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Quantile Methods

These notes review quantile estimation in a variety of situations, including models with

endogenous explanatory variables – including endogenous treatment effects – and panel data

models with unobserved heterogeneity. Recent work on interpreting quantile estimators when

the quantile is misspecified is also covered.

1. Reminders About Means, Medians, and Quantiles
Consider the standard linear model in a population, with intercept  and K  1 slopes :

y    x  u.     (1.1)

Assume Eu2  , so that the distribution of u is not too spread out. Given a large random

sample, when should we expect ordinary least squares, which solves

min
a,b
∑
i1

N

yi − a − xib2,     (1.2)

and least absolute deviations (LAD), which solves

min
a,b
∑
i1

N

|yi − a − xib|,     (1.3)

to provide similar parameter estimates? There are two important cases. If

Du|x is symmetric about zero     (1.4)

then OLS and LAD both consistently estimate  and . If

u is independent of x with Eu  0,     (1.5)

where Eu  0 is the normalization that identifies , then OLS and LAD both consistently
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estimate the slopes, . If u has an asymmetric distribution, thenMedu ≡  ≠ 0, and ̂LAD

converges to    because Medy|x    x  Medu|x    x  . Of course,

independence between u and x rules out heteroskedasticity in Varu|x.

In many applications, neither (1.4) nor (1.5) is likely to be true. For example, y may be a

measure of wealth, in which case the error distribution is probably asymmetric and Varu|x

not constant. Therefore, it is important to remember that if Du|x is asymmetric and changes

with x, then we should not expect OLS and LAD to deliver similar estimates of , even for

“thin-tailed” distributions. In other words, it is important to separate discussions of resiliency

to outliers from the different quantities identified by least squares (the conditional mean,

Ey|x) and least absolution deviations the conditional median,Medy|x. Of course, it is true

that LAD is much more resilient to changes in extreme values because, as a measure of central

tendency, the median is much less sensitive than the mean to changes in extreme values. But a

significant difference between OLS and LAD should not lead one to somehow prefer LAD. It

is possible that Ey|x    x, Medy|x is not linear, and therefore LAD does not

consistently estimate . Generally, if we just use linear models as approximations to underlying

nonlinear functions, we should not be surprised if the linear approximation to the conditional

mean, and that for the median, are very different. [Warning: Other so-called “robust”

estimators, which are intended to be insensitive to outliers or influential data, usually require

symmetry of the error distribution for consistent estimation. Thus, they are not “robust” in the

sense of delivering consistency under a wide range of assumptions. For a general analysis of

such estimators, see Huber (1980).]

Sometimes one can use a transformation to ensure conditional symmetry or the

independence assumption in (1.5). When yi  0, the most common transformation is the
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natural log. Often, the linear model logy    x  u is more likely to satisfy symmetry or

independence. Suppose that symmetry about zero holds in the linear model for logy. Then,

because the median passes through monotonic functions (unlike the expectation),

Medy|x  expMedlogy|x  exp  x, and so we can easily recover the partial

effects on the median of y itself. By contrast, we cannot generally find

Ey|x  exp  xEexpu|x. If, instead, we assume Du|x  Du, then Medy|x and

Ey|x are both exponential functions of x, but with different “intercepts” inside the

exponential function.

The fact that the median passes through monotonic functions is very handy for applying

LAD to a variety of problems, particularly corner solution responses where an outcome has

nonnegative support and a mass point at zero. But the expectation operator has useful

properties that the median does not: linearity and the law of iterated expectations. To see how

these help to identify interesting quantities, suppose we begin with a random coefficient model

yi  ai  xibi,     (1.6)

where ai is the heterogeneous intercept and bi is a 1  K matrix of heterogeneous slopes

(“random coefficients”). If we assume that ai,bi is independent of xi, then

Eyi|xi  Eai|xi  xiEbi|xi ≡   xi,     (1.7)

where   Eai and   Ebi. Because OLS consistently estimates the parameters of a

conditional mean linear in those parameters, OLS consistently estimates the population

averaged effects, or average partial effects, . Even under independence, there is no way to

derive Medyi|xi without imposing more restrictions. In general, LAD of yi on 1,xi does not

consistently estimate  or the medians of the elements of bij.
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Are there any reasonable assumptions that imply LAD consistently estimates something of

interest in (1.7)? Yes, although multivariate symmetry is involved. With multivariate

distributions there is no unique definition of symmetry. A fairly strong restriction is the notion

of a centrally symmetric distribution (Serfling (2006)). If ui is a vector, then its distribution

conditional on xi is centrally symmetric if

Dui|xi  D−ui|xi.     (1.8)

This condition implies that, for any gi a function of xi, Dgi′ui|xi has a univariate distribution

that is symmetric about zero. Of course, (1.8) implies that Eui|xi  0.

We can apply this definition to the random coefficient model as follows. Write c i  ai,bi

with   Ec i, and let di  c i − . Then we can write

yi    xi  ai −   xibi − 
≡   xi  gi′di

    (1.9)

with gi  1,xi. Therefore, if c i has a conditional centrally symmetric distribution about ,

thenMedgi′di|xi  0, and LAD applied to the usual model yi    xi  ui consistently

estimates  and . Because ai and bi have centrally symmetric distributions about  and ,

respectively, it is clear that these are the only sensible measures of central tendency in the

distribution of c i.

Usually, we are interested in how covariates affect quantiles other than the median, in

which case quantile estimation is applied to a sequence of linear models. Write the  th quantile

in the distribution Dyi|xi as Quantyi|xi. Under linearity,

Quantyi|xi    xi     (1.10)

where, in general, the intercept and slopes depend on the quantile, . Under (1.10), consistent
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estimators of  and  are obtained by minimizing the asymmetric absolute loss function

or the “check” function:

min
∈,∈K

∑
i1

N

cyi −  − xi,     (1.11)

where

cu  1u ≥ 0  1 − 1u  0|u|  − 1u  0u     (1.12)

and 1 is the “indicator function.” Consistency is relatively easy to establish because the

objective function is continuous in its parameters. Asymptotic normality is more difficult

because any sensible definition of the Hessian of the objective function, away from the

nondifferentiable kink, is identically zero. But it has been worked out under a variety of

conditions; see Koenker (2005) for a recent treatment.

2. Some Useful Asymptotic Results
2.1. What Happens if the Quantile Function is Misspecified?

When we use OLS to estimate the parameters of a linear model, we always have a simple

characterization of the plim of the OLS estimator when the mean is not linear: If ∗ and ∗ are

the plims from the OLS regression yi on 1,xi then these provide the smallest mean squared

error approximation to Ey|x  x. In other words, ∗,∗ solves

min
a,b
Ex −  − x2,     (2.1)

where, of course, the expectation is over the distribution of x. Under some restrictions, (albeit

restrictive), j∗ is the average partial effect Ex∂x/∂xj – multivariate normality of x is

sufficient – and under less restrictive (but still restrictive) assumptions, the j∗ estimate the
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average partial effects up. These follow from the work of Chung and Goldberger (1984), Ruud

(1984), and Stoker (1986).

Although the linear formulation of quantiles has been viewed by some – for example,

Buchinsky (1994) and Chamberlain (1994) – as a linear approximation to the true conditional

quantile, most of the the linear model is treated as being correctly specified. In some ways, this

is strange because usually many quantiles are estimated. Yet assuming that different quantiles

are linear in the same functions of x might be unrealistic.

Angrist, Chernozhukov, and Fernandez-Val (2006) provide a treatment of quantile

regression under misspecification of the quantile function and characterize the probability limit

of the LAD estimator. To describe the result, absorb the intercept into x and, rather than

assume a correctly specified conditional quantile, let  be the solution to the population

quantile regression problem. Therefore, x is the plim of the estimated quantile function.

ACF have a couple of different ways to characterize . One result is that  solves

min

Ewx,qx − x2,     (2.2)

where the weight function wx, is

wx,  
0

1
1 − ufy|xux  1 − uqx|xdu ≥ 0.     (2.3)

In other words,  is the best weighted mean square approximation to the true quantile

function, where the weights are the average of the conditional density of yi over a line from the

candidate approximation, x, to the true quantile function, qx. The multiplication of the

density by 1 − u gives more weight to points closer to the true conditional quantile. It is

interesting that the ACF characterization is in terms of a weighted mean squared error, a

concept we usually associate with conditional mean approximation. ACF also show an
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approximation where the weighting function does not depend on , and use it characterize

“partial” regression quantiles, and to characterize omitted variables bias with quantile

regression.

2.2. Computing Standard Errors

First consider the case where we want to estimate the parameters in a linear quantile model,

for a given quantile, . For a random draw, write

yi  xi  ui, Quantui|xi  0,     (2.4)

where we include unity in xi so that contains an intercept and the slopes. Let ̂ be the quantile

estimators, and define the quantile regression residuals, ûi  yi − xi̂. Under weak conditions

(see, for example, Koenker (2005)), N ̂ −  is asymptotically normal with asymptotic

variance

A−1BA−1,     (2.5)

where

A ≡ Efu0|xixi′xi     (2.6)

and

B ≡ 1 − Exi′xi.     (2.7)

Expression (2.5) is the now familiar standard “sandwich” form of asymptotic variances. It is

fully robust in the sense that it is valid without further assumptions on Dui|xi. The matrix B

is simple to estimate as
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B̂  1 −  N−1∑
i1

N

xi′xi ,     (2.8)

where 0    1 is the chosen quantile. This estimator is consistent under the weak

assumption of finite second moments for xi. The matrix A is harder to estimate because of the

presence of fu0|xi, and we do not have a parametric model for the density of ui given xi. But

we only have to estimate this conditional density at u  0, so we could use a nonparametric

density estimator (based on the ûi. Powell (1986, 1991) proposed a simpler approach, which

leads to

Â  2NhN−1∑
i1

N

1|ûi|≤ hNxi′xi,     (2.9)

where hN  0 is a nonrandom sequence shrinking to zero as N →  with N hN → . The

second condition controls how quickly hN shrinks to zero. For example, hN  aN−1/3 for any

a  0 satisfies these conditions. The practical problem in choosing a (or choosing hN more

generally) is discussed by Koenker (2005), who also discusses some related estimators. In

particular, in equation (2.9), observation i does not contribute if |ûi| hN. Other methods allow

each observation to enter the sum but with a weight that declines as |ûi| increases. (As an

interesting aside, the derivation of (2.9) involves the simple equality

E1|ui|≤ hN|xixi′xi  E1|ui|≤ hNxi′xi, which is analogous to the key step in the

regression frameworks for justifying the heteroskedasticity-robust variance matrix estimator.)

The nonparametric bootstrap can be applied to quantile regression, but if the data set is

large, the computation using several hundred bootstrap samples can be costly.

If we assume that ui is independent of xi then fu0|xi  fu0 and equation (2.5) simplifies

to
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1 − 
fu02 Exi

′xi−1     (2.10)

and its estimator has the general form

1 − 
f̂u02

N−1∑
i1

N

xi′xi
−1

.     (2.11)

A simple, consistent estimate of fu0 is the histogram estimator

f̂u0  2NhN−1∑
i1

N

1|ûi|≤ hN.     (2.12)

Of course, one can use other kernel estimators for f̂u0. This nonrobust estimator is the one

commonly reported as the default by statistical packages, including Stata.

If the quantile function is misspecified, even the “robust” form of the variance matrix,

based on the estimate in (2.9), is not valid. In the generalized linear models and generalized

estimating equations literature, which primarily focuses on estimating conditional means, the

distinction is sometimes made between a “fully robust” variance estimator and a “semi-robust”

variance estimator. In the GLM and GEE literatures, the semi-robust estimator assumes

Eyi|xi, or the panel version of it, is correctly specified, but does not impose restrictions on

Varyi|xi or other features of Dyi|xi. On the other hand, a fully robust variance matrix

estimator is consistent for the asymptotic variance even if the mean function is misspecified. In

this setup, one allows that the estimators converge to a set of parameter values that do not

index the conditional mean function. For, say, nonlinear least squares, or quasi-MLE in the

linear exponential family, a fully robust estimator requires one to include the second derivative

matrix of the conditional mean function. For some combinations of mean functions and

objective functions, the Hessian of the mean function disappears, and the fully robust and
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semi-robust estimators are the same. For two-step methods, such as GEE, analytical formulas

for fully robust estimators are very difficult to obtain, and almost all applications use the

semi-robust form. This is a long-winded way to say that there is precedent for worrying about

how to estimate asymptotic variances when the main feature being estimated is misspecified.

In the present case, in GEE terminology, Â−1B̂Â−1 where Â is given by (2.9), is only

semi-robust because the conditional median is assumed to be correctly specified.

Kim and White (2002) and Angrist, Chernozhukov, and Fernández-Val (2006) provide a

fully robust variance matrix estimator when the linear quantile function is possibly

misspecified. The estimator of A in (2.9) is still valid, but the estimator of B needs to be

extended. The outer product of the score estimator of B,

B̂  N−1∑
i1

N

 − 1ûi  02xi′xi ,     (2.13)

where the ûi are the residuals from the (possibly) misspecified quantile regression, is generally

consistent.

As shown by Hahn (1995, 1997), the nonparametric bootstrap (and the Bayesian bootstrap)

generally provides consistent estimates of the fully robust variance without claims about the

conditional median being correct. It does not, however, provide asymptotic refinements for

testing and confidence intervals compared with those based on first-order asymptotics. See

Horowitz (2001) for a discussion, and on how to smooth the problem so that refinements are

possible.

ACF actually provide the covariance function for the process ̂ :  ≤  ≤ 1 −  for

some   0, which can be used to test hypotheses jointly across multiple quantiles (including

all quantiles at once).
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As an example of quantile regression, we use the data from Abadie (2003). Stata was used

to do the estimation and obtain the standard errors; these are the nonrobust standard errors that

use

Dependent Variable: nettfa

(1) (2) (3) (4) (5) (6)

Explanatory Variable Mean (OLS) .10 Quantile .25 Quantile Median (LAD) .75 Quantile .90 Quantile

inc . 783 −. 0179 . 0713 . 324 . 798 1. 291

. 104 . 0177 . 0072 . 012 . 025 . 048

age −1. 568 −. 0663 . 0336 −. 244 −1. 386 −3. 579

1. 076 . 2307 . 0955 . 146 . 287 . 501

age2 . 0284 . 0024 . 0004 . 0048 . 0242 . 0605

. 0138 . 0027 . 0011 . 0017 . 0034 . 0059

e401k 6. 837 . 949 1. 281 2. 598 4. 460 6. 001

2. 173 . 617 . 263 . 404 . 801 1. 437

N 2, 017 2, 017 2, 017 2, 017 2, 017 2, 017

The effect of income is very different across quantiles, with its largest effect at upper

quantiles. Similarly, eligibility for a 401(k) plan has a much larger effect on financial wealth at

the upper end of the wealth distribution. The mean and median slope estimates are very

different, implying that the model with an additive error that is either independent of the

covariates, or has a symmetric distribution given the covariates, is not a good characterization.

3. Quantile Regression with Endogenous
Explanatory Variables

Recently, there has been much interest in using quantile regression in models with

endogenous explanatory variables. Some strategies are fairly simple, others are more

complicated. Suppose we start with the model
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y1  z11  1y2  u1,     (3.1)

where the full vector of exogenous variables is z and y2 is potential endogenous – whatever

that means in the context of quantile regression. The most straightforward case to handle is

least absolute deviations, because median restrictions are easier to justify when joint

distributions are involved.

Amemiya’s (1982) two-stage LAD estimator, whose asymptotic properties were derived by

Powell (1986), adds a reduced form for y2, say

y2  z2  v2.     (3.2)

While (3.2) can be estimated by OLS to obtain ̂2, using LAD in the first stage to estimate 2

is more in the spirit of 2SLAD. In the second step, the fitted values, ŷ i2  zi̂2, are inserted in

place of yi2 to given LAD of yi1 on zi1,ŷ i2. By replacing ̂2 with 2, it is clear that the 2SLAD

estimator essentially requires symmetry of the composite error 1v2  u1. While the properties

of 2SLAD were originally worked out for nonstochastic zi – so that ui1,vi2 is independent of

zi – it is clear that symmetry of 1v2  u1 given z is sufficient for consistency.

We might as well assume Du1,v2|z is centrally symmetric, in which case a control

function approach can be used, too. Write

u1  1v2  e1,     (3.3)

where e1 given v2,z has a symmetric distribution. Because Medv2|z  0, the first stage

estimator can be LAD. Given the LAD residuals v̂i2  yi2 − zi̂2, these residuals can be added

to second-stage LAD. So, we do LAD of yi1 on zi1,yi2, v̂i2. It seems likely that a t test on v̂i2 is

valid as a test for the null that y2 is exogenous.

There can be problems of interpretation in just applying either 2SLAD or the CF approach.
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Suppose we view this as an omitted variable problem, where a1 is the omitted variable, and

interest lies in the “structual” median

Medy1|z,y2,a1  Medy1|z1,y2,a1  z11  1y2  a1.     (3.4)

Then we can write

y1  z11  1y2  a1  e1

Mede1|z,y2,a1  0.
    (3.5)
    (3.6)

If (3.4) were stated in terms of means, then Ee1|z  0 by construction, and a very sensible

exogeneity condition is Ea1|z  Ea1  0 (as a normalization) or Covz,a1  0.

Unfortunately, here we cannot even assert thatMede1|z  Mede1 because (3.6) does not

imply this; essentially, there is no law of iterated medians. To further compound the problem,

the median of the sum is not the sum of the medians. Therefore, even if we stated exogeneity

asMeda1|z  Meda1 and just assertedMede1|z  Mede1, a1  e1  u1 would not

generally satisfyMedu1|z  Medu1. Of course, we can make enough multivariate

symmetry assumptions so that all linear combinations of errors have symmetric distributions.

But then LAD methods are purely to guard against outliers; usual 2SLS will provide

consistent, asymptotically normal estimates of the parameters under symmetry (and, of course,

weaker assumptions).

With quantile estimation, two-step estimators are even more difficult to justify. The

Angrist, Chernozhukov, and Fernandez-Val (2006) partialling out representations can provide

some sort of interpretation of netting out the control function, v2, but it is difficult to know

whether the parameters are ultimately interesting.

Abadie (2003) and Abadie, Angrist, and Imbens (2002) show how to define and estimate

policy parameters with a binary endogenous treatment, say D, and binary instrumental
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variable, say Z. The outcome is Y with observed covariates, X. The potential outcomes on Y are

Yd, d  0,1 – that is, without treatment and with treatment, respectively. The counterfactuals

for treatment are Dz, z  0,1. Thus, D0 is what treatment status would be if the instrument

(often, randomized eligibility) equals zero, and D1 is treatment status if Z  1. The data we

observe are X, Z, D  1 − ZD0  ZD1, and Y  1 − DY0  DY1. As discussed in AAI,

identification of average treatment effects, and ATE on the treated, is difficult. Instead, they

focus on treatment effects for compliers, that is, the (unobserved) subpopulation with

D1  D0. This is the group of subjects who do not participate if ineligible but do participate if

eligible.

AAI specify the linear equation

QuantY|X,D,D1  D0  D  X,     (3.7)

and define  as the quantile treatment effect (QTE) for compliers. If we observed the event

D1  D0, then (3.7) could be estimated by standard quantile regression using the subsample of

compliers. But, in effect, the binary variable 1D1  D0 is an omitted variable. But Z is an

available instrument for D. As discussed by AAI, (3.7) identifies differences in quantiles on

the potential outcomes, Y1 and Y0, and not the quantile of the difference, Y1 − Y0. The latter

effects are harder to identify. (Of course, in the case of mean effects, there is no difference in

the two effects.)

The assumptions used by AAI to identify  are

Y1,Y0,D1,D0 is independent of Z conditional on X     (3.8)

0  PZ  1|X  1     (3.9)

PD1  1|X ≠ PD0  1|X     (3.10)
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PD1 ≥ D0|X  1.     (3.11)

Under these assumptions, AAI show that a weighted quantile estimation identifies . The

estimator that is computationally most convenient is obtained as follows. Define

vU  1 − D1 − vU1 − X − 1 − DvU
X ,     (3.12)

where U  Y,D,X, vU  PZ  1|U, and X  PZ  1|X. AAI show that

u  PD1  D0|U  u, and so this weighting function is nonnegative. They also show

that  and  in (3.7) solve

min
,
EUcY − D − X,     (3.13)

where c is the check function defined earlier. To operationalize the estimation,  needs

to be estimated, which means estimating PZ  1|Y,D,X and PZ  1|X. AAI use linear

series estimators to approximate PZ  1|Y,D,X and PZ  1|X, and derive the asymptotic

variance of the two-step estimator that solves

min

∑
i1

N

1̂vUi ≥ 0̂vUicYi − Wi,     (3.14)

where Wi  Di,Xi and  contains  and . The indicator function 1̂vUi ≥ 0 ensures that

only observations with nonnegative weights are used. Asymptotically, ̂vu ≥ 0, and this

trimming of observations becomes less and less necessary. To ensure that v̂u and ̂x act

like probabilities, series estimation using logit functions, as in Hirano, Imbens, and Ridder

(2003), might be preferred (although that still would not ensure nonnegativity of ̂vUi for all

i).

Other recent work has looked at quantile estimation with endogenous treatment effects.
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Chernozhukov and Hansen (2005, 2006) consider identification and estimation of QTEs in a

model with endogenous treatment and without imposing functional form restrictions. Let

qd,x, denote the  th quantile function for treatment level D  d and covariates x. In the

binary case, CH define the quantile treatment effect (QTE) as

QTEx  q1,x, − q0,x,.     (3.15)

Using a basic result from probability, the average treatment effect, conditional on x, can be

obtained by integrating (3.15) over 0    1.

The critical representation used by CH is that each potential outcome, Yd, conditional on

X  x, can be expressed as

Yd  qd,x,Ud     (3.16)

where

Ud|Z ~Uniform0,1,     (3.17)

and Z is the instrumental variable for treatment status, D. Thus, D is allowed to be correlated

with Ud. Key assumptions are that qd,x,u is strictly increasing in u and a “rank invariance”

condition. The simplest form of the rank invariance condition is that , conditional on X  x and

Z  z, Ud does not depend on d. So, for example, we can write Ud  gdX,Z  V. Then, CH

show that, with the observed Y defined as Y  qD,X,UD,

PY ≤ qD,X,|X,Z  PY  qD,X,|X,Z  .     (3.18)

Equation (3.18) acts as a nonparametric conditional moment condition which, under certain

assumptions, allows identification of qd,x,. If we define R  Y − qD,X,, then (3.18)

implies that the  th quantile of R, conditional on X,Z, is zero. This is similar to the more

common situation where we have a conditional moment condition of the form ER|X,Z  0.

16



Imbens/Wooldridge, IRP Lecture Notes 17, August ’08

See Chernozhukov and Hansen (2005) for details concerning identification – they apply results

of Newey and Powell (2003) – and Chernozhukov and Hansen (2006) for estimation methods,

where they assume a linear form for qd,x, and obtain what they call the quantile regression

instrumental variables estimator.

Other work that uses monotonicity assumptions and identifies structural quantile functions

is Chesher (2003) and Imbens and Newey (2006).

4. Quantile Regression for Panel Data
Quantile regression methods can be applied to panel data, too. For a given quantile

0    1, suppose we specify

Quantyit|xit  xit, t  1, . . . ,T,     (4.1)

where xit probably allows for a full set of time period intercepts. Of course, we can write

yit  xit  uit where Quantuit|xit  0. The natural estimator of o is the pooled quantile

regression estimator. Unless we assume that (3.1) has correctly specified dynamics, the

variance matrix needs to be adjusted for serial correlation in the resulting score of the objective

function. These scores have the form

sit  −xit
′ 1yit − xit ≥ 0 − 1 − 1yit − xit  0,     (4.2)

which can be shown to have zero mean (at the “true” parameter), conditional on xit, under

(4.1). The serial dependence properties are not restricted, nor is heterogeneity in the

distributions across t. A consistent estimator of B (with T fixed and N → ) is

B̂  N−1∑
i1

N

∑
t1

T

∑
r1

T

sit̂sir̂
′.     (4.3)
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This estimator is not robust to misspecification of the conditional quantiles, but the extension

of Angrist, Chernozhukov, and Fernandez-Val (2006) should work in the pooled panel data

case as well.

Estimation of A is similar to the cross section case. A robust estimator, that does not

assume independence between uit and xit, and allows the distribution of uit to change across t,

is

Â  2NhN−1∑
i1

N

∑
t1

T

1|ûit|≤ hNxit′ xit,     (4.4)

or, we can replace the indicator function with a smoothed version. Rather than using

Â−1B̂Â−1/N as the estimate of the asymptotic variance of ̂, the bootstrap can be applied by

resampling cross section units.

Allowing explicitly for unobserved effects in quantile regression is trickier. For a given

quantile 0    1, a natural specification, which incorporates strict exogeneity conditional on

ci, is

Quantyit|xi,ci  Quantyit|xit,ci  xit  ci, t  1, . . . ,T,     (4.5)

which is reminiscent of the way we specified the conditional mean in Chapter 10.

Equivalently, we can write

yit  xit  ci  uit, Quantuit|xi,ci  0, t  1, . . . ,T.     (4.6)

Unfortunately, unlike in the case of estimating effects on the conditional mean, we cannot

proceed without further assumptions. A “fixed effects” approach, where we allow Dci|xi to

be unrestricted, is attractive. Generally, there are no simple transformations to eliminate ci and

estimate . If we treat the ci as parameters to estimate along with , the resulting estimator

18



Imbens/Wooldridge, IRP Lecture Notes 17, August ’08

generally suffers from an incidental parameters problem. Briefly, if we try to estimate ci for

each i then, with large N and small T, the poor quality of the estimates of ci causes the

accompanying estimate of  to be badly behaved. Recall that this was not the case when we

used the FE estimator for a conditional mean: treating the ci as parameters leads us to the

within estimator. Koenker (2004) derives asymptotic properties of this estimation procedure

when T grows along with N, but also adds the assumptions that the regressors are fixed and

uit : t  1, . . . ,T is serially independent.

An alternative approach is suggested by Abrevaya and Dahl (2006) for T  2. They are

motivated by Chamberlain’s correlated random effects linear model. In the T  2 case, the

conditional mean version of Chamberlain (1982) is

Eyt|x1,x2  t  xt  x11  x22, t  1,2.     (4.7)

Notice that ∂Ey1|x/∂x1    1 and ∂Ey2|x/∂x1  1. Therefore,

  ∂Ey1|x
∂x1

− ∂Ey2|x
∂x1

,     (4.8)

and similarly if we reverse the roles of x1 and x2. Abrevaya and Dahl use (4.8) to motivate a

similar approach for quantiles. First, estimate separate linear quantile regressions

Quantyt|x1,x2 for t  1 and 2. Then, define the partial effects as

 
∂Quanty1|x

∂x1
−
∂Quanty2|x

∂x1
.     (4.9)

For quantile regression, CRE approaches are generically hampered because finding

quantiles of sums of random variables is difficult. For example, suppose we impose the

Mundlak representation ci  o  x̄io  ai. Then we can write

yit  o  xito  x̄io  ai  uit ≡ yit  o  xito  x̄io  vit, where vit is the composite
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error. Now, if we assume vit is independent of xi, then we can estimate o and o using pooled

quantile regression of yit on 1,xit, and x̄i. (The intercept does not estimate a quantity of

particular interest.) But independence is very strong, and, if we truly believe it, then we

probably believe all quantile functions are parallel. Of course, we can always just assert that

the effect of interest is the set of coefficients on xit in the pooled quantile estimation, and we

allow these, along with the intercept and coefficients on x̄i, to change across quantile. The

asymptotic variance matrix estimator discussed for pooled quantile regression applies directly

once we define the explanatory variables at time t to be 1,xit, x̄i.

We have more flexibility if we are interested in the median, and a few simple approaches

suggest themselves. Write the model Medyit|xi,ci  Medyit|xit,ci  xit  ci in error form

as

yit  xit  ci  uit, Meduit|xi,ci  0, t  1, . . ,T     (4.10)

and consider the multivariate conditional distribution Dui|xi. Above we discussed the

centrally symmetric assumption, conditional on xi: Dui|xi  D−ui|xi. If we make this

assumption, then the time-demeaned errors üit have (univariate) conditional (on xi

distributions symmetric about zero, which means we can consistently estimate  by applying

pooled least absolute deviations to the time-demeaned equation ÿit  ẍit  üit, being sure to

obtain fully robust standard errors for pooled LAD.

Alternatively, under the centrally symmetric assumption, the difference in the errors,

Δuit  uit − ui,t−1 have symmetric distributions about zero, so one can apply pooled LAD to

Δyit  Δxit  Δuit, t  2, . . . ,T. From Honoré (1992) applied to the uncensored case, LAD on

the first differences is consistent when uit : t  1, . . . ,T is an i.i.d. sequence conditional on

xi,ci, even if the common distribution is not symmetric – and this may afford robustness for
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LAD on the first differences rather than on the time-demeaned data. Interestingly, it follows

from the discussion in Honoré (1992, Appendix 1) that when T  2, applying LAD on the first

differences is equivalent to estimating the ci along with o. So, in this case, there is no

incidental parameters problem in estimating the ci as long as ui2 − ui1 has a symmetric

distribution. Although not an especially weak assumption, central symmetry of Dui|xi allows

for serial dependence and heteroskedasticity in the uit (both of which can depend on xi or on t).

As always, we should be cautious in comparing the pooled OLS and pooled LAD estimates of

 on the demeaned or differenced data because they are only expected to be similar under the

conditional symmetry assumption.

If we impose the Mundlak-Chamberlain device, we can get by with conditional symmetry

of a sequence of bivariate distributions. Write yit  t  xit  x̄i  ai  uit, where

Meduit|xi,ai  0. If Dai,uit|xi has a symmetric distribution around zero then Dai  uit|xi

is symmetric about zero, and, if this holds for each t, pooled LAD of yit on 1,xit, and x̄i

consistently estimates t,,. (Therefore, we can estimate the partial effects on

Medyit|xit,ci and also test if ci is correlated with x̄i.) The assumptions used for this approach

are not as weak as we would like, but, like using pooled LAD on the time-demeaned data,

adding x̄i to pooled LAD gives a way to compare with the usual FE estimate of . .

(Remember, if we use pooled OLS with x̄i included, we obtain the FE estimate.) Fully robust

inference can be obtained by computing B̂ and Â in (4.3) and (4.4).

5. Quantile Methods for “Censored” Data
As is well known, the statistical structure of parametric models for data that have truly
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been censored – such as top-coded wealth, or a right-censored duration – is essentially the

same as models for corner solution responses – that is, variables that have a mass point, or pile

up, at one value (usually, zero). Examples of corner solution responses are labor supply,

charitable contributions, and amount of life insurance. An important point that is sometimes

overlooked is that the interpretation of the estimates is different in these two cases. In the data

censoring case, there is an underlying linear model (usually) whose coefficients we are

interested in. For example, we are interested in the conditional distribution of wealth given

covariates. That wealth has been top-coded means that we do not observe underlying wealth

over its entire range. In effect, it is a missing data problem. The same is true with duration

models.

In the corner solution case, we observe the response of interest over its entire range. We

use models such as Tobit because we want to recognize the mass point or points. Linear

functional forms for the mean, say, can miss important nonlinearities. When we apply, say,

standard Tobit to a corner solution, y, we are interested in features of Dy|x, such as

Py  0|x, Ey|x,y  0, and Ey|x. While the parameters in the model are important, they do

not directly provide partial effects on the quantities of interest. Of course, if we use a linear

model approximation for, say, Ey|x, then the coefficients are approximate partial effects. A

related point is: if we modify standard models for corner responses, say, consider

heteroskedasticity in the latent error of a Tobit, we should consider how it affects Dy|x, and

not just the paramter estimates. In the case of censored data, it is the parameters of the

underlying linear model we are interested in, and then it makes much more sense to focus on

parameter sensitivity.

In applying LAD methods to “censored” outcomes, we similarly should be aware of the
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difference between true data censoring and corner solution responses. With true data censoring

we clearly have an interest in obtaining estimates of, say,

yi∗  xi  ui,     (5.1)

where yi∗ is the variable we would like to explain. If yi∗ is top coded at, say, ri, then we observe

yi  minyi∗, ri. If we assume Dui|xi, ri  Normal0,2, then we can apply censored

normal regression (also called type I Tobit). This method applies even if ri is observed only

when yi∗ has been censored, which happens sometimes in duration studies. As shown by

Powell (1986), we can estimate (5.1) under much weaker assumptions than normality:

Medui|xi, ri  0     (5.2)

suffices, provided the censoring values value, ri, are always observed. Because the median

passes through monotonic functions,

Medyi|xi, ri  Medminxi  ui, ri|xi, ri
 minMedxi  ui|xi, ri, ri
 minxi, ri.     (5.3)

Because LAD consistently estimates the parameters of a conditional median, at least under

certain regularity conditions, (5.3) suggest estimate  as the solution to

min
b
∑
i1

N

|yi − minxib, ri|.     (5.4)

Powell (1986) showed that, even though the objective function has a corner it it, the censored

least absolute deviations (CLAD) estimator is N -asymptotically normal. Honoré, Khan, and

Powell (2002) provide methods that can be used when ri is not always observed.

CLAD can also be applied to corner solution responses. Suppose the variable of interest, yi,

has a corner at zero, and is determined by
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y  max0,x  u.     (5.5)

If Du|x is Normal0,2, then the MLE is the type I Tobit. Given ̂ and ̂2, we can compute

partial effects on the mean and various probabilities. The partial effects on Medy|x depend

only on , because

Medy|x  max0,x.     (5.6)

Of course, (5.6) provides a way to estimate  by CLAD under just

Medu|x  0.     (5.7)

The j measure the partial effects on Medy|x once Medy|x  0.

Once we recognize in corner solution applications that it is features of Dy|x that are of

interest, (5.6) becomes just a particular feature of Dy|x that we can identify, and it is no

better or worse than other features of Dy|x that we might want to estimate, such as a quantile

other than the median, or the mean Ey|x, or the “conditional” mean, Ey|x,y  0. Emphasis

is often given on the fact that the functional form for the median in (5.6) holds very generally

when (5.5) holds; other than (5.7), no restrictions are made on the shape of the distribution

Du|x or of its dependence on x. But for corner solution responses, there is nothing sacred

about (5.5). In fact, it is pretty restrictive because y depends on only one unobservable, u.

Two-part models allow more flexibility.

A model that is no more or less restrictive than (5.5) is

y  a  expx,     (5.8)

where the only assumption we make is

Ea|x  1,     (5.9)

24



Imbens/Wooldridge, IRP Lecture Notes 17, August ’08

where Da|x is otherwise unrestricted. In particular, we do not know Pa  0|x, which is

positive if y has mass point at zero, or Meda|x. Under (5.9),

Ey|x  expx,     (5.10)

which means we can consistently estimate  using nonlinear regression or a quasi-MLE in the

linear exponential family (such as Poisson or Gamma); it does not matter that y is a corner if its

mean is given by (5.10). The point here is that, if we simply focus on assumptions and what

can be identified under those assumptions, the model in (5.8) and (5.9) identifies just as many

features of Dy|x as the model in (5.5) and (5.7). They are different features, but neither is

inherently better than the other.

Continuing with this point, we can modify (5.5) rather simply and see that CLAD breaks

down. Suppose we add multiplicative heterogeneity:

y  a  max0,x  u,     (5.11)

where a ≥ 0, and even make the strong assumption that a is independent of x,u. The

distribution Dy|x now depends on the distribution of a, and does not follow a type I Tobit

model; generally, finding its distribution would be difficult, even if we specify a simple

distribution for a. Nevertheless, if we normalize Ea  1, then

Ey|x,u  Ea|x,u  max0,x  u  max0,x  u (because Ea|x,u  1). It follows

immediately by iterated expectations that if assumption (17.3) holds, then Ey|x has exactly

the same form as the type I Tobit model:

Ey|x  x/x  x/.     (5.12)

Therefore, the parameters  and 2 are identified and could be estimate by nonlinear least

squares or weighted NLS, or a quasi-MLE using the mean function (5.12). Note that Dy|x
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does not follow the type I Tobit distribution, so MLE is not available.

On the other hand, if we focus on the median, we have

Medy|x,a  a  max0,x.     (5.13)

Because there is no “law of iterated median” so, we cannot generally determine Medy|x

without further assumptions. One might argue that we are still interested in the j because they

measure the average partial effects on the median. But they do not appear to be generally

identified under this variate of the standard Tobit model.

Applying CLAD to corners is even trickier in panel data applications. Suppose

yit  max0,xit  ci  uit
Meduit|xi,ci  0,

    (5.14)
    (5.15)

so that (5.15) embodies strict exogeneity of xit conditional on ci. Under (5.14) and (5.15),

Medyit|xi,ci  max0,xit  ci.     (5.16)

Honoré (1992) and Honoré and Hu (2004) provide methods of estimating  without making

any assumptions about the distribution of ci, or restricting its dependence on xi. They do

assume conditional exchangeability assumptions on the uit; sufficient is independence with xi

and uit i.i.d. over t. Given estimates of the j, we can estimate the partial effects of the xtj on

Medyt|xt,c for Medyt|xt,c  0. Unfortunately, because we do not observe ci, or know

anything about its distribution, we do not know when the nonzero effect kicks in. We can write

the partial effect of xtj as

tjxt,c  1xt  c  0j.     (5.17)

We might be interested in averaging these across the distribution of unobserved heterogeneity,

but this distribution is not identified. (Interestingly, if ci has a Normalc,c2 distribution, then
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it is easy to show that the average of (5.17) across the heterogeneity is

Ecitjxt,ci  c − xt/cj, and we can see immediatly that it depends on the

location and scale of ci.)

For estimation of average partial effects, we can compare the situation of the median with

the mean. Using the Altonji and Matkin (2005) approach, suppose we assume

Dci|xi  Dci|x̄i. Then Eyit|xi  gtxit, x̄i for some unknown function gt, , and  is

identified (usually only up to scale) and the average partial effects on the mean are generally

identified. In other words, the assumptions under which we can identify APEs on the linear

mean are quite a bit weaker than those known to identify the APEs for a conditional median.
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