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Linear Panel Data Models

These notes cover some recent topics in linear panel data models. They begin with a

“modern” treatment of the basic linear model, and then consider some embellishments, such as

random slopes and time-varying factor loads. In addition, fully robust tests for correlated

random effects, lack of strict exogeneity, and contemporaneous endogeneity are presented.

Section 4 discusses methods for estimating dynamic panel data models without strictly

exogenous regressors. Recent methods for estimating production functions using firm-level

panel data are summarized in Section 5, and Section 6 provides a unified treatment of

estimation with pseudo-panel data.

1. Overview of the Basic Model

Most of these notes are concerned with an unobserved effects model defined for a large

population. Therefore, we assume random sampling in the cross section dimension. Unless

stated otherwise, the asymptotic results are for a fixed number of time periods, T, with the

number of cross section observations, N, getting large.

For some of what we do, it is critical to distinguish the underlying population model of

interest and the sampling scheme that generates data that we can use to estimate the population

parameters. The standard model can be written, for a generic i in the population, as

yit  t  xit  ci  uit, t  1, . . . ,T,     (1.1)

where t is a separate time period intercept (almost always a good idea), xit is a 1  K vector of

explanatory variables, ci is the time-constant unobserved effect, and the uit : t  1, . . . ,T are

idiosyncratic errors. Thanks to Mundlak (1978) and Chamberlain (1982), we now know that, in
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the small T case, viewing the ci as random draws along with the observed variables is the

appropriate posture. Then, one of the key issues is whether ci is correlated with elements of xit.

It probably makes more sense to drop the i subscript in (1.1), which would emphasize that

the equation holds for an entire population. But (1.1) is useful to emphasizing which factors

change only across t, which change only change across i, and which change across i and t. It is

sometimes convenient to subsume the time dummies in xit.

Ruling out correlation (for now) between uit and xit, a sensible assumption is

contemporaneous exogeneity conditional on ci :

Euit|xit,ci  0, t  1, . . . ,T.     (1.2)

This equation really defines  in the sense that, under (1.1) and (1.2),

Eyit|xit,ci  t  xit  ci,     (1.3)

so the j are partial effects holding fixed the unobserved heterogeneity (and covariates other

than xtj).

As is now well known,  is not identified only under (1.3). Of course, if we add

Covxit,ci  0 for any t, then  is identified and can be consistently estimated by a cross

section regression using a single time period t, or by pooling across t. But usually the whole

point in having panel data is to allow the unobserved effect to be correlated with time-varying

xit.

We can allow general correlation between ci and xi  xi1,xi2, . . . ,xiT if we add the

assumption of strict exogeneity conditional on ci:

Euit|xi1,xi2, . . . ,xiT,ci  0, t  1, . . . ,T,     (1.4)

which can be expressed as
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Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci  t  xit  ci.     (1.5)

If the elements of xit : t  1, . . . ,T have suitable time variation,  can be consistently

estimated by fixed effects (FE) or first differencing (FD), or generalized least squares (GLS) or

generalized method of moments (GMM) versions of them. The fixed effects, or within

estimator, is the pooled OLS estimator in the equation

ÿit  ̈t  ẍit  üit, t  1, . . . ,T,

where ÿit  yit − T−1∑r1
T yir is the deviation of yit from the time average, ȳi and similarly for

ẍit. Consistency of pooled OLS (for fixed T and N → ) essentially requires rests on

∑ t1
T Eẍit

′ üit  ∑ t1
T Eẍit

′ uit  0, which means the error uit should be uncorrelated with xir

for all r and t. The FD estimator is pooled OLS on

Δyit   t  Δxit  Δuit, t  2, . . . ,T,

where  t  t − t−1. Sufficient for consistency is EΔxit
′ Δuit  0. See Wooldridge (2002,

Chapter 10) for further discussion.

If FE or FD are used, standard inference can and should be made fully robust to

heteroskedasticity and serial dependence that could depend on the regressors (or not). These

are the now well-known “cluster” standard errors (which we discuss in detail in the notes on

cluster sampling). With large N and small T, there is little excuse not to compute them. Even if

GLS is used with an unrestricted variance matrix for the T − 1 vector Δui (in the FD case) or

the T − 1 vector üi (where we drop one time period), the system homoskedasticity assumption,

for example, in the FE case, Eüiüi
′|ẍi  Eüiüi

′, need not hold, and so a case can be made

for robust inference.

(As an aside, some call (1.4) or (1.5) “strong” exogeneity. But in the Engle, Hendry, and
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Richard (1983) work, strong exogeneity incorporates assumptions on parameters in different

conditional distributions being variation free, and that is not needed here.)

The strict exogeneity assumption is always violated if xit contains lagged dependent

variables, but it can be violated in other cases where xi,t1 is correlated with uit – a “feedback

effect.” An assumption more natural than strict exogeneity is sequential exogeneity condition

on ci:

Euit|xi1,xi2, . . . ,xit,ci  0, t  1, . . . ,T     (1.6)

or

Eyit|xi1, . . . ,xit,ci  Eyit|xit,ci  t  xit  ci.     (1.7)

This allows for lagged dependent variables (in which case it implies that the dynamics in the

mean have been completely specified) and, generally, is more natural when we take the view

that xit might react to shocks that affect yit. Generally,  is identified under sequential

exogeneity. First differencing and using lags of xit as instruments, or forward filtering, can be

used in simple IV procedures or GMM procedures. (More later.)

If we are willing to assume ci and xi are uncorrelated, then many more possibilities arise

(including, of course, identifying coefficients on time-constant explanatory variables). The

most convenient way of stating the random effects (RE) assumption is

Eci|xi  Eci,     (1.8)

although using the linear projection in place of Eci|xi suffices for consistency (but usual

inference would not generally be valid). Under (1.8), we can used pooled OLS or any GLS

procedure, including the usual RE estimator. Fully robust inference is available and should

generally be used. (Note: The usual RE variance matrix, which depends only on c
2 and u

2,
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need not be correctly specified! It still makes sense to use it in estimation but make inference

robust.)

It is useful to define two correlated random effects assumptions:

Lci|xi    xi,     (1.9)

which actually is not an assumption but a definition. For nonlinear models, we will have to

actually make assumptions about Dci|xi, the conditional distribution. Methods based on (1.9)

are often said to implement the Chamberlain device, after Chamberlain (1982).

Mundlak (1978) used a restricted version, and used a conditional expectation:

Eci|xi    x̄i,     (1.10)

where x̄i  T−1∑ t1
T xit. This formulation conserves on degrees of freedom, and extensions are

useful for nonlinear models.

If we write ci    xi  ai or ci    x̄i  ai and plug into the original equation, for

example

yit  t  xit  x̄i  ai  uit     (1.11)

(absorbing  into the time intercepts), then we are tempted to use pooled OLS, or RE

estimation because Eai  uit|xi  0. Either of these leads to the FE estimator of , and to a

simple test of H0 :   0. Later, when we discuss control function methods, it will be handy to

run regressions directly that include the time averages. (Somewhat surprisingly, we obtain the

same algebraic equivalence using Chamberlain’s more flexible devise. That is, if we apply

pooled OLS to the equation yit  t  xit  xi11 . . .xiTT  ai  uit, the estimate of  is

still the FE estimator, even though the t might change substantially across t. Of course, this

estimator is not generally efficient, and Chamberlain shows how to obtain the efficient
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minimum distance estimator. See also Wooldridge (2002, Chapter 11).)

Some of us have been pushing for several years the notion that specification tests should be

made robust to assumptions that are not directly being tested. That is, if a test has no

asymptotic power for detecting violation of certain assumptions, the test should be modified to

have proper asymptotic size if those assumptions are violated. Much progress has been made in

the theoretical literature, but one still sees routine use of Hausman (1978) statistics that

maintain a full set of assumptions under the null hypothesis. (Ironically, this often happens in

studies where traditional inference about parameters is made fully robust.) Take a leading case,

comparing random effects to fixed effects. Once we maintain (1.4), which is used by FE and

RE, the key assumption is (1.8), that is, we are interested in finding evidence of whether ci is

correlated with xi. Of course, the FE estimator is consistent (for the coefficients on

time-varying covariates) whether or not ci is correlated with xi. And, of course, we need make

no assumptions about Varui|xi,ci for consistency of FE. Further, RE is consistent under

(1.8), whether or not Varvi|xi has the random effects structure, where vit  ci  uit. (In

addition to (1.4) and (1.8), sufficient are Varui|xi,ci  u
2IT and Varci|xi  Varci. ) In

fact, we might be perfectly happy using RE under (1.8) even though it might not be the

asymptotically efficient estimator. Therefore, for testing the key assumption (1.8), we should

not add the auxiliary assumptions that imply RE is asymptotically efficient. Moreover, as

should be clear from the structure of the statistic (and can be shown formally), the usual form

of the Hausman statistic has no systematic power for detecting violations of the second

moment assumptions on Varvi|xi. In particular, if (1.4) and (1.8) hold, the usual statistic

converges in distribution to some random variable (not chi-square in general), regardless of the

structure of Varvi|xi.
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To summarize, it makes no sense to report fully robust variance matrices for FE and RE but

then to compute a Hausman test that maintains the full set of RE assumptions. The

regression-based Hausman test from (1.11) is very handy for obtaining a fully robust test, as

well as for using the proper degrees of freedom in the limiting distribution. Specifically,

suppose the model contains a full set of year intercepts as well as time-constant and

time-varying explanatory variables:

yit  gt  zi  wit  ci  uit, t  1, . . . ,T.

Now, it is clear that, because we cannot estimate  by FE, it is not part of the Hausman test

comparing the RE and FE estimates. What is less clear, but also true, is that the coefficients on

the aggregate time variables, , cannot be included, either. (RE and FE estimation only with

variables that change across t are identical.) In fact, we can only compare the M  1 estimates

of , say ̂FE and ̂RE. If we include ̂FE and ̂RE we introduce a nonsingularity in the

asymptotic variance matrix. The regression based test, from the pooled regression

yit on gt, zi, wit, w̄i, t  1, . . . ,T; i  1, . . . ,N,

makes this clear (and also makes it clear that the are only M restrictions to test). Mundlak

(1978) suggested this test and Arellano (1993) described the robust version.. Unfortunately, the

usual form of the Hausman test does not make it easy to obtain a nonnegative test statistic, and

it is easy to get confused about the appropriate degrees of freedom in the chi-square

distribution. For example, the “Hausman” command in Stata includes year dummies in the

comparison between RE and FE; in addition, the test maintains the full set of RE assumptions

under the null. The most important problem is that unwarranted degrees of freedom are added

to the chi-square distribution, often many extra df, which can produce seriously misleading
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p-values.

2. New Insights Into Old Estimators

In the past several years, the properties of traditional estimators used for linear models,

particularly fixed effects and its instrumental variable counterparts, have been studied under

weaker assumptions. We review some of those results here. In these notes, we focus on models

without lagged dependent variables or other non-strictly exogenous explanatory variables,

although the instrumental variables methods applied to linear models can, in some cases, be

applied to models with lagged dependent variables.

2.1. Fixed Effects Estimation in the Correlated Random Slopes Model

The fixed effects (FE) estimator is still the workhorse in empirical studies that employ

panel data methods to estimate the effects of time-varying explanatory variables. The

attractiveness of the FE estimator is that it allows arbitrary correlation between the additive,

unobserved heterogeneity and the explanatory variables. (Pooled methods that do not remove

time averages, as well as the random effects (RE) estimator, essentially assume that the

unobserved heterogeneity is uncorrelated with the covariates.) Nevertheless, the framework in

which the FE estimator is typically analyzed is somewhat restrictive: the heterogeneity is

assumed to be additive and is assumed to have a constant coefficients (factor loads) over time.

Recently, Wooldridge (2005) has shown that the FE estimator, and extensions that sweep away

unit-specific trends, has robustness properties for estimating the population average effect

(PAE) or average partial effect (APE).

We begin with an extension of the usual model to allow for unit-specific slopes,
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yit  ci  xitbi  uit

Euit|xi,ci,bi  0, t  1, . . . ,T,
    (2.1)
    (2.2)

where bi is K  1. Rather than acknowledge that bi is unit-specific, we ignore the

heterogeneity in the slopes and act as if bi is constant for all i. We think ci might be correlated

with at least some elements of xit, and therefore we apply the usual fixed effects estimator. The

question we address here is: when does the usual FE estimator consistently estimate the

population average effect,   Ebi.

In addition to assumption (2.2), we naturally need the usual FE rank condition,

rank ∑
t1

T

Eẍit
′ ẍit  K.     (2.3)

Write bi    di where the unit-specific deviation from the average, di, necessarily has a zero

mean. Then

yit  ci  xit  xitdi  uit ≡ ci  xit  vit     (2.4)

where vit ≡ xitdi  uit. A sufficient condition for consistency of the FE estimator along with

(2.2) is

Eẍit
′ v̈it  0, t  1, . . . ,T.     (2.5)

Along with (2.2), it suffices that Eẍit
′ ẍitdi  0 for all t. A sufficient condition, and one that is

easier to interpret, is

Ebi|ẍit  Ebi  , t  1, . . . ,T.     (2.6)

Importantly, condition (2.6) allows the slopes, bi, to be correlated with the regressors xit

through permanent components. What it rules out is correlation between idiosyncratic

movements in xit. We can formalize this statement by writing xit  fi  r it, t  1, . . . ,T. Then
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(2.6) holds if Ebi|r i1,r i2, . . . ,r iT  Ebi. So bi is allowed to be arbitrarily correlated with the

permanent component, fi. (Of course, xit  fi  r it is a special representation of the covariates,

but it helps to illustrate condition (2.6).) Condition (2.6) is similar in spirit to the Mundlak

(1978) assumption applied to the slopes (rather to the intercept):

Ebi|xi1,xi2, . . . ,xiT  Ebi|x̄i

One implication of these results is that it is a good idea to use a fully robust variance matrix

estimator with FE even if one thinks idiosyncratic errors are serially uncorrelated: the term

ẍitdi is left in the error term and causes heteroskedasticity and serial correlation, in general.

These results extend to a more general class of estimators that includes the usual fixed

effects and random trend estimator. Write

yit  wtai  xitbi  uit, t  1, . . . ,T     (2.7)

where wt is a set of deterministic functions of time. We maintain the standard assumption (2.2)

but with ai in place of ci. Now, the “fixed effects” estimator sweeps away ai by netting out wt

from xit. In particular, now let ẍit denote the residuals from the regression xit on

wt, t  1, . . . ,T.

In the random trend model, wt  1, t, and so the elements of xit have unit-specific linear

trends removed in addition to a level effect. Removing even more of the heterogeneity from

xit makes it even more likely that (2.6) holds. For example, if xit  fi  hit  r it, then bi can

be arbitrarily correlated with fi,hi. Of course, individually detrending the xit requires at least

three time periods, and it decreases the variation in ẍit compared to the usual FE estimator. Not

surprisingly, increasing the dimension of wt (subject to the restriction dimwt  T), generally

leads to less precision of the estimator. See Wooldridge (2005) for further discussion.

Of course, the first differencing transformation can be used in place of, or in conjunction
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with, unit-specific detrending. For example, if we first difference followed by the within

transformation, it is easily seen that a condition sufficient for consistency of the resulting

estimator for  is

Ebi|Δẍit  Ebi, t  2, . . . ,T,     (2.8)

where Δẍit  Δxit − Δx are the demeaned first differences.

Now consider an important special case of the previous setup, where the regressors that

have unit-specific coefficients are time dummies. We can write the model as

yit  xit  tci  uit, t  1, . . . ,T,     (2.9)

where, with small T and large N, it makes sense to treat t : t  1, . . . ,T as parameters, like

. Model (2.9) is attractive because it allows, say, the return to unobserved “talent” to change

over time. Those who estimate, say, firm-level production functions like to allow the

importance of unobserved factors, such as managerial skill, to change over time. Estimation of

, along with the t, is a nonlinear problem. What if we just estimate  by fixed effects? Let

c  Eci and write (2.9) as

yit   t  xit  tdi  uit, t  1, . . . ,T,     (2.10)

where  t  tc and di  ci − c has zero mean In addition, the composite error,

vit ≡ tdi  uit, is uncorrelated with xi1,x2, . . . ,xiT (as well as having a zero mean). It is easy

to see that consistency of the usual FE estimator, which allows for different time period

intercepts, is ensured if

Covẍit,ci  0, t  1, . . . ,T.     (2.11)

In other words, the unobserved effects is uncorrelated with the deviations ẍit  xit − x̄i.

If we use the extended FE estimators for random trend models, as above, then we can
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replace ẍit with detrended covariates. Then, ci can be correlated with underlying levels and

trends in xit (provided we have a sufficient number of time periods).

Using usual FE (with full time period dummies) does not allow us to estimate the t, or

even determine whether the t change over time. Even if we are interested only in  when ci

and xit are allowed to be correlated, being able to detect time-varying factor loads is important

because (2.11) is not completely general. It is useful to have a simple test of

H0 : 2  3 . . . T with some power against the alternative of time-varying coefficients.

Then, we can determine whether a more sophisticated estimation method might be needed.

We can obtain a simple variable addition test that can be computed using linear estimation

methods if we specify a particular relationship between ci and xi. We use the Mundlak (1978)

assumption

ci    x̄i  ai.     (2.12)

Then

yit  t  xit  tx̄i tai  uit   t  xit  x̄i  tx̄i  ai  tai  uit,     (2.13)

where t  t − 1 for all t. Under the null hypothesis, t  0, t  2, . . . ,T. If we impose the

null hypothesis, the resulting model is linear, and we can estimate it by pooled OLS of yit on

1,d2t, . . . ,dTt,xit, x̄i across t and i, where the drt are time dummies. A variable addition test

that all t are zero can be obtained by applying FE to the equation

yit  1  2d2t . . .TdTt  xit  2d2tx̄i̂ . . .TdTtx̄i̂  errorit,     (2.14)

and test the joint significance of the T − 1 terms d2tx̄i̂, . . . ,dTtx̄i̂. (The term x̄i̂ would

drop out of an FE estimation, and so we just omit it.) Note that x̄i̂ is a scalar and so the test as

T − 1 degrees of freedom. As always, it is prudent to use a fully robust test (even though, under
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the null, tai disappears from the error term).

A few comments about this test are in order. First, although we used the Mundlak device to

obtain the test, it does not have to represent the actual linear projection because we are simply

adding terms to an FE estimation. Under the null, we do not need to restrict the relationship

between ci and xi. Of course, the power of the test may be affected by this choice. Second, the

test only makes sense if  ≠ 0; in particular, it cannot be used in a pure random effects

environment. Third, a rejection of the null does not necessarily mean that the usual FE

estimator is inconsistent for : assumption (11) could still hold. In fact, the change in the

estimate of  when the interaction terms are added can be indicative of whether accounting for

time-varying t is likely to be important. But, because ̂ has been estimated under the null, the

estimated  from (1.14) is not generally consistent.

If we want to estimate the t along with , we can impose the Mundlak assumption and

estimate all parameters, including , by pooled nonlinear regression or some GMM version.

Or, we can use Chamberlain’s (1982) less restrictive assumption. But, typically, when we want

to allow arbitrary correlation between ci and xi, we work directly from (2.9) and eliminate the

ci. There are several ways to do this. If we maintain that all t are different from zero then we

can use a quasi-differencing method to eliminate ci. In particular, for t ≥ 2 we can multiply the

t − 1 equation by t/t−1 and subtract the result from the time t equation:

yit − t/t−1yi,t−1  xit−t/t−1xi,t−1  tci − t/t−1t−1ci  uit − t/t−1ui,t−1

 xit−t/t−1xi,t−1  uit − t/t−1ui,t−1, t ≥ 2.

We define t  t/t−1 and write

yit − tyi,t−1  xit − txi,t−1  eit, t  2, . . . ,T,     (2.15)

where eit ≡ uit − tui,t−1. Under the strict exogeneity assumption, eit is uncorrelated with every
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element of xi, and so we can apply GMM to (2.15) to estimate  and 2, . . . ,T. Again, this

requires using nonlinear GMM methods, and the eit would typically be serially correlated. If

we do not impose restrictions on the second moment matrix of ui, then we would not use any

information on the second moments of e i; we would (eventually) use an unrestricted weighting

matrix after an initial estimation.

Using all of xi in each time period can result in too many overidentifying restrictions. At

time t we might use, say, zit  xit,xi,t−1, and then the instrument matrix Zi (with T − 1 rows)

would be diagzi2, . . . ,ziT. An initial consistent estimator can be gotten by choosing weighting

matrix N−1∑ i1
N Zi

′Zi−1. Then the optimal weighting matrix can be estimated. Ahn, Lee, and

Schmidt (2001) provide further discussion.

If xit contains sequentially but not strictly exogenous explanatory variables – such as a

lagged dependent variable – the instruments at time t can only be chosen from xi,t−1, . . . ,xi1.

Holtz-Eakin, Newey, and Rosen (1988) explicitly consider models with lagged dependent

variables; more on these models later.

Other transformations can be used. For example, at time t ≥ 2 we can use the equation

t−1yit − tyi,t−1  t−1xit − txi,t−1  eit, t  2, . . . ,T,

where now eit  t−1uit − tui,t−1. This equation has the advantage of allowing t  0 for some

t. The same choices of instruments are available depending on whether xit are strictly or

sequentially exogenous.

2.2. Fixed Effects IV Estimation with Random Slopes

The results for the fixed effects estimator (in the generalized sense of removing
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unit-specific means and possibly trends), extend to fixed effects IV methods, provided we add

a constant conditional covariance assumption. Murtazashvili and Wooldridge (2007) derive a

simple set of sufficient conditions. In the model with general trends, we assume the natural

extension of Assumption FEIV.1, that is, Euit|zi,ai,bi  0 for all t, along with Assumption

FEIV.2. We modify assumption (2.6) in the obvious way: replace ẍit with z̈it, the

individual-specific detrended instruments:

Ebi|z̈it  Ebi  , t  1, . . . ,T     (2.16)

But something more is needed. Murtazashvili and Wooldridge (2007) show that, along with the

previous assumptions, a sufficient condition is

Covẍit,bi|z̈it  Covẍit,bi, t  1, . . . ,T.     (2.17)

Note that the covariance Covẍit,bi, a K  K matrix, need not be zero, or even constant across

time. In other words, we can allow the detrended covariates to be arbitrarily correlated with the

heterogeneous slopes, and that correlation can change in any way across time. But the

conditional covariance cannot depend on the time-demeaned instruments. (This is an example

of how it is important to distinguish between a conditional expectation and an unconditional

one: the implicit error in the equation generally has an unconditional mean that changes with t,

but its conditional mean does not depend on z̈it, and so using z̈it as IVs is valid provided we

allow for a full set of dummies.) Condition (2.17) extends to the panel data case the

assumption used by Wooldridge (2003) in the cross section case.

We can easily show why (2.17) suffices with the previous assumptions. First, if

Edi|z̈it  0 – which follows from Ebi|z̈it  Ebi – then Covẍit,di|z̈it  Eẍitdi
′|z̈it, and

so Eẍitdi|z̈it  Eẍitdi ≡ t under the previous assumptions. Write ẍitdi  t  rit where
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Eriti|z̈it  0, t  1, . . . ,T. Then we can write the transformed equation as

ÿit  ẍit  ẍitdi  üit  ÿit  ẍit  t  rit  üit.     (2.18)

Now, if xit contains a full set of time period dummies, then we can absorb t into ẍit, and we

assume that here. Then the sufficient condition for consistency of IV estimators applied to the

transformed equations is Ez̈it
′ rit  üit  0,.and this condition is met under the maintained

assumptions. In other words, under (2.16) and (2.17), the fixed effects 2SLS estimator is

consistent for the average population effect, . (Remember, we use “fixed effects” here in the

general sense of eliminating the unit-specific trends, ai.) We must remember to include a full

set of time period dummies if we want to apply this robustness result, something that should be

done in any case. Naturally, we can also use GMM to obtain a more efficient estimator. If bi

truly depends on i, then the composite error rit  üit is likely serially correlated and

heteroskedastic. See Murtazashvili and Wooldridge (2007) for further discussion and

simulation results on the performance of the FE2SLS estimator. They also provide examples

where the key assumptions cannot be expected to hold, such as when endogenous elements of

xit are discrete.

3. Behavior of Estimators without Strict Exogeneity

As is well known, both the FE and FD estimators are inconsistent (with fixed T, N → )

without the conditional strict exogeneity assumption. But it is also pretty well known that, at

least under certain assumptions, the FE estimator can be expected to have less “bias” (actually,

inconsistency) for larger T. One assumption is contemporaneous exogeneity, (1.2). If we

maintain this assumption, assume that the data series xit,uit : t  1, . . . ,T is “weakly
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dependent” – in time series parlance, integrated of order zero, or I(0) – then we can show that

plim ̂FE    OT−1

plim ̂FD    O1.

    (3.1)

    (3.2)

In some special cases – the AR(1) model without extra covariates – the “bias” terms can be

calculated. But not generally. The FE (within) estimator averages across T, and this tends to

reduce the bias.

Interestingly, the same results can be shown if xit : t  1, . . . ,T has unit roots as long as

uit is I(0) and contemporaneous exogeneity holds. But there is a catch: if uit is I(1) – so

that the time series version of the “model” would be a spurious regression (yit and xit are not

cointegrated), then (3.1) is no longer true. And, of course, the first differencing means any unit

roots are eliminated. So, once we start appealing to “large T” to prefer FE over FD, we must

start being aware of the time series properties of the series.

The same comments hold for IV versions of the estimators. Provided the instruments are

contemporaneously exogenous, the FEIV estimator has bias of order T−1, while the bias in the

FDIV estimator does not shrink with T. The same caveats about applications to unit root

processes also apply.

Because failure of strict exogeneity causes inconsistency in both FE and FD estimation, it

is useful to have simple tests. One possibility is to obtain a Hausman test directly comparing

the FE and FD estimators. This is a bit cumbersome because, when aggregate time effects are

included, the difference in the estimators has a singular asymptotic variance. Plus, it is

somewhat difficult to make the test fully robust.

Instead, simple regression-based strategies are available. Let wit be the 1  Q vector, a

subset of xit suspected of failing strict exogeneity. A simple test of strict exogeneity,
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specifically looking for feedback problems, is based on

yit  t  xit  wi,t1  ci  eit, t  1, . . . ,T − 1.     (3.3)

Estimate the equation by fixed effects and test H0 :   0 (using a fully robust test). Of course,

the test may have little power for detecting contemporaneous endogeneity.

In the context of FEIV we can test whether a subset of instruments fails strict exogeneity

by writing

yit  t  xit  hi,t1  ci  eit, t  1, . . . ,T − 1,     (3.4)

where hit is a subset of the instruments, zit. Now, estimate the equation by FEIV using

instruments zit,hi,t1 and test coefficients on the latter.

It is also easy to test for contemporaneous endogeneity of certain regressors, even if we

allow some regressors to be endogenous under the null. Write the model now as

yit1  zit11  yit21  yit31  ci1  uit1,     (3.5)

where, in an FE environment, we want to test H0 : Eyit3
′ uit1  0 . Actually, because we are

using the within transformation, we are really testing strict exogeneity of yit3, but we allow all

variables to be correlated with ci1. The variables yit2 are allowed to be endogenous under the

null – provided, of course, that we have sufficient instruments excluded from the structural

equation that are uncorrelated with uit1 in every time period. We can write a set of reduced

forms for elements of yit3 as

yit3  zit3  c i3  vit3,     (3.6)

and obtain the FE residuals,

v̈ it3  ÿit3 − z̈it̂3, where the columns of ̂3 are the FE estimates

of the reduced forms, and the double dots denotes time-demeaning, as usual. Then, estimate
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the equation

ÿit1  z̈it11  ÿit21  ÿit31 

v̈ it31  errorit1     (3.7)

by pooled IV, using instruments z̈it,ÿit3,

v̈ it3. The test of the null that yit3 is exogenous is just

the (robust) test that 1  0, and the usual robust test is valid without adjusting for the

first-step estimation.

An equivalent approach is to define v̂it3  yit3 − zit̂3, where ̂3 is still the matrix of FE

coefficients, add these to equation (3.5), and apply FE-IV, using a fully robust test. Using a

built-in command can lead to problems because the test is rarely made robust and the degrees

of freedom are often incorrectly counted.

4. Instrumental Variables Estimation under Sequential Exogeneity

We now consider IV estimation of the model

yit  xit  ci  uit, t  1, . . . ,T,     (4.1)

under sequential exogeneity assumptions. Some authors simply use

Exis
′ uit  0, s  1, . . . , t, t  1, . . . ,T.     (4.2)

As always, xit probably includes a full set of time period dummies. This leads to simple

moment conditions after first differencing:

Exis
′ Δuit  0, s  1, . . . , t − 1; t  2, . . . ,T.     (4.3)

Therefore, at time t, the available instruments in the FD equation are in the vector xi,t−1
o , where

xit
o ≡ xi1,xi2, . . . ,xit.     (4.4)

Therefore, the matrix of instruments is simply
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Wi  diagxi1
o ,xi2

o , . . . ,xi,T−1
o ,     (4.5)

which has T − 1 rows. Because of sequential exogeneity, the number of valid instruments

increases with t.

GivenWi, it is routine to apply GMM estimation. But some simpler strategies are available

that can be used for comparison or as the first-stage estimator in computing the optimal

weighting matrix. One useful one is to estimate a reduced form for Δxit separately for each t.

So, at time t, run the regression Δxit on xi,t−1
o , i  1, . . . ,N, and obtain the fitted values, Δxit. Of

course, the fitted values are all 1  K vectors for each t, even though the number of available

instruments grows with t. Then, estimate the FD equation

Δyit  Δxit  Δuit, t  2, . . . ,T     (4.6)

by pooled IV using instruments (not regressors) Δxit. It is simple to obtain robust standard

errors and test statistics from such a procedure because the first stage estimation to obtain the

instruments can be ignored (asymptotically, of course).

One potential problem with estimating the FD equation by IVs that are simply lags of xit is

that changes in variables over time are often difficult to predict. In other words, Δxit might

have little correlation with xi,t−1
o , in which case we face a problem of weak instruments. In one

case, we even lose identification: if xit  t  xi,t−1  e it where Ee it|xi,t−1, . . . ,xi1  0 – that is,

the elements of xit are random walks with drift – then EΔxit|xi,t−1, . . . ,xi1  0, and the rank

condition for IV estimation fails.

If we impose what is generally a stronger assumption, dynamic completeness in the

conditional mean,

Euit|xit,yi,t−1xi,t−1, . . . ,yi1,xi1,ci  0, t  1, . . . ,T,     (4.7)
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then more moment conditions are available. While (4.7) implies that virtually any nonlinear

function of the xit can be used as instruments, the focus has been only on zero covariance

assumptions (or (4.7) is stated as a linear projection). The key is that (4.7) implies that

uit : t  1, . . . ,T is a serially uncorrelated sequence and uit is uncorrelated with ci for all t. If

we use these facts, we obtain moment conditions first proposed by Ahn and Schmidt (1995) in

the context of the AR(1) unobserved effects model; see also Arellano and Honoré (2001). They

can be written generally as

EΔyi,t−1 − Δxi,t−1 ′yit − xit  0, t  3, . . . ,T.     (4.8)

Why do these hold? Because all uit are uncorrelated with ci, and ui,t−1, . . . ,ui1 are

uncorrelated with ci  uit. So ui,t−1 − ui,t−2 is uncorrelated with ci  uit, and the resulting

moment conditions can be written in terms of the parameters as (4.8). Therefore, under (4.7),

we can add the conditions (4.8) to (4.3) to improve efficiency – in some cases quite

substantially with persistent data.

Of course, we do not always intend for models to be dynamically complete in the sense of

(4.7). Often, we estimate static models or finite distributed lag models – that is, models without

lagged dependent variables – that have serially correlated idiosyncratic errors, and the

explanatory variables are not strictly exogenous and so GLS procedures are inconsistent. Plus,

the conditions in (4.8) are nonlinear in parameters.

Arellano and Bover (1995) suggested instead the restrictions

CovΔxit
′ ,ci  0, t  2, . . . ,T.     (4.9)

Interestingly, this is the zero correlation, FD version of the conditions from Section 2 that

imply we can ignore heterogeneous coefficients in estimation under strict exogeneity. Under
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(4.9), we have the moment conditions from the levels equation:

EΔxit
′ yit −  − xit  0, t  2, . . . ,T,     (4.10)

because yit − xit  ci  uit and uit is uncorrelated with xit and xi,t−1. We add an intercept, ,

explicitly to the equation to allow a nonzero mean for ci. Blundell and Bond (1999) apply

these moment conditions, along with the usual conditions in (4.3), to estimate firm-level

production functions. Because of persistence in the data, they find the moments in (4.3) are not

especially informative for estimating the parameters. Of course, (4.9) is an extra set of

assumptions.

The previous discussion can be applied to the AR(1) model, which has received much

attention. In its simplest form we have

yit  yi,t−1  ci  uit, t  1, . . . ,T,     (4.11)

so that, by convention, our first observation on y is at t  0. Typically the minimal assumptions

imposed are

Eyisuit  0, s  0, . . . , t − 1, t  1, . . . ,T,     (4.12)

in which case the available instruments at time t are wit  yi0, . . . ,yi,t−2 in the FD equation

Δyit  Δyi,t−1  Δuit, t  2, . . . ,T.     (4.13)

In other words, we can use

EyisΔyit − Δyi,t−1  0, s  0, . . . , t − 2, t  2, . . . ,T.     (4.14)

Anderson and Hsiao (1982) proposed pooled IV estimation of the FD equation with the single

instrument yi,t−2 (in which case all T − 1 periods can be used) or Δyi,t−2 (in which case only

T − 2 periods can be used). We can use pooled IV where T − 1 separate reduced forms are
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estimated for Δyi,t−1 as a linear function of yi0, . . . ,yi,t−2. The fitted values Δyi,t−1, can be used

as the instruments in (4.13) in a pooled IV estimation. Of course, standard errors and inference

should be made robust to the MA(1) serial correlation in Δuit. Arellano and Bond (1991)

suggested full GMM estimation using all of the available instruments yi0, . . . ,yi,t−2, and this

estimator uses the conditions in (4.12) efficiently.

Under the dynamic completeness assumption

Euit|yi,t−1,yi,t−2, . . . ,yi0,ci  0,     (4.15)

the Ahn-Schmidt extra moment conditions in (4.8) become

EΔyi,t−1 − Δyi,t−2yit − yi,t−1  0, t  3, . . . ,T.     (4.16)

Blundell and Bond (1998) noted that if the condition

CovΔyi1,ci  Covyi1 − yi0,ci  0     (4.17)

is added to (4.15) then the combined set of moment conditions becomes

EΔyi,t−1yit −  − yi,t−1  0, t  2, . . . ,T,     (4.18)

which can be added to the usual moment conditions (4.14). Therefore, we have two sets of

moments linear in the parameters. The first, (4.14), use the differenced equation while the

second, (4.18), use the levels. Arellano and Bover (1995) analyzed GMM estimators from

these equations generally.

As discussed by Blundell and Bond (1998), condition (4.17) can be interpreted as a

restriction on the initial condition, yi0. To see why, write

yi1 − yi0  yi0  ci  ui1 − yi0  1 − yi0  ci  ui1. Because ui1 is uncorrelated with ci,

(4.17) becomes
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Cov1 − yi0  ci,ci  0.     (4.19)

Write yi0 as a deviation from its steady state, ci/1 −  (obtained for || 1 by recursive

substitution and then taking the limit), as

yi0  ci/1 −   ri0.     (4.20)

Then 1 − yi0  ci  1 − ri0, and so (4.17) reduces to

Covri0,ci  0.     (4.21)

In other words, the deviation of yi0 from its steady state is uncorrelated with the steady state.

Blundell and Bond (1998) contains discussion of when this condition is reasonable. Of course,

it is not for   1, and it may not be for  “close” to one. On the other hand, as shown by

Blundell and Bond (1998), this restriction, along with the Ahn-Schmidt conditions, is very

informative for  close to one. Hahn (1999) shows theoretically that such restrictions can

greatly increase the information about .

The Ahn-Schmidt conditions (4.16) are attractive in that they are implied by the most

natural statement of the model, but they are nonlinear in the parameters and therefore more

difficult to use. By adding the restriction on the initial condition, the extra moment condition

also means that the full set of moment conditions is linear. Plus, this approach extends to

general models with only sequentially exogenous variables, as in (4.10). Extra moment

assumptions based on homoskedasticity assumptions – either conditional or unconditional –

have not been used nearly as much, probably because they impose conditions that have little if

anything to do with the economic hypotheses being tested.

Other approaches to dynamic models are based on maximum likelihood estimation or

generalized least squares estimation of a particular set of conditional means. Approaches that
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condition on the initial condition yi0, an approach suggested by Chamberlain (1980), Blundell

and Smith (1991), and Blundell and Bond (1998), seem especially attractive. For example,

suppose we assume that

Dyit|yi,t−1,yi,t−2, . . . ,yi1,yi0,ci  Normalyi,t−1  ci,u
2, t  1,2, . . . ,T.

Then the distribution of yi1, . . . ,yiT given yi0  y0,ci  c is just the product of the normal

distributions:


t1

T

u
−Tyt − yt−1 − c/u.

We can obtain a usable density for (conditional) MLE by assuming

ci|yi0 ~Normal0  0yi0,a
2.

The log likelihood function for a random draw i is

log 
−



t1

T

1/uTyit − yi,t−1 − c/u. 1/ac − 0 − 0yi0/adc .

Of course, if the log likelihood represents the correct density of yi1, . . . ,yiT given yi0, the

MLE is consistent and N -asymptotically normal (and efficient among estimators that

condition on yi0.

A more robust approach is to use a generalized least squares approach, where Eyi|yi0 and

Varyi|yi0 are obtained, and where the latter could even be misspecified. Like with the MLE

approach, this results in estimation that is highly nonlinear in the parameters and is used less

often than the GMM procedures with linear moment conditions. See Blundell and Bond (1998)

for further discussion.

The same kinds of moment conditions can be used in extensions of the AR(1) model, such
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as

yit  yi,t−1  zit  ci  uit, t  1, . . . ,T.

If we difference to remove ci, we can then use exogeneity assumptions to choose instruments.

The FD equation is

Δyit  Δyi,t−1  Δzit  Δuit, t  1, . . . ,T,

and if the zit are strictly exogenous with respect to ui1, . . . ,uiT then the available instruments

(in addition to time period dummies) are zi,yi,t−2, . . . ,yi0. We might not want to use all of zi

for every time period. Certainly we would use Δzit, and perhaps a lag, Δzi,t−1. If we add

sequentially exogenous variables, say hit, to (11.62) then hi,t−1, . . . ,hi1 would be added to the

list of instruments (and Δhit would appear in the equation). We might also add the Arellano

and Bover conditions (4.10), or at least the Ahn and Schmidt conditions (4.8).

As a simple example of methods for dynamic models, consider a dynamic air fare equation

for routes in the United States:

lfareit  t   lfarei,t−1   concenit  ci  uit,

where we include a full set of year dummies. We assume the concentration ratio, concenit, is

strictly exogenous and that at most one lag of lfare is needed to capture the dynamics. The data

are for 1997 through 2000, so the equation is specified for three years. After differencing, we

have only two years of data:

Δlfareit  t  Δlfarei,t−1  Δconcenit  Δuit, t  1999,2000.

If we estimate this equation by pooled OLS, the estimators are inconsistent because Δlfarei,t−1

is correlated with Δuit; we include the OLS estimates for comparison. We apply the simple

pooled IV procedure, where separate reduced forms are estimated for Δlfarei,t−1: one for 1999,
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with lfarei,t−2 and Δconcenit in the reduced form, and one for 2000, with lfarei,t−2, lfareimt−3 and

Δconcenit in the reduced form. The fitted values are used in the pooled IV estimation, with

robust standard errors. (We only use Δconcenit in the IV list at time t.) Finally, we apply the

Arellano and Bond (1991) GMM procedure. The data set can be obtained from the web site for

Wooldridge (2002), and is called AIRFARE.RAW.
Dependent Variable: lfare

(1) (2) (3)
Explanatory Variable Pooled OLS Pooled IV Arellano-Bond
lfare−1 −. 126 .219 .333

. 027 . 062 . 055
concen . 076 .126 .152

. 053 . 056 . 040
N 1,149 1,149 1,149

As is seen from column (1), the pooled OLS estimate of  is actually negative and

statistically different from zero. By contrast, the two IV methods give positive and statistically

significant estimates. The GMM estimate of  is larger, and it also has a smaller standard error

(as we would hope for GMM).

The previous example has small T, but some panel data applications have reasonably large

T. Alvarez and Arellano (2003) show that the GMM estimator that accounts for the MA(1)

serial correlation in the FD errors has desirable properties when T and N are both large, while

the pooled IV estimator is actually inconsistent under asymptotics where T/N → a  0. See

Arellano (2003, Chapter 6) for discussion.

5. Estimating Production Functions Using Proxy Variables

We have already covered two common methods for estimating production functions from

firm-level panel data: fixed effects and first differencing. Typically, one assumes a

27



Imbens/Wooldridge, IRP Lecture Notes 3&4, August ’08

Cobb-Douglas production function with additive firm heterogeneity. Unfortunately, the FE and

FD estimators assume strict exogeneity of the inputs, conditional on firm heterogeneity; see,

for example, Wooldridge (2002). The economic assumption is that inputs cannot be chosen in

response to productivity shocks, a severe restriction on firm behavior.

Instrumental variables methods can be used to relax the strict exogeneity assumption. In

particular, after differencing or quasi-differencing, lagged inputs can be used as instruments

for changes in the inputs. Holtz-Eakin, Newey, and Rosen (1988), Arellano and Bover (1995),

and Blundell and Bond (2000) are examples of this approach. Unfortunately, differencing

removes much of the variation in the explanatory variables and can exacerbate measurement

error in the inputs. Often, the instruments available after differencing often are only weakly

correlated with the differenced explanatory variables.

Olley and Pakes (1996) (OP for short) suggest a different approach. Rather than allow for

time-constant firm heterogeneity, OP show how investment can be used as a proxy variable for

unobserved, time-varying productivity. Specifically, productivity can be expressed as an

unknown function of capital and investment (when investment is strictly positive). OP present

a two-step estimation method where, in the first stage, semiparametric methods are used to

estimate the coefficients on the variable inputs. In a second step, the parameters on capital

inputs can be identified under assumptions on the dynamics of the productivity process.

Levinsohn and Petrin (2003) (LP for short) propose a modification of the OP approach to

address the problem of lumpy investment. LP suggest using intermediate inputs to proxy for

unobserved productivity. Their paper contains assumptions under which productivity can be

written as a function of capital inputs and intermediate inputs (such as materials and

electricity). As with OP, LP propose a two-step estimation method to consistently estimate the
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coefficients on the variable inputs and the capital inputs.

In implementing the OP or LP approaches, it is convenient to assume that unknown

functions are well approximated by low-order polynomials. Petrin, Poi, and Levinsohn (2004)

(PPL for short) suggest using third-degree polynomials, and LP note that such a choice leads to

estimated parameters that are very similar to locally weighted estimation.

Because of the complicated two-step nature of the LP estimation method, the authors

suggest using bootstrapping methods to obtain standard errors and test statistics. Here we show

how the general problem can be set up as a two-equation system for panel data with the same

dependent variable, but where the set of instruments differs across equation, as in Wooldridge

(1996). The treatment here follows Wooldridge (2007).

Write a production function for firm i in time period t as

yit    wit  xit  vit  eit, t  1, . . . ,T,     (5.1)

where yit is typically the natural logarithm of the firm’s output, wit is a 1  J vector of variable

inputs – such as labor – and xit is a 1  K vector of observed state variables – such as capital –

all in logarithmic form. The sequence vit : t  1, . . . ,T is unobserved productivity, and

eit : t  1,2, . . . ,T is a sequence of shocks that, as we will see, are assumed to be

conditional-mean independent of current and past inputs.

A key implication of the theory underlying OP and LP is that for some function g, ,

vit  gxit,mit, t  1, . . . ,T,     (5.2)

where mit is a 1  M vector of proxy variables. In OP, mit consists of investment and in LP,

mit contains intermediate inputs. Initially, we assume that g,  is time invariant.

Under the assumption
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Eeit|wit,xit,mit  0, t  1,2, . . . ,T,     (5.3)

we have the following regression function:

Eyit|wit,xit,mit    wit  xit  gxit,mit

≡ wit  hxit,mit, t  1, . . . ,T,     (5.4)

where hxit,mit ≡   xit  gxit,mit. Since g,  is allowed to be a general function – in

particular, linearity in x is a special case –  (and the intercept, ) are clearly not identified

from (5.4). Nevertheless – at least at first sight – equation (5.4) appears to identify . However,

this need not be true, especially if we believe the economics that leads to (5.2). Particularly

problematical is whenmit contains intermediate inputs, as in LP. As shown by Ackerberg,

Caves, and Frazer (2006) (ACF for short), if labor inputs are chosen at the same time as

intermediate inputs, there is a fundamental identification problem in (5.4): wit is a

deterministic function of xit,mit, which means  is nonparametrically unidentified. To make

matters worse, ACF show that wit actually drops out of (5.4) when the production function is

Cobb-Douglas.

As in OP and LP, assume that estimation of  is also important. In order to identify  along

with , follow OP and LP and strengthen (5.3) to

Eeit|wit,xit,mit,wi,t−1,xi,t−1,mi,t−1, . . . ,wi1,xi1,mi1  0, t  1,2, . . . ,T.     (5.5)

Assumption (5.5) can be weakened somewhat – in particular, identification could hold with

just current values and one lag in the conditioning set – but assuming conditional mean

independence given outcomes at t and t − 1, without also assuming (5.5), is ad hoc.

Assumption (5.5) does allow for serial dependence in the idiosyncratic shocks

eit : t  1,2, . . . ,T because neither past values of yit nor eit appear in the conditioning set.
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Finally, we use an assumption restricting the dynamics in the productivity process,

vit : t  1,2, . . .. LP state the assumption as

Evit|vi,t−1, . . . ,vi1  Evit|vi,t−1, t  2,3, . . . ,T,     (5.6)

along with an assumption that xit is uncorrelated with the innovation

ait ≡ vit − Evit|vi,t−1.     (5.7)

These assumptions are not quite enough. In the second stage of the LP procedure, the

conditional expectation used to identify  depends on xi,t−1,mi,t−1. Thus, consistency requires

that ait is additionally uncorrelated with xi,t−1,mi,t−1. A sufficient condition that meshes well

with (5.5) is

Evit|xit,wi,t−1xi,t−1,mi,t−1, . . . ,wi1,xi1,mi1  Evit|vi,t−1 ≡ fgxi,t−1,mi,t−1,     (5.8)

where the latter equivalence holds for some f because vi,t−1  gxi,t−1,mi,t−1. An important

point is that the variable inputs in wit are allowed to be correlated with the innovations ait, but

(5.8) means that xit, past outcomes on wit,xit,mit, and all functions of these are uncorrelated

with ait.

Plugging vit  fgxi,t−1,mi,t−1  ait into (5.1) gives

yit    wit  xit  fgxi,t−1,mi,t−1  ait  eit.     (5.9)

Now, we can specify the two equations that identify ,:

yit    wit  xit  gxit,mit  eit, t  1, . . . ,T     (5.10)

and

yit    wit  xit  fgxi,t−1,mi,t−1  uit, t  2, . . . ,T,     (5.11)

where uit ≡ ait  eit. Importantly, the available orthogonality conditions differ across these
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two equations. In (5.10), the orthogonality condition on the error is given by (5.5). The

orthogonality conditions for (5.11) are

Euit|xit,wi,t−1xi,t−1,mi,t−1, . . . ,wi1,xi1,mi1  0, t  2, . . . ,T.     (5.12)

In other words, in (5.10) and (5.11) we can use the contemporaneous state (capital) variables,

xit, any lagged inputs, and functions of these, as instrumental variables. In (5.10) we can

further add the elements of mit (investment or intermediate inputs).

In the ACF setting, where (5.10) does not identify , (5.11) would still generally identify 

and  provided we have the orthogonality conditions in (5.12). Effectively, xit, xi,t−1, andmi,t−1

act as their own instruments and wi,t−1 acts as an instrument for wit. Then, (5.11) can be

estimated by an instrumental variables version of Robinson’s (1988) estimator to allow f and g

to be completely unspecified. Semykina (2006) proposed such a method in the context of

sample selection corrections in panel data with endogenous explanatory variables.

A simpler approach is to approximate g,  and f in (5.10) and (5.11) by low-order

polynomials. In implementing their two-step modification of OP, LP find third-degree

polynomials work as well as local smoothing. So, if xit and mit are both scalars, gx,m is

linear in terms of the form xpmq, where p and q are nonnegative integers with p  q ≤ 3.

More generally, gx,m contains all polynomials of order three or less. In any case, assume

that we can write

gxit,mit  0  cxit,mit     (5.13)

for a 1  Q vector of functions cxit,mit. I assume that cxit,mit contains at least xit andmit

separately, since a linear version of gxit,mit should always be an allowed special case.

Further, assume that f can be approximated by a polynomial in v:
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fv 0  1v . . .GvG.     (5.14)

When we plug these choices into (5.10) and (5.11), it is evident that neither the original

intercept  nor the intercepts 0 and 0 are identified.

Given the functions in (5.13) and (5.14), we now have

yit  0  wit  xit  c it  eit, t  1, . . . ,T     (5.15)

and

yit  0  wit  xit  1c i,t−1 . . .Gc i,t−1G  uit, t  2, . . . ,T,     (5.16)

where 0 and 0 are the new intercepts and we use the notation c it ≡ cxit,mit. Given (5.5)

and (5.12), we can easily specify instrumental variables (IVs) for each of these two equations.

The most straightforward choice of IVs for (5.15) is simply

zit1 ≡ 1,wit,xit,c it
o,     (5.17)

where c it
o is c it but without xit. The choice in (5.17) corresponds to the regression analysis in

OP and LP for estimating  in a first stage. Of course, under (5.5), any nonlinear function of

wit,xit,c it
o is also a valid IV, as are all lags and all functions of these lags. Adding a lag could

be useful for generating overidentifying restrictions to test the model assumptions, particularly

(5.2).

Instruments for (5.16) would include xit,wi,t−1,c i,t−1 and, especially if G  1, nonlinear

functions of c i,t−1 (probably low-order polynomials). Lags more than one period back are valid,

too, but adding more lags can be costly in terms of lost initial time periods. So, write

zit2  1,xit,wi,t−1,c i,t−1,qi,t−1,     (5.18)

where qi,t−1 is a set of nonlinear functions of c i,t−1, probably consisting of low-order
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polynomials.

We can easily verify that we have enough moment conditions to identify the

2  J  K  Q  G parameters in (5.16). In fact, we can identify the parameters  and  off

equation (5.16). As remarked earlier, xit,wi,t−1,c i,t−1 would act as their own instruments, and

then we would include enough nonlinear functions in qi,t−1 to identify 1, . . . ,G .

A key difference between (5.17) and (5.18) is that zit2 does not contain contemporaneous

values of wit andmit. One possibility is to choose, for each i and t, a matrix of instruments,

with two rows, as

Zit ≡
wit,c it,zit2 0

0 zit2
, t  2, . . . ,T.     (5.19)

This choice makes it clear that all instruments available for (5.17) are also valid for (5.18), and

we have some additional moment restrictions in (3.4).

GMM estimation of all parameters in (5.15) and (5.16) is now straightforward. For each

t  1, define a 2  1 residual function as

r it 
rit1

rit2


yit − 0 − wit − xit − c it

yit − 0 − wit − xit − 1c i,t−1 −. . .−Gc i,t−1G ,     (5.20)

so that

EZit
′ r it  0, t  2, . . . ,T.     (5.21)

Then, these T − 1 conditions can be stacked for each i, and standard GMM estimation can be

used; see, for example, Wooldridge (1996, 2002, Chapter 14).

Interestingly, in one leading case – namely, that productivity follows a random walk with

drift – the moment conditions are linear in the parameters. Using G  1 and 1  1, the
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residual functions become rit1 yit − 0 − wit − xit − c it and

rit2 yit − 0 − wit − xit − c i,t−1, which results in a particularly straightforward GMM

estimation problem. In fact, we can write the system as yit  Xit  r it, where yit is the 2  1

vector with yit in both elements,

Xit 
1 0 wit xit c it

0 1 wit xit c i,t−1
,     (5.22)

and   0,0,′,′,′ ′. We can choose Zit as in (5.19). Identification does not require

including qi,t−1 in zit2, but we might include qi,t−1 among the instruments and test the several

overidentifying restrictions.

6. Pseudo Panels from Pooled Cross Sections

In cases where panel data sets are not available, we can still estimate parameters in an

underlying panel population model if we can obtain random samples in different periods.

Many surveys are done annually by obtaining a different random (or stratified) sample for each

year. Deaton (1985) showed how to identify and estimate parameters in panel data models

from pooled cross sections. As we will see, however, identification of the parameterse can be

tenuous.

Deaton (1985) was careful about distinguishing between the population model on the one

hand and the sampling scheme on the other. This distinction is critical for understanding the

nature of the identification problem, and in deciding the appropriate asymptotic analysis. The

recent literature has tended to write “models” at the cohort or group level, which is not in the

spirit of Deaton’s original work. (Angrist (1991) actually has panel data, but uses averages in

each time period to estimate parameters of a labor supply function.)
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In what follows, we are interested in estimating the parameters of the population model

yt  t  xt  f  ut, t  1, . . . ,T,     (6.1)

which is best viewed as representing a population defined over T time periods. For this setup to

make sense, it must be the case that we can think of a stationary population, so that the same

units are represented in each time period. Because we allow a full set of period intercepts, Ef

is never separately identified, and so we might as well set it to zero.

The random quantities in (6.1) are the response variable, yt, the covariates, xt (a 1  K

vector), the unobserved effect, f, and the unobserved idiosyncratic errors, ut : t  1, . . . ,T.

Like our previous analysis, we are thinking of applications with a small number of time

periods, and so we view the intercepts, t, as parameters to estimate, along with the K  1

vector parameter  – which is ultimately of interest. We consider the case where all elements

of xt have some time variation.

As it turns out, to use the standard analysis, we do not even have to assume

contemporaneous exogeneity conditional on f, that is,

Eut|xt, f  0, t  1, . . . ,T,     (6.2)

although this is a good starting point to determine reasonable population assumptions.

Naturally, iterated expectations implies

Eut|f  0, t  1, . . . ,T,     (6.3)

and (6.3) is sensible in the context of (6.1). From here on, we take it to be true. Because f

aggregates all time-constant unobservables, we should think of (6.3) as implying that

Eut|g  0 for any time-constant variable g, whether unobserved or observed. In other words,

in the leading case we should think of (6.1) as representing Eyt|xt, f where any time constant
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factors are lumped into f.

With a (balanced) panel data set, we would have a random sample in the cross section.

Therefore, for a random draw i , xit,yit, t  1, . . . ,T, we would then write the model as

yit  t  xit  fi  uit, t  1, . . . ,T.     (6.4)

While this notation can cause confusion later when we sample from each cross section, it has

the benefit of explicitly labelling quantities as changing only across t, changing only across i,

or changing across both.

The idea of using independent cross sections to estimate parameters from panel data

models is based on a simple insight of Deaton’s. Assume that the population for which (6.1)

holds is divided into G groups (or cohorts). This designation cannot depend on time. For

example, it is common to birth year to define the groups, or even ranges of birth year. For a

random draw i satisfying (6.4), let gi be the group indicator, taking on a value in 1,2, . . . ,G.

Then, by our earlier discussion,

Euit|gi  0, t  1, . . . ,T,     (6.5)

essentially by definition. In other words, the t account for any change in the average

unobservables over time and fi accounts for any time-constant factors.

Taking the expected value of (6.4) conditional on group membership and using only (6.5),

we have

Eyit|gi  g  t  Exit|gi  g  Efi|gi  g, t  1, . . . ,T.     (6.6)

Again, this expression represents an underlying population, but where we have partitioned the

population into G groups.

Several authors after Deaton, including Collado (1998) and Verbeek and Vella (2005),
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have left Euit|gi  g as part of the “error term,” with the notation ugt
∗  Euit|gi  g. In fact,

these authors have criticized previous work by Moffitt (1993) for making the “assumption”

that ugt
∗  0. But, as Deaton showed, if we start with the underlying population model (6.1),

then Euit|gi  g  0 for all g follows directly. Nevertheless, as we will discuss later, the key

assumption is that the structural model (6.1) does not require a full set of group/time effects. If

such effects are required, then one way to think about the resulting misspecification is that

Euit|gi  g is not zero.

If we define the population means

g  Efi|gi  g
gt

y  Eyit|gi  g
gt
x  Exit|gi  g

    (6.7)

for g  1, . . . ,G and t  1, . . . ,T we have

gt
y  t  gt

x   g, g  1, . . . ,G, t  1, . . . ,T.     (6.8)

(Many authors use the notation ygt
∗ in place of gt

y , and similarly for gt
x , but, at this point, such

a notation gives the wrong impression that the means defined in (6.7) are random variables.

They are not. They are group/time means defined on the underlying population.)

Equation (6.8) is remarkable in that it holds without any assumptions restricting the

dependence between xit and uir across t and r. In fact, xit can contain lagged dependent

variables, most commonly yi,t−1, or explanatory variables that are contemporaneously

endogenous (as occurs under measurement error in the original population model, an issue that

was important to Angrist (1991)). This probably should make us a little suspicious, as the

problems of lagged dependent variable, measurement error, and other violations of strict

exogeneity are tricky to handle with true panel data.
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(In estimation, we will deal with the fact that there are not really T  G parameters in t

and g to estimate; there are only T  G − 1. The lost degree of freedom comes from Ef  0,

which puts a restriction on the g. With the groups of the same size in the population, the

restriction is that the g sum to zero.)

If we take (6.8) as the starting point for estimating  (along with t and g, then the issues

become fairly clear. If we have sufficient observations in the group/time cells, then the means

gt
y and gt

x can be estimated fairly precisely, and these can be used in a minimum distance

estimation framework to estimate , where  consists of , , and  (where, say, we set 1  0

as the normalization).

Before discussing estimation details, it is useful to study (6.8) in more detail to determine

some simple, and common, strategies. Because (6.8) looks itself like a panel data regression

equation, methods such as “OLS,” “fixed effects,” and “first differencing” have been applied

to sample averages. It is informative to apply these to the population. First suppose that we set

each g to zero and set all of the time intercepts, t, to zero. For notational simplicity, we also

drop an overall “intercept,” but that would be included at a minimum. Then gt
y  gt

x  and if

we premultiply by gt
x′, average across g and t, and then assume we can invert

∑g1
G ∑ t1

T gt
x′gt

x , we have

  ∑
g1

G

∑
t1

T

gt
x′gt

x

−1

∑
g1

G

∑
t1

T

gt
x′gt

y .     (6.9)

This means that the population parameter, , can be written as a pooled OLS regression of the

population group/time means gt
y on the group/time means gt

x . Naturally, if we have “good”

estimates of these means, then it will make sense to estimate  by using the same regression on
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the sample means. But, so far, this is all in the population. We can think of (6.9) as the basis

for a method of moments procedure. It is important that we treat gt
x and gt

y symmetrically,

that is, as population means to be estimated, whether the xit are strictly, sequentially, or

contemporaneous exogenous – or none of these – in the original model.

When we allow different group means for fi, as seems critical, and different time period

intercepts, which also is necessary for a convincing analysis, we can easily write  as an

“OLS” estimator by subtracting of time and group averages. While we cannot claim that these

expressions will result in efficient estimators, they can shed light on whether we can expect

(6.8) to lead to precise estimation of . First, without separate time intercepts we have

gt
y − ̄g

y  gt
x − ̄g

x, g  1, . . . ,G, ; t  1, . . . ,T,     (6.10)

where the notation should be clear, and then one expression for  is (6.9) but with gt
x − ̄g

x in

place of gt
x . Of course, this makes it clear that identification of  more difficult when the g

are allowed to differ. Further, if we add in the year intercepts, we have

  ∑
g1

G

∑
t1

T

̈gt
x′̈gt

x

−1

∑
g1

G

∑
t1

T

̈gt
x′gt

y     (6.11)

where ̈gt
x is the vector of residuals from the pooled regression

gt
x on 1, d2, . . . ,dT, c2, ..., cG,     (6.12)

where dt denotes a dummy for period t and cg is a dummy variable for group g.

There are other expressions for , too. (Because  is generally overidentified, there are

many ways to write it in terms of the population moments. For example, if we difference and

then take away group averages, we have
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  ∑
g1

G

∑
t2

T

Δ̈gt
x′Δ̈gt

x

−1

∑
g1

G

∑
t2

T

Δ̈gt
x′Δgt

y     (6.13)

where Δgt
x  gt

x − g,t−1
x and Δ̈gt

x  Δgt
x − G−1∑h1

G Δht
x .

Equations (6.11) and (6.13) make it clear that the underlying model in the population

cannot contain a full set of group/time interactions. So, for example, if the groups (cohorts) are

defined by birth year, there cannot be a full set of birth year/time period interactions. We could

allow this feature with individual-level data because we would typically have variation in the

covariates within each group/period cell. Thus, the absence of full cohort/time effects in the

population model is the key identifying restriction.

Even if we exclude full group/time effects,  may not be precisely estimable. Clearly  is

not identified if we can write gt
x  t  g for vectors t and g, t  1, . . . ,T, g  1, . . . ,G. In

other words, while we must exclude a full set of group/time effects in the structural model, we

need some interaction between them in the distribution of the covariates. One might be worried

about this way of identifying . But even if we accept this identification strategy, the variation

in ̈gt
x : t  1, . . ,T, g  1, . . . ,G or Δ̈gt

x : t  2, . . ,T, g  1, . . . ,G might not be sufficient

to learn much about  – even if we have pretty good estimates of the population means.

We are now ready to formally discuss estimation of . We have two formulas (and there

are many more) that can be used directly, once we estimate the group/time means for yt and xt.

We can use either true panel data or repeated cross sections. Angrist (1991) used panel data

and grouped the data by time period (after differencing). Our focus here is on the case where

we do not have panel data, but the general discussion applies to either case. One difference is

that, with independent cross sections, we need not account for dependence in the sample
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averages across g and t (except in the case of dynamic models – more later).

Assume we have a random sample on xt,yt of size Nt, and we have specified the G

groups or cohorts. Write xit,yit : i  1, . . . ,Nt. Some authors, wanting to avoid confusion

with a true panel data set, prefer to replace i with it to emphasize that the cross section units

are different in each time period. (Plus, several authors actually write the underlying model in

terms of the pooled cross sections rather than using the underlying population model – a

mistake, in my view.) As long as we understand that we have a random sample in each time

period, and that random sample is used to estimate the group/time means, there should be no

confusion.

For each random draw i, it is useful to let r i  rit1, rit2, . . . , ritG be a vector of group

indicators, so ritg  1 if observation i is in group g. Then the sample average on the response

variable in group/time cell g, t can be written as

̂gt
y  Ngt

−1∑
i1

Nt

ritgyit  Ngt/Nt−1Nt
−1∑

i1

Nt

ritgyit,     (6.14)

where Ngt  ∑ i1
Nt ritg is properly treated as a random outcome. (This differs from standard

stratified sampling, where the groups are first chosen and then random samples are obtained

within each group (stratum). Here, we fix the groups and then randomly sample from the

population, keeping track of the group for each draw.) Of course, ̂gt
y is generally consistent for

gt
y . First, ̂gt  Ngt/Nt converges in probability to g  Pritg  1 – the fraction of the

population in group or cohort g (which is supposed to be constant across t). So
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̂gt
−1Nt

−1∑
i1

Nt

ritgyit
p
→ g

−1Eritgyit

 g
−1Pritg  1  0  Pritg  1Eyit|ritg  1

 Eyit|ritg  1  gt
y .

Naturally, the argument for other means is the same. Let wit denote the K  1  1 vector

yit,xit ′. Then the asymptotic distribution of the full set of means is easy to obtain:

Nt ̂gt
w − gt

w → Normal0,g
−1gt

w,

where ̂gt
w is the sample average for group/time cell g, t and

gt
w  Varwt|g

is the K  1  K  1 variance matrix for group/time cell g, t. When we stack the means

across groups and time periods, it is helpful to have the result

N ̂gt
w − gt

w → Normal0, gt−1gt
w,     (6.15)

where N  ∑ t1
T Nt and t 

N→
lim Nt/N is, essentially, the fraction of all observations

accounted for by cross section t. Of course, gt is consistently estimated by Ngt/N, and so, the

implication of (6.15) is that the sample average for cell g, t gets weighted by Ngt/N, the

fraction of all observations accounted for by cell g, t.

In implementing minimum distance estimation, we need a consistent estimator of gt
w , and

the group/time sample variance serves that purpose:

̂gt
w
 Ngt

−1∑
i1

Nt

ritgwit − ̂gt
wwit − ̂gt

w ′
p
→ gt

w .     (6.16)

Now let  be the vector of all cell means. For each g, t, there are K  1 means, and so  is

a GTK  1  1 vector. It makes sense to stack  starting with the K  1 means for g  1,
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t  1, g  1, t  2, ..., g  1, t  T, ..., g  G, t  1, ..., g  G, t  T. Now, the ̂gt
w are always

independent across g because we assume random sampling for each t. When xt does not

contain lags or leads, the ̂gt
w are independent across t, too. (When we allow for lags of the

response variable or explanatory variables, we will adjust the definition of  and the moment

conditions. Thus, we will always assume that the ̂gt
w are independent across g and t.) Then,

N ̂ −  →Normal0,,     (6.17)

where  is the GTK  1  GTK  1 block diagonal matrix with g, t block gt
w /gt.

Note that  incorporates both different cell variance matrices as well as the different

frequencies of observations.

The set of equations in (6.8) constitute the restrictions on , , and . Let  be the

K  T  G − 1 vector of these parameters, written as

  ′, ′,′ ′.

There are GTK  1 restrictions in equations (6.8), so, in general, there are many

overidentifying restrictions. We can write the set of equations in (6.8) as

h,  0,     (6.18)

where h,  is a GTK  1  1 vector. Because we have N -asymptotically normal estimator

̂, a minimum distance approach suggests itself. It is different from the usual MD problem

because the parameters do not appear in a separable way, but MD estimation is still possible.

In fact, for the current application, h, is linear in each argument, which means MD

estimators of  are in closed form.

Before obtaining the efficient MD estimator, we need, because of the nonseparability, an

initial consistent estimator of . Probably the most straightforward is the “fixed effects”
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estimator described above, but where we estimate all components of . The estimator uses the

just identified set of equations.

For notational simplicity, let gt denote the K  1  1 vector of group/time means for

each g, t cell. Then let gt be the K  T  G − 1  1 vector gt
x ,dt,cg ′, where dt is a

1  T − 1 vector of time dummies and cg is a 1  G vector of group dummies. Then the

moment conditions are

∑
g1

G

∑
t1

T

gtgt
′  − ∑

g1

G

∑
t1

T

gtgt
y  0.     (6.19)

When we plug in ̂ – that is, the sample averages for all g, t, then  is obtained as the

so-called “fixed effects” estimator with time and group effects. The equations can be written as

q̂,  0,     (6.20)

and this representation can be used to find the asymptotic variance of N  − ; naturally, it

depends on  and is straightforward to estimate.

But there is a practically important point: there is nothing nonstandard about the MD

problem, and bootstrapping is justified for obtaining asymptotic standard errors and test

statistics. (Inoue (2008) asserts that the “unconditional” limiting distribution of N  −  is

not standard, but that is because he treats the sample means of the covariates and of the

response variable differently; in effect, he conditions on the former.) The bootstrapping is

simple: resample each cross section separately, find the new groups for the bootstrap sample,

and obtain the “fixed effects” estimates. It makes no sense here to resampling the groups.

Because of the nonlinear way that the covariate means appear in the estimation, the

bootstrap may be preferred. The usual asymptotic normal approximation obtained from

45



Imbens/Wooldridge, IRP Lecture Notes 3&4, August ’08

first-order asymptotics may not be especially good in this case, especially if∑g1
G ∑ t1

T ̈gt
x′̈gt

x

is close to being singular, in which case  is poorly identified. (Inoue (2008) provides evidence

that the distribution of the “FE” estimator, and what he calls a GMM estimator that accounts

for different cell sample sizes, do not appear to be normal even with fairly large cell sizes. But

his setup for generating the data is different – in particular, he specifies equations directly for

the repeated cross sections, and that is how he generates data. As mentioned above, his

asymptotic analysis differ from the MD framework, and implies nonnormal limiting

distributions. If random samples are drawn from each population, the cell sizes are reasonably

large, and there is sufficient variation in ̈gt
x , the minimum distance estimators should have

reasonable finite-sample properties. But because the limiting distribution depends on the

Nt

̈gt
x
− ̈gt

x , which appear in a highly nonlinear way, asymptotic normal approximation

might still be poor.

With the restrictions written as in (6.18), Chamberlain (lecture notes) shows that the

optimal weighting matrix is the inverse of

∇h,∇h, ′,     (6.21)

where ∇h, is the GT  GTK  1 Jacobian of h, with respect to . (In the standard

case, ∇h, is the identity matrix.) We already have the consistent estimator of  – the cell

averages – we showed how to consistently estimate  in equations (6.16), and we can use  as

the initial consistent estimator of .

∇h, ∇h  IGT ⊗ −1,′. Therefore, ∇h,∇h, is a block diagonal

matrix with blocks

−1,′gt−1gt
w −1,′ ′.     (6.22)
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But

gt
2 ≡ −1,′gt

w −1,′ ′  Varyt − xt|g,     (6.23)

and a consistent estimator is simply

Ngt
−1∑

i1

Nt

ritgyit − xit −  t −  g2

is the residual variance estimated within cell g, t.

Now, ∇h,  W, the GT  K  T  G − 1 matrix of “regressors” in the FE

estimation, that is, the rows ofW are gt  gt
x′,dt,cg. Now, the FOC for the optimal MD

estimator is

Ŵ′Ĉ−1
Ŵ̂ − ̂y  0,

and so

̂  Ŵ′Ĉ−1Ŵ
−1Ŵ′Ĉ−1

̂y.     (6.24)

So, as in the standard cases, the efficient MD estimator looks like a “weighted least squares”

estimator. The estimated asymptotic variance of ̂, following Chamberlain, is just

Ŵ′Ĉ−1Ŵ
−1/N. Because Ĉ−1 is the diagonal matrix with entries Ngt/N/̂gt

2 , it is easy to

weight each cell g, t and then compute both ̂ and its asymptotic standard errors via a

weighted regression; fully efficient inference is straightforward. But one must compute the ̂gt
2

using the individual-level data in each group/time cell.

It is easily seen that the so-called “fixed effects” estimator, , is

  Ŵ′Ŵ
−1Ŵ′

̂y,     (6.25)

that is, it uses the identity matrix as the weighting matrix. From Chamberlain (lecture notes),
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the asymptotic variance of  is estimated as Ŵ′Ŵ
−1Ŵ′ČŴŴ′Ŵ

−1, where Č is the matrix

described above but with  used to estimate the cell variances. (Note: This matrix cannot be

computed by just using the “heteroskedasticity-robust” standard errors in the regress ̂gt
y on ̂gt

x ,

dt, cg.) Because inference using  requires calculating the group/time specific variances, we

might as well use the efficient MD estimator in (6.24).

Of course, after the efficient MD estimation, we can readily compute the overidentifying

restrictions, which would be rejected if the underlying model needs to include cohort/time

effects in a richer fashion.

A few remaining comments are in order. First, several papers, including Deaton (1985),

Verbeek and Nijman (1993), and Collado (1998), use a different asymptotic analysis. In the

current notation, GT →  (Deaton) or G → , with the cell sizes fixed. These approaches

seems unnatural for the way pseudo panels are constructed, and the thought experiment about

how one might sample more and more groups is convoluted. While T →  conceptually makes

sense, it is still the case that the available number of time periods is much smaller than the

cross section sample sizes for each T. McKenzie (2004) has shown that estimators derived

under large G asymptotics can have good properties under the MD asymptotics used here. One

way to see this is that the IV estimators proposed by Collado (1998), Verbeek and Vella

(2005), and others are just different ways of using the population moment conditions in (6.8).

(Some authors appear to want it both ways. For example, Verbeek and Nijman (1993) use

large G asymptotics, but treat the within-cell variances and covariances as known. This stance

assumes that one can get precise estimates of the second moments within each cell, which

means that Ngt should be large.)

Basing estimation on (6.8) and using minimum distance, assuming large cell sizes, makes
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application to models with lags relatively straightforward. The only difference now is that the

vectors of means, gt
w : g  1, . . . ,G; t  1, . . . ,T now contain redundancies. (In other

approaches to the problem, for example Collado (1998), McKenzie (2004), the problem with

adding yt−1 to the population model is that it generates correlation in the estimating equation

based on the pooled cross sections. Here, there is no conceptual distinction between having

exogenous or endogenous elements in xt; all that matters is how adding one modifies the MD

moment conditions. As an example, suppose we write

yt  t  yt−1  zt  f  ut

Eut|g  0, g  1, . . . ,G
    (6.26)

where g is the group number. Then (6.8) is still valid. But, now we would define the vector of

means as gt
y ,gt

z , and appropriately pick off gt
y in defining the moment conditions. The

alternative is to define gt
x to include g,t−1

y , but this results in a singularity in the asymptotic

distribution of ̂. It is much more straightforward to keep only nonredundant elements in  and

readjust how the moment conditions are defined in terms of . When we take that approach, it

becomes clear that we now have fewer moments to estimate the parameters. If zt is 1  J, we

have now have J  T  G parameters to estimate from GTJ  1 population moments. Still, we

have added just one more parameter.

To the best of my knowledge, the treatment here is the first to follow the MD approach,

applied to (6.8), to its logical conclusion. Its strength is that the estimation method is widely

known and used, and it separates the underlying population model from sampling assumptions.

It also shows why we need not make any exogeneity assumptions on xt. Perhaps most

importantly, it reveals the key identification condition: that separate group/time effects are not

needed in the underlying model, but enough group/time variation in the means Ext|g is
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needed to identify the structural parameters. This sort of condition falls out of other approaches

to the problem, such as the instrumental variables approach of but it is harder to see. For

example, Verbeek and Vella (2005) propose instrumental variables methods on the equation in

time averages using interactions between group (cohort) and time dummies. With a full set of

separate time and group effects in the main equation – derivable here from the population

panel model – the key identification assumption is that a full set of group/time effects can be

excluded from the structural equation, but the means of the covariates have to vary sufficiently

across group/time. That is exactly the conclusion we reach with a minimum distance approach.

Interestingly, the MD approach easily applies to extensions of the basic model. For

example, we can allow for unit-specific time trends (as in the random growth model of

Heckman and Hotz (1989)):

yt  t  xt  f1  f2t  ut,     (6.27)

where, for a random draw i, the unobserved heterogeneity is of the form fi1  fi2t. Then, using

the same arguments as before,

gt
y  t  gt

x   g  gt,     (6.28)

and this set of moment conditions is easily handled by extending the previous analysis. We can

even estimate models with time-varying factor loads on the heterogeneity:

yt  t  xt  tf  ut,

where 1  1 (say) as a normalization. Now the population moments satisfy

gt
y  t  gt

x   tg.

There are now K  G  2T − 1 free parameters to estimate from GTK  1 moments. This

extension means that the estimating equations allow the group/time effects to enter more
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flexibly (although, of course, we cannot replace t  tg with unrestricted group/time

effects.) The MD estimation problem is now nonlinear because of the interaction term, tg.

With more parameters and perhaps not much variation in the gt
x , practical implementation may

be a problem, but the theory is standard.

This literature would benefit from a careful simulation study, where data for each cross

section are generated from the underlying population model, and where gi – the group

identifier – is randomly drawn, too. To be realistic, the underlying model should have full time

effects. Verbeek and Vella (2005) come close, but they omit aggregate time effects in the main

model while generating the explanatory variables to have means that differ by group/time cell.

Probably this paints too optimistic a picture for how well the estimators can work in practice.

Remember, even if we can get precise estimates of the cell means, the variation in gt
x across g

and t might not be enough to tie down  precisely.

Finally, we can return to the comment about how the moment conditions in (6.8) only use

the assumption Eut|g  0 for all t and g. It seems likely that we should be able to exploit

contemporaneous exogeneity assumptions. Let zt be a set of observed variables such that

Eut|zt, f  0, t  1, . . . ,T. (In a true panel, these vary across i and t. We might have zt  xt,

but perhaps zt is just a subset of xt, or we have extra instruments.) Then we can add to (6.8) the

moment conditions

Ezt
′yt|g  tEzt|g  Ezt

′xt|g  Ezt
′f|g  Ezt

′ut|g
 tEzt|g  Ezt

′xt|g  Ezt
′f|g,     (6.29)

where Ezt
′ut|g  0 when we view group designation as contained in f. The moments

Ezt
′yt|g, Ezt|g, and Ezt

′xt|g can all be estimated by random samples from each cross

section, where we average within group/time period. (This would not work if xt or zt contains
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lags.) This would appear to add many more moment restrictions that should be useful for

identifying , but that depends on what we assume about the unobserved moments Ezt
′f|g.
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