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IRP Lectures Madison, WI, August 2008

Lecture 5, Monday, Aug 4th, 2.45-4.00pm

Instrumental Variables with Treatment Effect Heterogeneity:

Local Average Treatment Effects

1. Introduction

In this lecture we discuss the interpretation of instrumental variables estimators allowing

for general heterogeneity in the effect of the endogenous regressor. We shall see that instru-

mental variables estimators generally estimate average treatment effects, with the specific

average depending on the choice of instruments. Initially we focus on the case where both

the instrument and the endogenous regressor are binary. The example we will use is based

on one of the best known examples of instrumental variables, the paper by Joshua Angrist

on estimating the effect of veteran status on earnings (Angrist, 1990). We also discuss the

case where the instrument and or the endogenous variable take on multiple values, and

incorporate the presence of covariates.

The general theme of this lecture is that with heterogenous treatment effects, endogeneity

creates severe problems for identification of population averages. Population average causal

effects are only estimable under very strong assumptions on the effect of the instrument on

the endogenous regressor (sometimes referred to as “identification at infinity”, Chamberlain,

1986), or under the constant treatment effect assumptions. Without such assumptions we

can only identify average effects for subpopulations that are induced by the instrument to

change the value of the endogenous regressors. Following Angrist, Imbens and Rubin (1996),

we refer to such subpopulations as compliers, and we refer to the average treatment effect

that is point identifed as the local average treatment effect (Imbens and Angrist, 1994). The

“complier” terminology stems from the canonical example of a randomized experiment with

noncompliance. In this example a random subpopulation is assigned to the treatment, but

some of the individuals do not comply with their assigned treatment.

These complier subpopulations are not necessarily the subpopulations that are ex ante the



Imbens/Wooldridge, IRP Lecture Notes 5, August ’08 2

most interesting subpopulations. The reason to nevertheless focus on these subpopulations

is that the data are generally not informative about average effects for other subpopulations

without extrapolation, similar to the way in which a randomized experiment conducted on

men is not informative about average effects for women without extrapolation. The set up

here allows the researcher to sharply separate the extrapolation to the (sub-)population of

interest, from exploration of the information in the data about the causal effect of interest.

The latter analysis relies primarily on relatively interpretable, and substantively meaning-

ful assumptions, and it avoids functional form or distributional assumptions. Subsequently,

given estimates for the compliers, one can these estimates in combination with the data

to assess the plausibility of extrapolating the local average treatment effect to other sub-

populations, using the information on outcomes given one of the two treatment levels and

covariates, or construct bounds on the average effects for the primary population of interest

using the bounds approach from Manski (e.g., Manski, 2008).

With multiple instruments, and/or with covariates, one can assess the evidence for het-

erogeneity, and therefore investigate the plausibility of extrapolation to the full population

more extensively.

2. Linear Instrumental Variables with Constant Coefficients

First let us briefly review standard textbook linear instrumental variables methods (e.g.,

Wooldridge, 2000). In the example from Angrist (1990) we use to illustrate the concepts

discussed in this lecture we are interested in the causal effect of military service on earnings,

using eligibility for the draft as the instrument. Let Yi be the outcome of interest for unit i

(log earnings in the example), Wi the binary endogenous regressor (an indicator for veteran

status), and Zi the binary instrument (a binary indicator for draft eligibility). The standard

set up is as follows. A linear model is postulated for the relation between the outcome and

the endogenous regressor:

Yi = β0 + β1 ·Wi + εi. (1)

This is a structural, behavioral, or causal relationship (we use the terms interchangeably).
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The concern is that the regressor Wi is endogenous, that is, that Wi is correlated with the

unobserved component of the outcome, εi. Suppose that we are confident that a second

observed covariate, the instrument Zi, is both uncorrelated with the unobserved component

εi and correlated with the endogenous regressor Wi. The solution is to use Zi as an instrument

for Wi. There are a couple of ways to implement this.

In Two-Stage-Least-Squares (TSLS) we first estimate a linear regression of the endoge-

nous regressor on the instrument by least squares. Let the estimated regression function

be

Ŵi = π̂0 + π̂1 · Zi.

Then we regress the outcome on the predicted value of the endogenousr regressor, using least

squares:

Ŷi = α̂ + τ̂ tsls · Ŵi.

Alternatively, with a single instrument we can estimate the two reduced form regressions

Ŷi = γ̂0 + γ̂1 · Zi, and Ŵi = π̂0 + π̂1 · Zi,

by least squares and estimate β1 through Indirect Least Squares (ILS) as the ratio

τ̂ ils = γ̂1/π̂1,

irrespective of the validity of the behavioral model.

In the case with a single instrument and single endogenous regressor, we end up in both

cases with the ratio of the sample covariance of Yi and Zi to the sample covariance of Wi

and Zi.

τ̂ iv = τ̂ ils = τ̂ tsls =
1
N

∑N

i=1(Yi − Ȳ ) · (Zi − Z̄)
1
N

∑N

i=1(Wi − W̄ ) · (Zi − Z̄)
.
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This estimator is consistent for

τ iv =
E [(Yi − E[Yi]) · (Zi − E[Zi])]

E [(Wi − E[Wi]) · (Zi − E[Zi])]
. (2)

Using a central limit theorem for all the moments and the delta method we can infer the

large sample distribution without additional assumptions:

√
N ·

(

τ̂ iv − τ iv
) d−→ N

(

0,
E
[

ε2
i · (Zi − E[Zi])

2]

(E [(Wi − E[Wi]) · (Zi − E[Zi])])
2

)

,

where εi = Yi − E[Yi] − τ iv · (Wi − E[Wi]). Under independence between the residual εi and

the instrument Zi, the asymptotic distribution further simplifies to:

√
N ·

(

τ̂ iv − τ iv
) d−→ N

(

0,
E [ε2

i ] · E
[

(Zi − E[Zi])
2]

(E [(Wi − E[Wi]) · (Zi − E[Zi])])
2

)

,

3. Potential Outcomes

First we set up the problem in a slightly different way, using Rubin’s (1974) potential

outcomes approach to causality. This set up of the instrumental variables problem originates

with Imbens and Angrist (1994). Let Yi(0) and Yi(1) be two potential outcomes for unit i, one

for each value of the endogenous regressor or treatment. The first potential outcome Yi(0)

measures the outcome if person i were not to serve in the military, irrespective of whether

this person served or not. The second potential outcome, Yi(1), measures the outcome given

military service, again irrespective of whether the person served or not. We are interested

in the causal effect of military service, Yi(1) − Yi(0). We cannot directly observe this since

we can only observe either Yi(0) or Yi(1), never both. Let Wi be the realized value of the

endogenous regressor, equal to zero or one. We observe Wi and

Yi = Yi(Wi) =

{

Yi(1) if Wi = 1
Yi(0) if Wi = 0.

So far the set up is identical to that in the analysis under unconfoundedness in Lecture

XX. Now we introduce additional notation by defining similar potential outcomes for the
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treatment. Initially we focus on the case with a binary instrument Zi. In the Angrist

example, Zi is a binary indicator for having a draft number below the cutoff value that

implied a potential recruit would get called up for military service, and thus an indicator for

being draft eligible. Define two potential outcomes Wi(0) and Wi(1), representing the value

of the endogenous regressor given the two values for the instrument. The actual or realized

(and observed) value of the endogenous variable is

Wi = Yi(Zi) =

{

Wi(1) if Zi = 1
Wi(0) if Zi = 0.

In summary, we observe the triple (Zi, Wi, Yi), where Wi = Wi(Zi) and Yi = Yi(Wi(Zi)).

4. Local Average Treatment Effects

In this section we interpret the estimand (??) under weaker assumptions than the linear

additive model set up in (??).

4.1. Assumptions

The key instrumental variables assumption is

Assumption 1 (Independence)

Zi ⊥⊥ (Yi(0), Yi(1), Wi(0), Wi(1)).

This assumption requires that the instrument is as good as randomly assigned, and that it

does not directly affect the outcome. The assumption is formulated in a nonparametric way,

without definitions of residuals that are tied to functional forms.

It is important to note that this assumption is not implied by random assignment of Zi.

To see this, an alternative formulation of the assumption, slightly generalizing the notation,

is useful. First we postulate the existence of four potential outcomes, Yi(z, w), corresponding

to the outcome that would be observed if the instrument was exogenously set to Zi = z and

the treatment was exogenously set to Wi = w. Then the independence assumption is the

combination of two assumptions.
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Assumption 2 (Random Assignment)

Zi ⊥⊥ (Yi(0, 0), Yi(0, 1), Yi(1, 0), Yi(1, 1), Wi(0), Wi(1)).

Assumption 3 (Exclusion Restriction)

Yi(z, w) = Yi(z
′, w), for all z, z′, w.

The first of these two assumptions is implied by random assignment of Zi. It can be weakened

in the presence of covariates to unconfoundedness. The second assumption is substantive,

and randomization has no bearing on it. It corresponds to the notion that there is no direct

effect of the instrument on the outcome other than through the treatment. In the model-

based version of this, (??), it is captured by the absence of Zi in the behavioral equation.

This assumption has to be argued on a case-by-case basis.

It is useful for our approach to think about the compliance behavior of the different

individuals or units, that is how they respond in terms of the treatment received to different

values of the instrument. Table ?? gives the four possible pairs of values (Wi(0), Wi(1)),

given the binary nature of the treatment and instrument and their labels. The labels refer

to the canonical example of a randomized experiment with imperfect compliance.

Table 1: Compliance Types

Wi(0)
0 1

0 never-taker defier
Wi(1)

1 complier always-taker

We cannot directly establish the type of an individual based on what we observe for

them (the triple Zi, Wi, Yi)) since we only see the pair (Zi, Wi), not the pair (Wi(0), Wi(1))
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(typically observing Yi is immaterial for this argument). Nevertheless, we can rule out

some possibilities. Table ?? summarizes the information about compliance behavior from

observed treatment status and instrument. For each pair of (Zi, Wi) values there are two

Table 2: Compliance Type by Treatment and Instrument

Zi

0 1

0 complier/never-taker never-taker/defier
Wi

1 always-taker/defier complier/always-taker

possible types, with the two others ruled out.

To make additional progress we we consider a monotonicity assumption, also known as

the no-defiers assumption, introduced by Imbens and Angrist (1994):

Assumption 4 (Monotonicity/No-Defiers)

Wi(1) ≥ Wi(0).

This monotonicity assumption is very apealling in many applications. It is implied directly

by many (constant coefficient) latent index models of the type:

Wi(z) = 1{π0 + π1 · z + εi > 0}, (3)

which would imply Wi(1) ≥ Wi(0) if π1 ≥ 0 and Wi(1) ≤ Wi(0) otherwise. In the canonical

example of a randomized experiment with non-compliance this assumption is very plausible:

if Zi is assignment to a treatment, and Wi is an indicator for receipt of treatment, it makes

sense that there are few, if any, individuals who always to the exact opposite of what their

assignment is.
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4.2. The Local Average Treatment Effect

Given monotonicity we can infer more about an individual’s compliance behavior, as

summarized in Table ??. For individuals with (Zi, Wi) equal to (0, 1) or (1, 0) we can now

Table 3: Compliance Type by Treatment and Instrument given Monotonicity

Zi

0 1

0 complier/never-taker never-taker
Wi

1 always-taker complier/always-taker

determine their type. For individuals with (Zi, Wi) equal to (0, 0) or (1, 1) there are still

multiple types consistent with the observed behavior. Nevertheless, we can stochastically

infer the compliance types.

Now we proceed to identifying the marginal distribution of types and conditional potential

outcome distributions. Let πc, πn, and πa be the population proportions of compliers, never-

takers and always-takers respectively. We can identify those from the population distribution

of treatment and instrument status:

E[Wi|Zi = 0] = πa, E[Wi|Zi = 1] = πa + πc,

which we can invert to infer the population shares of the different types:

πa = E[Wi|Zi = 0], πc = E[Wi|Zi = 1] − E[Wi|Zi = 0],

and

πn = 1 − πa − πc = 1 − E[Wi|Zi = 1].
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Now consider average outcomes by instrument and treatment status. In the (Zi, Wi) equal

to (0, 1) or (1, 0) subpopulations these expectations have a simple interpretation:

E[Yi|Wi = 0, Zi = 1] = E[Yi(0)|never− taker], (4)

and

E[Yi|Wi = 1, Zi = 0] = E[Yi(1)|always − taker]. (5)

In the (Zi, Wi) equal to (0, 0) or (1, 1) the conditional outcome expectations are mixtures of

expected values for compliers and nevertakers and compliers and alwaystakers respectively:

E[Yi|Wi = 0, Zi = 0] =
πc

πc + πn

·E[Yi(0)|complier]+
πn

πc + πn

·E[Yi(0)|never− taker],(6)

and

E[Yi|Wi = 1, Zi = 1] =
πc

πc + πa

·E[Yi(1)|complier]+
πa

πc + πa

·E[Yi(1)|always − taker].(7)

From these relationships we can infer the average outcome by treatment status for compliers,

first by combining (??) and (??),

E[Yi(0)|complier] =
πc + πn

πn

· E[Yi|Wi = 0, Zi = 0] − πc

πn

· E[Yi|Wi = 0, Zi = 1],

and then by combining (??) and (??)

E[Yi(1)|complier] =
πc + πa

πa

· E[Yi|Wi = 1, Zi = 1] − πc

πa

· E[Yi|Wi = 1, Zi = 0].

Thus we can infer the average effect for compliers, E[Y (1)−Yi(0)|complier] = E[Yi(1)|complier]−
E[Yi(0)|complier].

It turns out this is equal to the instrumental variables estimand (??). Consider the

least squares regression of Yi on a constant and Zi. The slope coefficient in that regression

estimates

E[Yi|Zi = 1] − E[Yi|Zi = 0].
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The two terms are equal to:

E[Yi|Zi = 1] = E[Yi(1)|complier] · πc + E[Yi(0)|never− taker] · π0 + E[Yi(1)|always − taker] · πa.

and

E[Yi|Zi = 0] = E[Yi(0)|complier] · πc + E[Yi(0)|never− taker] · π0 + E[Yi(1)|always − taker] · πa.

Hence the difference is

E[Yi|Zi = 1] − E[Yi|Zi = 0] = E[Yi(1) − Yi(0)|complier] · πc.

The same argument can be used to show that the slope coefficient in the regression of Wi on

Zi is

E[Wi|Zi = 1] − E[Wi|Zi = 0] = πc.

Hence the instrumental variables estimand, the ratio of these two reduced form estimands,

is equal to the local average treatment effect

β iv =
E[Yi|Zi = 1] − E[Yi|Zi = 0]

E[Wi|Zi = 1] − E[Wi|Zi = 0]
= E[Yi(1) − Yi(0)|complier]. (8)

The key insight is that the data are informative only about the average effect for compliers

only. Put differently, the data are not informative about the average effect for nevertakers

because nevertakers are never seen receiving the treatment, and they are not informative

about the average effect for alwaystakers because alwaystakers are never seen without the

treatment. A similar insight in a parametric settings is discussed in Björklund and Moffitt

(1987). (These results do not take away from the fact that one can construct informative

bounds about the average effect for nevertakers or alwaystakers based on the outcomes we

do observe for such individuals, in the spirit of the work by Manski, 2008.)
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A special case of considerable interest is that with one-side non-compliance. Suppose

that Wi(0) = 0, so that those assigned to the control group cannot receive the active treat-

ment (but those assigned to the active treatment can choose to receive it or not, so that

Wi(1) ∈ {0, 1}). In that case only two compliance types remain, compliers and always-takers.

Monotonicity is automatically satisfied, and the average effect for compliers is now equal to

the average effect for the treated, since any one receiving the treatment is by definition a

complier. This case was first studied in Bloom (1984). It also has a useful connection to

Chamberlain’s notion of “identification at infinity,” (see also Heckman, 1990). Suppose that

we have a selection model with a participation equation as in (??), with π1 > 0. If Zi is a

continuous instrument, then in order to idenfify the average effect for the treated we need

Zi to have unbounded support. Within this specific selection model this is, as Chamberlain

(1987) in a different context, an unattractive identification condition. However, in many

application it is plausible that there is some value of the instrument such that individuals do

not have access to the treatment, implying identification of the average effect for the treated.

4.3 Extrapolating to the Full Population

Although we cannot consistently estimate the average effect of the treatment for always-

takers and never-takers, we do have some information about the potential outcomes for

these subpopulations that can aid in assessing the plausibility of extrapolating to average

effects for the full population. They key insight is that we can infer the average outcome

for never-takers and always-takers in one of the two treatment arms. Specifically, we can

estimate

E [Yi(0)|never− taker] , and E [Yi(1)|always − taker] , (9)

but not

E [Yi(1)|never− taker] , and E [Yi(0)|always − taker] ,

We can learn from the expectations in (??) whether there is any evidence of heterogeneity
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in outcomes by compliance status, by comparing the pair of average outcomes of Yi(0);

E [Yi(0)|never− taker] , and E [Yi(0)|complier] ,

and the pair of average outcomes of Yi(1):

E [Yi(1)|always − taker] , and E [Yi(1)|complier] .

If compliers, never-takers and always-takers are found to be substantially different in levels,

based on evidence of substantial difference between E[Yi(0)|never− taker] and E[Yi(0)|complier],

and or/between E[Yi(1)|always − taker], and E[Yi(1)|complier], then it appears much less

plausible that the average effect for compliers is indicative of average effects for other com-

pliance types. On the other hand, if one finds that outcomes given the control treatment

for never-takers and compliers are similar, and outcomes given the treatment are similar

for compliers and always-takers (and especially if this holds within various subpopulations

defined by observed covariates), then it appears to be more plausible that average treatment

effects for these groups are also comparable.

4.4 Covariates

The local average treatment effect result in (??) implies in general that one cannot

consistently estimate average effects for subpopulations other than compliers. This still

holds in cases where we observe covariates. One can incorporate the covariates into the

analysis in a number of different ways. Traditionally the TSLS or ILS set up is used with

the covariates entering in the structural outcome equation linearly and additively, as

Yi = β0 + β1 ·Wi + β ′
2Xi + εi,

with the covariates added to the set of instruments. Given the potential outcome set up

with general heterogeneity in the effects of the treatment, one may also wish to allow for

more heterogeneity in the correlations with the covariates. Here we describe a general way

of doing so. Unlike TSLS-type approaches, this involves modelling both the dependence of



Imbens/Wooldridge, IRP Lecture Notes 5, August ’08 13

the outcome and the treatment on the covariates. Although there is often a reluctance to

model the relation between the treatment, there is no apparent reason that economic theory

is more informative about the relation between covariates and outcomes than about the

relation between covariates and the choices that lead to the treatment.

A full model can be decomposed into two parts, a model for the compliance type given

covariates, and a model for the potential outcomes given covariates for each compliance type.

A traditional parametric model with a dummy endogenous variables might have the form

(translated to the potential outcome set up used here):

Wi(z) = 1{π0 + π1 · z + π′
2Xi + ηi ≥ 0}, (10)

Yi(w) = β0 + β1 · w + β ′
2Xi + εi, (11)

with (ηi, εi) jointly normally distributed and independent of the instruments(e.g., Heckman,

1978). A more general model would allow for separate outcome equations by treatment

status:

Yi(0) = β00 + β ′
20Xi + ε0i, (12)

Yi(1) = β01 + β ′
21Xi + ε1i, (13)

in combination with (??), (e.g., Björklund and Moffitt, 1987). Such models can be viewed

as imposing various restrictions on the relation between compliance types, covariates and

outcomes. For example, in the model characterized by equations (??) and (??), if π1 > 0,

compliance type depends on ηi:

unit i is a







never− taker if ηi < −π0 − π1 − π′
2Xi

complier if − π0 − π1 − π′
2Xi ≤ ηi < −π0 − π1 − π′

2Xi

always − taker if − π0 − π′
2Xi ≤ ηi.

Not only does this impose monotonicity, by ruling out the presence of defiers, it also implies

strong restrictions on the relationship between type and outcomes. Specifically, the selection



Imbens/Wooldridge, IRP Lecture Notes 5, August ’08 14

equation implies that compliers correspond to intermediate values of ηi, implying that con-

ditional expectations of Yi(0) and Yi(1) for compliers are in between those for never-takers

and always-takers.

An alternative approach to the conventional selection model that exploits the identifica-

tion results more directly, is to model the potential outcome Yi(w) for units with compliance

type t given covariates Xi through a common functional form with type and treatment

specific parameters:

fY (w)|X,T (y(w)|x, t) = f(y|x; θwt),

for (w, t) = (0, n), (0, c), (1, c), (1, a). For example, using a normal model,

Yi(w)|Ti = t, Xi = x ∼ N
(

x′βwt, σ
2
wt

)

, (14)

for (w, t) = (0, n), (0, c), (1, c), (1, a).

A natural model for the distribution of type is a trinomial logit model:

pr(Ti = complier|Xi) =
1

1 + exp(π′
nXi) + exp(π′

aXi)
,

pr(Ti = never− taker|Xi) =
exp(π′

nXi)

1 + exp(π′
nXi) + exp(π′

aXi)
,

and

pr(Ti = always − taker|Xi) = 1 − Pr(Ti = complier|Xi) − Pr(Ti = never− taker|Xi).

The log likelihood function is then, factored in terms of the contribution by observed (Wi, Zi)

values, using the normal model for the conditional outcomes in (??):

L(πn, πa, β0n, β0c, β1c, β1a, σ0n, σ0c, σ1c, σ1a) =
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×
∏

i|Wi=0,Zi=1

exp(π′
nXi)

1 + exp(π′
nXi) + exp(π′

aXi)
· 1

σ0n

· φ
(

Yi − X ′
iβ0n

σ0n

)

×
∏

i|Wi=0,Zi=0

(

exp(π′
nXi)

1 + exp(π′
nXi)

· 1

σ0n

· φ
(

Yi − X ′
iβ0n

σ0n

)

+
1

1 + exp(π′
nXi)

· 1

σ0c

· φ
(

Yi − X ′
iβ0c

σcn

))

×
∏

i|Wi=1,Zi=1

(

exp(π′
aXi)

1 + exp(π′
aXi)

· 1

σ1a

· φ
(

Yi − X ′
iβ1a

σ1a

)

+
1

1 + exp(π′
aXi)

· 1

σ1c

· φ
(

Yi − X ′
iβ1c

σ1c

))

×
∏

i|Wi=1,Zi=0

exp(π′
aXi)

1 + exp(π′
nXi) + exp(π′

aXi)
· 1

σ1a

· φ
(

Yi − X ′
iβ1a

σ1a

)

.

For example, the second factor consists of the contributions of individuals with Zi = 0,

Wi = 0, who are known to be either compliers or never-takers. Maximizing a likelihood

function with this mixture structure is straightforward using the EM algorithm (Dempster,

Laird, and Rubin, 1977). For an empirical example of this approach see Hirano, Imbens,

Rubin and Zhou (2000), and Imbens and Rubin (1997).

In small samples one may wish to incorporate restrictions on the effects of the covariates,

and for example assume that the effect of covariates on the potential outcome is the same

irrespective of compliance type, or even irrespective of the treatment status. An advantage of

this approach is that it can easily be generalized. The type probabilities are nonparametricaly

identified as functions of the covariates, and the similarly the outcome distributions are

nonparametrically identified, by type as a function of the covariates,.

5. Effects of Military Service on Earnings

In a classic application of instrumental variables methods Angrist (1989) was interested

in estimating the effect of serving in the military on earnings. He was concerned about the

possibility that those choosing to serve in the military are different from those who do not

in ways that affects their subsequent earnings irrespective of serving in the military. To

avoid biases in simple comparisons of veterans and non-veterans, he exploited the Vietnam

era draft lottery. Specifically he uses the binary indicator whether or not someone’s draft
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lottery number made him eligible to be drafted as an instrument. The lottery number was

tied to an individual’s day of birth, so more or less random. Even so, that in itself does not

make it valid as an instrument as we shall discuss below. As the outcome of interest Angrist

uses total earnings for a particular year.

The simple ols regression leads to:

̂log(earnings)i = 5.4364 − 0.0205 · ̂veterani

(0079) (0.0167)

In Table ?? we present population sizes of the four treatment/instrument subsamples.

For example, with a low lottery number 5,948 individuals do not, and 1,372 individuals do

serve in the military.

Table 4: Treatment Status by Assignment

Zi

0 1

0 5,948 1,915
Wi

1 1,372 865

Using these data we get the following proportions of the various compliance types, given

in Table ??, under the no-defiers or monotonicity assumption. For example, the proportion

of nevertakers is estimated as the conditional probability of Wi = 0 given Zi = 1:

pr(nevertaker) =
1915

1915 + 865
= xxx.

Table ?? gives the average outcomes for the four groups, by treatment and instrument

status.
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Table 5: Compliance Types: Estimated Proportions

Wi(0)
0 1

0 never-taker (0.6888) defier (0)
Wi(1)

1 complier (0.1237) always-taker (0.1874)

Table 6: Estimated Average Outcomes by Treatment and Instrument

Zi

0 1

0 Ê[Y ] = 5.4472 Ê[Y ] = 5.4028
Wi

1 Ê[Y ] = 5.4076, Ê[Y ] = 5.4289

Table ?? gives the estimated averages for the four compliance types, under the exclusion

restriction. This restriction is the key assumption here. There are a number of reasons

why it may be violated in this application. For example, never-takers may need to taking

active action to avoid military service if draft eligible, for example by continuing their formal

education, or by moving to Canada. Always-takers may be affected their lottery number if

draftees were treated differently in the military compared to volunteers. The local average

treatment effect is -0.2336, a 23% drop in earnings as a result of serving in the military.

Simply doing IV or TSLS would give you the same numerical results:

̂log(earnings)i = 5.4836 − 0.2336 · ̂veterani

(0.0289) (0.1266)

It is interesting in this application to inspect the average outcome for different compli-
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Table 7: Compliance Types: Estimated Average Outcomes

Wi(0)
0 1

0 never-taker: Ê[Yi(0)] = 5.4028 defier (NA)
Wi(1)

1 complier: Ê[Yi(0)] = 5.6948, Ê[Yi(1)] = 5.4612 always-taker: Ê[Yi(1)] = 5.4076

ance groups. Average log earnings for never-takers are 5.40, lower by 29% than average

earnings for compliers who do not serve in the military. This suggests that never-takers are

substantially different than compliers, and that the average effect of 23% for compliers need

not be informative never-takers. In contrast, average log earnings for always-takers are only

6% lower than those for compliers who serve, suggesting that the differences between always-

takers and compliers are considerably smaller. Note that compliers have better outcomes

without the treatment than never-takers and better outcomes than always-takers given the

treatment. This is inconsistent with the simple normal selection model in(??)-(??).

6. Multivalued Instruments

For any two values of the instrument z0 and z1 satisfying the local average treatment

effect assumptions we can define the corresponding local average treatment effect:

τz1,z0
= E[Yi(1) − Yi(0)|Wi(z1) = 1, Wi(z0) = 0].

Note that these local average treatment effects need not be the same for different pairs of

instrument values. Comparisons of estimates based on different instruments underlies tests

of overidentifying restrictions in TSLS settings. An alternative interpretation of rejections

in such testing procedures is therefore the presence of heterogeneity in causal effects, rather

than that some of the instruments are invalid. Without restrictions on the heterogeneity of

the causal effects there are no tests in general for the validity of the instruments.
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The presence of multi-valued, or similarly, multiple, instruments, does, however, provide

an opportunity to assess variation in treatment effects, as well as an opportunity to obtain

average effects for subpopulations closer to the one of ultimate interest. Suppose that we have

an instrument Zi with support z0, z1, . . . , zK . Suppose also that the monotonicity assumption

holds for all pairs z and z′, and suppose that the instruments are ordered in such a way that

p(zk−1) ≤ p(zk), where p(z) = E[Wi|Zi = z].

Also suppose that the instrument is relevant, so that for some function g(Z),

E[g(Zi) · (Wi − E[Wi])] 6= 0.

Then the instrumental variables estimator based on using g(Z) as an instrument for W

estimates a weighted average of the local average treatment effects τzk ,zk−1
:

τg =
Cov(Yi, g(Zi))

Cov(Wi, g(Zi))
=

K
∑

k=1

λk · τzk,zk−1
,

where the weights λk are non-negative and satisfy

λk =
(p(zk) − p(zk−1)) ·

∑K

l=k πl(g(zl) − E[g(Zi)]
∑K

k=1 p(zk) − p(zk−1)) ·
∑K

l=k πl(g(zl) − E[g(Zi)]
,

for

πk = pr(Zi = zk),

implying that
∑K

k=1 λk = 1.

Choosing the function g(z) corresponds to choosing the weight function. There are

obviously limits to the weight functions that can be choosen. One can only estimate a

weighted average of the local average treatment effects defined for all pairs of instrument

values in the support of the instrument. If p(z0) = 0 for some z0 in the support of Z, one

can estimate the average effect on the treated as τzK ,z0
.
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If the instrument Z has a continuous distribution, and the probability of receiving the

treatment given the instrument, p(z), is continuous in z, we can define the limit of the local

average treatment effects

τz = lim
z′↓z,z′′↑z

τz′,z′′ .

If the monotonicity assumption holds for all pairs z and z′, we can use the implied

structure on the compliance behavior by modelling Wi(z) as a threshold crossing process,

Wi(z) = 1{h(z) + ηi ≥ 0}, (15)

with the scalar unobserved component ηi independent of the instrument Zi. This type of

latent index model is used extensively in work by Heckman (Heckman and Robb, 1985; Heck-

man,1990; Heckman and Vytlacil, 2005), as well as in Vytlacil (2000). Vytlacil shows that

if the earlier three assumptions (independence, the exclusion restriction and monotonicity)

hold for all pairs z and z′, than there is a function h(·) such that this latent index structure is

consistent with the joint distribution of the observables. The latent index structure implies

that individuals can be ranked in terms of an unobserved component ηi such that if for two

individuals i and j we have ηi > ηj , than Wi(z) ≥ Wj(z) for all z.

Given this assumption, we can define the marginal treatment effect τ (η) as

τ (η) = E [Yi(1) − Yi(0)| ηi = η] .

In a parametric setting this was introduced by Björklund and Moffitt (1987). In the contin-

uous Z case this marginal treatment effect relates directly to the limit of the local average

treatment effects:

τ (η) = τz, with η = −h(z)).

Note that we can only define τ (η) for values of η for which there is a z such that τ = −h(z).

Normalizing the marginal distribution of η to be uniform on [0, 1] (Vytlacil, 2002), this
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restricts η to be in the interval [infz p(z), supz p(z)], where p(z) = pr(Wi = 1|Zi = z). Heck-

man and Vytlacil (2005) characterize various average treatment effects (e.g., the population

average treatment effect, the average treatment effect for the treated, the local average treat-

ment effect) in terms of this marginal treatment effect. For example, the population average

treatment effect is simply the average of the marginal treatment effect over the marginal

distribution of η:

τ =

∫

η

τ (η)dFη(η).

In practice the same limits remain on the identification of average effects. A necessary

condition for identification of the population average effect is that the instrument moves

the probability of participation from zero to one. Note that identification of the population

average treatment effect does not require identification of τ (η) at every value of η. The latter

is sufficient, but not necessary. For example, in a randomized experiment (corresponding to

a binary instrument with the treatment indicator equal to the instrument) the population

average treatment effect is obviously identified, but the marginal treatment effect is not

identified for any value of η.

7. Multivalued Endogenous Variables

Now suppose that the endogenous variable Wi takes on values 0, 1, . . . , J . We still assume

that the instrument Zi is binary. We study the interpretation of the instrumental variables

estimand

τ iv =
Cov(Yi, Zi)

Cov(Wi, Zi)
=

E[Yi|Zi = 1] − E[Yi|Zi = 0]

E[Wi|Zi = 1] − E[Wi|Zi = 0]
.

We make the exclusion assumption that for all z in the support of Zi,

Yi(w), Wi(z) ⊥⊥ Zi,

and a version of the monotonicity assumption,

Wi(1) ≥ Wi(0).
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Then we can write the instrumental variables estimand as

τ iv =

J
∑

j=1

λj · E[Yi(j) − Yi(j − 1)|Wi(1) ≥ j > Wi(0)], (16)

where

λj =
pr(Wi(1) ≥ j > Wi(0)

∑J

i=1 pr(Wi(1) ≥ i > Wi(0)
. (17)

The weights are non-negative and add up to one.

Note that we can estimate the weights λj because

pr(Wi(1) ≥ j > Wi(0) = pr(Wi(1) ≥ j) − pr(Wi(0) ≥ j)

= pr(Wi(1) ≥ j|Zi = 1) − pr(Wi(0) ≥ j|Zi = 0)

= pr(Wi ≥ j|Zi = 1) − pr(Wi ≥ j|Zi = 0),

using the monotonicity assumption.

8. Instrumental Variables Estimates of the Returns to Education Using

Quarter of Birth as an Instrument

Here we use a subset of the data used by Angrist and Krueger in their 1991 study of the

returns to education. Angrist and Krueger were concerned with the endogeneity of education,

with the standard argument that individuals with higher ability are likely to command higher

wages at any level of education, as well as be more likely to choose high levels of education.

In that case simple least squares estimates would over estimate the returns to education.

Angrist and Krueger realized that individuals born in different parts of the year are subject

to slightly different compulsory schooling laws. If you are born before a fixed cutoff date

you enter school at a younger age than if you are born after that cutoff date, and given that

you are allowed to leave school when you turn sixteen, those individuals born before the



Imbens/Wooldridge, IRP Lecture Notes 5, August ’08 23

cutoff date are required to completely more years of schooling. The instrument can therefore

be thought of as the tightness of the compulsory schooling laws, with the tightness being

measured by the individual’s quarter of birth.

Angrist and Krueger implement this using census data with quarter of birth indicators

as the instrument. Table ?? gives average years of education and sample sizes by quarter of

birth.

Table 8: Average Level of Education by Quarter of Birth

quarter 1 2 3 4

average level of education 12.69 12.74 12.81 12.84

standard error 0.01 0.01 0.01 0.01

number of observations 81,671 80,138 86,856 80,844

In the illustrations below we just use a single instrument, an indicator for being born in

the first quarter. First let us look at the reduced form regressions of log earnings and years

of education on the first quarter of birth dummy:

êduci = 12.797 − 0.109 · qobi

(0.006) (0.013)

and

̂log(earnings)i = 5.903 − 0.011 · qobi

(0.001) (0.003)

The instrumental variables estimate is the ratio of the reduced form coefficients,

β̂ iv =
−0.1019

−0.011
= 0.1020.
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Now let us interpret this estimate in the context of heterogeneous returns to education,

using (??) and (??).. This estimate is an average of returns to education, consisting of

two types of averaging. The first averaging is over different levels of education. That is, it

is a weighted average of the return to the tenth year of education, to the elevent year of

education, and so on.. In addition, for any level, e.g., to moving from nine to ten years of

education, it is an average effect where the averaging is over those people whose schooling

would have been at least ten years of education if more restrictive compulsory schooling laws

had been in effect for them, and who would have had less than ten years of education had

they been subject to the looser compulsory schooling laws.

Furthermore, we can estimate how large a fraction of the population is in these categories.

First we estimate the

γj = pr(Wi(1) ≥ j > Wi(0) = pr(Wi ≥ j|Zi = 1) − pr(Wi ≥ j|Zi = 0)

as

γ̂j =
1

N1

∑

i|Zi=1

1{Wi ≥ j} − 1

N0

∑

i|Zi=0

1{Wi ≥ j}.

This gives the unnormalized weight function. We then normalize the weights so they add up

to one, λ̂j = γ̂j/
∑

i γ̂i.

Figure 1-4 present some of the relevant evidence here. First, Figure 1 gives the distribu-

tion of years of education for the Angrist-Krueger data. Figure 2 gives the normalized and

Figure 3 gives the unnormalized weight functions. Figure 4 gives the distribution functions

of years of education by the two values of the instrument. The most striking feature of these

figures (not entirely unanticipated) is that the proportion of individuals in the “complier”

subpopulations is extremely small, never more than 2% of the population. This implies that

these instrumental variables estimates are averaged only over a very small subpopulation,

and that there is little reason to believe that they generalize to the general population. (Nev-

ertheless, this may well be a very interesting subpopulation for some purposes.) The nature
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of the instrument also suggests that most of the weight would be just around the number of

years that would be required under the compulsory schooling laws. The weight function is

actually surprisingly flat, putting weight even on fourteen to fifteen years of education.
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