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Missing Data

These notes discuss various aspects of missing data in both pure cross section and panel

data settings. We begin by reviewing assumptions under which missing data can be ignored

without biasing estimation or inference. Naturally, these assumptions are tied to “exogenous”

sampling.

We then consider three popular solutions to missing data: inverse probability weighting,

imputation, and Heckman-type selection corrections. The first two methods maintain “missing

at random” or “ignorability” or “selection on observables” assumptions. Heckman corrections,

whether applied to cross section data or panel data, linear models or (certain) nonlinear

models, allow for “selection on unobservables.” Unfortunately, their scope of application is

limited to particular functional forms. An important finding is that all methods can cause more

harm than good if selection is on conditioning variables that are unobserved along with

response variables.

1. When Can Missing Data be Ignored?

It is easy to obtain conditions under which we can ignore the fact that certain variables for

some observations, or all variables for some observations, have missing values. Consider a

linear model with possibly endogenous explanatory variables, written for a random draw from

the population as

yi  xi  ui,     (1.1)

where xi is 1  K and the instruments zi are 1  L, L ≥ K. We model missing data with a
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selection indicator, drawn with each i. The binary variable si is defined as si  1 if we can use

observation i, si  0 if we cannot (or do not) use observation i. In the L  K case we use IV on

the selected sample, which we can write as

̂IV  N−1∑
i1

N

sizi′xi
−1

N−1∑
i1

N

sizi′yi

   N−1∑
i1

N

sizi′xi
−1

N−1∑
i1

N

sizi′ui

    (1.2)

    (1.3)

For consistency, we essentially need

rank Esizi′xi  K     (1.4)

and

Esizi′ui  0,     (1.5)

which holds if Ezi′ui|si  0, which in turn is implied by

Eui|zi, si  0.     (1.6)

Sufficient for (1.6) is

Eui|zi  0, si  hzi     (1.7)

for some function h. Note that the zero covariance assumption, Ezi′ui  0, is not sufficient

for consistency when si  hzi. A special case is when Eyi|xi  xi and selection si is a

function of xi. Provided the selected sample has sufficient variation in x, can consistently

estimate  by OLS on the selected sample.

We can use similar conditions for nonlinear models. What is sufficient for consistency on

the selected sample?

(Linear or Nonlinear) Least Squares: Ey|x, s  Ey|x.
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Least Absolute Deviations: Medy|x, s  Medy|x

Maximum Likelihood: Dy|x, s  Dy|x.

All of these allow selection on x but not generally on y (or unobservables that affect y).

In the statistics literature, just using the data for which we observe all of yi,xi, zi (or just

yi,xi without instruments) is called the “complete case method.” In cases where we model

some feature of Dy|x, it is clear that the richer is x, the more likely ignoring selection will not

bias the results. In the case of estimating unconditional moments, say   Eyi, unbiasedness

and consistency of the sample on the selected sample requires Ey|s  Ey.

Similar conditions can be obtained for panel data. For example, if we model Dyt|xt, and

st is the indicator equal to one if xt,yt is observed, then the condition sufficient to ignore

selection is

Dst|xt,yt  Dst|xt, t  1, . . . ,T.     (1.8)

If, for example, xt contains yt−1, then selection is allowed to depend on the lagged response

under (1.8). To see that (1.8) suffices, let the true conditional density be ftyit|xit,. Then the

partial log-likelihood function for a random draw i from the cross section can be written as

∑
t1

T

sit log ftyit|xit,g ≡ ∑
t1

T

sitlitg.     (1.9)

Except for ensuring identifiability of , it suffices to show that Esitlit ≥ Esitlitg for all

g ∈ Γ (the parameter space). But by a well-known result from MLE theory – the

Kulback-Leibler information inequality –  maximizes Elitg|xit for all xit. But

Esitlitg|xit  EEsitlitg|yit,xit|xit  EEsit|yit,xitlitg|xit
 EEsit|xitlitg|xit  Esit|xitElitg|xit,
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where we used Esit|yit,xit  Esit|xit from (1.8). Because Esit|xit  Psit  1|xit ≥ 0, it

follows that Esitlit|xit ≥ Esitlitg|xit for all g ∈ Γ. Taking expectations of this inequality

and using iterated expectations gives the result. Thus, we have shown that  maximizes the

expected value of each term in the summand in (1.9) – often not uniquely – and so it also

maximizes the expected value of the sum. For identification, we have to assume it is the unique

maximizer, as is usually the case of the model is identified in an unselected population and the

selection scheme selects out “enough” of the population. One implication of this finding is that

selection is likely to be less of a problem in dynamic models where lags of y and lags of other

covariates appear, because then selection is allowed to be an arbitrary function of them. But,

what is ruled out by (1.8) is selection that depends on idiosyncratic shocks to y between t − 1

and t.

Methods to remove time-constant, unobserved heterogeneity deserve special attention.

Suppose we have the linear model, written for a random draw i,

yit  t  xit  ci  uit.     (1.10)

Suppose that we have instruments, say zit, for xit, including the possibility that zit  xit. If we

apply random effects IV methods on the unbalanced panel, sufficient for consistency (fixed T)

are

Euit|zi1, . . . , ziT, si1, . . . , siT,ci  0, t  1, . . . ,T     (1.11)

and

Eci|zi1, . . . , ziT, si1, . . . , siT  Eci  0,     (1.12)

along with a suitable rank condition. Somewhat weaker conditions suffice, but the important

point is that selection must be strictly exogenous with respect to the idiosyncratic errors as well
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as the unobserved effect, ci. If we use the fixed effects estimator on the unbalanced panel, we

can get by with the first assumption, but, of course, all the instruments and selection to be

arbitrarily correlated with ci. To see why, consider the just identified case and define, say,

ÿit  yit − Ti−1∑r1
T siryir and similarly for and ẍit and z̈it, where Ti  ∑r1

T sir is the number of

time periods for observation i (properly viewed as random). The FEIV estimator is

̂FEIV  N−1∑
i1

N

∑
t1

T

sitz̈it′ ẍit
−1

N−1∑
i1

N

∑
t1

T

sitz̈it′ ÿit

   N−1∑
i1

N

∑
t1

T

sitz̈it′ ẍit
−1

N−1∑
i1

N

∑
t1

T

sitz̈it′ uit .

Because z̈it is a function of zi1, . . . , ziT, si1, . . . , siT, (1.11) implies∑ t1
T Esitz̈it′ uit  0 (as do

weaker assumptions). There is a set of second moment assumptions that makes the usual,

nonrobust inference procedures valid, but these impose homoskedasticity and serial

independence of the uit conditional on zi, si,ci.

There are some simple ways to test for selection bias in panel data applications. One

important violation of (1.11) is when units drop out of the sample in period t  1 because of

shocks realized in time t. This generally induces correlation between si,t1 and uit. A simple test

in the FE environment is to simply add si,t1 to the equation at time t (and perhaps even the

interaction si,t1xit) and estimate the resulting model by fixed effects (or FEIV with instruments

si,t1zit if si,t1xit is included). A simple t test can be used (probably fully robust). Of course the

test entails dropping the last time period, and it need not have power for detecting correlation

between sit and uit – that is, contemporaneous selection.

The consistency of FE (and FEIV) on the unbalanced panel under (1.11) breaks down if the

slope coefficients are random but one ignores this in estimatin. That is, replace  with bi but
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still use the FE estimator. Then the error term contains the term xidi where di  bi − . If

selection is a function of di, then the usual FE estimator will be inconsistent. (Recall that the

FE estimator, on balanced panels, has some robustness to random slopes.) A simple test is to

allow di to be correlated with selection through the number of available time periods, Ti. The

idea is to consider alternatives with

Ebi|zi1, . . . , ziT, si1, . . . , siT  Ebi|si1, . . . , siT  Ebi|Ti.     (1.13)

Then, add interaction terms of dummies for each possible sample size (with Ti  T as the base

group),

1Ti  2xit, 1Ti  3xit, ..., 1Ti  T − 1xit     (1.14)

to the equation and estimate it by FE. Significance of these interaction terms indicates that

random slopes are correlated with the available time periods, and suggests one might have to

remove those random slopes (if possible).

If we first difference instead to remove ci – a method that has important advantages for

attrition problems – we can apply the pooled IV results:

Δyit   t  Δxit  Δuit, t  2, . . . ,T     (1.15)

and, if zit is the set of IVs at time t, we can use

EΔuit|zit, sit  0     (1.16)

as being sufficient to ignore the missingess. Again, can add si,t1 to test for attrition.

Not suprisingly, nonlinear models with unosberved effects are considerably more difficult

to handle, although certain conditional MLEs (logit, Poisson) can accomodate selection that is

arbitrarily correlated with the unobserved effect.
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2. Inverse Probability Weighting
2.1. Weighting with Cross-Sectional Data

A general solution to solving missing data problems when selection is not exogenous is

based on probability weights. To illustrate, suppose y is a random variable whose population

mean   Ey we would like to estimate, but some observations are missing on y. Let

yi, si, zi : i  1, . . . ,N indicate independent, identically distributed draws from the

population, where zi is a vector that, for now, we assume is always observed. Suppose we

assume the “selection on observables” assumption

Ps  1|y, z  Ps  1|z ≡ pz,     (2.1)

where pz  0 for all possible values of z. Then we can solve the missing data problem by

weighting the observed data points by 1/pzi:

̃IPW  N−1∑
i1

N
si
pzi

yi,     (2.2)

where note that si selects out the observed data points. It is easy to show, using iterated

expectations, that ̂IPW is not only consistent for yi, it is unbiased, too. (This same kind of

estimator arises in treatment effect estimation.) Of course, except in special cases, we must

estimate pzi; when zi is always observed along with si, flexible binary response models such

as logit or probit, or nonparametric methods, can be used. Let p̂zi denote the estimated

selection probability (also called the propensity score). Then an operational estimator is

̂IPW  N−1∑
i1

N
si
p̂zi

yi.     (2.3)
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As written, this estimator assumes we know the size of the random sample, N, which is not

necessarily the case for some sampling schemes, such as variable probability sampling. We can

also write ̂IPW as

̂IPW  N1
−1N1/N∑

i1

N
si
p̂zi

yi  N1
−1∑

i1

N

si
̂
p̂zi

yi     (2.4)

where N1  ∑ i1
N si is the number of selected observations and ̂  N1/N is a consistent

estimate of Psi  1. The weights reported to account for missing data are often ̂/p̂zi,

which can be greater or less than unity. (By iterated expectations,   Epzi.) Equation (2.4)

shows that ̂IPW is a weighted average of the observed data points with weights ̂/p̂zi.

A different estimator is obtained by solving the least squares problem

minm ∑
i1

N
si
p̂zi

yi − m2,

which results in

 IPW  ∑
h1

N
sh
p̂zh

−1

∑
i1

N
si
p̂zi

yi ,     (2.5)

which is a different weighted.average.

Horowitz and Manski (1998) have considered the problem of estimating population means

using IPW. Their main focus is on establishing bounds that do not rely on potentially strong,

untestable assumptions such as the unconfoundedness assumption in (2.1). But they also note a

particular problem with certain IPW estimators even when the conditioning variable, x, is

always observed. They consider estimation of the mean Egy|x ∈ A for some set A. If we

define di  1xi ∈ A then the problem is to estimate Egy|d  1. HM point out that, if one
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uses the weights commonly reported with survey data – weights that do not condition on the

event d  1 – then the IPW estimate of the mean can lie outside the logically possible values

of Egy|d  1. HM note that this problem can be fixed by using probability weights

Ps  1|d  1/Ps  1|d  1, z. Unfortunately, this choice is not possible when data on x can

also be missing.

Failure to condition on d  1 when computing the probability weights when interest lies in

Egy|d  1 is related to a general problem that arises in estimating models of conditional

means when data are missing on x. To see why, suppose the population regression function is

linear:

Ey|x    x.     (2.6)

Let z be a variables that are always observed and let pz be the selection probability, as

before. Now, suppose that at least part of x is not always observed, so that x is not a subset of z.

This means that some elements of x cannot appear in pz because pz normally has to be

estimated using the data on si, zi for all i. The IPW estimator of  solves

min
a,b
∑
i1

N
si
p̂zi

yi − a − xib2.     (2.7)

Here is the problem: suppose that selection is exogenous in the sense that

Ps  1|x,y  Ps  1|x.     (2.8)

Then we saw in Section 1 that using least squares on the selected sample results in a consistent

estimator of   ,′ ′, which is also N -asymptotically normal. What about the weighted

estimator? The problem is that if (2.8) holds, and z does not include x, then it is very unlikely

that
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Ps  1|x,y, z  Ps  1|z.     (2.9)

In other words, the key unconfoundedness assumption fails, and the IPW estimator of  is

generally inconsistent. We actually introduce inconsistency by weighting when a standard

unweighted regression on the complete cases would be consistent. In effect, the IPW estimator

uses weights that are functions of the wrong variables.

If x is always observed, and therefore can (and should) be included in z, then weighting is

much more attractive. Typically, z might contain lagged information, or interview information

that would not be included in x. If it turns out that selection is a function only of x, flexible

estimation of the model Ps  1|z will pick that up in large sample sizes.

If x is always observed and we know that Ps  1|x,y  Ps  1|x, is there any reason to

weight by 1/px? If Ey|x    x and Vary|x, weighting is asymptotically inefficient. If

Ey|x    x but Vary|x is heteroskedastic, then weighting may or may not be more

efficient than not weighting. (The efficient estimator would be the WLS estimator that

appropriately accounts for Vary|x, a different issue than probability weighting.) But both

weighting and not weighting are consistent. The advantage of weighting is that, if the

population “model” is in fact just a linear projection, the IPW estimator consistently estimates

that linear projection while the unweighted estimator does not. In other words, if we write

Ly|1,x  ∗  x∗     (2.10)

where L| denotes the linear projection, then under Ps  1|x,y  Ps  1|x, the IPW

estimator is consistent for ∗. The unweighted estimator has a probabilty limit that depends on

px.

One reason to be interested in the LP is that the parameters of the LP show up in certain
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treatment effect estimators. The notes on treatment effects contained a discussion of a “double

robustness” result due to Robins and Ritov (1997); see also Wooldridge (2007). The idea is

this. In treatment effect applications, the ATE requires estimation of Eyg for the two

counterfactual outcomes, g  0,1. The LP has the property that Ey1  1
∗  Ex1

∗, and so,

if we consistently estimate 1
∗ and 1

∗ then we can estimate Ey1 by averaging across x. A

similar statement holds for y0. Now, the IPW estimator identifies 1
∗ and 1

∗ if the model for

px is correctly specified. On the other hand, if Ey1|x  1  x1 then the IPW estimator is

consistent for 1 and 1 even if px is misspecified. And, of course, Ey1  1  Ex1. So,

regardless of whether we are estimating the conditional mean parameters or the LP parameters,

we consistently estimate Ey1. The case where the IPW estimator does not consistently

estimate Ey1 is when Ey1|x is not linear and px is misspecified.

The double robustness result holds for certain nonlinear models, too, although one must

take care in combining the conditional mean function with the proper objective function –

which, in this case, means quasi-log-likelihood (QLL) function. The two cases of particular

interest are the logistic response function for binary or fractional responses coupled with the

Bernoulli QLL, and the exponential response function coupled with the Poisson QLL.

Returning to the IPW regression estimator that solves (2.7), suppose we assume the

ignorability assumption (2.9),

Eu  0, Ex ′u  0,

and

pz  Gz,

for a parametric function G (such as flexible logit), and ̂ is the binary response MLE. Then,
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as shown by Robins, Rotnitzky, and Zhou (1995) and Wooldridge (2007), the asymptotic

variance of ̂IPW, using the estimated probability weights, is

Avar N ̂IPW −   Exi′xi−1Eriri′Exi′xi−1,     (2.11)

where ri is the P  1 vector of population residuals from the regression si/pzixi′ui on di′,

where di is the M  1 score for the MLE used to obtain ̂. The asymptotic variance of ̂IPW is

easy to estimate:

∑
i1

N

si/Gzi, ̂xi′xi
−1

∑
i1

N

r̂ir̂i′ ∑
i1

N

si/Gzi, ̂xi′xi
−1

,     (2.12)

or, if xi is always observed, the terms si/Gzi, ̂ can be dropped in the outer parts of the

sandwich. In the case that di is the score from a logit model of si on functions, say, hzi, d̂i

has the simple form

d̂i  hi′si − hî,     (2.13)

where a  expa/1  expa and hi  hzi. This illustrates a very interesting finding of

Robins, Rotnitzky, and Zhou (1995) and related to the Hirano, Imbens, and Ritter (2003)

efficient estimator for means using IPW estimators. Suppose that, for a given set of functions

hi1, the logit model is correctly specified in the sense that there is a 1 such that

Psi  1|zi  hi11. Now suppose we take some additional functions of zi, say

hi2  h2zi, and add them to the logit. Then, asymptotically, the coefficients on hi2 are zero,

and so the adjustment to the asumptotic variance comes from regressing si/hi11xi′ui on

hi1,hi2si − hi11. Now, notice that, even though the coefficients on hi2 are zero in the

logit model, the score vector depends on hi1,hi2. Therefore, the residual variance from

regressing si/hi11xi′ui on hi1,hi2si − hi11 is generally smaller than that from
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using the correct logit model, which is obtained from regressing on hi1si − hi11. By

overspecifying the logit model for si, we generally reduce the asymptotic variance of the IPW

estimator. And the process does not stop there. We can keep adding functions of zi to the logit

to reduce the asymptotic variance of the estimator of the IPW estimator. In the limit, if we have

chosen the sequence of functions so that they approximate any well-behaved function, then we

achieve asymptotic efficiency. This is precisly what the HIR estimator does by using a logit

series estimator for the propensity score.

Wooldridge (2007) shows that the adjustment to the asymptotic variance in (2.12) carries

over to general nonlinear models and estimation methods. One consequence is that ignoring

the estimation in p̂z – as commercial software typically does when specifying probability

weights – results in conservative inference. But the adjustment to obtain the correct asymptotic

variance is fairly straightforward.

Nevo (2003) explicitly considers a generalized method of moments framework, and shows

how to exploit known population moments to allow selection to depend on selected elements

of the data vector w. (Hellerstein and Imbens (1999) use similar methods to improve estimation

when population moments are known.) In particular, Nevo assumes that, along with the

moment conditions Erw,  0, the population moments of the vector hw, say h, are

known. Under the assumption that selection depends on hw, that is,

Ps  1|w  Ps  1|hw, Nevo obtains an expanded set of moment conditions that can be

used to estimate  and the parameters  in the selection equation. Suppose we use a logit model

for Ps  1|hw. Then

E si
hwi

rwi,  0     (2.14)
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and

E sihwi
hwi

 h.     (2.15)

Equation (2.15) generally identifies , and then this ̂ can be used in a second step to choose ̂

to make the weighted sample moments

N−1∑
i1

N
si

hwî
rwi, ̂     (2.16)

as close to zero as possible. Because (2.15) adds as many moment restrictions as parameters,

the GMM estimator using both sets of moment conditions is equivalent to the two-step

estimator just described.

Another situation where the missing data problem can be solved via weighting is when data

have been censored due to a censored duration. The response variable of interest may be the

duration, or it may be a variable observed only if a duration or survival time is observed. Let y

be a univariate response and x a vector of conditioning variables, and suppose we are interested

in estimating Ey|x. A random draw i from the population is denoted xi, yi. Let ti  0 be a

duration and let ci  0 denote a censoring time (where ti  yi is allowed). Assume that xi, yi

is observed whenever ti ≤ ci, so that si  1ti ≤ ci. Under the assumption that ci is

independent of xi, yi, ti,

Psi  1|xi,yi, ti  Gti,     (2.17)

where Gt ≡ Pci ≥ t. In order to use inverse probability weighting, we need to observe ti

whenever si  1, which simply means that ti is uncensored. Plus, we need only observe ci

when si  0, that is, when ti is censored. As shown in Wooldridge (2007), it is more efficient

to estimate G using the density of minci, ti given ti. Generally, let hc, denote a
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parametric model for the density of the censoring times, ci, and let Gt, be the implied

model for Pci ≥ t. The log likelihood is

∑
i1

N

1 − si loghci,  si logGti,,     (2.18)

which is just the log-likelihood for a standard censored estimation problem but where ti (the

underlying duration) plays the role of the censoring variable. As shown by Lancaster (1990)

for grouped duration data, where hc, is piecewise constant, the solution to (2.18) gives a

survivor function identical to the Kaplan-Meier estimator but where the roles of ci and ti are

reversed; that is, we treat ti as censoring ci. The linear regression model has a long history, and

has been studied recently by Honoré, Khan, and Powell (2002). See also Rotnitzky and Robins

(2005) for a survey of how to obtain semiparametrically efficient estimators. The

Koul-Susarla-van Ryzin (1981) estimator is an IPW least squares estimator, but their proposals

for inference are difficult to implement. As shown by Wooldridge (2007), this is another

instance where estimating the selection probability by MLE is more efficient than using the

known probability (if you could). Plus, obtaining the smaller variance matrix involves only a

multivariate regression of the weighted score for the second stage problem – OLS, NLS, MLE,

or IV – on the score for the first-stage Kaplan-Meier estimation. This simple procedure is valid

when the distribution of ci is taken to be discrete. Other authors undertake the asymptotics

allowing for an underlying continuous censoring time, which makes estimating asymptotic

variances considerably more difficult.

2.2 Attrition in Panel Data

Inverse probability weighting can be applied to solve, in some cases, the attrition problem
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in panel data. For concreteness, consider maximum pooled maximum likelihood, where we

model a density ftyt|xt for any conditioning variables xt. These need not be strictly

exogenous or always observed. Let ftyt|xt, be the parametric model, and let sit be the

selection indicator. We assume that attrition is absorbing, so sit  1  sir  1 for r  t. The

estimator that ignores attrition solves

max
∈Θ
∑
i1

N

∑
t1

T

sit log ftyit|xit,,     (2.19)

which is consistent if Psit  1|yit,xit  Psit  1|xit. This follows by showing

Esit log ftyit|xit,|xit  Psit  1|xitElog ftyit|xit,|xit, and using the fact that the true

value of  maximizes Elog ftyit|xit,|xit for all t, and Psit  1|xit ≥ 0. But, if selection

depends on yit even after conditioning on xit, the unweighted estimator is generally

inconsistent. If wit  xit,yit, then perhaps we can find variables r it, such that

Psit  1|wit,r it  Psit  1|r it ≡ pit  0, t  1, . . . ,T.     (2.20)

(The “obvious” set of variables r it  wit is not usually available since we will have estimate

the probabilities.) If we could observe the pit, we could use the weighted MLE,

max
∈Θ
∑
i1

N

∑
t1

T

sit/pit log ftyit|xit,,     (2.21)

which we call ̂w. The estimator ̂w is generally consistent because

Esit/pitqtwit,  Eqtwit,, t  1, . . . ,T, .     (2.22)

where qtwit,  log ftyit|xit, is the objective function.

How do we choose r it to make (2.20) hold (if possible)? A useful strategy, considered by

RRZ, is to build the pit up in a sequential fashion. At time t, zit is a set of variables observed
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for the subpopulation with si,t−1  1. (si0 ≡ 1 by convention). Let

it  Psit  1|zit, si,t−1  1, t  1, . . . ,T.     (2.23)

Typically, zit contains elements from wi,t−1, . . . ,wi1, and perhaps variables dated at t − 1 or

earlier that do not appear in the population model. Unfortunately, zit rarely can depend on

time-varying variables that are observed in period t (since we have to apply a binary response

model for the sample with si,t−1  1, and this includes units that have left the sample at time t!)

Given the monotone nature of selection, we can estimate models for it sequentially when the

zit are observed for every unit in the sample at time t − 1.

How do we obtain pit from the it? Not without some assumptions. Let

vit  wit,zit, t  1, . . . ,T. An ignorability assumption that works is

Psit  1|vi1, . . . ,viT, si,t−1  1  Psit  1|zit, si,t−1  1, t ≥ 1.     (2.24)

That is, given the entire history vi vi1, . . . ,viT, selection at time t (given being still in the

sample at t − 1) depends only on zit; in practice, this means only on variables observed at t − 1.

This is a strong assumption; RRZ (1995) show how to relax it somewhat in a regression

framework with time-constant covariates. Using this assumption, we can show that

pit ≡ Psit  1|vi  iti,t−1   i1.     (2.25)

In the general framework, we have r it zit, . . . ,zi1 but, because of the ignorability

assumption, it is as if we can take r it wi1,zi1, . . . , wiT,ziT.

So, a consistent two-step method is:

(1) In each time period, estimate a binary response model for Psit  1|zit, si,t−1  1,

which means on the group still in the sample at t − 1. The fitted probabilities are the ̂it. Form

p̂it  ̂it̂i,t−1   ̂i1. Note that we are able to compute p̂it only for units in the sample at time
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t − 1.

(2) Replace pit with p̂it in (2.21), and obtain the weighted M-estimator.

Consistency is straightforward – standard two-step estimation problem – if we have the

correct functional form and the ignorability of selection assumption holds. As shown by RRZ

(1995) in the regression case, it is more efficient to estimate the pit than to use know weights,

if we could. See RRZ (1995) and Wooldridge (2002) for a simple regression method for

adjusting the score; it is similar to that used for the cross section case, but just pooled across t.

IPW for attrition suffers from a similar drawback as in the cross section case. Namely, if

Psit  1|wit  Psit  1|xit then the unweighted estimator is consistent. If we use weights

that are not a function of xit in this case, the IPW estimator is generally inconsistent: weighting

uncessesarily causes inconsistency.

Related to the previous point is that it would be rare to apply IPW in the case of a model

with completely specified dynamics. Why? Suppose, for example, we have a model of

Eyit|xit,yi,t−1, . . . ,xi1,yi0. If our variables affecting attrition, zit, are functions of

yi,t−1, . . . ,xi1,yi0 – as they often must be – then selection is on the basis of conditioning

variables, and so the unweighted estimator is also consistent. RRZ (1995) explicitly cover

regressions that do not have correct dynamics.

3. Imputation
Section 1 discussed conditions under which dropping observations with any missing data

results in consistent estimators. Section 2 showed that, under an unconfoundedness

assumption, inverse probability weighting can be applied to the complete cases to recover
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population parameters. One problem with using IPW for models that contain covariates is that

the weighting may actually hurt more than it helps if the covariates are sometimes missing and

selection is largely a function of those covariates.

A different approach to missing data is to try to fill in the missing values, and then analyze

the resulting data set as a complete data set. Imputation methods, and multiple imputation use

either means, fitted values, values or averages from “similar” observations, or draws from

posterior distributions to fill in the missing values. Little and Rubin (2002) provides an

accessible treatment with lots of references to work by Rubin and coauthors.

Naturally, such procedures cannot always be valid. Most methods depend on a missing at

random (MAR) assumption. When data are missing on only one variable – say, the response

variable, y – MAR is essentially the same as the unconfoundedness assumption

Ps  1|y,x  Ps  1|x. (The assumption missing completely at random (MCAR) is when s

is independent of w  x,y.) MAR can be defined for general missing data patterns. For

example, in a bivariate case, let wi  wi1,wi2 be a random draw from the population, where

data can be missing on either variable. Let ri  ri1, ri2 be the “retention” indicators for wi1

and wi2, so rig  1 implies wig is observed. The MCAR assumption is that ri is independent of

wi, so Dri|wi  Dri. The MAR assumption is that implies

Pri1  0, ri2  0|wi  Pri1  0, ri2  0 ≡ 00, Pri1  1, ri2  0|wi1,

Pri1  0, ri2  1|wi2, and then

Pri1  1, ri2  1|wi  1 − 00 − Pri1  1, ri2  0|wi1 − Pri1  0, ri2  1|wi2. Even with

just two variables, the restrictions imposed by MAR are not especially appealing, unless, of

course, we have good reason to just assume MCAR.

MAR is more natural with monotone missing data problems, which sometime apply in
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panel data situations with attrition. Order the wig so that if wih is observed then so is wig, g  h.

Then the retention indicators satisfy rig  1  ri,g−1  1. Under MAR, the joint density

fw1, . . . ,wG is easy to estimate. Write

fw1, . . . ,wG  fwG|wG−1, . . . ,w1  fwG−1|wG−1, . . . ,w1fw2|w1fw1. Given parametric

models, we can write partial log likelihood as

∑
g1

G

rig log fwig|wi,g−1, . . . ,wi1,,     (3.1)

where fw1|w0, ≡ fw1|w0,, and it suffices to multiply only by rig because

rig  rigri,g−1ri2. Under MAR,

Erig|wig, . . . ,wi1  Erig|wi,g−1, . . . ,wi1,     (3.2)

and so by (3.2),

Erig log fwig|wi
g−1|wi

g−1  Erig|wi
g−1Elog fwig|wi

g−1|wi
g−1.     (3.3)

The first term on the RHS of (3.3) is Erig|wi
g−1  Prig  1|wi

g−1 ≥ 0 and the true value of

 maximizes the second part by the conditional Kullback-Leibler information inequality (for

example, Wooldridge (2002, Chapter 13)). Therefore, the parameters of the conditional

densities are generally identified, provided the missing data problem is not too severe.

Before briefly describing how multiple imputation works, a simple example helps illustrate

the general idea behind imputation. Suppose y is a random variable in a population with mean

y, but data are missing on some yi randomly drawn from the population. Let si be the binary

selection indicator, and let xi be a set of observed covariates. So, a random draw consists of

xi,yi, si but where yi is missing if si  0. As we discussed earlier, unless s is independent of

y – that is, the data are MCAR – the complete-case sample average,
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̃y  ∑
i1

N

si
−1

∑
i1

N

siyi,     (3.4)

is not unbiased or consistent for y; its probability limit is, of course, Ey|s  1.

Suppose, however, that the selection is ignorable conditional on x:

Ey|x, s  Ey|x  mx,,     (3.5)

where mx, is, for simplicity, a parametric function. As we discussed in Section 1, nonlinear

least squares, and a variety of quasi-MLEs, are consistent for  using the selected sample.

Now, because we observe xi for all i, we can obtained fitted values, mxi, ̂, for any unit it the

sample. Let ŷ i  siyi  1 − simxi, ̂ be the imputed data. Then an imputation estimator of

y is

̂y  N−1∑
i1

N

siyi  1 − simxi, ̂.     (3.6)

The plim of ̂y is easy to find by replacing ̂ with  and sample average with the population

average:

Esiyi  1 − simxi,  EEsiyi|xi, si  E1 − simxi,
 EsiEyi|xi, si  E1 − simxi,
 Esimxi,  E1 − simxi,
 Emxi,  y.     (3.7)

(Of course, we could average the mxi, ̂ across all i, but that would throw away some

information on the yi that we observe.)

If Dy|x, s  Dy|x then we can use MLE on the complete cases, obtain estimates of the

parameters, say ̂, and then use mxi, ̂ as above, where mx, is the mean function implied

by the model for Dy|x. For example, y could be a corner solution response and then we use a
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Tobit or some flexible extension for Dy|x.

One danger in using even simple imputation methods like the one just covered is that we

will ignore the errors in the imputed values. ŷ i differs from yi for two reasons. First, if we write

yi  mxi,  ui,     (3.8)

then, even if we knew , the error would be ui. (In effect, we are replacing yi with its

conditional expectation.) Having to estimate  further introduces estimation error. Analytical

formulas can be worked out, but bootstrapping a standard error or confidence interval for ̂y is

also straightforward: we would draw observation indices at random, without replacement, and

perform the imputation steps on each new bootstrap sample.

As an example of how just using the imputed values as if they were real data, suppose we

run a linear regression using the complete data and obtain xî. Again defining

ŷ i  siyi  1 − sixî, suppose we use the imputed data set to reestimate . It is well known

that we just get ̂ back again. However, our estimated error variance will be too small because

every residual for an imputed data point is identically zero. It follows that, while SSR/N1 − K

is generally unbiased for u2 (under the Gauss-Markov assumptions), where N1 is the number

of complete cases, SSR/N − K has a downward bias.

The previous method ignores the random error in (3.4); Little and Rubin (2002) call it the

method of “conditional means.” Generally, as they show in Table 4.1, the method of

conditional means results in downward bias in estimating variances. Instead, LR propose

adding a random draw to mxi, ̂ to impute a value. Of course, this entails have a distribution

from which to draw the ui. If we assume that ui is independent of xi and normally distributed,

then we can draw, say, u i from a Normal0, ̂u2, distribution, where ̂u2 is estimated using the
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complete case nonlinear regression residuals. This procedure works well for estimating y2 in

the case where linear regression is used and xi,yi is jointly normal. LR refer to this as the

“conditional draw” method of imputation, which is a special case of stochastic imputation.

Little and Rubin argue that the conditional draw approach, at least in the jointly normal

case, works well when a covariate is missing. Suppose that x  x1,x2 and data are missing

on x2 but not x1,y. One possibility for imputing xi2 when it is missing is to regress xi2 on xi1

using the complete cases, and then use fitted values, or conditional draws, to impute xi2. LR

show that the method of conditional draws (not conditional means) works well when y is

included along with x1 in obtained the estimated conditional means from the complete-case

regression.

Unfortunately, except in simple cases, it is difficult to quantity the uncertainty from

single-imputation methods, where one imputed value is obtained for each missing variable.

One possibility, which has been studied in the statistics literature, is to bootstrap the entire

estimation method – assuming, of course, that the imputations eliminates the nonresponse bias

(so that missing at random holds). In the example of conditional draws above, the imputation

procedure is simply included in any subsequent estimation, and bootstrap samples are obtained

over and over again. On each bootstrap replication, say b, an estimate of the parameters using

the complete cases, ̂complete
b is obtained (which would be the beta hats and error variance

estimate in the regression case), missing data values are imputed using conditional draws, and

then an estimate of  using the imputed data, ̂imputed
b , can be obtained. Of course, this can be

computationally intensive for nonlinear estimation problems.

An alternative is the method of multiple imputation. Its justification is Bayesian, and based

on obtaining the posterior distribution – in particular, mean and variance – of the parameters
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conditional on the observed data. For general missing data patterns, the computation required

to impute missing values is quite complicated, and involves simulation methods of estimation.

LR and Cameron and Trivedi (2005) provide discussion. The idea is easily illustrated using the

above example: rather than just impute one set of missing values to create one “complete” data

set, create several imputed data sets. (Often the number is fairly small, such as five or so.)

Then, estimate the parameters of interest using each imputed data set, and then use an

averaging to obtain a final parameter estimate and sampling error.

Briefly, let Wmis denote the matrix of missing data and Wobs the matrix of observations.

Assume that MAR holds. Then multiple imputation is justified as a way to estimate E|Wobs,

the posterier mean of  given Wobs. But by iterated expectations,

E|Wobs  EE|Wobs,Wmis|Wobs.     (3.9)

Now, if we can obtain estimates ̂d  E|Wobs,Wmis
d  for imputed data set d, then we can

approximate E|Wobs as

̄  D−1∑
d1

D

̂d,     (3.10)

which is just the average of the parameter estimates across the imputed samples.

Further, we can obtain a “sampling” variance by estimating Var|Wobs using

Var|Wobs  EVar|Wobs,Wmis|Wobs  VarE|Wobs,Wmis|Wobs,     (3.11)

which suggests

Var|Wobs  D−1∑
d1

D

V̂d  D − 1−1∑
d1

D

̂d − ̄̂d − ̄
′

≡ V̄  B,

    (3.12)
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where V̄ is the average of the variance estimates across imputed samples and B is the

between-imputation variance. For small a small number of imputations, a correction is usually

made, namely, V̄  1  D−1B. Therefore, assume that one trusts the MAR assumption, and

the underlying distributions used to draw the imputed values, inference with multiple

imputations is fairly straightforward. Because D need not be very large, estimation of

nonlinear models using multiple imputations is not computationally prohibitive (once one has

the imputed data, of course).

Like weighting methods, imputation methods have an important shortcoming when applied

to estimation of models with missing conditioning variables. Suppose again that x  x1,x2,

we are interested in some feature of the conditional distribution Dy|x, data are missing on y

and x2 – say, for the same units – and selection is a function of x2. Then, as we discussed in

Section 1, MLE using the complete cases is consistent, asymptotically normal, and inference is

standard. What about imputation methods? Because they generally rely on MAR, they would

require that Ds|y,x1,x2  Ds|x1. Because this is false in this example, MI cannot be

expected to produce convincing imputations.

Imputation for the monotone case discussed above is relatively straightforward under

MAR, and MAR is at least plausible. Because the conditional densities are identified,

imputation can proceed sequentially: given wi1 and ̂, missing values on wi2 can be imputed by

drawing from f2|wi1, ̂. Then, wi3 can be imputed by drawing from f|ŵi2,wi1, ̂, where ŵi2

may or may not be imputed. And so on.

4. Heckman-Type Selection Corrections
4.1. Corrections with Instrumental Variables
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Here we briefly cover the well-known Heckman selection correction with endogenous

explanatory variables in a linear model. The model is

y1  z11  1y2  u1

y2  z2  v2

y3  1z3  v3  0.

    (4.1)
    (4.2)
    (4.3)

where z is 1  L with first element unity (and also in z1). As usually, L1  L for identification.

The key point to be made here is, depending on how the Heckman correction is carried out in

this case, (4.2) can just be a linear projection – in which case the nature of y2 is unrestricted –

or, effectively, v2 must be normal and independent of z. Intuitively, we need two elements in z

not also in z1: loosely, one to induce exogenous variation in y2 and the other to induce

exogenous variation in selection. If we assume (a) z,y3 is always observed, y1,y2 observed

when y3  1; (b) Eu1|z,v3  1v3; (c) v3|z ~Normal0,1; (d) Ez′v2  0 and 22 ≠ 0, then

we can write, in the full population,

y1  z11  1y2  gz,y3  e1,     (4.4)

where e1  u1 − gz,y3  u1 − Eu1|z,y3. Therefore, selection is exogenous in (4.4) because

Ee1|z,y3  0. Because y2 is not exogenous, we estimate (4.4) by IV, using the selected

sample, where the instruments are z,z3 because gz, 1  z3. So, the two-step

estimator is

(i) Probit of y3 on z to (using all observations) to get ̂i3 ≡ zî3

(ii) IV (2SLS if overidentifying restrictions) of yi1 on zi1,yi2, ̂i3 using the selected

sample and instruments zi, ̂i3.

If y2 is always observed, it is tempting to obtain the fitted values ŷ i2 from the reduced form

yi2 on zi, and then use OLS of yi1 on zi1,ŷ i2, ̂i3 in the second stage. But this effectively puts
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1v2 in the error term, so we would need u1  2v2 to be normal (or something similar); it

would not be consistent for discrete y2, for example. Implicitly, the reduced form estimated by

the proper two-step procedure is, on the selected sample, y2  z2  2z3  r3. But this is

just a linear projection; generally, the rank condition on the selected sample should hold if z

causes sufficient variation in y2 and y3 in the population.

This example raises another point: even if y2 is exogenous in the full population, one

should generally treat it as endogenous in the selected subsample. Why? Because y2 cannot be

included in the first-stage probit if it is not always observed, so consistency of the Heckman

procedure would require Py3  1|z,y2  Py3  1|z, a tenuous assumption. Unless we have

an instrument for y2, simply treating it as exogenous in the second stage after omitting it from

the first is tantamount to imposing an exclusion restriction on a reduced form.

In addition to the linear model, with or without endogenous variables, Heckman-type

corrections are available for a limited set of nonlinear models. Terza (1998) contains the

approach for exponential functions with exogenous explanatory variables, where the selection

equation follows a probit; see also Wooldridge (2002, Chapter 19). A selection correction is

also fairly easy to implement in probit models, too; see Wooldridge (2002, Chapter 17). As in

trying to account for endogenous explanatory variables in such models, merely inserting an

estimated inverse Mills ratio inside, say, an exponential model, or probit model, or Tobit

model cannot be justified as a selection correction in the sense that it does not consistently

estimate the population parameters. Of course, one can always base a test on such

variable-addition approaches, but they cannot be shown to solve the selection problem.

A very similar issue arises when using Heckman’s method to correct for attrition in panel

data (when selection on observables does not hold). With attrition as an absorbing state, it is
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common to estimate models in first differences to remove additive heterogeneity, say

Δyit  Δxit  Δuit, t  2, . . . ,T.     (4.5)

We assume sit  1  sir  1, r  t. Let wit be a set of variables that we always observe when

si,t−1  1 such that wit is a good predictor of selection – in a sense soon to be made precise.

We model the selection in time period t conditional on si,t1  1 as

sit  1wit t  vit  0
vit|wit, si,t−1  1~Normal0,1, t  2,3, . . . ,T.

    (4.6)
    (4.7)

Since attrition is an absorbing state, sit−1  0 implies sit  0. This leads to a probit model for

sit conditional on si,t−1  1 :

Psit  1|wit, si,t−1  1  wit t, t  2, . . . ,T.     (4.8)

Naturally, we need to estimate  t, which we do as a sequence of probits. For t  2, we use the

entire sample to estimate a probit for still being in the sample in the second period. For t  3,

we estimate a probit for those units still in the sample as of t  2. And so on. When we reach

t  T, we have the smallest group of observations because we only use units still in the sample

as of T − 1. Where might the wit come from? Since they have to be observed at time t for the

entire subgroup with si,t−1  1, wit generally cannot contain variables dated at time t (unless

some information is known at time t on people who attrit at time t). When the xit are strictly

exogenous, we can always include in wit elements of xi,t−1,xi,t−2, . . . ,xi1. Note that the

potential dimension of wit grows as we move ahead through time. Unfortunately, yi,t−1 cannot

be in wit because yi,t−1 is necessarily correlated with Δuit. But, if we assume that

Euit|xi,yi,t−1, . . . ,yi1,ci  0, t  2, . . . ,T, |     (4.9)

then elements from yi,t−2,yi,t−3, . . . ,yi1 can be in wit. If we start with a model where xit is
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strictly exogenous, as in standard panel data models, assumption (4.9) is very strong because in

such models uit tends to be serially correlated, and therefore correlated with lagged yit in

general. Still, since we are allowing for ci, it might be that the errors uit are serially

uncorrelated.

In what sense do we need the wit to be good predictors of attrition? A sufficient condition

is, given si,t−1  1,

Δuit,vit is independent of Δxit,wit.     (4.10)

Now, Δuit is independent of Δxit,wit holds if wit contains only lags of xit because we assume

xit is strictly exogenous. Unfortunately, vit is independent of Δxit,wit can be very restrictive

because Δxit cannot be included in wit in interesting cases (because xit is not observed for

everyone with si,t−1  1. Therefore, when we apply a sequential Heckman method, we must

omit at least some of the explanatory variables in the first-stage probits. If attrition is largely

determined by changes in the covariates (which we do not see for everyone), using pooled

OLS on the FD will be consistenty, whereas the Heckman correction would actually cause

inconsistency.

As in the cross section case, we can “solve” this problem by using instrumental variables

for any elements of Δxit not observed at time t. Assume sequential exogeneity, that is

Euit|xit,xi,t−1, . . . ,xi1,ci  0, t  1, . . . ,T.     (4.11)

(Recall that this condition does allow for lagged dependent variables in xit). We now replace

(4.10) with

Δuit,vit is independent of zit,wit     (4.12)

conditional on si,t−1  1. Choosing zit to be a subset of wit is attractive, because then (4.12)
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EΔuit|zit,wit,vit, si,t−1  1  EΔuit|wit,vit, si,t−1  1, in which case (4.12) holds if Δuit,vit

is independent of wit given si,t−1  1. Then, after a sequence of probits (where, in each time

period, we use observations on all units available in the previous time periods), we can apply

pooled 2SLS, say, on the selected sample, to the equation

Δyit  Δxit  2d2t̂it  3d3t̂it . . .TdTt̂it  errorit.     (4.13)

with instruments zit,d2t̂it,d3t̂it, . . . ,dTt̂it. Because ̂it depends on wit, it is critical to have

an element in wit moving around selection separately from its correlation with Δxit.

One can also test and correct for selection bias for any pattern of missing data on the

response variable (or, generally, on endogenous explanatory variables). The key is that data are

always observed on variables taken to be strictly exogenous, conditional on unobserved

heterogeneity. Semykina and Wooldridge (2006) work through the details for the model

yit  xit  ci  uit
Euit|zi,ci  0,

    (4.14)

where zi  zi1, . . . , ziT, so that some elements of xit are possibly endogenous, but the

instruments, zit, are strictly exogenous but allowed to be correlated with ci. A simple test for

correlation between sit and the idiosyncratic error – which, recall from Section 1, causes

inconsistency in the FE-IV estimator, is available using Heckman’s approach. In the first stage,

estimate a pooled probit, or separate probit models, on zit and, say, the time averages, z̄i.

Obtain estimated inverse Mills ratios. Then, estimate the equation

yit  xit  ̂it  ci  errorit     (4.15)

by FEIV, and use a standard (but robust) test of   0. This allows for endogeneity of xit under

H0, and so is a pure selection bias test. Or, the ̂it can be interacted with year dummies. The

30



Imbens/Wooldridge, IRP Lecture Notes 18, August ’08

usefulness of this test is that it maintains only Euit|zi, si,ci  0 under H0. Unfortunately, as a

correction procedure, it generally does not lead to consistent estimators. (See Semykina and

Wooldridge (2006).) As it turns out, a procedure that does produce consistent estimates under

certain assumptions is just to add the time-average of the instruments, z̄i, to (4.15) and use

pooled IV, where z̄i and ̂it act as their own instruments.
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