T) can also be relied on when Mg (T) is also large,

provided G N is also reasonably large. However, whether or not we leave cluster

(unobserved) effects in the error term, there are good reasons not to rely on cluster-robust

inference when G N) is small andMg (T) is large.

In this section, we describe approaches to inference when G is small and the Mg are large.

These results apply primarily to the true cluster sample case, although we will draw on them

for difference-in-differences frameworks using pooled cross sections in a later set of notes.

In the large G, small Mg case, it often makes sense to think of sampling a large number of

groups from a large population of clusters, where each cluster is relatively small. When G is

small while each Mg is large, this thought experiment needs to be modified. For most data sets

with small G, a stratified sampling scheme makes more sense: we have defined G groups in the

population, and we obtain our data by randomly sampling from each group. As before,Mg is

the sample size for group g. Except for the relative dimensions of G andMg, the resulting data
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set is essentially indistinguishable from that described in Section 1.2.

The problem of proper inference whenMg is large relative to G was brought to light by

Moulton (1990), and has been recently studied by Donald and Lang (2007). DL focus on

applications that seem well described by the stratified sampling scheme, but their approach

seems to imply a different sampling experiment. In particular, they treat the parameters

associated with the different groups as outcomes of random draws. One way to think about the

sampling in this case is that a small number of groups is drawn from a (large) population of

potential groups; therefore, the parameters common to all members of the group can be viewed

as random. Given the groups, samples are then obtained via random sampling within each

group.

To illustrate the issues considered by Donald and Lang, consider the simplest case, with a

single regressor that varies only by group:

ygm    xg  cg  ugm
 g  xg  ugm, m  1, . . . ,Mg;g  1, . . . ,G.

    (2.1)
    (2.2)

Notice how (2.2) is written as a model with common slope, , but intercept, g, that varies

across g. Donald and Lang focus on (2.1), where cg is assumed to be independent of xg with

zero mean. They use this formulation to highlight the problems of applying standard inference

to (2.1), leaving cg as part of the composite error term, vgm  cg  ugm. We know this is a bad

idea even in the large G, small Mg case, as it ignores the persistent correlation in the errors

within each group. Further, from the discussion of Hansen’s (2007) results, using

cluster-robust inference when G is small is likely to produce poor inference.

One way to see the problem with the usual inference in applying standard inference is to

note that whenMg  M for all g  1, . . . ,G, the pooled OLS estimator, ̂, is identical to the
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“between” estimator obtained from the regression

ȳg on 1,xg,g  1, . . . ,G.     (2.3)

Conditional on the xg, ̂ inherits its distribution from v̄g : g  1, . . . ,G, the within-group

averages of the composite errors vgm ≡ cg  ugm. The presence of cg means new observations

within group do not provide additional information for estimating  beyond how they affect

the group average, ȳg. In effect, we only have G useful pieces of information.

If we add some strong assumptions, there is a solution to the inference problem. In addition

to assumingMg  M for all g, assume cg|xg ~Normal0,c2 and assume

ugm|xg,cg  Normal0,u2. Then v̄g is independent of xg and v̄g  Normal0,c2  u2/M for

all g. Because we assume independence across g, the equation

ȳg    xg  v̄g,g  1, . . . ,G     (2.4)

satisfies the classical linear model assumptions. Therefore, we can use inference based on the

tG−2 distribution to test hypotheses about , provided G  2. When G is very small, the

requirements for a significant t statistic using the tG−2 distribution are much more stringent then

if we use the tM1M2...MG−2 distribution – which is what we would be doing if we use the usual

pooled OLS statistics. (Interestingly, if we use cluster-robust inference and apply Hansen’s

results – even though they do not apply – we would use the tG−1 distribution.)

When xg is a 1  K vector, we need G  K  1 to use the tG−K−1 distribution for inference.

[In Moulton (1990), G  50 states and xg contains 17 elements]

As pointed out by DL, performing the correct inference in the presence of cg is not just a

matter of correcting the pooled OLS standard errors for cluster correlation – something that

does not appear to be valid for small G, anyway – or using the RE estimator. In the case of
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common group sizes, there is only estimator: pooled OLS, random effects, and the between

regression in (2.4) all lead to the same ̂. The regression in (2.4), by using the tG−K−1

distribution, yields inference with appropriate size.

We can apply the DL method without normality of the ugm if the common group sizeM is

large: by the central limit theorem, ūg will be approximately normally distributed very

generally. Then, because cg is normally distributed, we can treat v̄g as approximately normal

with constant variance. Further, even if the group sizes differ across g, for very large group

sizes ūg will be a negligible part of v̄g: Varv̄g  c2  u2/Mg. Provided cg is normally

distributed and it dominates v̄g, a classical linear model analysis on (2.4) should be roughly

valid.

The broadest applicability of DL’s setup is when the average of the idiosyncratic errors, ūg,

can be ignored – either because u2 is small relative to c2, Mg is large, or both. In fact,

applying DL with different group sizes or nonnormality of the ugm is identical to ignoring the

estimation error in the sample averages, ȳg. In other words, it is as if we are analyzing the

simple regression g    xg  cg using the classical linear model assumptions (where ȳg is

used in place of the unknown group mean, g). With small G, we need to further assume cg is

normally distributed.

If zgm appears in the model, then we can use the averaged equation

ȳg    xg  z̄g  v̄g,g  1, . . . ,G,     (2.5)

provided G  K  L  1. If cg is independent of xg, z̄g with a homoskedastic normal

distribution and the group sizes are large, inference can be carried out using the tG−K−L−1

distribution.
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The DL solution to the inference problem with small G is pretty common as a strategy to

check robustness of results obtained from cluster samples, but often it is implemented with

somewhat large G (say, G  50). Often with cluster samples one estimates the parameters

using the disaggregated data and also the averaged data. When some covariates that vary

within cluster, using averaged data is generally inefficient. But it does mean that standard

errors need not be made robust to within-cluster correlation. We now know that if G is

reasonably large and the group sizes not too large, the cluster-robust inference can be

acceptable. DL point out that with small G one should think about simply using the group

averages in a classical linear model analysis.

For small G and large Mg, inference obtained from analyzing (2.5) as a classical linear

model will be very conservative in the absense of a cluster effect. Perhaps in some cases it is

desirable to inject this kind of uncertainty, but it rules out some widely-used staples of policy

analysis. For example, suppose we have two populations (maybe men and women, two

different cities, or a treatment and a control group) with means g,g  1,2, and we would like

to obtain a confidence interval for their difference. In almost all cases, it makes sense to view

the data as being two random samples, one from each subgroup of the population. Under

random sampling from each group, and assuming normality and equal population variances,

the usual comparison-of-means statistic is distributed exactly as tM1M2−2 under the null

hypothesis of equal population means. (Or, we can construct an exact 95% confidence interval

of the difference in population means.) With even moderate sizes forM1 andM2, the tM1M2−2

distribution is close to the standard normal distribution. Plus, we can relax normality to obtain

approximately valid inference, and it is easy to adjust the t statistic to allow for different

population variances. With a controlled experiment the standard difference-in-means analysis
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is often quite convincing. Yet we cannot even study this estimator in the DL setup because

G  2. The problem can be seen from (2.2): in effect, we have three parameters, 1, 2, and ,

but only two observations.

DL criticize Card and Krueger (1994) for comparing mean wage changes of fast-food

workers across two states because Card and Krueger fail to account for the state effect (New

Jersery or Pennsylvania), cg, in the composite error, vgm. But the DL criticism in the G  2

case is no different from a common question raised for any difference-in-differences analyses:

How can we be sure that any observed difference in means is due entirely to the policy

change? To characterize the problem as failing to account for an unobserved group effect is

not necessarily helpful.

To further study the G  2 case, recall that cg is independent of xg with mean zero. In other

words, the expected deviation in using the simple comparison-of-means estimator is zero. In

effect, it estimates

2 − 1  2   − 1    c2   −   c1    c2 − c1.     (2.6)

Under the DL assumptions, c2 − c1 has mean zero, and so estimating it should not bias the

analysis. DL work under the assumption that  is the parameter of interest, but, if the

experiment is properly randomized – as is maintained by DL – it is harmless to include the cg

in the estimated effect.

Consider now a case where the DL approach can be applied. Assume there are G  4

groups with groups one and two control groups (x1  x2  0) and two treatment groups

x3  x4  1. The DL approach would involve computing the averages for each group, ȳg,

and running the regression ȳg on 1,xg, g  1, . . . , 4. Inference is based on the t2 distribution.

The estimator ̂ in this case can be written as
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̂  ȳ3  ȳ4/2 − ȳ1  ȳ2/2.     (2.7)

(The pooled OLS regression using the disaggregated data results in the weighted average

p3ȳ3  p4ȳ4 − p1ȳ1  p2ȳ2, where p1  M1/M1  M2, p2  M2/M1  M2,

p3  M3/M3  M4, and p4  M4/M3  M4 are the relative proportions within the control

and treatment groups, respectively.) With ̂ written as in (2.7), we are left to wonder why we

need to use the t2 distribution for inference. Each ȳg is usually obtained from a large sample –

Mg  30 or so is usually sufficient for approximate normality of the standardized mean – and

so ̂, when properly standardized, has an approximate standard normal distribution quite

generally.

In effect, the DL approach rejects the usual inference based on group means from large

sample sizes because it may not be the case that 1  2 and 3  4. In other words, the

control group may be heterogeneous as might be the treatment group. But this in itself does not

invalidate standard inference applied to (2.7). In fact, if we define the object of inference as

  3  4/2 − 1  2/2,     (2.8)

which is an average treatment effect of sorts, then ̂ is consistent for  and (when properly

scaled) asymptotically normal as theMg get large.

Equation (2.7) hints at a different way to view the small G, large Mg setup. In this

particular application, we estimate two parameters,  and , given four moments that we can

estimate with the data. The OLS estimates from (2.4) in this case are minimum distance

estimates that impose the restrictions 1  2   and 3  4    . If we use the 4  4

identity matrix as the weight matrix, we get ̂ as in (2.7) and ̂  ȳ1  ȳ2/2. Using the MD

approach, we see there are two overidentifying restrictions, which are easily tested. But even if
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we reject them, it simply implies at least one pair of means within each of the control and

treatment groups is different.

With large group sizes, and whether or not G is especially large, we can put the general

problem into an MD framework, as done, for example, by Loeb and Bound (1996), who had

G  36 cohort-division groups and many observations per group. For each group g, write

ygm  g  zgmg  ugm,m  1, . . . ,Mg,     (2.9)

where we assume random sampling within group and independent sampling across groups.

We make the standard assumptions for OLS to be consistent (asMg → ) and

Mg -asymptotically normal; see, for example, Wooldridge (2002, Chapter 4). The presence

of group-level variables xg in a “structural” model can be viewed as putting restrictions on the

intercepts, g, in the separate group models in (2.9). In particular,

g    xg,g  1, . . . ,G,     (2.10)

where we think of xg as fixed, observed attributes of heterogeneous groups. With K attributes

we must have G ≥ K  1 to determine  and . If Mg is large enough to estimate the g

precisely, a simple two-step estimation strategy suggests itself. First, obtain the ̂g, along with

̂g, from an OLS regression within each group. If G  K  1 then, typically, we can solve for

̂ ≡ ̂, ̂′ ′ uniquely in terms of the G  1 vector ̂:. ̂  X−1̂, where X is the

K  1  K  1 matrix with gth row 1,xg. If G  K  1 then, in a second step, we can use a

minimum distance approach, as described in Wooldridge (2002, Section 14.6). If we use as the

weighting matrix IG, the G  G identity matrix, then the minimum distance estimator can be

computed from the OLS regression

̂g on 1,xg,g  1, . . . ,G.     (2.10)
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Under asymptotics such that Mg  gM where 0  g ≤ 1 and M → , the minimum distance

estimator ̂ is consistent and M -asymptotically normal. Still, this particular minimum

distance estimator is asymptotically inefficient except under strong assumptions. Because the

samples are assumed to be independent, it is not appreciably more difficult to obtain the

efficient minimum distance (MD) estimator, also called the “minimum chi-square” estimator.

First consider the case where zgm does not appear in the first stage estimation, so that the ̂g

is just ȳg, the sample mean for group g. Let ̂g2 denote the usual sample variance for group g.

Because the ȳg are independent across g, the efficient MD estimator uses a diagonal weighting

matrix. As a computational device, the minimum chi-square estimator can be computed by

using the weighted least squares (WLS) version of (2.11), where group g is weighted byMg/̂g2

(groups that have more data and smaller variance receive greater weight). Conveniently, the

reported t statistics from the WLS regression are asymptotically standard normal as the group

sizesMg get large. (With fixed G, the WLS nature of the estimation is just a computational

device; the standard asymptotic analysis of the WLS estimator has G → .). The minimum

distance approach works with small G provided G ≥ K  1 and each Mg is large enough so that

normality is a good approximation to the distribution of the (properly scaled) sample average

within each group.

If zgm is present in the first-stage estimation, we use as the minimum chi-square weights the

inverses of the asymptotic variances for the g intercepts in the separate G regressions. With

large Mg, we might make these fully robust to heteroskedasticity in Eugm2 |zgm using the White

(1980) sandwich variance estimator. At a minimum we would want to allow different g2 even

if we assume homoskedasticity within groups. Once we have the Avar̂g – which are just the
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squared reported standard errors for the ̂g – we use as weights 1/Avar̂g in the

computationally simple WLS procedure. We are still using independence across g in obtaining

a diagonal weighting matrix in the MD estimation.

An important by-product of the WLS regression is a minimum chi-square statistic that can

be used to test the G − K − 1 overidentifying restrictions. The statistic is easily obtained as the

weighted sum of squared residuals, say SSRw. Under the null hypothesis in (2.10),

SSRw
a G−K−1

2 as the group sizes,Mg, get large. If we reject H0 at a reasonably small

significance level, the xg are not sufficient for characterizing the changing intercepts across

groups. If we fail to reject H0, we can have some confidence in our specification, and perform

inference using the standard normal distribution for t statistics for testing linear combinations

of the population averages.

We might also be interested in how one of the slopes in g depends on the group features,

xg. Then, we simple replace ̂g with, say ̂g1, the slope on the first element of zgm. Naturally,

we would use 1/Avar̂g1 as the weights in the MD estimation.

The minimum distance approach can also be applied if we impose g   for all g, as in

the original model (1). Obtaining the ̂g themselves is easy: run the pooled regression

ygm on d1g,d2g, . . . ,dGg, zgm,m  1, . . . ,Mg;g  1, . . . ,G     (2.11)

where d1g,d2g, . . . ,dGg are group dummy variables. Using the ̂g from the pooled regression

(2.12) in MD estimation is complicated by the fact that the ̂g are no longer asymptotically

independent; in fact, ̂g  ȳg − z̄g̂, where ̂ is the vector of common slopes, and the presence

of ̂ induces correlation among the intercept estimators. Let V̂ be the G  G estimated

(asymptotic) variance matrix of the G  1 vector ̂. Then the MD estimator is
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̂  X ′V̂−1X−1X ′V̂−1̂ and its estimated asymptotic variance is X ′V̂−1X−1. If the OLS

regression (2.11) is used, or the WLS version, the resulting standard errors will be incorrect

because they ignore the across group correlation in the estimators. (With large group sizes the

errors might be small; see the next section.)

Intermediate approaches are available, too. Loeb and Bound (1996) (LB for short) allow

different group intercepts and group-specific slopes on education, but impose common slopes

on demographic and family background variable. The main group-level covariate is the

student-teacher ratio. Thus, LB are interested in seeing how the student-teach ratio affects the

relationship between test scores and education levels. LB use both the unweighted estimator

and the weighted estimator and find that the results differ in unimportant ways. Because they

impose common slopes on a set of regressors, the estimated slopes on education (say ̂g1) are

not asymptotically independent, and perhaps using a nondiagonal estimated variance matrix V̂

(which would be 36  36 in this case) is more appropriate; but see Section 3.

If we reject the overidentifying restrictions, we are essentially concluding that

g    xg  cg, where cg can be interpreted as the deviation from the restrictions in (2.10)

for group g. As G increases relative to K, the likelihood of rejecting the restrictions increases.

One possibility is to apply the Donald and Lang approach, which is to analyze the OLS

regression in (2.11) in the context of the classical linear model (CLM), where inference is

based on the tG−K−1 distribution. Why is a CLM analysis justified? Since

̂g  g  OpMg
−1/2, we can ingore the estimation error in ̂g for large Mg (Recall that the

same “large Mg” assumption underlies the minimum distance approach.) Then, it is as if we

are estimating the equation g    xg  cg,g  1, . . . ,G by OLS. If the cg are drawn from a

normal distribution, classical analysis is applicable because cg is assumed to be independent of
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xg. This approach is desirable when one cannot, or does not want to, find group-level

observables that completely determine the g. It is predicated on the assumption that the other

factors in cg are not systematically related to xg, a reasonable assumption if, say, xg is a

randomly assigned treatment at the group level, a case considered by Angrist and Lavy (2002).

Beyond the treatment effect case, the issue of how to define parameters of interest appears

complicated, and deserves further study. In the example with G  4 and two control and two

treatment groups, it can be shown that defining the treatment effect as (2.8) is the same as

defining the parameters of interest as   X ′X−1X ′, where X is the 4  2 matrix

X 

1 0
1 0
0 1
0 1

    (2.12)

and    is the second element of . Generally, if it makes sense to define the object of

interest as   X ′X−1X ′, and if we estimate  as ̂  X ′X−1X ′̂, then M ̂ −  inherits its

asymptotic distribution from that of M ̂ − , where we assume, as before, that Mg  gM

with 0  g ≤ 1 andM → . Such a setting implies

Avar̂  X ′X−1X ′Avar̂XX ′X−1.     (2.13)

3. What if G and Mg are Both “Large”?

Section 1 reviewed methods appropriate for a large number of groups and relatively small

group sizes. Section 2 considered two approaches appropriate for large group sizes and a small

number of groups. The DL and minimum distance approaches use the large group sizes
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assumption differently: in its most applicable setting, DL use the large Mg assumption to

ignore the first-stage estimation error entirely, with all uncertainty coming from unobserved

group effects, while the asymptotics underlying the MD approach is based on applying the

central limit theorem within each group. Not surprisingly, more flexibility is afforded if G and

Mg are both “large.”

For example, suppose we adopt the DL specification (with an unobserved cluster effect),

g    xg  cg,g  1, . . . ,G,     (3.1)

and G  50 (say, states in the U.S.). Further, assume first that the group sizes are large enough

(or the cluster effects are so strong) that the first-stage estimation error can be ignored. Then,

it matters not whether we impose some common slopes or run separate regressions for each

group (state) in the first stage estimation. In the second step, we can treat the group-specific

intercepts, ̂g,g  1, . . . ,G, as independent “observations” to be used in the second stage. This

means we apply regression (2.10) and apply the usual inference procedures. The difference

now is that with G  50, the usual t statistics have some robustness to nonnormality of the cg,

assuming the CLT approximation works well With small G, the exact inference was based on

normality of the cg.

Loeb and Bound (1996), with G  38, essentially use regression (2.10), but with estimated

slopes as the dependent variable in place of estimated intercepts. As mentioned in Section 2,

LB impose some common slopes across groups, which means the estimated parameters are

dependent across group. The minimum distance approach without cluster effects is one way to

account for the dependence. Alternatively, one can simply adopt the DL perspective and just

assume the estimation error is swamped by cg; then standard OLS analysis is approximately
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justfied.

4. Nonlinear Models
Many of the issues for nonlinear models are the same as for linear models. The biggest

difference is that, in many cases, standard approaches require distributional assumptions about

the unobserved group effects. In addition, it is more difficult in nonlinear models to allow for

group effects correlated with covariates, especially when group sizes differ. For the small G

case, we offer extensions of the Donald and Lang (2007) approach (with large group sizes) and

the minimum distance approach.

Rather than using a general, abstract setting, the issues for nonlinear models are easily

illustrated with the probit model. Wooldridge (2006) considers other models (which are also

covered in the nonlinear panel data notes).
4.1. Large Group Asymptotics

We can illustrate many issues using an unobserved effects probit model. Let ygm be a

binary response, with xg and zgm, m  1, . . . ,Mg,g  1, . . . ,G defined as in Section 1. Assume

that

ygm  1  xg  zgm  cg  ugm ≥ 0
ugm|xg,Zg,cg~Normal0,1

    (4.1)
    (4.2)

(where 1 is the indicator function). Equations (4.1) and (4.2) imply

Pygm  1|xg, zgm,cg  Pygm  1|xg,Zg,cg    xg  zgm  cg,     (4.3)

where  is the standard normal cumulative distribution function (cdf). We assume

throughout that only zgm affects the response probability of ygm conditional on xg and cg; the
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outcomes of zgp for p ≠ m are assumed not to matter. This is captured in (4.3). For pooled

methods we could relax this restriction (as in the linear case), but, with the presence of cg, this

affords little generality in practice.

As in nonlinear panel data models, the presence of cg in (4.3) raises several important

issues, including how we estimate quantities of interest. As in the panel data case, we have

some interest in estimating average partial or marginal effects. For example, if the first element

of xg is continuous,

∂Pygm  1|xg, zgm,cg
∂xg1

 1  xg  zgm  cg,     (4.4)

where  is the standard normal density function. If

cg|xg,Zg~Normal0,c2,     (4.5)

where the zero mean is without loss of generality because (4.1) contains an intercept, , then

the APEs are obtained from the function

Pygm  1|xg,Zg    xg  zgm/1  c21/2 ≡ c  xgc  zgmc,     (4.6)

where c  /1  c21/2, and so on. Conveniently, the scaled coefficients are exactly the

coefficients estimated by using a simple pooled probit procedure. So, for estimating the

average partial effects, pooled probit is perfectly acceptable. With large G and small group

sizes, we can easily make the standard errors and test statistics robust to arbitarary within

group correlation using standard sandwich variance estimators (robust to within-cluster

correlation).

Some authors prefer to call procedures such as pooled probit applied to cluster samples

pseudo maximum likelihood. Unfortunately, this term is used in contexts where only the
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conditional mean is correctly specified in the context of the linear exponential family.

Wooldridge (2002, Chapter 13) calls such methods partial maximum likelihood to emphasize

that we have partially specified a distribution, namely the marginal distribution of ygm given

xg,Zm, without specifying a joint distribution yg1, . . . ,yg,Mg conditional on xg,Zg.

If we supplement (4.1),.(4.2), and (4.5) with

ug1, . . . ,ug,Mg are independent conditional on xg,Zg,cg     (4.7)

then we have the so-called random effects probit model. Under the RE probit assumptions,

,, and c2 are all identified, and estimable by MLE, which means we can estimate the

APEs as well as the partial effects evaluated at the mean of cg, which is zero. We can also

compute partial effects at other values of cg that we might select from the normal distribution

with estimated standard deviation c. The details for random effects probit in the balanced

panel data case are given in Wooldridge (2002, Chapter 15). The unbalanced case is similar.

As we discussed in the nonlinear panel data notes, minimum distance estimator or

generalized estimating equations can be used to obtain estimators (of the scaled coefficients)

more efficient than pooled probit but just as robust. (Remember, the RE probit estimator has no

known robustness properties to violation of assumption (4.7).)

A very challenging task, and one that appears not to have gotten much attention for true

cluster samples, is allowing correlation between the unobserved heterogeneity, cg, and the

covariates that vary within group, zgm. (For notational simplicity, we assume there are no

group-level controls in the model, but these can always be added.) For linear models, we know

that the within or fixed effects estimator allows arbitrary correlation, and does not restrict the

within-cluster dependence of ug1, . . . ,ug,Mg. Unfortunately, allowing correlation between cg
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and zg1, zg2, . . . , zgM is much more difficult in nonlinear models. In the balanced case, where

the group sizesMg are the same for all g, the Chamberlain (1980) device can be used:

cg|Zg~Normal  z̄g,a2,     (4.8)

where a2 is the conditional variance Varcg|Zg. If we use all random effects probit

assumptions but with (4.8) in place of (4.5), then we obtain a simple extension of the RE probit

model: simply add the group averages, z̄g, as a set of additional explanatory variables. This is

identical to the balanced panel case we covered earlier. The marginal distributions are

Pygm  1|Zg    zgm  z̄g/1  a21/2 ≡ a  zgma  z̄ga     (4.9)

where now the coefficients are scaled by a function of the conditional variance. This is just as

in the case of a balanced panel, and all calculations, including those for APEs, follow

immediately.

The Chamberlain-Mundlak needs to be modified for the unbalanced case. [One possibility

is to discard observations and balance the cluster sample under the assumption that the cluster

sizes are exogenous, and that might be desirable if there is not much variation in the cluster

sizes.] An alternative is to use the cluster setup and assuming a kind of exchangeability

assumption concerning the correlation between the cluster effect and the covariates. At a

minimum, (4.8) should be modified to allow the variances to depend on the cluster size,Mg.

Under restrictive assumptions, such as joint normality of cg, zg1, . . . , zg,Mg, with the zgm

independent and identically distributed within a cluster, one can derive Varcg|Zg. But these

are strong assumptions. We might just assume

cg|zg1, . . . , zg,Mg ~Normal  z̄g,a,Mg2 ,     (4.10)

where a,Mg2 denotes a different variance for each group size,Mg. Then the marginal
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distributions are

Pygm  1|Zg    zgm  z̄g/1  a,Mg2 1/2.     (4.11)

Equation (4.11) can be estimated by pooled probit, allowing for different group variances. (A

normalization is also required.) A simpler approach is to estimate a different set of parameters,

Mg ,Mg ,Mg, for each group size, and then to impose the restrictions in (4.11) by minimum

distance estimation. With very large G and little variation inMg, we might just use the

unrestricted estimates ̂Mg , ̂Mg , ̂Mg, estimate the APEs for each group size, and then average

these across group size. But more work needs to be done to see if such an approach loses too

much in terms of efficiency.

The methods of Altonji and Matzkin (2005) – see also Wooldridge (2005) – can be applied.

A completely nonparametric approach is based on

Pygm  1|Zg,cg  Pygm  1|zgm,cg ≡ Fzgm,cg     (4.12)

and

Dcg|zg1, zg2, . . . , zg,Mg  Dcg|z̄g.     (4.13)

Define Hgzgm, z̄g  Pygm  1|zgm, z̄g. As discussed in the nonlinear panel data notes, under

(4.12) and (4.13), it can be show that the APEs are obtained from

Ez̄gHgz, z̄g.     (4.14)

If the group sizes differ, Hg,  generally depends on g. If there are relatively few group sizes,

it makes sense to estimate the Hg,  separately for each group size Mg. Then, the APEs can

be estimated from
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G−1∑
g1

G

Ĥgz, z̄g.     (4.15)

As discussed before, as a practical matter we might just use flexible parametric models, such as

probit with flexible functional forms.

Other strategies are available for estimating APEs. We can apply “fixed effects probit” to

cluster samples just as with panel data and treat the cg as parameters to estimate in

Pygm  1|Zg,cg  Pygm  1|zgm,cg  zgm  cg.     (4.16)

The same issues arise as in the panel data case, except with true cluster samples the conditional

indepdence assumption likely is more reasonable than in the panel data case. With small group

sizesMg (say, siblings or short panel data sets), treating the cg as parameters to estimate

creates an incidental parameters problem. As before, we might use

G−1∑
g1

G

z̂  ĉg,     (4.17)

to estimate the APEs.

The logit conditional MLE can be applied to cluster samples essentially without change,

which means we can estimate the parameters, , without restricting Dcg|Zg. This is especially

convenient in the unbalanced case.
4.2. A Small Number of Groups and Large Group Sizes

Unlike in the linear case, for nonlinear models exact inference is unavailable even under

the strongest set of assumptions. Nevertheless, if the group sizesMg are reasonably large, we

can extend the DL approach to nonlinear models and obtain approximate inference. In

addition, the the minimum distance approach carries over essentially without change.
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We can apply the methods to any nonlinear model that has an index structure – which

includes all of the common ones, and many other models besides, but we again consider the

probit case. With small G and random sampling of ygm, zgm : m  1, . . . ,Mg within each g,

write

Pygm  1|zgm  g  zgmg,m  1, . . . ,Mg     (4.18)

g    xg,g  1, . . . ,G.     (4.19)

As with the linear model, we assume the intercept, g in (4.18), is a function of the group

features xg. With the Mg moderately large, we can get good estimates of the g. The

̂g,g  1, . . . ,G, are easily obtained by estimating a separate probit for each group. Or, we can

impose common g and just estimate different group intercepts (sometimes called “group fixed

effects”).

Under (4.19), we can apply the minimum distance approach just as before. Let Avar̂g

denote the estimated asymptotic variances of the ̂g (so these shrink to zero at the rate 1/Mg). If

the ̂g are obtained from G separate probits, they are independent, and the Avar̂g are all we

need. As in the linear case, if a pooled method is used, the G  G matrix Avar̂ should be

obtained as the weighting matrix. For binary response, we use the usual MLE estimated

variance. If we are using fractional probit for a fractional response, these would be from a

sandwich estimate of the asymptotic variance. In the case where the ̂g are obtained from

separate probits, we can obtain the minimum distance estimates as the WLS estimates from

̂g on 1,xg,g  1, . . . ,G     (4.20)

using weights 1/Avar̂g are used as the weights. This is the efficient minimum distance

31



Imbens/Wooldridge, IRP Lecture Notes 7&9, August ’08

estimator and, conveniently, the proper asymptotic standard errors are reported from the WLS

estimation (even though we are doing large Mg, not large G, asymptotics.) Generally, we can

write the MD estimator as in the linear case, ̂  X ′V̂−1X−1X ′V̂−1̂, where ̂ is the G  1

vector of ̂g and V̂  Avar̂. The overidentification test is obtained exactly as in the linear

case: there are G − K − 1 degrees-of-freedom in the chi-square distribution.

The same cautions about using the overidentification test to reject the minimum distance

approach apply here as well. In particular, in the treatment effect setup, where xg is zero or

one, we might reject a comparision of means across multiple groups simply because the means

within the control or within the treatment group differ, or both. It might make sense to define

the treatment effect as the difference in averages between treatment and control, or use

weighted averages, without worrying about whether the means are the same. (We consider an

alternative, namely, using data to choose a synthetic control from a set of potentil control

groups, the the notes on difference-in-differences.)

If we reject the overidentification restrictions, we can adapt Donald and Lang (2007) and

treat

̂g    xg  errorg,g  1, . . . ,G     (4.21)

as approximately satisfying the classical linear model assumptions, provided G  K  1, just as

before. As in the linear case, this approach is justified if g    xg  cg with cg

independent of xg and cg drawn from a homoskedastic normal distribution. It assumes that we

can ignore the estimation error in ̂g, based on ̂g  g  O1/ Mg . Because the DL

approach ignores the estimation error in ̂g, it is unchanged if one imposes some constant

slopes across the groups, as with the linear model.

32



Imbens/Wooldridge, IRP Lecture Notes 7&9, August ’08

Once we have estimated  and , the estimated effect on the response probability can be

obtained by averaging the response probability for a given x:

G−1∑
g1

G

Mg
−1∑
m1

Mg

̂  x̂  zgm̂g ,     (4.22)

where derivatives or differences with respect to the elements of x can be computed. Here, the

minimum distance approach has an important advantage over the DL approach: the finite

sample properties of (4.22) are viritually impossible to obtain, whereas the large-Mg

asymptotics underlying minimum distance would be straightforward using the delta method.

How the bootstrap might work in this situation is an interesting question.

Particularly with binary response problems, the two-step methods described here are

problematical when the response does not vary within group. For example, suppose that xg is a

binary treatment – equal to one for receiving a voucher to attend college – and ygm is an

indicator of attending college. Each group is a high school class, say. If some high schools

have all students attend college, one cannot use probit (or logit) of ygm on zgm,m  1, . . . ,Mg.

A linear regression returns zero slope coefficients and intercept equal to unity. Of course, if

randomization occurs at the group level – that is, xg is independent of group attributes – then it

is not necessary to control for the zgm. Instead, the within-group averages can be used in a

simple minimum distance approach. In this case, as ygm is binary, the DL approximation will

not be valid, as the CLM assumptions will not even approximately hold in the model

ȳg    xg  eg (because ȳg is always a fraction regardless of the size of Mg).

4.3. Large G and Large Mg

As in the linear case, more flexibility is afforded if G is somewhat large along with large

Mg. If we can ignore the estimation error in the ̂g, then, in implementing the DL approach –
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with or without common slopes imposed in the first stage – one gains robustness to

nonnormality of cg if G is large enough so that G−1/2∑g1
G cg and G−1/2∑g1

G xgcg are

approximately normally distributed. The second step is the same as in the linear model case: ̂g

is regressed on 1, xg, g  1, . . . ,G; one can use heteroskedasticity-robust inference with large

G to partly account for the estimation error in the ̂g.

A version of the method proposed by Berry, Levinsohn, and Pakes (1995) for estimating

structural models using both individual-level and product-level data, or market-level data, or

both can be treated in the large G, large Mg framework, where g indexes good or market and m

indexes individuals within a market. BLP’s original application was where g indexes different

automobile models. Petrin and Train (2003) cover the case of about 170 television markets and

four TV services. To handle this case, assume that H products are available in each market.

Therefore, we now think of g as an H-vector for each g, and so is cg. The main difference

here with the previous setup is that, for reasons discussed in BLP and Petrin and Train, we

must allow the cgh to be correlated with the xgh (which contains the price of good j in market g,

in addition to product/market attributes). BLP propose a two-step estimation strategy. In the

first step, a choice model, such as multinomial logit, is estimated using the individual-level

data pooled across markets. The key estimates are what we call the ̂g – the market “fixed

effects.” Typically, most or all of the “slope” parameters in the multinomial logit estimation

are assumed to be constant across g, although, with many individuals per market, that is not

necessary.

In the second step, the ̂gh are used in place of gh in the market/good-level equation

gh    xgh  cgh, h  1, . . . ,H; g  1, . . . ,G,     (4.23)
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where, say, wg is a set of instruments for xgh. (Typically, wg varies only by market, g, and not

by good, h.) This allows for market/good-specific unobservables in the individual choice

equations to be correlated with prices. If we could observe the gh, then (4.23) would be a

standard problem in IV estimation for a cross section system of equations, provided G is large

enough to invoke the law of large numbers and central limit theorem. Replacing g with ̂g is

justified if the Mg are large because the variance of cg will dominate that of the ̂g. Further,

any correlation induced in the ̂g by pooling in the first-stage estimation shrinks to zero at the

rate 1/M, where we can think of M as the average group size. In other words, we just apply,

say, 2SLS in the second step.

Ignoring the estimation in ̂g, efficient estimation is obtained by writing the system of

equations as

̂g ≈ Xg  cg     (4.24)

where Xg is the J  K  1 matrix of attributes (including an intercept and prices). Because

(4.24) is a system of equations with instruments IJ ⊗ wg, we can use the 3SLS estimator or

GMM to efficiently account for the correlation across cgh : h  1, . . . ,H.

5. Estimation of Population Parameters with
Stratified Samples

We now provide a brief, modern treatment of estimation with stratified samples. The

emphasis here is in estimation parameters from a population that has been stratified. Typically,

with stratified sampling, some segments of the population are over- or underrepresented by the

sampling scheme. Fortunately, if we know enough information about the stratification scheme,

we can often modify standard econometric methods and consistently estimate population

parameters.
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There are two common types of stratified sampling, standard stratified (SS) sampling and

variable probability (VP) sampling. A third type of sampling, typically called multinomial

sampling, is practically indistinguishable from SS sampling, but it generates a random sample

from a modified population (thereby simplifying certain theoretical analyses). See Cosslett

(1993), Imbens (1992), Imbens and Lancaster (1996), and Wooldridge (1999) for further

discussion. We focus on SS and VP sampling here.

SS sampling begins by partitioning the sample space (set of possible outcomes), sayW,

into G non-overlapping, exhaustive groups, Wg : g  1, . . .G. Then, a random sample is

taken from each group g, say wgi : i  1, . . . ,Ng, where Ng is the number of observations

drawn from stratum g and N  N1  N2 . . .NG is the total number of observations. If w is a

random vector representing the population, and taking values inW, then each random draw

from stratum g has the same distribution as w conditional on w belonging toWg:

Dwgi  Dw|w ∈ Wg, i  1, . . . ,Ng.

Therefore, the resulting sample across all strata consists of independent but not identically

distributed observations. Unless we are told, we have no way of knowing that our data came

from SS sampling.

What if we want to estimate the mean of w from an SS sample? It turns out we cannot get

an unbiased or consistent estimator of unless we have some additional information. Typically,

the information comes in the form of population frequencies for each of the strata. Specifically,

let g  Pw ∈ Wg be the probability that w falls into stratum g; the g are often called the

“aggregate shares.”

If we know the g (or can consistently estimate them), then w  Ew is identified by a

weighted average of the expected values for the strata:
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w  1Ew|w ∈ W1 . . .GEw|w ∈ WG.     (5.1)

Because we can estimate each of the conditional means using the random sample from the

appropriate stratum, an unbiased estimator of is simply

̂w  1w̄1  2w̄2. . .Gw̄G,     (5.2)

where w̄g is the sample average from stratum g. As the strata sample sizes grow, ̂w is also a

consistent estimator of w. The variance of ̂w is easily obtained because of independence

withing and between strata:

Var̂w  1
2Varw̄1 . . .G2 Varw̄G.     (5.3)

Because Varw̄g  g2/Ng, each of the variances can be estimated in an unbiased fashion by

using the usual unbiased variance estimator,

̂g2  Ng − 1−1∑
i1

Ng

wgi − w̄g2.     (5.4)

Sometimes it is useful to have a formula for ̂w that shows it is a weighted average across

all observations:

̂w  1/h1N−1∑
i1

N1

w1i . . .G/hGN−1∑
i1

NG

wGi

 N−1∑
i1

N

gi /hgiwi     (5.5)

where hg  Ng/N is the fraction of observations in stratum g and in (5.5) we drop the strata

index on the observations and use the stratum for observation i, gi, to pick out the appropriate

weight, gi /hgi . Formula (5.5) is useful because the sampling weights associated with SS

samples are reported as gi /hgi, and so applying these weights in averaging across all N
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produces an unbiased, consistent estimator. Nevertheless, the large sample properties of

estimators from SS samples are properly derived from (5.2) and its extensions.

A different sampling scheme is usually called variable probability (VP) sampling, which is

more convenient for telephone or email surveys, where little, if anything, is known ahead of

time about those being contacted. With VP sampling, each stratum g is assigned a nonzero

sampling probability, pg. Now, a random draw wi is taking from the population, and it is kept

with probability pg if wi ∈ Wg. With VP sampling, the population is sampled N times. Often N

is not reported with VP samples (although, as we discuss latter, knowing how many times each

stratum was sampled can improve efficiency). Instead, we know how many data points were

kept, and we call this M. Because of the randomness in whether an observation is kept, M is

properly viewed as a random variable. With VP sampling, it is handy for each draw from the

population to have a selection indicator, si, which is one of observation i is kept (and then its

stratum is also known). ThenM  ∑ i1
N si. Let zi be a G-vector of stratum indicators, and let

pzi  p1zi1 . . .pGziG be the function that delivers the sampling probability for any random

draw i.

A key assumption for VP sampling is that conditional on being in stratum g, the chance of

keeping an observation is pg. Statistically, this means that, conditional on zi, si and wi are

independent. Using this assumption, we can show, just as in the treatment effect case,

Esi/pziwi  Ewi;     (5.6)

that is, weighting a selected observation by the inverse of its sampling probability allows us to

recover the population mean. (We will use a more general version of this result when we

discuss missing data general. Like estimating counterfactual means in program evaluation, VP
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sampling is, in effect, a missing data problem. But it is usually treated along with other

stratified sampling schemes.) It follows that

N−1∑
i1

N

si/pziwi     (5.7)

is a consistent estimator of Ewi. We can also write this as

M/NM−1∑
i1

N

si/pziwi;     (5.8)

if we define weights as v̂i  ̂/pzi where ̂  M/N is the fraction of observations retained

from the sampling scheme, then (5.8) isM−1∑ i1
M v̂iwi, where only the observed points are

included in the sum. Thus, like in the SS case, we can write the esimator for the mean under

VP sampling as a weighted average of the observed data points. In the VP case, the weight is

(an estimate of) the probability of keeping an observation,   Psi  1, over the probability

that an observation in its stratum is kept. If pg  , the observations for stratum g are

underpresented in the eventual sample (asymptotically), and they receive weight greater than

one.

In both the SS and VP cases, one may replace the number of observed data points in the

average with the sum of the weights described in each case.

Virtually any estimation method can be used with SS or VP sampled data. Wooldridge

(1999, 2001) covers M-estimation for the VP and SS cases, respectively. This includes a wide

variety of estimators, including least squares, MLE, and quasi-MLE. There are several

interesting findings concerning asymptotic efficiency and estimating the asymptotic variances.

Consider the problem of linear regression for simplicity; analogous claims hold for MLE, NLS,

and many other estimators. The model in the population is
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y  x  u,     (5.9)

where  may index the conditional mean, but consistency follows from Ex′u  0. Consider

SS sampling. Then a consistent estimator ̂ is obtained from the “weighted” least squares

problem

min
b
∑
i1

N

vi  yi − xib2,     (5.10)

where vi  gi /hgi is the weight for observation i. Remember, the weighting used here is not to

solve any heteroskedasticity problem; it is to reweight the sample in order to consistently

estimate the population parameter .

One possibility for performing inference on ̂ is to use the White (1980) robust sandwich

estimator and associated statistics. This estimator is routinely reported by regression packages

when sampling weights are included. In fact, sometimes this estimator is consistent for

Avar N ̂ − . There are two assumptions that imply consistency of this widely used

variance matrix estimator: (i) Ey|x  x, so that we are actually estimating a conditional

mean; and (ii) the strata are determined by the explanatory variables, x. It turns out that when

the White estimator is not consistent, it is actually conservative. In other words, the White

estimator converges to a matrix that is larger, in the matrix sense, than the correct asymptotic

variance.

To obtain the correct asymptotic variance, we need to use a more detailed formulation of

the estimation problem, which is

min
b
∑
g1

G

g Ng−1∑
i1

Ng

ygi − xgib2     (5.11)
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so that we are minimizing the a weighted average sum of squared residuals. (Equation (5.11) is

a consistent estimator of Ey − xb2, and we know the population value, , minimizes

Ey − xb2.) Using this formulation – actually, the M-estimator version of it – Wooldridge

(2001) showed that a consistent estimator of the asymptotic variance of ̂ is

Avar̂ −   ∑
i1

N

gi /hgixi′xi
−1

 ∑
g1

G

g/hg2 ∑
i1

Ng

xgi′ ûgi − xg′ ûgxgi′ ûgi − xg′ ûg ′

 ∑
i1

N

gi /hgixi′xi
−1

.

    (5.12)

This formula looks a bit daunting, but, it can be seen that the outer parts of the sandwich are

identical to the usual White sandwich estimator. The difference is in the middle. The usual

estimator ignores the information on the strata of the observations, which is the same as

dropping the within-strata averages, xg′ ûg. Because a smaller sum of squared residuals (in a

matrix sense) is obtained by subtracting off the same average – rather than centering around

zero – the matrix in (5.12) is smaller than the usual White matrix. That happens

asymptotically, too, provided the means Ex′u|w ∈ Wg, where w  x,y, are nonzero. So, it

is the difference between subtracting off within-strata averages and not that produces the more

precise inference with stratified sampled data. Econometrics packages, such as Stata, will

compute (5.12) provided strata membership is included along with the weights. If only the

weights are provided, the larger asymptotic variance is computed.

One case where there is no gain from subtracting within-strata means is when Eu|x  0

and w ∈ Wg is the same as x ∈ Xg for some partition of the regressor space. In fact, if we add
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the homoskedasticity assumption Varu|x  2, then the weighted estmator is less efficient

than the unweighted estimator, which, of course, is also consistent because Ey|x  x and

stratification is based on x. So, the cost to weighting when the classical linear model

assumptions hold and stratification is exogenous is in terms of efficiency loss.

Some argue that even if stratification is based on x, one should use the weighted estimator.

The argument is based on consistently estimating the linear projection, Ly|x, even if the

conditional mean is not linear. If we can only assume Ly|x  x, then the weighted estimator

consistently estiimates  whether or not the stratification is based on x. The unweighted

estimator does not consistently estimate  in either case.

The previous discussion applies to nonlinear least squares and maximum likelihood

problems, and others. Now, to exploit the stratification, strata means should be subtracted from

the gradient of the objective function when computing the asymptotic variance. This requires

knowing the stratum and its weight for each observation. A conservative estimate is obtained

by the Huber-White sandwich form for misspecified MLE – but with sampling weights. This is

the proper formula for, say, MLE if the conditional density fy|x, is correctly specified and

stratification is based on x. But in that case the unweighted MLE is fully efficient, and the

usual variance matrix estimators can be used. The weighted estimator does consistently

estimate the solution to the population problem mintElog fy|x, t if the density is

misspecified, and that is valuable in some situations.

The above findings have analogs for VP sampling. One interesting finding is that while the

Huber-White sandwich matrix applied to the weighted objective function (weighted by the

1/pg) is consistent when the known pg are used, an asymptotically more efficient estimator is

available when the retention frequencies, p̂g  Mg/Ng, are observed, where Mg is the number
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of observed data points in stratum g and Ng is the number of times stratum g was sampled. We

always knowMg if we are given a stratum indicator with each observation. Generally, Ng

might not be known. If it is, we should use the p̂g in place of pg. Results such as this are

discussed in Imbens (1992), Imbens and Lancaster (1996), and Wooldridge (1999, 2007). The

VP sampling example in Wooldridge (2007) can be used to show that the following matrix is

valid:

Avar̂ −   ∑
i1

M

xi′xi/p̂gi

−1

 ∑
g1

G

p̂g−2 ∑
i1

Mg

xgi′ ûgi − xg′ ûgxgi′ ûgi − xg′ ûg ′

 ∑
i1

M

xi′xi/p̂gi

−1

,

    (5.13)

where, remember,Mg is the number of observed data points in stratum g, and the above sums

are over the observed data points. This formula is essentially the same as (5.12) in that the

quantities are weighted so that the sample represents the population and xgi′ ûgi are centered

about the within-strata means. If we use the known sampling weights, we drop xg′ ûg from

(5.13). If Eu|x  0 and the sampling is exogenous, we also drop this term because

Ex′u|w ∈ Wg  0 for all g, and this is whether or not we estimate the pg. See Wooldridge

(2007) for how these same claims carry over to general nonlinear models and estimation

methods.

6. Clustering and Stratified Sampling
Often, survey data are often characterized by clustering and variable probability sampling.

43



Imbens/Wooldridge, IRP Lecture Notes 7&9, August ’08

For example, suppose that g represents the primary sampling unit (say, city) and individuals or

families (indexed by m) are sampled within each PSU with probability pgm. Consider the

problem of regression using such a data set. If ̂ is the pooled OLS estimator across PSUs and

individuals, then its variance is estimated as

∑
g1

G

∑
m1

Mg

xgm′ xgm/pgm

−1

 ∑
g1

G

∑
m1

Mg

∑
r1

Mg

ûgmûgrxgm′ xgr/pgmpgr ∑
g1

G

∑
m1

Mg

xgm′ xgm/pgm

−1

.     (6.1)

The middle of the sandwich accounts for cluster correlation along with unequal sampling

probabilities. If the probabilities are estimated using retention frequencies, (6.1) is

conservative, as before.

Multi-stage sampling schemes introduce even more complications. Consider the following

setup, closely related to Bhattacharya (2005). Let there be S strata (e.g., states in the U.S.),

exhaustive and mutually exclusive. Within stratum s, there are Cs clusters (e.g.,

neighborhoods). We require some sort of large-sample approximation. Therefore, we assume

that in each stratum a large number of clusters is sampled, with replacement. (The assumption

of with replacement can be relaxed, but is not important of the number of clusters samples, Ns,

is “large.”) The setup allows for arbitrary correlation (say, across households) within each

cluster.

Within stratum s and cluster c, let there be Msc total units (household or individuals).

Therefore, the total number of units in the population is

M ∑
s1

S

∑
c1

Cs

Msc.     (6.2)

Let z be a variable whose mean we want to estimate. List all population values as
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zscmo : m  1, . . . ,Msc,c  1, . . . ,Cs, s  1, . . . ,S, so the population mean is

  M−1∑
s1

S

∑
c1

Cs

∑
m1

Msc

zscmo .     (6.3)

Define the total in the population as

 ∑
s1

S

∑
c1

Cs

∑
m1

Msc

zscmo  M.     (6.4)

It is also useful to define the totals within each cluster and stratum:

sc ∑
m1

Msc

zscmo     (6.5)

and

s ∑
c1

Cs

sc.     (6.6)

Now we can define the sampling scheme: (i) For each stratum s, randomly draw Ns

clusters, with replacement. (ii) For each cluster c drawn in step (i), randomly sample Ksc

households with replacement. For each pair s,c, define

̂sc  Ksc−1∑
m1

Ksc

zscm.     (6.7)

Because this is an average based on a random sample within s,c,

E̂sc  sc  Msc
−1∑
m1

Msc

zscmo .     (6.8)

To continue up to the cluster level we need the total, sc  Mscsc. So, ̂sc  Msc̂sc is an

unbiased estimator of sc for all s,c : c  1, . . . ,Cs, s  1, . . . ,S (even if we eventually do
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not use some clusters because they are not sampled). Now, for each stratum s, the estimator

Ns−1∑
c1

Ns

̂sc,     (6.9)

which is the average of the cluster totals withing stratum s, has expected value which is the

population average (for stratum s), that is,

Cs−1∑
c1

Cs

sc  Cs−1∑
c1

Cs

∑
m1

Msc

zscmo  Cs−1s.     (6.10)

[In general, Cs−1s ≠ s  ∑c1
Cs Msc

−1
s unless each cluster has only one observation.] It

follows that an unbiased estimator of the total s for stratum s is

Cs  Ns−1∑
c1

Ns

̂sc.     (6.11)

Finally, the total in the entire population is estimated as

∑
s1

S

Cs  Ns−1∑
c1

Ns

̂sc ∑
s1

S

Cs/Ns∑
c1

Ns

Msc/Ksc∑
m1

Ksc

zscm

∑
s1

S

∑
c1

Ns

∑
m1

Ksc
Cs
Ns

 Msc
Ksc

zscm

≡ ∑
s1

S

∑
c1

Ns

∑
m1

Ksc

sczscm

    (6.12)

where

sc ≡ Cs
Ns

 Msc
Ksc

    (6.13)

is the weight for every unit sampled in stratum-cluster pair s,c. Note how (6.13)

sc  Cs/NsMsc/Ksc accounts for under- or over-sampled clusters within strata and under-

or over-sampled units within clusters. The expression in (6.12) appears in the literature on
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complex survey sampling, sometimes withoutMsc/Ksc when each cluster is sampled as a

complete unit, and soMsc/Ksc  1. To estimate the population mean, , we just divide byM,

the total number of units in the population,

̂  M−1 ∑
s1

S

∑
c1

Ns

∑
m1

Ksc

sczscm .     (6.14)

(The alternative is to use the regression formulation of estimating a mean that we now turn to,

which does not require knowingM.)

To study the asymptotic properties of regression (and many other estimation methods), it is

more convenient to modify the weights so that they are constant, or converge to a constant.

The weights sc converge to zero at rate Ns−1 because Cs andMsc are fixed and Ksc is treated as

fixed. (We assume a relative small number of households sampled per cluster.) Let

N  N1  N2 . . .NS be the total number of clusters sampled.

sc 
Cs

Ns/N
 Msc
Ksc

 Nsc.     (6.15)

As in Bhattacharya (2005), it is easiest just to assume Ns  asN for as fixed, 0  as  1,

a1 . . .aS  1. But we can also just assume Ns/N converges to as with the same property.

Therefore, by writing sc  Cs/asMs/Ks, we see that sc is constant. Further, any

optimization problem that uses sc as weights gives the same answer when sc is used because

the scale factor in (6.15) does not depend on s or c. The key in the formulas for the asymptotic

variance below is that sc is (roughly) constant, and so Ns/N is critical in the formula.

While (6.15) is the most natural definition of the weights for obtaining the limiting

distribution results, we can use different formulations without changing the end formulas. For

example, let C  C1 . . .CS be the total number of clusters in the population, let M be the
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total number of units in the population, and let K be the total units samples. Then, for the final

formulas, we could use the weights defined as

sc 
Cs/C
Ns/N


Msc/M
Ksc/K

 NK
CM sc.     (6.16)

Because C, M, and K are fixed, the factor K/CM has no effect on estimation or inference.

Equation (6.16) has a nice interpretation because it is expressed in terms of frequencies of the

population relative to the sample frequencies. For example, if Cs/C  Ns/N, which means

that stratum s is underrepresented in terms of number of clusters, (6.16) gives more weight to

such strata. The same is true of the fractions involving the number of units (say, households).

While we can consider general M-estimation problems, or generalized method of moments

as in Bhattachary (2005), we consider least squares for concreteness. The weighted

minimization problem is

min

N−1∑

s1

S

∑
c1

Ns

∑
m1

Ksc

scyscm − xscm2,     (6.17)

where it is helpful to divide by N to facilitate the asymptotic analysis as N → . The first order

condition is

N−1∑
s1

S

∑
c1

Ns

∑
m1

Ksc

scxscm′ yscm − xscm̂  0.     (6.18)

Using arguments similar to the SS sampling case, but accounting for the clustering (by, in

effect, treating each cluster as its own observation), we can show that an appropriate estimator

of Avar̂ – in the sense that it is consistent for Avar N ̂ −  when multiplied by N – is

∑
s1

S

∑
c1

Ns

∑
m1

Ksc

scxscm′ xscm
−1

B̂ ∑
s1

S

∑
c1

Ns

∑
m1

Ksc

scxscm′ xscm
−1

    (6.19)
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where B̂ is somewhat complicated:

B̂ ∑
s1

S

∑
c1

Ns

∑
m1

Ksc

sc2 ûscm2 xscm′ xscm ∑
s1

S

∑
c1

Ns

∑
m1

Ksc

∑
r≠m

Ksc

sc2 ûscmûscrxscm′ xscr

−∑
s1

S

Ns−1 ∑
c1

Ns

∑
m1

Ksc

scxscm′ ûscm ∑
c1

Ns

∑
m1

Ksc

scxscm′ ûscm
′

.

    (6.20)

The first part of B̂ is obtained using the White “heteroskedasticity”-robust form. The second

piece accounts for the correlation within clusters. The third piece reduces the variance by

accounting for the nonzero means of the “score” within strata, just as in the standard stratified

sampling case.

If each cluster has just one unit, soMsc  Ksc  1, then (6.19) reduced to

∑
s1

S

∑
c1

Ns

scxsc′ xsc
−1

∑
s1

S

∑
c1

Ns

sc2 ûsc2 xsc′ xsc −∑
s1

S

Ns−1 ∑
c1

Ns

scxsc′ ûsc ∑
c1

Ns

scxsc′ ûsc
′

∑
s1

S

∑
c1

Ns

which is the formuala for standard stratified sampling with a finite number of units in each

stratum.
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