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IRP Lectures Madison, WI, August 2008

Lecture 2, Monday, Aug 4th, 10.00-11.00am

Estimation of Average Treatment Effects Under Unconfoundedness, Part II

1. Introduction

In this lecture we discuss assessing the two key assumptions, unconfoundedness and

overlap in covariate distributions. We then illustrate the issues discussed in this and the

previous lecture using data from a labor market program originally analyzed by Lalonde

(1986).

2. Assessing Unconfoundedness

The unconfoundedness assumption used throughout this discussion is not directly testable.

It states that the conditional distribution of the outcome under the control treatment, Yi(0),

given receipt of the active treatment and given covariates, is identical to the distribution of

the control outcome given receipt of the control treatment and given covariates. The same is

assumed for the distribution of the active treatment outcome, Yi(1). Yet since the data are

completely uninformative about the distribution of Yi(0) for those who received the active

treatment and of Yi(1) for those receiving the control, the data cannot directly reject the

unconfoundedness assumption. Nevertheless, there are often indirect ways of assessing the

this, a number of which are developed in Heckman and Hotz (1989) and Rosenbaum (1987).

These methods typically rely on estimating a pseudo causal effect that is known to equal

zero. If based on a statistical test we reject the null hypothesis that this causal effect varies

from zero, the unconfoundedness assumption is considered less plausible. These tests can be

divided into two broad groups.

The first set of tests focuses on estimating the causal effect of a treatment that is known

not to have an effect, relying on the presence of multiple control groups (Rosenbaum, 1987).

Suppose one has two potential control groups, for example eligible nonparticipants and

ineligibles, as in Heckman, Ichimura and Todd (1997). One interpretation of the test is
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to compare average treatment effects estimated using each of the control groups. This can

also be interpreted as estimating an “average treatment effect” using only the two control

groups, with the treatment indicator now a dummy for being a member of the first group.

In that case the treatment effect is known to be zero, and statistical evidence of a non-zero

effect implies that at least one of the control groups is invalid. Again, not rejecting the

test does not imply the unconfoundedness assumption is valid (as both control groups could

suffer the same bias), but non-rejection in the case where the two control groups are likely

to have different biases makes it more plausible that the unconfoundness assumption holds.

The key for the power of this test is to have available control groups that are likely to have

different biases, if at all. Comparing ineligibles and eligible nonparticipants is a particularly

attractive comparison. Alternatively one may use different geographic controls, for example

from areas bordering on different sides of the treatment group.

One can formalize this test by postulating a three-valued indicator Ti ∈ {−0, 1, 1} for the

groups (e.g., ineligibles, eligible nonnonparticipants and participants), with the treatment

indicator equal to Wi = 1{Ti = 1}, so that

Yi =

{

Yi(0) if Ti ∈ {−1, 0}
Yi(1) if Ti = 1.

If one extends the unconfoundedness assumption to independence of the potential outcomes

and the three-valued group indicator given covariates,

Yi(0), Yi(1) ⊥⊥ Ti

∣

∣

∣

∣

Xi,

then a testable implication is

Yi(0) ⊥⊥ 1{Ti = 0}

∣

∣

∣

∣

Xi, Ti ∈ {−1, 0},

and thus

Yi ⊥⊥ 1{Ti = 0}

∣

∣

∣

∣

Xi, Ti ∈ {−1, 0}.
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An implication of this independence condition is being tested by the tests discussed above.

Whether this test has much bearing on the unconfoundedness assumption depends on whether

the extension of the assumption is plausible given unconfoundedness itself.

The second set of tests of unconfoundedness focuses on estimating the causal effect of

the treatment on a variable known to be unaffected by it, typically because its value is

determined prior to the treatment itself. Such a variable can be time-invariant, but the

most interesting case is in considering the treatment effect on a lagged outcome, commonly

observed in labor market programs. If the estimated effect differs from zero, this implies that

the treated observations are different from the controls in terms of this particular covariate

given the others. If the treatment effect is estimated to be close to zero, it is more plausible

that the unconfoundedness assumption holds. Of course this does not directly test this

assumption; in this setting, being able to reject the null of no effect does not directly reflect

on the hypothesis of interest, unconfoundedness. Nevertheless, if the variables used in this

proxy test are closely related to the outcome of interest, the test arguably has more power.

For these tests it is clearly helpful to have a number of lagged outcomes.

To formalize this, let us suppose the covariates consist of a number of lagged out-

comes Yi,−1, . . . , Yi,−T as well as time-invariant individual characteristics Zi, so that Xi =

(Yi,−1, . . . , Yi,−T , Zi). By construction only units in the treatment group after period −1

receive the treatment; all other observed outcomes are control outcomes. Also suppose that

the two potential outcomes Yi(0) and Yi(1) correspond to outcomes in period zero. Now

consider the following two assumptions. The first is unconfoundedness given only T − 1 lags

of the outcome:

Yi,0(1), Yi,0(0) ⊥⊥ Wi

∣

∣

∣
Yi,−1, . . . , Yi,−(T−1), Zi,

and the second assumes stationarity and exchangeability:

fYi,s(0)|Yi,s−1(0),...,Yi,s−(T−1)(0),Zi,Wi
(ys|ys−1, . . . , ys−(T−1), z, w), does not depend on i and s.
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Then it follows that

Yi,−1 ⊥⊥ Wi

∣

∣

∣
Yi,−2, . . . , Yi,−T , Zi,

which is testable. This hypothesis is what the procedure described above tests. Whether

this test has much bearing on unconfoundedness depends on the link between the two as-

sumptions and the original unconfoundedness assumption. With a sufficient number of lags

unconfoundedness given all lags but one appears plausible conditional on unconfoundedness

given all lags, so the relevance of the test depends largely on the plausibility of the second

assumption, stationarity and exchangeability.

3. Assessing, and Addressing Lack of, Overlap in Covariate Distributions

The second of the key assumptions in estimating average treatment effects requires that

the propensity score is strictly between zero and one. Although in principle this is testable,

as it restricts the joint distribution of observables, formal tests are not the main concern.

In practice, this assumption raises a number of issues. The first question is how to detect

a lack of overlap in the covariate distributions. A second is how to deal with it, given that

such a lack exists.

3.1 Assessing Overlap in Covariate Score Distributions

The first method to assess overlap is to report some summary statistics for all covariates.

Specifically, it is useful to report the normalized difference in covariate means by treatment

status:

nor − dif =
X1 − X0

S2
X,0 + S2

X,1

,

where

Xw =
1

Nw

∑

i:Wi=w

Xi and S2
X,w =

1

Nw − 1

∑

i:Wi=w

(

Xi − Xw

)2
.
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Note that we do not report the t-statistic for the difference,

t =
X1 − X0

S2
X,0/N0 + S2

X,1/N1
.

Essentially the t-statistic is equal to the normalized difference multiplied by the square root

of the sample size. As such, the t-statistic partly reflects the sample size. Given a difference

of 0.25 standard deviations between the two groups in terms of average covariate values, a

larger t-statistic just indicates a larger sample size, and therefore in fact an easier problem in

terms of finding credible estimators for average treatment effects. As this example illustrates,

a larger t-statistic for the difference between average covariates by treatment group does not

indicate that the problem of finding credible estimates of the treatment effect is more difficult.

A larger normalized difference does unambiguously indicate a more severe overlap problem.

In general a difference in average means bigger than 0.25 standard deviations is substan-

tial. In that case one may want to be suspicious of simple methods like linear regression with

a dummy for the treatment variable. Recall that estimating the average effect essentially

amounts to using the controls to estimate the conditional mean µ0(x) = E[Yi|Wi = 1, Xi = x]

and using this estimated regression function to predict the (missing) control outcomes for the

treated units. With such a large difference between the two groups in covariate distributions,

linear regression is going to rely heavily on extrapolation, and thus will be sensitive to the

exact functional form.

More generally one can plot distributions of covariates by treatment groups. In the case

with one or two covariates one can do this directly. In high dimensional cases, however, this

becomes more difficult. One can inspect pairs of marginal distributions by treatment status,

but these are not necessarily informative about lack of overlap. It is possible that for each

covariate the distribution for the treatment and control groups are identical, even though

there are areas where the propensity score is zero or one.

A more direct method is to inspect the distribution of the propensity score in both

treatment groups, which can reveal lack of overlap in the multivariate covariate distributions.

Its implementation requires nonparametric estimation of the propensity score, however, and
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misspecification may lead to failure in detecting a lack of overlap, just as inspecting various

marginal distributions may be insufficient. In practice one may wish to undersmooth the

estimation of the propensity score, either by choosing a bandwidth smaller than optimal for

nonparametric estimation or by including higher order terms in a series expansion.

3.2 Selecting a Sample with Overlap Through Matching

Once one determines that there is a lack of overlap one can attempt to construct a sample

with more overlap. Here we discuss two methods for doing so. The first is particularly

appropriate when the focus is on the average effect for the treated, and there is a relatively

large number of controls.

First, the treated observations are ordered, typically by decreasing values of the estimated

propensity score. The reason for this is that among units with high values of the propensity

score there are relatively more treated than control units, and therefore treated observations

with high values of the propensity score are relatively more difficult to match.

Then the first treated unit (e.g., the one with the highest value for the estimated propen-

sity score) is matched to the nearest control unit. Next, the second treated unit is matched

to the nearest control unit, excluding the control unit that was used as a match for the

first treated unit. Matching without replacement all treated units in this manner leads to a

sample of 2 ·N1 units, (where N1 is the size of the original treated subsample), half of them

treated and half of them control units. Note that the matching is not necessarily used here

as the final analysis. We do not propose to estimate the average treatment effect for the

treated by averaging the differences within the pairs. Instead, this is intended as a prelim-

inary analysis, with the goal being the construction of a sample with more overlap. Given

a more balanced sample, one can use methods discussed in these notes for estimating the

average effect of the treatment, including regression, propensity score methods, or matching.

Using those methods on the balanced sample is likely to reduce bias relative to using the

simple difference in averages by treatment status.
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3.3 Selecting a Sample with Overlap Through Trimming

The second method for addressing lack of overlap we discuss is based on the work by

Crump, Hotz, Imbens and Mitnik (2008). Their starting point is the definition of average

treatment effects for subsets of the covariate space. Let X be the covariate space, and A ⊂ X

be some subset. Then define

τ (A) =
N

∑

i=1

1{Xi ∈ A} · τ (Xi)
/

N
∑

i=1

1{Xi ∈ A}.

Crump et al calculate the efficiency bound for τ (A), assuming homoskedasticity, as

σ2

q(A)
· E

[

1

e(X)
+

1)

1 − e(X)

∣

∣

∣

∣

X ∈ A

]

,

where q(A) = Pr(X ∈ A). They derive the characterization for the set A that minimizes the

asymptotic variance and show that it has the form

A
∗ = {x ∈ X|α ≤ e(X) ≤ 1 − α},

dropping observations with extreme values for the propensity score, with the cutoff value α

determined by the equation

1

α · (1 − α)
= 2 · E

[

1

e(X) · (1 − e(X))

∣

∣

∣

∣

1

e(X) · (1 − e(X))
≤

1

α · (1 − α)

]

.

Crump et al then suggest estimating τ (A∗). Note that this subsample is selected solely on the

basis of the joint distribution of the treatment indicators and the covariates, and therefore

does not introduce biases associated with selection based on the outcomes. Calculations for

Beta distributions for the propensity score suggest that α = 0.1 approximates the optimal

set well in practice.

4. Algorithm for Estimating the Propensity Score and Stratification

Many of the estimators discussed in this and the previous lecture are rely on estimators

for the propensity score. Here I briefly describe one way of selecting a specification for the
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propensity score. This particular procedure is a step-wise method, where increasingly flexible

specifications are selected until the specification is deemed adequate. This is not the only

way of doing, this, and in fact there are many such methods out there, some of which are

undoubtedly more effective. The main point is that the common practice of including the

full vector of covariates linearly, and not include any second order terms is not likely to be

effective.

The algorithm starts with a K-dimensional vector of covariates Xi (these may already

contain functions of the original covariates). The algorithm will selection a subset of the

covariates to be included linearly, and based on that subset also select a number of second

order terms (both quadratic terms and interactions).

The algorithm starts with a logistic model with no covariates. Next, logistic regression

models are estimated with each of the covariates included separately. The covariate that

improves the log likelihood function the most is included, as long as the increase in the

log likelihood function is above some threshold tlin. Next, we select among the K − 1

remaining covariates the one that improves the logistic model with the single covariate the

most, again based on the increase in the log likelihood function. We repeat this till no

additional covariate improves the log likelihood function by at least tlin. Suppose this leads

to selecting 0 ≤ Klin ≤ K covariates out of the original set of K covariates.

In the second part we select among the Klin × (Klin + 1)/2 second order terms based on

these Klin covariates. Similar to the way we selected the linear terms, we keep adding second

order terms, till no additional second order term improves the log likelihood by more than

tqua. The tuning constants used below are tlin = 0.5 and tqua = 1.35, based on cutoffs for

likelihood ratio test statistics (equal to twice the increaese in the log likelihood function) of

1 and 2.71, the latter corresponding to a 10% level test.

One may modify this algorithm by selecting a subset of the covariates to be included

irrespective of the correlations with the treatment. In the analyses below, we selected the

last pre-program earnings and the indicator for those earnings being positive to be included
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in this way, prior to selecting further covariates.

Some of the estimators discussed below also require an algorithm for choosing the number

and boundaries for the blocks. Here is the algorithm used below. We start with a single

stratum. The option is to split the stratum in two equal parts, with the new boundary

point the median of the values of the estimated propensity score in the old stratum. The old

stratum will be split if three conditions are satisfied. First, the t-statistic for testing equality

of the average estimated propensity score among treated and controls is at least 1.96, the

number of treated and control observations in both new strata is at least 3, and the number

of obsersvations in each block is at least 3 plus the dimension of the covariate vector Xi. We

then keep splitting the strata in the middle, until none of the strata satisfies the criteria for

further division.

5. An Illustration Based on the Lalonde Data

Here we look at application of the ideas discussed in these notes. We take the NSW job

training data orinally collected by Lalonde (1986), and subsequently analyzed by Dehejia

and Wahba (1999). These data are available on Dehejia’s website (reference). The starting

point is an experimental evaluation of this training program. Lalonde then constructed non-

experimental comparison groups to investigate the ability of various econometric techniques

to replicate the experimental results. In the current illustration we use three subsamples, the

(experimental) trainees, the experimental controls, and a CPS comparison group. In both

cases we focus on estimating the average effect of the treatment for the treated.

In the next three subsections we do the design part of the analysis. Without using the

outcome data we first assess the overlap in covariate distributions, then assess whether strong

ignorability has some credibility and finally create a matched sample and assess these issues

there.

5.1 Summary Statistics

First we give some summary statistics
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Table 1: Summary Statistics for Experimental Sample

Trainees Controls CPS
(N=260) (N=185) (N=15,992)

mean (s.d.) mean (s.d.) nor-dif mean (s.d.) nor-dif

260.00 0.00 185.00 0.00 0.00 0.00 0.00 0.00
Black 0.84 0.36 0.83 0.38 0.03 0.07 0.26 1.72
Hispanic 0.06 0.24 0.11 0.31 0.12 0.07 0.26 0.04
Age 25.82 7.16 25.05 7.06 0.08 33.23 11.05 0.56
Married 0.19 0.39 0.15 0.36 0.07 0.71 0.45 0.87
No Degree 0.71 0.46 0.83 0.37 0.21 0.30 0.46 0.64
Education 10.35 2.01 10.09 1.61 0.10 12.03 2.87 0.48
Earnings ’74 2.10 4.89 2.11 5.69 0.00 14.02 9.57 1.11
Unempl ’74 0.71 0.46 0.75 0.43 0.07 0.12 0.32 1.05
Earnings ’75 1.53 3.22 1.27 3.10 0.06 13.65 9.27 1.23
Unempl. ’75 0.60 0.49 0.68 0.47 0.13 0.11 0.31 0.84

In this table we report averages and standard deviations for the three subsamples. In addition

we report for both the trainee/experimental-control and for the trainee/CPS-comparison-

group pairs the normalized difference in average covariate values by treatment status, nor-

malized by the standard deviation of these covariates:

X1 −X0
√

S2
X,0 + S2

X,1

.

Again, it is not the statistical significance of this difference we are interested in, as much as

the degree of difficulty of the statistical problem of adjusting for these differences. In Table

1 we see that in the experimental data set the difference in average age between treated and

controls is 0.08 standard deviations. In the nonexperimental comparison the difference in

age is 0.56 standard deviations.

Right away we can see that the experimental data set is well balanced. The difference in

averages between treatment and control group is never more than 0.21 standard deviations.

In contrast, with the CPS comparison group the differences between the averages are up
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to 1.23 standard deviations from zero, suggesting there will be serious issues in obtaining

credible estimates of the average effect of the treatment.

In Figures 1 and 2 we present histogram estimates of the distribution of the propensity

score for the treatment and control group in the experimental Lalonde data. These distri-

butions again suggest that there is considerable overlap in the covariate distributions. In

Figures 3 and 4 we present the histogram estimates for the propensity score distributions for

the CPS comparison group. Now there is a clear lack of overlap. For the CPS comparison

group almost all mass of the propensity score distribution is concentrated in a small interval

to the right of zero, and the distribution for the treatment group is much more spread out.

The results so far already strongly indicate that simple analyses such as least squares

regression are unlikely to lead to credible estimates of the average causal effects of interest.

5.2 Assessing Unconfoundedness

First we use the experimental data. We analyze the data as if earnings in 1975 (Earn

’75) is the pseudo outcome. This is in fact a covariate, and so it cannot be affected by

the treatment, and we are looking for estimates that are substantially close to zero, and

statistically indistinguishable from zero. Table 2 reports the results for nine estimators.

1. The first is the simple difference in average outcomes:

τ̂ = Y 1 − Y 0.

2. The second estimator is based on least squares regression using all ten covariates:

Yi = α + τ · Wi + β ′Xi + εi.

3. The third estimator is based on least squares regression using all ten covariates and

their interaction with the treatment indicator:

Yi = α + τ · Wi + β ′Xi + γ′(Xi − X1) · Wi + εi.
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The interaction is based on deviations from the average covariate values for the treated

in order for the least squares estimator for τ to estimate the average effect on the

treated.

4. The fourth estimator uses the estimated propensity score to weight the observations:

τ̂ =
1

N1
·

∑

i:Wi=1

Yi −
∑

i:Wi=0

Yi ·
ê(Xi)

1 − ê(Xi)

/

∑

j:Wj=0

ê(Xj)

1 − ê(Xj)
.

The weights here are modified from those discussed previously to take account of the

focus on the average effect for the treated.

5. Here the propensity score is used to create strata. Within the J strata the average

effect is estimated as the difference in average outcomes between treated and controls,

and the within-stratum estimates are averaged, weighted by the number of treated

units in each strata. The number of strata is choosen in a data-dependent way, as

described in Section 4.

6. Here all the treated observations are matched to the closets control, with replacement.

The matching is on all covariates, weighted by the diagonal matrix with the inverse of

the variances on the diagonal.

7. The seventh estimator is based on weighted least squares regression of the regression

function

Yi = α + τ · Wi + β ′Xi + εi,

with weights

λi = Wi + (1 −Wi) ·
ê(Xi)

1 − ê(Xi)
.

(The fourth estimator is a special case of this where β is set equal to zero.)

8. The eight estimator is based on the same blocks as the fifth estimator, but now within

blocks linear regression is used to estimate the average effect.
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Table 2: Estimates for Lalonde Data with Earnings ’75 as Outcome

Experimental Controls CPS Comparison Group
est (s.e.) t-stat est (s.e.) t-stat

Simple Dif 0.27 0.31 0.87 -12.12 0.25 -48.91
OLS (parallel) 0.22 0.22 1.02 -1.13 0.36 -3.17
OLS (separate) 0.17 0.22 0.74 -1.10 0.36 -3.07
Weighting 0.29 0.30 0.96 -1.56 0.26 -5.99
Blocking 0.26 0.32 0.83 -12.12 0.25 -48.91
Matching 0.11 0.25 0.44 -1.32 0.34 -3.87
Weighting and Regression 0.21 0.22 0.99 -1.58 0.23 -6.83
Blocking and Regression 0.12 0.21 0.59 -1.13 0.21 -5.42
Matching and Regression -0.01 0.25 -0.02 -1.34 0.34 -3.96

9. The ninth estimator uses the same matching as the sixth estimator. Then linear

regression is used on the 185 matches to estimate

Yi = α + β ′Xi + εi,

and the estimated regression coefficients β̂ are used to adjust the matched outcomes

based on the Abadie-Imbens estimator.

For all nine estimators the estimated effect is close to zero and statistically insignificant

at conventional levels. The results suggest that unconfoundedness is plausible for the exper-

imental data set. This is not surprising, as the randomization implies unconfoundedness.

With the CPS comparison group the results are very different. All nine estimators sug-

gest substantial and statistically significant differences in earnings in 1975 after adjusting

for all other covariates, including earnings in 1974. This suggests that relying on the un-

confoundedness assumption, in combination with these particular estimators, is not very

credible for this sample. This is not surprising, because the treated and control samples
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are so far apart, as measured by the normalized differences, that the estimates were very

unlikely to be robust.

5.3 Creating a Matched Sample

Now let us consider the matched CPS sample. Matching is done on here the estimated

propensity score, without replacement, for all the treated observations, starting with the

treated unit with the highest value for the estimated propensity score. This leads to a

matched sample with 185 treated (as before), and 185 controls. First we assess the balance

by looking at the summary statistics.

Table 4: Summary Statistics for Matched CPS Sample

Trainees (N=185) Controls (N=185)
mean (s.d.) mean (s.d.) nor-dif

Black 0.84 0.36 0.85 0.35 -0.02
Hispanic 0.06 0.24 0.06 0.25 -0.02
Age 25.82 7.16 25.88 7.65 -0.01
Married 0.19 0.39 0.25 0.43 -0.10
No Degree 0.71 0.46 0.57 0.50 0.20
Education 10.35 2.01 10.91 2.93 -0.16
Earnings ’74 2.10 4.89 2.81 5.61 -0.10
Unempl ’74 0.71 0.46 0.66 0.47 0.07
Earnings ’75 1.53 3.22 1.82 3.79 -0.06
Unempl. ’75 0.60 0.49 0.50 0.50 0.14

These suggest that the balance is much improved, with the largest differences now on the

order or 0.20 of a standard deviation, where before they difference was as high as 1.12. Now

the normalized differences are comparable to those in the experimental sample.

Figures 5 and 6 present histograms of the propensity score for this matched sample. Note

that we re-estimate the propensity score for this sample. If the matching had been perfect,

the estimated propensity score would be equal to 0.5 for all units. It is not, and there is still

considerable variation in the propensity score, but not to the extent that simple analyses
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could not adjust for the covariate differences between the treatment and control samples.

These normalized differences suggest that given unconfoundedness, the matched sample is

well balanced, and likely to lead to robust estimates. They do not directly reflect, however,

on the question whether unconfoundedness itself is plausible. In order to address that,

we return to the analysis with earnings in 1975 as the pseudo outcome. Again we report

estimates for nine estimators.

Table 5: Estimates on Selected CPS Lalonde Data

Earn ’75 Outcome Earn ’78 Outcome
est (s.e.) t-stat est (s.e.) t-stat

Simple Dif -0.29 0.37 -0.79 0.87 0.80 1.08
OLS (parallel) 0.01 0.26 0.02 1.40 0.77 1.81
OLS (separate) 0.05 0.26 0.20 1.26 0.77 1.64
Weighting -0.01 0.37 -0.02 1.20 0.80 1.49
Blocking -0.04 0.37 -0.10 1.16 0.82 1.41
Matching -0.10 0.37 -0.28 1.53 0.95 1.61
Weighting and Regression 0.02 0.25 0.07 1.32 0.78 1.69
Blocking and Regression 0.00 0.25 0.01 1.77 0.76 2.33
Matching and Regression -0.22 0.37 -0.60 1.41 0.95 1.49

Here we find that all nine estimators find only small (relative to the experimental benchmark

of about 1.7, in thousands of dollars), and statistically insignificant effects of the treatment

on earnings in 1975. This suggests that for this sample unconfoundedness may well be a rea-

sonable assumption, and that the estimators considered here can lead to credible estimates.

Finally we report the estimates for earnings in 1978. Only now do we actually use the

outcome data. Note that with the exclusion of the simple difference Y 1 − Y 0, the estimates

are all between 1.16 and 1,77, and thus relatively insensitive to the choice of estimator. The

benchmark estimate from the experimental sample is Y 1 − Y 0 = 1.79, very similar to these

non-experimental estimates.



Imbens/Wooldridge, IRP Lecture Notes 2, August ’08 16

References

Blundell, R. and M. Costa-Dias (2002), “Alternative Approaches to Evaluation in

Empirical Microeconomics,”Institute for Fiscal Studies, Cemmap working paper cwp10/02.

Crump, R., V. J. Hotz, V. J., G. Imbens, and O.Mitnik, (2006), “Moving the

Goalposts: Addressing Limited Overlap in Estimation of Average Treatment Effects by

Changing the Estimand,”unpublished manuscript, Department of Economics, UC Berkeley.

Crump, R., V. J. Hotz, V. J., G. Imbens, and O.Mitnik, (2007), “Nonparametric

Tests for Treatment Effect Heterogeneity,”forthcoming, Review of Economics and Statistics.

Heckman, J., and J. Hotz, (1989), ”Alternative Methods for Evaluating the Impact

of Training Programs”, (with discussion), Journal of the American Statistical Association.,

Vol. 84, No. 804, 862-874.

Hirano, K., and J. Porter, (2005), “Asymptotics for Statistical Decision Rules,”Working

Paper, Dept of Economics, University of Wisconsin.

Imbens, G. (2000), “The Role of the Propensity Score in Estimating Dose-Response

Functions,”Biometrika, Vol. 87, No. 3, 706-710.

Imbens, G., (2004), “Nonparametric Estimation of Average Treatment Effects Under

Exogeneity: A Review,”Review of Economics and Statistics, 86(1): 1-29.

Imbens, G., and J. Wooldridge., (2008), “Recent Developments in the Economet-

rics of Program Evaluation,”unpublished manuscript, department of economics, Harvard

University.

Lalonde, R.J., (1986), “Evaluating the Econometric Evaluations of Training Programs

with Experimental Data,”American Economic Review, 76, 604-620.

Lechner, M., (2001), “Identification and Estimation of Causal Effects of Multiple

Treatments under the Conditional Independence Assumption,”in Lechner and Pfeiffer (eds.),

Econometric Evaluations of Active Labor Market Policies in Europe, Heidelberg, Physica.



Imbens/Wooldridge, IRP Lecture Notes 2, August ’08 17

Robins, J., and Y. Ritov, (1997), “Towards a Curse of Dimensionality Appropriate

(CODA) Asymptotic Theory for Semi-parametric Models,”Statistics in Medicine 16, 285-

319.

Rosenbaum, P., (1987), ”The role of a second control group in an observational study”,

Statistical Science, (with discussion), Vol 2., No. 3, 292–316.

Rosenbaum, P., (1995), Observational Studies, Springer Verlag, New York.

Rosenbaum, P., and D. Rubin, (1983a), “The Central Role of the Propensity Score

in Observational Studies for Causal Effects”, emphBiometrika, 70, 41-55.

Rosenbaum, P., and D. Rubin, (1983b), “Assessing the Sensitivity to an Unobserved

Binary Covariate in an Observational Study with Binary Outcome,” Journal of the Royal

Statistical Society, Ser. B, 45, 212-218.

Rubin, D. B., (1978), “Bayesian inference for causal effects: The Role of Randomiza-

tion”, Annals of Statistics, 6:34–58.

Rubin, D., (1990), “Formal Modes of Statistical Inference for Causal Effects”, em-

phJournal of Statistical Planning and Inference, 25, 279-292.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
Fig 1: Histogram Propensity Score for Controls, Experimental Sample
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Fig 2: Histogram Propensity Score for Trainees, Experimental Sample
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Fig 3: Histogram Propensity Score for Controls, Full CPS Sample
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Fig 4: Histogram Propensity Score for Trainees, Full CPS Sample
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Fig 5: Histogram Propensity Score for Controls, Matched CPS Sample
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Fig 6: Histogram Propensity Score for Trainees, Matched CPS Sample


