
Imbens/Wooldridge, IRP Lecture Notes 6, August ’08

IRP Lectures Madison,WI, August 2008
Lecture 6,Monday, August 4, 4:15-5:30
Nonlinear Panel Data Models

These notes summarize some recent, and perhaps not-so-recent, advances in the estimation

of nonlinear panel data models. Research in the last 10 to 15 years has branched off in two

directions. In one, the focus has been on parameter estimation, possibly only up to a common

scale factor, in semiparametric models with unobserved effects that can be arbitrarily

correlated with covariates. Another branch has focused on estimating partial effects when

restrictions are made on the distribution of heterogeneity conditional on the history of the

covariates. These notes attempt to lay out the pros and cons of each approach, paying

particular attention to the tradeoff in assumptions and the quantities that can be estimated.

1. Basic Issues and Quantities of Interest
Most microeconomic panel data sets are best characterized as having few time periods and

(relatively) many cross section observations. Therefore, most of the discussion in these notes

assumes T is fixed in the asymptotic analysis while N is increasing. We assume random

sampling in the cross section, that is, xit,yit : t  1, . . . ,T, is a random draw of T time

periods for observation i. We take the response yit to be a scalar for simplicity.

If we are not concerned about traditional (contemporaneous) endogeneity, then we are

typically interested in the conditional distribution

Dyit|xit,c i,     (1.1)

where c i is the onobserved heterogeneity for observation idrawn along with the observables.

Often we are interested in a particular feature of this distribution, such as Eyit|xit,c i, or a
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conditional median. Generally, with nonlinear models, we must deal with the issue of

summarizing the effects of the observed covariates while accounting for the presense of c i. For

example, in the case of a mean, how do we summarize the partial effects when they depend on

the unobserved heterogeneity? Let Eyit|xit  xt,c i  c  mtxt,c be the mean function. If

xtj is continuous, then the partial effect can be defined as

jxt,c ≡
∂mtxt,c
∂xtj

.     (1.2)

For discrete (or continuous) variables, we can instead look at discrete changes in the mean

function. Either way, a key question is: How do we account for unobserved c? If we want to

estimate magnitudes of effects, we need to know enough about the distribution of c i so that we

can either insert meaningful values for c, or we can average the partial effects across the

distribution of c i. As an example of the former, suppose we can identify c  Ec i. Then we

can compute the partial effect at the average (PEA),

jxt,c.     (1.3)

Of course, to estimate (1.3), we need to estimate the function mt and the mean of c i. If we

know more about the distribution of c i, we can insert different quantiles, for example, or a

certain number of standard deviations from the mean.

As an alternative to plugging in specific values for c, we can average the partial effects

across the distribution of c i:

APExt  Ecijxt,c i,     (1.4)

the so-called average partial effect (APE). The difference between (1.3) and (1.4) can be

nontrivial for nonlinear mean functions. The definition in (1.4) dates back at least to

2



Imbens/Wooldridge, IRP Lecture Notes 6, August ’08

Chamberlain (1984), and is closely related to the notion of the average structural function

(ASF) [Blundell and Powell (2003)]. The ASF is defined as

ASFxt  Ecimtxt,c i.     (1.5)

Assuming the derivative passes through the expectation results in (1.5), the average partial

effect. Of course, computing a discrete change in the ASF always gives the corresponding

APE. A useful feature of APEs is that they can be compared across models, where the

functional form of the mean or the distribution of the heterogeneity can be different. In

particular, APEs in general nonlinear models are comparable to the estimated coefficients in a

standard linear model.

Semiparametric methods that are totally silent about the distribution of c i, unconditionally

or conditional on xi1, . . . ,xiT, cannot generally deliver estimates of PAEs or APEs essentially

by design. Instead, an index structure is usually imposed so that parameters can be consistently

estimated. A common setup with scalar heterogeneity is

mtxt,c  Gxt  c,     (1.6)

where, say, G is strictly increasing and continuously differentiable (and, in some cases, is

known, and in others, is not). The partial effects are proportional to the parameters:

jxt,c  jgxt  c,     (1.7)

where g is the derivative of G. Therefore, if we can estimate j then we can estimate the

sign of the partial effect, and even the relative effects of any two continuous variables. But,

even if G is specified (the more common case), the magnitude of the effect evidently cannot

be estimated without making assumptions about the distribution of ci: the size of the scale

factor for a random draw i, gxt  ci, depends on ci. Without knowing something about the
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distribution of ci we cannot generally locate gxt  ci or average out the heterogeneity.

Returning to the general case, Altonji and Matzkin (2005) focus on what they call the local

average response (LAR) as opposed to the APE or PAE. The LAR at xt for a continuous

variable xtj is

 ∂mtxt,c∂xtj
dHtc|xt,     (1.8)

where Htc|xt denotes the cdf of Dc i|xit  xt. This is a “local” partial effect because it

averages out the heterogeneity for the slice of the population described by the vector of

observed covariates, xt. The APE, which, by comparison, could be called a “global average

response,” averages out over the entire distribution of c i. See also Florens, Heckman, Meghir,

and Vytlacil (2007).

It is important to see that the previous definitions of partial effects does not depend on the

nature of the variables in xt (except for whether it makes sense to use the calculus

approximation or use changes). In particular, xt can include lagged dependent variables and

lags of other variables, which may or may not be strictly exogenous. Unfortunately, we cannot

identify the APEs, or even relative effects in index models, without some assumptions.

2. Exogeneity Assumptions on the Covariates
Ideally, we would only have to specify a model for Dyit|xit,c i, or some feature, to

estimate parameters and partial effects. Unfortunately, it is well known that specifying a full

parametric model is not sufficient for identifying either the parameters of the model or the

partial effects defined in Section 1. In this section, we consider two useful exogeneity

assumptions on the covariates.
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It is easiest to deal with estimation under a strict exogeneity assumption. The most useful

definition of strict exogeneity for nonlinear panel data models is

Dyit|xi1, . . . ,xiT,c i  Dyit|xit,c i,     (2.1)

which means that xir, r ≠ t, does not appear in the conditional distribution of yit once xit and c i

have been counted for. Chamberlain (1984) labeled (2.1) strict exogeneity conditional on the

unobserved (or latent) effects c i; as discussed by Chamberlain, (2.1) is much more plausible

than if we did not condition on c i. Sometimes, a conditional mean version is sufficient:

Eyit|xi1, . . . ,xiT,c i  Eyit|xit,c i,     (2.2)

which we already saw for linear models. (In other cases a condition stated in terms of

conditional medians is more convenient.) Assumption (2.1), or its conditional mean version,

are less restrictive than if we do not condition on c i. Indeed, it is easy to see that, if (2.1) holds

and Dc i|xi depends on xi, then strict exogeneity without conditioning on c i,

Dyit|xi1, . . . ,xiT  Dyit|xit, cannot hold. Unfortunately, both (2.1) and (2.2) rule out lagged

dependent variables, as well as other situations where there may be feedback from

idiosyncratic changes in yit to future movements in xir, r  t. (Essentially the same problem

shows up in linear models, but there it is more easily dealt with.) Neverthless, the conditional

strict exogeneity assumption underlies the most common estimation methods for nonlinear

models.

More natural is sequential exogeneity conditional on the unobserved effects, which we can

state generally as

Dyit|xi1, . . . ,xit,c i  Dyit|xit,c i,     (2.3)

or, sometimes, in terms of specific features of the distribution. Assumption (2.3) allows for
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lagged dependent variables and does not restrict feedback. Unfortunately, (2.3) is more

difficult to work with than (2.1) for general nonlinear models.

Because we condition on xit, neither (2.1) nor (2.3) allows for contemporaneous

endogeneity of one or more elements of xit, where, say, xitj is correlated with unobserved,

time-varying unobservables that affect yit, or where xitj is simultaneously determined along

with yit. Such cases will be covered in later notes on control function methods.

3. Conditional Independence Assumption
The exogeneity conditions stated in Section 2 generally do not restrict the dependence in

the responses, yit : t  1, . . . ,T, although in special cases (2.3) does. Often, a conditional

independence assumption is explicitly imposed. We can write the condition generally as

Dyi1, . . . ,yiT|xi,c i 
t1

T

Dyit|xi,c i.     (3.1)

Equation (3.1) simply means that, conditional on the entire history xit : t  1, . . . ,T and the

unobserved heterogeneity c i, the responses are independent across time. One way to think

about (3.1) is that time-varying unobservables are independent over time. Because (3.1)

conditions on xi, it is useful only in the context of the strict exogeneity assumption (2.1). Then,

conditional independence can be written as

Dyi1, . . . ,yiT|xi,c i 
t1

T

Dyit|xit,c i.     (3.2)

In a parametric context, the conditional independence assumption reduces our task to

specifying a model for Dyit|xit,c i, and then determining how to treat the unobserved
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heterogeneity, c i. In random effects and correlated RE frameworks, conditional independence

can play a critical role in being able to estimate the parameters and the distribution of c i. We

could get by with less restrictive assumptions by parameterizing the dependence in the joint

distribution Dyi1, . . . ,yiT|xi,c i – something that is sometimes done – but that increases

computational burden. As it turns out, conditional independence plays no role in estimating

APEs for a broad class of models. [That is, we do not need to place restrictions on

Dyi1, . . . ,yiT|xi,c i. ] Before we can study estimation, we must discuss the critical issue of the

dependence between c i and xi.

4. Assumptions about the Unobserved
Heterogeneity

The modern approach to panel data analysis with micro data treats the unobserved

heterogeneity as random draws along with the observed data, and that is the view taken here.

Nevertheless, in order to avoid making distributional assumptions about c i, one sometimes

treats the c i as parameters to estimate, and so we allow for that possibility in our discussion.

Random Effects

For general nonlinear models, what we call the random effects assumption is independence

between c i and xi  xi1, . . . ,xiT:

Dc i|xi1, . . . ,xiT  Dc i.     (4.1)

If we combine this assumption with a model for the conditional mean, mtxt,c, then the APEs

are actually nonparametrically identified. (And, in fact, we do not need to assume strict or

sequential exogeneity to use a pooled estimation method, or to use just a single time period.) In
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fact, if Eyit|xit,c i  mtxit,c i and Dc i|xit  Dc i, then the APEs are obtained from

rtxt ≡ Eyit|xit  xt.     (4.2)

(The argument is a simple application of the law of interated expectations; it is discussed in

detail in Wooldridge (2005a).) In principle, Eyit|xit can be estimated nonparametrically, and

we only need a single time period to identify the partial effects for that time period.

In some leading cases (for example random effects probit and Tobit models with

heterogeneity normally distributed and homoskedastic), if we want to obtain partial effects for

different values of c, we must assume more: the strict exogeneity assumption (2.1), the

conditional independence assumption (3.1), and the random effects assumption (4.1) – with a

parametric distribution for Dc i – are typically sufficient. We postpone this discussion

because it takes us into the realm of specifying parametric models.

Correlated Random Effects

A correlated random effects framework allows dependence between c i and xi, but the

dependence in restricted in some way. In a parametric setting, we specify a distribution for

Dc i|xi1, . . . ,xiT, as in Mundlak (1978), Chamberlain (1982), and many subsequent authors;

see Wooldridge (2002). For many models, including probit and Tobit, one can allow

Dc i|xi1, . . . ,xiT to depend in a “nonexchangeable” manner on the time series of the

covariates; Chamberlain’s correlated random effects probit model does this. But the

distributional assumptions that lead to simple estimation – namely, homoskedastic normal with

a linear conditional mean — are restrictive. But it is aslo possible to assume

Dci|xi  Dci|x̄i     (4.3)

without specifying Dci|x̄i or restricting any feature of this distribution. We will see in the
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next section that (4.3) is very powerful.

We can go further. For example, suppose that we think the heterogeneity c i is correlated

with features of the covariate history other than just the time average. Altonji and Matzkin

(2005) allow for x̄i in equation (4.3) to be replaced by other functions of xit : t  1, . . . ,T,

such as sample variances and covariance. These are examples of “exchangeable” functions of

xit : t  1, . . . ,T, say, wi – that is, statistics whose value is the same regardless of the

ordering of the xit. Non-exchangeable functions can be used, too. For example, we might think

that c i is correlated with individual-specific trends, and so we define wi to include the intercept

and slope from the unit-specific regressions xit on 1, t, t  1, . . . ,T (for T ≥ 3); we can also add

the error variance from this individual specific regression if we have a sufficient number of

time periods. Regardless of how we choose wi, the key condition is

Dci|xi  Dci|wi.     (4.4)

Practically, we need to specify wi and then establish that there is enough variation in

xit : t  1, . . . ,T separate from wi in order to identify either parameters or, more like,

average partial effects; this will be clear in the next section.

Fixed Effects

Unfortunately, the label “fixed effects” is used in different ways by different researchers

(and, sometimes, by the same researcher). The traditional view is that a fixed effects

framework meant c i, i  1, . . . ,N were treated as parameters to estimate. This view is still

around, and, when researchers say they estimated a nonlinear panel data model by “fixed

effects,” they sometimes mean the c i were treated as parameters to estimate along with other

parameters (whose dimension does not change with N). As is well known, except in special

9



Imbens/Wooldridge, IRP Lecture Notes 6, August ’08

cases, estimation of the c i generally introduces an “incidental parameters” problem. (More on

this later when we discuss estimation methods.) Subject to computational feasibility, the

approach that treats the c i as parameters is widely applicable. The practical question is whether

the stance of treating the c i as parameters delivers “good” estimates of the population

parameters and the partial effects.

Rather than meaning the c i are parameters to estimate, the “fixed effects” label can mean

that c i is random but Dc i|xi is unrestricted. Even in that case, there are different approaches

to estimation of parameters. One is to specify a joint distribution Dyi1, . . . ,yit|xi,c i such that a

sufficient statistic, say si, can be found such that

Dyi1, . . . ,yit|xi,c i, si  Dyi1, . . . ,yit|xi, si,     (4.5)

and where the latter distribution still depends on the parameters of interest in a way that

identifies them. In most cases, the conditional independence assumption (3.1) is maintained,

although one conditional MLE is known to have robustness properties: the so-called “fixed

effects” Poisson estimator. We cover that in Section 7.

5. Nonparametric Identification of Average Partial
and Local Average Effects

Before considering identification and estimation of parameters in parametric models, it is

useful to ask which quantities, if any, are identified without imposing parametric assumptions.

Not surprisingly, there are no known results on nonparametric identificiation of partial effects

evaluated at specific values of c, such as c – except, of course, when the partial effects do not

depend on c. Interestingly, identification can fail even under a full set of strong parametric
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assumptions. For example, in the probit model with unobserved heterogeneity,

Py  1|x,c  x  c,     (5.1)

where x is 1  K and includes unity, the partial effect for a continuous variable xj is simply

jx  c. Assuming Ec  0, which is without loss of generality when x1  1, the partial

effect at the mean of c is simply jx. Suppose we make the stronger assumption that c|x

~Normal0,c2. Then it is easy to show (see Wooldridge (2002, Chapter 15)) that

Py  1|x  x/1  c21/2,     (5.2)

which means that only the scaled parameter vector c ≡ /1  c21/2 is identified. Therefore,

jx is evidently unidentified. (The fact that probit of y on x estimates c rather than  has

been called the “attenuation bias” that results from omitted variables in the context of probit,

even when the omitted variable is independent of the covariates and normally distributed. As

mentioned earlier more generally, the average partial effects are obtained directly from

Py  1|x, and, in fact, are given by cjxc. As discussed in Wooldridge (2002, Chapter

15), cjxc can be larger or smaller in magnitude than the PEA jx: |cj|≤ |j| but

xc ≥ x. 

A related example is due to Hahn (2001), and is related to the nonidentification results of

Chamberlain (1993). Suppose that xit is a binary indicator (for example, a policy variable).

Consider the unobserved effects probit model for two time periods,

Pyit  1|xi,ci  xit  ci, t  1,2.     (5.3)

As discussed by Hahn,  is not known to be identified in this model, even under the

conditional independence assumption (2.1) and the random effects assumption

Dci|xi  Dci. But the average partial effect, which in this case is an average treatment
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effect, is simply  ≡ E  ci − Eci. By the general result cited earlier,  is

consistently estimated (in fact, unbiasedly estimated) by using a difference of means for the

treated and untreated groups, for either time period. (If treatment is only in the second time

period, as in Hahn (2001), then the difference must be for the second time period.) In fact, as

discussed in Wooldridge (2005a), identification of the APE holds if we replace  with an

unknown function G and allow Dci|xi  Dci|x̄i. But the parameters are still not identified.

The previous examples raise the following question: Are we focusing too much on

parameters in nonlinear models with unobserved heterogeneity? The answer seems to be yes,

but with qualifications. Consider a third example, due to Wooldridge (2005c). The binary

variable y is determined by the index model y  1x  u  0, where u|x

~Normal0,exp2x1, where x1 is a subset of x that does not contain an intercept. This

model is often called a heteroskedastic probit model. Of course,  and  are estimable by MLE

because Py  1|x  exp−x1x. However, the APE for, say, the continuous variable xj

is not obtained by differentiating Py  1|x with respect to xj; in fact, as is well known, this

derivative can have a sign different from the sign of j. Instead, the average structural function

is consistently estimated by

ASFx  N−1∑
i1

N

exp−xi1̂x̂ ,

and the partial derivative with respect to xj always has the same sign as ̂j. Notice how the

ASF averages across the argument xi1 in the heteroskedasticity function. That comes about

because we can write ASFx  Exi1E1x  ui  0|xi1  Eexp−xi1x. The

point of this example is that in this case the parameters actually give us the APEs up to the

same, positive factor (which depends on the parameters and x, and so the sign of the j gives
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us the direction of the effect on the APE, and ratios of parameters on continuous variables

provide the relative APEs. By contrast, if we blindly differentiate exp−x1x with respect

to xj and xj appears in x1, the resulting expression is not the APE. In other words, parameters

tell us more than derivatives in this case. Of course, we will prefer to take derivatives of the

appropriate function in (5.4), thereby getting consistent estimates of the APEs. See Wooldridge

(2005c) for further discussion of this kind of example, including the negative finding that the is

no way to distinguish between the heteroskedastic probit model and a model with random

slope coefficients. (And, in the latter case, we do obtain the APEs by differentiating Py  1|x

with respect to xj.)

Returning to the panel data case, we can establish identification of average partial effects

much more generally. Assume only that the strict exogeneity assumption (2.1) holds along

with Dci|xi  Dci|x̄i. These two assumptions are sufficient to identify the APEs. To see

why, note that the average structural function at time t can be written as

ASFtxt  Ecimtxt,c i  E x̄iEmtxt,c i|x̄i ≡ E x̄irtxt, x̄i,     (5.4)

where rtxt, x̄i ≡ Emtxt,c i|x̄i. It follows that, given an estimator r̂t,  of the function

rt, , the ASF can be estimated as

ASFtxt ≡ N−1∑
i1

N

r̂txt, x̄i,     (5.5)

and then we can take derivatives or changes with respect to the entries in xt. Notice that (5.4)

holds without the strict exogeneity assumption (2.1) or the assumption Dci|xi  Dci|x̄i.

However, these assumptions come into play in our ability to estimate rt, . If we combine

(2.1) and (4.3) we have
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Eyit|xi  EEyit|xi,c i|xi  Emtxit,c i|xi  mtxit,cdFc|xi
 mtxit,cdFc|x̄i  rtxit, x̄i,     (5.6)

where Fc|xi denotes the cdf of Dc i|xi (which can be a discrete, continuous, or mixed

distribution), the second equality follows from (2.1), the fourth equality follows from

assumption (4.3), and the last equality folllows from the definition of rt,  Of course,

because Eyit|xi depends only on xit, x̄i, we must have

Eyit|xit, x̄i  rtxit, x̄i.     (5.7)

Further, xit : t  1, . . . ,T is assumed to have time variation, and so xit and x̄i can be used as

separate regressors even in a fully nonparametric setting.

Altonji and Matskin (2005).use this idea more generally, and focus on estimating the local

average response. Wooldridge (2005a) used Dc i|xi  Dc i|x̄i generally in the case xit is

discrete, in which case a full nonparametric analysis is easy. When

Dc i|xi  Dc i|wi     (5.8)

for wi a function of xi, Altonji and Matzkin (2005) show that the LAR can be obtained as

 ∂rtxt,w∂xtj
dKtw|xt,     (5.9)

where rxt,w  Eyit|xit  xt,wi  w and Ktw|xt is the cdf of Dwi|xit  xt. Altonji and

Matskin demonstrate how to estimate the LAR based on nonparametric estimation of

Eyit|xit,wi followed by “local” averaging, that is, averaging ∂ryit|xt,wi/∂xtj over

observations i with xit “close” to xt.

This analysis demonstrates that APEs are nonparametrically identified under the

conditional mean version of strict exogeneity, Eyit|xi,c i  Eyit|xit,c i, and (5.8), at least for
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time-varying covariates if wi is restricted in some way. In fact, we can identify the APEs for a

single time period with just one year of data on y. We only need to obtain wi (with wi  x̄i

the leading case) and, in effect, include it as a control. Of course, efficiency would be gained

by assuming some stationarity across t and using a pooled method.

6. Dynamic Models
General models with only sequentially exogenous variables are difficult to deal with.

Arellano and Carrasco (2003) consider probit models. Wooldridge (2000) suggests a strategy

the requires modeling the dynamic distribution of the variables that are not strictly exogenous.

Much more is known about models with lagged dependent variables and otherwise strictly

exogenous variables. So, we start with a model for

Dyit|zit,yi,t−1, . . . ,zi1,yi0,c i, t  1, . . . ,T,     (6.1)

which we assume also is Dyit|zi,yi,t−1, . . . ,yi1,yi0,c i where zi is the entire history

zit : t  1, . . . ,T. This is the sense in which the zit are strictly exogenous.

Suppose this model depends only on zit,yi,t−1,c i, so ftyt|zt,yt−1,c;. The joint density of

yi1, . . . ,yiT given yi0,zi,c i is


t1

T

ftyt|zt,yt−1,c;.     (6.2)

The problem with using this for estimation is the presence of c i along with the initial condition,

yi0. Several approaches have bee suggestd: (i) Treat the c i as parameters to estimate (incidental

parameters problem, although recent research has attempted to reduce the asymptotic bias in

the partial effects). (ii) Try to estimate the parameters without specifying conditional or
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unconditional distributions for ci. (Available in some special cases covered below, but other

restrictions are needed. And, generally, cannot estimate partial effects.). (iii) Find or, more

practically, approximate Dyi0|c i, zi and then model Dc i|zi. After integrating out ci we

obtain the density for Dyi0,yi1, . . . ,yiT|zi and we can use MLE (conditional on zi), (iv) Model

Dc i|yi0,zi. After integrating out ci we obtain the density for Dyi1, . . . ,yiT|yi0,zi, and we can

use MLE (conditional on yi0,zi). As shown by Wooldridge (2005b), in some leading cases –

probit, ordered probit, Tobit, Poisson regression – there is a density hc|y0,z that mixes with

the density fy1, . . . ,yT|y0,z,c to produce a log-likelihood that is in a common family and

carried out by standard software.

If mtxt,c, is the mean function Eyt|xt,c for a scalar yt, then average partial effects are

easy to obtain. The average structural function is

ASFxt  Ecimtxt,c i,  E mtxt,c,hc|yi0,zi,dc |yi0,zi .     (6.3)

The term inside the brackets, say rtxt,yi0,zi,, is available, at least in principle, because

mt and h have been specified. Often, they have simple forms, in fact. Generally, it can be

simulated. In any case, ASFxt, is consistently estimated by

ASFxt  N−1∑
t1

T

rtxt,yi0,zi, ̂, ̂.

Partial derivatives and differences with respect to elements of xt (which, remember, can

include yt−1) can be computed. With large N and small T, the panel data bootstrap can be used

for standard errors and inference.

7. Applications to Specific Models

16



Imbens/Wooldridge, IRP Lecture Notes 6, August ’08

We now turn to some common parametric models and highlight the difference between

estimation partial effects at different values of the heterogeneity and estimating average partial

effects. An analysis of Tobit models follows in a very similar way to those in the following

two sections. See Wooldridge (2002, Chapter 16) and Honoré and Hu (2004).

7.1 Binary and “Fractional” Response Models

We start with the standard specification for the unobserved effects (UE) probit model,

which is

Pyit  1|xit,ci  xit  ci, t  1, . . . ,T,     (7.1)

where xit does not contain an overall intercept but would usually include time dummies. We

cannot identify  or the APEs without further assumptions. The traditional RE probit models

imposes a strong set of assumptions: strict exogeneity, conditional serial independence, and

independence between ci and xi with ci ~Normalc,c2. Under these assumptions,  and the

parameters in the distribution of ci are identified and are consistently estimated by full MLE

(conditional on xi.

We can relax independence between ci and xi using the Chamberlain-Mundlak device

under conditional normality:

ci    x̄i  ai,ai|xi ~Normal0,a2,     (7.2)

where the time average is often used to save on degrees of freedom. We can relax (7.2) and

allow Chamberlain’s (1980) more flexible device:

ci    xi  ai    xi11 . . .xiTT  ai     (7.3)

Even when the r seem to be very different, the Mundlak restriction can deliver similar
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estimates of the other parameters and the APEs. (In the linear case, they both produce the usual

FE estimator of . 

If we still assume conditional serial independence then all parameters are identified. We

can estimate the mean of ci as ̂c  ̂  N−1∑ i1
N x̄i ̂ and the variance as

̂c2 ≡ ̂
′ N−1∑ i1

N x̄i′x̄i ̂  ̂a2. Of course, ci is not generally normally distributed unless x̄i is.

The approximation might get better as T gets large. In any case, we can plug in values of c that

are a certain number of estimated standard deviations from ̂c, say ̂c  ̂c.

The APEs are identified from the ASF, which is consistently estimated as

ASFxt  N−1∑
i1

N

xt̂a  ̂a  x̄i̂a     (7.4)

where, for example, ̂a  ̂/1  ̂a21/2. The derivatives or changes of ASFxt with respect to

elements of xt can be compared with fixed effects estimates from a linear model. Often, if we

also average out across xit, the linear FE estimates are similar to the averaged effects.

As we discussed generally in Section 5, the APEs are defined without the conditional serial

independence assumption. Without Dyi1, . . . ,yiT|xi,ci 
t1

T

Dyit|xit,ci, we can still estimate

the scaled parameters because

Pyit  1|xi  xita  a  x̄ia,     (7.5)

and so pooled probit consistently estimates the scaled parametes. (Time dummies have been

supressed for simplicity.) Now we have direct estimates of a, a, and a, and we insert those

directly into (7.4).

Using pooled probit can be inefficient for estimating the scaled parameters, whereas the

18



Imbens/Wooldridge, IRP Lecture Notes 6, August ’08

full MLE is efficient but not (evidently) robust to violation of the conditional serial

independence assumption. It is possible to estimate the parameters more efficiently than pooled

probit that is still consistent under the same set of assumptions. One possibility is minimum

distance estimation. That is, estimate a separate models for each t, and then impose the

restrictions using minimum distance methods. (This can be done with or without the Mundlak

device.)

A different approach is to apply the so called “generalized estimating equations” (GEE)

approach. Briefly, GEE applied to panel data is essentially weighted multivariate nonlinear

least squares (WMNLS) with explicit recognition that the weighting matrix might not be the

inverse of the conditional variance matrix. In most nonlinear panel data models, obtaining the

actual matrix Varyi|xi is difficult, if not impossible, because integrating out the heterogeneity

does not deliver a closed form. The GEE approach uses Varyit|xi implied by the specific

distribution – in the probit case, we have the correct conditional variances,

Varyit|xi  xita  a  x̄ia1 − xita  a  x̄ia ≡ vit.     (7.6)

The “working” correlation matrix oftenusually specified as “exchangeable,”

Correit,eis|xi “  ”,     (7.7)

where eit  yit − xita  a  x̄iavit
1/2 is the standardized error. Or, each pair t, s is

allowed to have its own correlation but which is assumed to be independent of xi

(“unstructured”). The conditional correlation Correit,eis|xi is not constant, but that is the

working assumption. The hope is to improve efficiency over the pooled probit estimator while

maintaining the robustness of the pooled estimator. (The full RE probit estimator is not robust

to serial dependence.) A robust sandwich matrix is easily computed provided the conditional
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mean function (in this case, response probability) is correctly specified.

Because the Bernoulli log-likelihood is in the linear exponential family (LEF), exactly the

same methods can be applied if 0 ≤ yit ≤ 1 – that is, yit is a “fractional” response – but where

the model is for the conditional mean: Eyit|xit,ci  xit  ci. Pooled “probit” or minimum

distance estimation or GEE can be used. Now, however, we must make inference robust to

Varyit|xit, x̄i not having the probit form. (There are cases where Varyit|xit, x̄i is proportional

to (7.6), and so it still makes sense to use the probit quasi-log-likelihood. Pooled nonlinear

regression is another possibility or weighted multivariate nonlinear regression are also possible

and a special case of GEE.)

A more radical suggestion, but in the spirit of Altonji and Matzkin (2005) and Wooldridge

(2005a), is to just use a flexible model for Eyit|xit, x̄idirectly. For example, if yit is binary, or

a fractional response, 0 ≤ yit ≤ 1, we might just specify a flexible parametric model, such as

Eyit|xit, x̄i  t  xit  x̄i  x̄i ⊗ x̄i  xit ⊗ x̄i,     (7.8)

or the “heteroskedastic probit” model

Eyit|xit, x̄i  t  xit  x̄iexp−x̄i.     (7.9)

If we write either of these functions as rtxt, x̄ then the average structural function is estimated

as ASFtxt ≡ N−1∑ i1
N r̂txt, x̄i, where the “^” indicates that we have substituted in the

parameter estimates. We can let all parameters depend on t, or we can estimate the parameters

separately for each t and then use minimum distance estimation to impose the parameter

restrictions. The justification for using, say, (7.8) is that we are interested in the average partial

effects, and how parameters appear is really not the issue. Even though (7.8) cannot be derived

from Eyit|xit,ci  xit  ci or any other standard model, there is nothing sacred about this
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formulation. In fact, it is fairly simplistic. We can view (7.8) as the approximation to the true

Eyit|xit, x̄i obtained after integrating ci out of the unknown function mxt,ci. (We could

formalize this process by using series estimation, as in Newey (1988), where the number of

terms is allowed to grow with N.) This is the same argument used by, say, Angrist (2001) in

justifying linear models for limited dependent variables when the focus on primarily on

average effects.

The argument is essentially unchanged if we replace x̄i with other statistics wi. For

example, we might run, for each i, the regression xit on 1, t, t  1, . . . ,T and use the intercept

and slope (on the time trend) as the elements of wi. Or, we can use sample variances and

covariances for each i, along with the sample mean. Or, we can use initial values and average

growth rates. The key condition is Dc i|xi  Dc i|wi, and then we need sufficient variation

in xit : t  1, . . . ,T not explained by wi for identification. (Naturally, as we expand wi, the

number of time periods required generally increases.)

Of course, once we just view (7.8) as an approximation, we can are justified in using the

logistic function, say

Eyit|xit, x̄i  t  xit  x̄i  x̄i ⊗ x̄i  xit ⊗ x̄i,     (7.10)

where z  expz/1  expz, which, again, can be applied to binary or fractional

responses. The focus on partial effects that average out the heterogeneity can be liberating in

that it means the step of specifying Eyit|xit,c i is largely superfluous, and, in fact, can get in

the way of pursuing a suitably flexible analysis. On the other hand, if we start with, say, a

“structural” model such as Pyi1  1|xi,c i  ai  xitbi, which is a heterogeneous index

model, then we cannot derive equations such as (7.8) or (7.9), even under the strong

assumption that c i is independent of xi and multivariate normal. If we imposed the
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Chamberlain device for the elements of c i we can get expressions “close” to a combination of

(7.8) and (7.9). Whether one is willing to simply estimate relative simple models such as (7.8)

in order to estimate APEs depends on one’s taste for bypassing more traditional formulations.

If we start with the logit formulation

Pyit  1|xit,ci  xit  ci,     (7.11)

then we can estimate the parameters,  without restricting Dci|xi in any way, but we must

add the conditional independence assumption. (No one has been able to show that, unlike in

the linear model, or the Poisson model covered below, that the MLE that conditions on the

number of successes ni  ∑ t1
T yit is robust to serial dependence. It appears not to be. Plus, the

binary nature of yit appears to be critical, so the conditional MLE cannot be applied to

fractional responses even under serial independence.) Because we have not restricted Dci|xi

in any way, it appears that we cannot estimate average partial effects. As commonly happens in

nonlinear models, if we relax assumptions about the distribution of heterogeneity, we lose the

ability to estimate partial effects. We can estimate the effects of the covariates on the log-odds

ratio, and relative partial effects of continuous variables. But for partial effects themselves, we

do not have sensible values to plug in for c, and we cannot average across its distribution.

The following table summarizes the features of various approaches to estimating binary

response unobserved effects models.
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Model, Estimation Method Pyit 1|xit,ci Restricts Dci |xi? Idiosyncratic Serial PEs APEs?

Bounded in (0,1)? Dependence? at Eci?

RE Probit, MLE Yes Yes (indep, normal) No Yes Yes
RE Probit, Pooled MLE Yes Yes (indep, normal) Yes No Yes
RE Probit, GEE Yes Yes (indep, normal) Yes No Yes
CRE Probit, MLE Yes Yes (lin. mean, normal) No Yes Yes
CRE Probit, Pooled MLE Yes Yes (lin. mean, normal) Yes No Yes
CRE Probit, GEE Yes Yes (lin. mean, normal) Yes No Yes
LPM, Within No No Yes Yes Yes
FE Logit, MLE Yes No No No No

As an example, we apply several of the methods to women’s labor force participation data,

used by Chay and Hyslop (2001), where the data are for five time periods spaced four months

apart. The results are summarized in the following table. The standard errors for the APEs

were obtained with 500 bootstrap replications. The time-varying explanatory variables are log

of husband’s income and number of children, along with a full set of time period dummies.

(The time-constant variables race, education, and age are also included in columns (2), (3), and

(4).)
(1) (2) (3) (4) (5)

Model Linear Probit CRE Probit CRE Probit FE Logit
Estimation Method Fixed Effects Pooled MLE Pooled MLE MLE MLE

Coefficient Coefficient APE Coefficient APE Coefficient APE Coefficient
kids −. 0389 −. 199 −. 0660 −. 117 −. 0389 −. 317 −. 0403 −. 644

. 0092 . 015 . 0048 . 027 . 0085 . 062 . 0104 . 125
lhinc −. 0089 −. 211 −. 0701 −. 029 −. 0095 −. 078 −. 0099 −. 184

. 0046 . 024 . 0079 (. 014 . 0048 . 041 . 0055 . 083
kids — — — −. 086 — −. 210 — —

— — — . 031 — . 071 — —
lhinc — — — −. 250 — −. 646 — —

— — — . 035 — . 079 — —
1  ̂a

2−1/2 — — — . 387 —

Log Likelihood — −16, 556. 67 −16, 516. 44 −8, 990. 09 −2, 003. 42
Number of Women 5,663 5,663 5,663 5,663 1,055
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In the three methods that allow for unobserved heterogeneity correlated with the covariates

and where we can estimate APEs – columns (1), (3), and (4) – the estimated APEs are pretty

similar. Column (2) contains the pooled probit estimates without allowing the

Chamberlain-Mundlak device, and the APEs are much larger, especially on lhinc. Comparing

columns (2) and (3) stronly suggest the presence of unobserved heterogeneity correlated with

the covariates. To compare the estimates in (1), (3), and (4) to FE logit, we can look only at the

ratio of the coefficients on kids and lhinc, which is 3.50 in column (5). In columns (1), (3), and

(4) the ratios are 4.37, 4.03, and 4.06. Even if we think these differ substantially from the ratio

in column (5), we cannot be sure if this is due to the parametric assumptions on Dci|xi used

in the probit models or the conditional independence used by FE logit. Of course, both could

be misspecified.

Generally, CMLE approaches are fragile to changes in the specification. For example, a

natural extension is

Pyit  1|xit,c i  ai  xitbi,     (7.12)

where bi is a vector of heterogeneous slopes with  ≡ Ebi; let  ≡ Eai. This extension of

the standard unobserved effects logit model raises several issues. First, what do we want to

estimate? Perhaps the partial effects at the mean values of the heterogeneity. But the APEs, or

local average effects, are probably of more interest.

Nothing seems to be known about what the logit CMLE would estimate if applied to

(7.12), where we assume   bi. On the other hand, if, say, Dc i|xi  Dc i|x̄i, a flexible

binary response model with covariates xit, x̄i (and allowing sufficiently for changes over
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time) identifies the APEs – without the conditional serial independence assumption. The same

is true of the extension to time-varying factor loads, Pyit  1|xit,c i  t  xit  tci.

There are methods that allow estimation, up to scale, of the coefficients without even

specifying the distribution of uit in

yit  1xit  ci  uit ≥ 0.     (7.13)

under strict exogeneity.conditional on ci. Arellano and Honoré (2001) survey methods,

including variations on Manski’s maximum score estimator.

Estimation of parameters and APEs is much more difficult even in simple dynamic probit

models. Consider

Pyit  1|zi,yi,t−1, . . . ,yi0,ci  Pyit  1|zit,yi,t−1,ci, t  1, . . . ,T,

which combines correct dynamic specification with strict exogeneity of zit. For a dynamic

probit model

Pyit  1|zit,yi,t−1,ci  zit  yi,t−1  ci.     (7.14)

Treating the ci as parameters to estimate causes inconsistency in  and  (although there is

recent work by Woutersen and Fernández-Val that shows how to make the asymptotic bias of

order 1/T2; see the next section). A simple analysis is available if we specify

ci|zi,yi0  Normal  0yi0  zi,a2     (7.15)

Then

Pyit  1|zi,yi,t−1, . . . ,yi0,ai  zit  yi,t−1    0yi0  zi  ai,     (7.16)

where ai ≡ ci −  − 0yi0 − zi. Because ai is independent of yi0,zi, it turns out we can use

standard random effects probit software, with explanatory variables 1,zit,yi,t−1,yi0,zi in time
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period t. Easily get the average partial effects, too:

ASFzt,yt−1  N−1∑
i1

N

zt̂a  ̂ayt−1  ̂a  ̂a0yi0  zi̂a,     (7.17)

and take differences or derivatives with respect to elements of zt,yt−1. As before, the

coefficients are multiplied by 1  ̂a2−1/2. Of course, both the structural model and model for

Dci|yi0,zi can be made more flexible (such as including interactions, or letting Varci|zi,yi0

be heteroskedastic).

We apply this method to the Chay and Hyslop data and estimate a model for

Plfpit  1|kidsit, lhincit, lfpi,t−1,ci, where one lag of labor force participation is assumed to

suffice for the dynamics and kidsit, lhincit : t  1, . . . ,T is assumed to be strictly

exogenous conditional on ci. Also, we include the time-constant variables educ, black, age,

and age2 and a full set of time-period dummies. (We start with five periods and lose one with

the lag. Therefore, we estimate the model using four years of data.) We include among the

regressors the initial value, lfpi0, kidsi1 through kidsi4, and lhinci1 through lhinci4. Estimating

the model by RE probit gives ̂  1.541 se  . 067, and so, even after controlling for

unobserved heterogeneity, there is strong evidence of state dependence. But to obtain the size

of the effect, we compute the APE for lfpt−1. The calculation involves averaging

zit̂a  ̂a  ̂a0yi0  zi̂a − zit̂a  ̂a0yi0  zi̂a across all t and i; we must be sure to

scale the original coefficients by 1  ̂a2−1/2, where, in this application, ̂a2  1.103. The APE

estimated from this method is about .259. In other words, averaged across all women and all

time periods, the probability of being in the labor force at time t is about .26 higher if the

women was in the labor force at time t − 1 than if she was not. This estimate controls for

unobserved heterogeneity, number of young children, husband’s income, and the woman’s
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education, race, and age. (This APE estimate can be directly compared to a dynamic linear

probability model estimated using, say, the Arellano and Bond (1991) method and its

extensions.)

It is instructive to compare the APE with the estimate of a dynamic probit model that

ignores ci. In this case, we just use pooled probit of lfpit on

1,kidsit, lhincit, lfpi,t−1educi,blacki,agei, and agei2 and include a full set of period dummies.

The coefficient on lfpi,t−1 is 2.876 (se  . 027, which is much higher than in the dynamic RE

probit model. More importantly, the APE for state dependence is about . 837, which is much

higher than when heterogeneity is controlled for. Therefore, in this example, much of the

persistence in labor force participation of married women is accounted for by the unobserved

heterogeneity. There is still some state dependence, but its value is much smaller than a simple

dynamic probit indicates.

Arellano and Carrasco (2003) use a different approach to estimate the parameters and

APEs in dynamic binary response models with only sequentially exogenous variables. Thus,

their method applies to models with lagged dependent variables, but also other models where

there made be feedback from past shocks to future covariates. (Their assumptions essentially

impose serial conditional serial independence.) Rather than impose an assumption such as

(7.15), they use a different approximation. Let vit  ci  uit be the composed error in

yit  1xit  ci  uit ≥ 0. Then, in the context of a probit model, they assume

vit|wit ~NormalEci|wit,t2     (7.18)

where wit  xit,yi,t−1,xi,t−1, . . . ,yi1xi1. The mean Eci|wit is unrestricted (although, of course,

they are linked across time by iterated expectations because wit ⊂ wi,t1, but the shape of the

distribution is assumed to be the same across t. Arellano and Carrasco discuss identification
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and estimation, and extensions to models with time-varying factor loads.

Honoré and Kyriazidou (2000) extend an idea of Chamberlain’s (1993) and show how to

estimate  and  in a logit model without distributional assumptions for ci. They find

conditional probabilities that do not depend on ci but still depend on  and . However, in the

case with four time periods, t  0,1,2, and 3, the conditioning that removes ci requires

zi2  zi3. HK show how to use a local version of this condition to consistently estimate the

parameters. The estimator is also asymptotically normal, but converges more slowly than the

usual N -rate.

The condition that zi2 − zi3 has a distribution with support around zero rules out aggregate

year dummies or even linear time trends. Plus, using only observations with zi2 − zi3 in a

neighborhood of zero results in much lost data. Finally, estimates of partial effects or average

partial effects are not available.

While semiparametric approaches can be valuable to comparing parameter estimates with

more parametric approaches, such comparisons have limitations. For example, the coefficients

on yt−1 in the dynamic logit model and the dynamic probit model are comparable only in sign;

we cannot take the derivative with respect to yt−1 because it is discrete. Because we do not

know where the evaluate the partial effects – that is, the values of c to plug in, or average out

across the distribution of ci, we cannot compare the magnitudes of the FE logit estimates with

CRC approaches. We can compare the relative effects on the continuous elements in zt based

on partial derivatives. But even here, if we find a difference between semiparametric and

parametric methods, is it because aggregate time effects were excluded in the semiparametric

estimation or because the model of Dci|yi0,zi was misspecified? Currently, we have no good

ways of deciding. (Recently, Li and Zheng (2006) use Bayesian methods to estimate a dynamic
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Tobit model with unobserved heterogeneity, where they distribution of unosberved

heterogeneity is an infinite mixture of normals. They find that all of the average partial effects

are very similar to those obtained from the much simpler specification in (7.15).)

Honoré and Lewbel (2002) show how to estimate  in the model

yit  1vit  xit  ci  uit ≥ 0     (7.19)

without distributional assumptions on ci  uit. The special continuous explanatory variable vit,

which need not be time varying, is assumed to appear in the equation (and its coefficient is

normalized to one). More importantly, vit is assumed to satisfy

Dci  uit|vit,xit,zi  Dci  uit|xit,zi, which is a conditional independence assumption. The

vector zi is assumed to be independent of uit in all time periods. (So, if two time periods are

used, zi could be functions of variables determined prior to the earliest time period.) The most

likely scenario is when vit is randomized and therefore independent of xit,zi,eit, where

eit  ci  uit. It seems unlikely to hold if vit is related to past outcomes on yit. The estimator

derived by Honoré and Lewbel is N -asymptotically normal, and fairly easy to compute; it

requires estimation of the density of vit given xit,ziand then a simple IV estimation.

Honoré and Tamer (2006) have recently shown how to obtain bounds on parameters and

APEs in dynamic models, including the dynamic probit model; these are covered in the notes

on partial identification.

Very similar analysis hold for ordered probit models. See Wooldridge (2002, Chapter 15)

for the static case and Wooldridge (2005b) for the dynamic case. The dependence of

heterogeneity on the initial condition can be made flexible while keeping the likelihood in the

class of random effects ordered probit models.
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7.2 Count and Other Multiplicative Models

Several options are available for models with conditional means multiplicative in the

heterogeneity. The most common is

Eyit|xit,ci  ci expxit     (7.20)

where ci ≥ 0 is the unobserved effect and xit would incude a full set of year dummies in most

cases. First consider estimation under strict exogeneity (conditional on ci):

Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci.     (7.21)

If we add independence between ci and xi – a random effects approach – then, using Eci  1

as a normalization,

Eyit|xi  expxit,     (7.22)

and various estimation methods can be used to account for the serial dependence in yit if

only xi is conditioned on. (Serial correlation is certainly present because of ci, but it could be

present due to idiosyncratic shocks, too.) Regardless of the actual distribution of yit, or even its

nature – other than yit ≥ 0 – the pooled Poisson quasi-MLE is consistent for  under (7.22) but

likely very inefficient; robust inference is straightforward with small T and large N.

Random effects Poisson requires that Dyit|xi,ci has a Poisson distribution with mean

(7.20), and maintains the conditional independence assumption,

Dyi1, . . . ,yiT|xi,ci 
t1

T

Dyit|xit,ci,

along with a specific distribution for ci – usually a Gamma distribution with unit mean.

Unfortunately, like RE probit, the full MLE has no known robustness properties. The Poisson
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distribution needs to hold along with the other assumptions. A generalized estimating approach

is available, too. If the Poisson quasi-likelihood is used, the GEE estimator is fully robust

provided the mean is correctly specified. One can use an exchangeable, or at least constant,

working correlation matrix. See Wooldridge (2002, Chapter 19).

A CRE model can be allowed by writing ci  exp  x̄iai where ai is independent of xi

with unit mean. Then

Eyit|xi  exp  xit  x̄i     (7.23)

and now the same methods described above can be applied but with x̄i added as regressors.

This approach identifies average partial effects. In fact, we could use Altonji and Matzkin

(2005) and specify Eci|xi  hx̄i (say), and then estimate the semiparametric model

Eyit|xi  hx̄iexpxit. Other features of the series xit : t  1, . . . ,T, such as

individual-specific trends or sample variances, can be added to h.

An important estimator that can be used under just

Eyit|xi,ci  ci expxit     (7.24)

is the conditional MLE derived under a Poisson distributional assumption and the conditional

independence assumption. It is often called the fixed effects Poisson estimator, and, in fact, ̂

turns out to be identical to using pooled Poisson QMLE and treating the ci as parameters to

estimate. (A rare case, like the linear model, where this does not result in an incidental

parameters problem.). It is easy to obtain fully robust inference, too (although it is not

currently part of standard software, such as Stata). The fact that the quasi-likelihood is derived

for a particular, discrete distribution appears to make people queasy about using it, but it is

analogous to using the normal log-likelihood in the linear model: the resulting estimator, the
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usual FE estimator, is fully robust to nonnormality, heteroskedasticity, and serial correlation.

See Wooldridge (1999).

Estimation of models under sequential exogeneity has been studied by Chamberlain (1992)

and Wooldridge (1997). In particular, they obtain moment conditions for models such as

Eyit|xit, . . . ,xi1,ci  ci expxit.     (7.25)

Under this assumption, it can be shown that

Eyit − yi,t1 expxit − xi,t1|xit, . . . ,xi1  0,     (7.26)

and, because these moment conditions depend only on observed data and the parameter vector

, GMM can be used to estimate , and fully robust inference is straightforward.

Blundell, Griffiths, and Windmeijer (2002) consider a model with additive heterogeneity

and a lagged dependent variable that appears linearly, and derive estimating equations.

The moment conditions in (7.26) involve the differences xit − xi,t1, and we saw for the

linear model that, if elements of xit − xi,t1 are persistent, IV and GMM estimators can be badly

biased and imprecise. If we make more assumptions, models with lagged dependent variables

and other regressors that are strictly exogenous can be handled using the conditional MLE

approach in Section 6. Wooldridge (2005b) shows how a dynamic Poisson model with

conditional Gamma heterogeneity can be easily estimated.

8. Estimating the Fixed Effects
It is well known that, except in special cases (linear and Poisson), treating the ci as

parameters to estimate leads to inconsistent estimates of the common parameters . But two

questions arise. First, are there ways to adjust the “fixed effects” estimate of  to at least
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partially remove the bias? Second, could it be that estimates of the average partial effects,

based generally on

N−1∑
i1

N
∂mtxt, ̂,ĉ i

∂xtj
,     (8.1)

where mtxt,,c  Eyt|xt,c, are better behaved than the parameter estimates, and can their

bias be removed? In the unobserved effects probit model, (8.1) becomes

N−1∑
i1

N

̂jxt̂  ĉ i,     (8.2)

which is easy to compute once ̂ and the ĉ i (N of them) have been obtained.

Hahn and Newey (2004) propose both jackknife and analytical bias corrections and show

that they work well for the probit case. Generally, the jackknife procedure to remove the bias

in ̂ is simple but can be computationally intensive. The idea is this. The estimator based on T

time periods has probability limit that can be written as

T    b1/T  b2/T2  OT−3     (8.3)

for vectors b1 and b2. Now, let ̂t denote the estimator that drops time period t. Then,

assuming stability across t, the plim of ̂t is

t    b1/T − 1  b2/T − 12  OT−3.     (8.4)

It follows that

N→
plim T̂ − T − 1̂t  T  b1  b2/T − T − 1  b1  b2/T − 1  OT−3

  − b2/TT − 1  OT−3    OT−2.     (8.5)

If, for given heterogeneity ci, the data are independent and identically distributed, then (8.5)

holds for all leave-one-time-period-out estimators, so we use the average of all such estimators
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in computing the panel jackknife estimator:

̃  T̂ − T − 1T−1∑
t1

T

̂t.     (8.6)

From the argument above, theasymptotic bias of ̃ is on the order of T−2.

Unfortunately, there are some practical limitations to the jackknife procedure, as well as to

the analytical corrections derived by Hahn and Newey. First, aggregate time effects are not

allowed, and they would be very difficult to include because the analysis is with T → . (In

other words, they would introduce an incidental parameters problem in the time dimension as

well as cross section dimension.) Generally, heterogeneity in the distributions across t changes

the bias terms b1 and b2 when a time period is dropped, and so the simple transformation in

(8.5) does not remove the bias terms. Second, Hahn and Newey assume independence across t

conditional on ci. It is a traditional assumption, but in static models it is often violated, and it

must be violated in dynamic models. Plus, as noted by Hahn and Keursteiner (2002), applying

the “leave-one-out” method to dynamic models is problematical because the b1 and b2 in (8.4)

would depend on t so, again, the transformation in (8.5) will not eliminate the b1 term.

Recently, Dhaene, Jochmans, and Thuysbaert (2006) propose a modification of the

Hahn-Newey procedure that appears promising for dynamic models. In the simplest case, in

addition to the “fixed effects” estimator using all time periods, they obtain estimators for two

subperiods: one uses the earlier time periods, one uses later time periods, and they have some

overlap (which is small as T gets large). Unfortunately, the procedure still requires stationarity

and rules out aggregate time effects.

For the probit model, Fernández-Val (2007) studies the properties of estimators and

average partial effects and allows time series dependence in the strictly exogenous regressors.
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Interestingly, in the probit model with exogenous regressors under the conditional

independence assumption, the estimates of the APEs based on the “fixed” effects estimator has

bias of order T−2 in the case that there is no heterogeneity. Unfortunately, these findings do not

carry over to models with lagged dependent variables, and the bias corrections in that case are

difficult to implement (and still do not allow for time heterogeneity).

The correlated random effects estimators restrict Dci|xi in some way, although the recent

work by Altonji and Matzkin (2005) shows how those restrictions can be made reasonable. The

approach generally identifies the APEs, and even the local average effects, and does not rule

out aggregate time effects or arbitrary conditional serial dependence.
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