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IRP Lectures Madison, WI, August 2008

Lecture 15, Wednesday, Aug 6th, 11.00-12.00pm

Weak Instruments and Many Instruments

1. Introduction

In recent years a literature has emerged that has raised concerns with the quality of

inferences based on conventional methods such as Two Stage Least Squares (TSLS) and

Limited Information Maximum Likelihood (LIML) in instrumental variables settings when

the instrument(s) is/are only weakly correlated with the endogenous regressor(s). Although

earlier work had already established the poor quality of conventional normal approximations

with weak or irrelevant instruments, the recent literature has been motivated by empirical

work where ex post conventional large sample approximations were found to be misleading.

The recent literature has aimed at developing better estimators and more reliable methods

for inference.

There are two aspects of the problem. In the just-identified case (with the number of

instruments equal to the number of endogenous regressors), or with low degrees of over-

identification, the focus has largely been on the construction of confidence intervals that

have good coverage properties even if the instruments are weak. Even with very weak, or

completely irrelevant, instruments, conventional methods are rarely substantively mislead-

ing, unless the degree of endogeneity is higher than one typically encounters in studies using

cross-section data. Conventional TSLS or LIML confidence intervals tend to be wide when

the instrument is very weak, even if those intervals do not have the correct nominal cov-

erage for all parts of the parameter space. In this case better estimators are generally not

available. Improved methods for confidence intervals based on inverting test statistics have

been developed although these do not have the simple form of an estimate plus or minus a

constant times a standard error.

The second case of interest is that with a high degree of over-identification. These settings

often arise by interacting a set of basic instruments with exogenous covariates in order to
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improve precision. If there are many (weak) instruments, standard estimators can be severely

biased, and conventional methods for inference can be misleading. In particular TSLS has

been found to have very poor properties in these settings. Bootstrapping does not solve these

problems. LIML is generally much better, although conventional LIML standard errors are

too small. A simple to implement proportional adjustment to the LIML standard errors based

on the Bekker many-instrument asymptotics or the Chamberlain-Imbens random coefficients

argument appears to lead to substantial improvements in coverage rates.

2. Motivation

Much of the recent literature is motivated by a study by Angrist and Krueger (1991, AK).

Subsequently Bound, Jaeger and Baker (1996, BJB) showed that for some specifications AK

employed normal approximations were not appropriate despite very large sample sizes (over

300,000 observations).

2.1 The Angrist-Krueger Study

AK were interested in estimating the returns to years of education. Their basic specifi-

cation is:

Yi = α + β · Ei + εi,

where Yi is log (yearly) earnings and Ei is years of education. Their concern, following a

long literature in economics, e.g., Griliches, (1977), Card (2001), is that years of schooling

may be endogenous, with pre-schooling levels of ability affecting both schooling choices and

earnings given education levels. In an ingenuous attemp to address the endogeneity problem

AK exploit variation in schooling levels that arise from differential impacts of compulsory

schooling laws. School districts typically require a student to have turned six by January

1st of the year the student enters school. Since individuals are required to stay in school

till they turn sixteen, individual born in the first quarter have lower required minimum

schooling levels than individuals born in the last quarter. The cutoff dates and minimum

school dropout age differ a little bit by state and over time, so the full picture is more
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complicated but the basic point is that the compulsory schooling laws generate variation in

schooling levels by quarter of birth that AK exploit. Let Qi be the indicator for being born

in the fourth quarter.

One can argue that a more natural analysis of such data would be as a Regression

Discontinuity (RD) design, where we focus on comparisons of individuals born close to the

cutoff date. We will discuss such designs in a later lecture. However, in the census only

quarter of birth is observed, not the actual date, so there is in fact little that can be done

with the RD approach beyond what AK do. In addition, there are substantive arguments

why quarter of birth need not be a valid instrument (e.g., seasonal patterns in births, or

differential impacts of education by age at entering school). AK discuss many of the potential

concerns. See also Bound, Jaeger and Baker (1996). We do not discuss these concerns here

further.

Table 1 shows average years of education and average log earnings for individual born in

the first and fourth quarter, using the 1990 census. This is a subset of the AK data.

Table 1: Summary Statistics Subset of AK Data

Variable 1st Quarter 4th Quarter difference

Year of Education 12.688 12.840 0.151

Log Earnings 5.892 5.905 0.014

ratio 0.089

The sample size is 162,487. The last column gives the difference between the averages by

quarter, and the last row the ratio of the difference in averages. The last number is the Wald

estimate of the returns to education based on these data:

β̂ =
Y 4 − Y 1

E4 − E1

= 0.0893 (0.0105),
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where Y t and Et are the average level of log earnings and years of education for individuals

born in the t-th quarter. This is also equal to the Two-Stage-Least-Squares (TSLS) and

Limited-Information-Maximum-Likelihood (LIML) estimates because there is only a single

instrument and a single endogenous regressor. The standard error here is based on the delta

method and asymptotic joint normality of the numerator and denominator.

AK also present estimates based on additional instruments. They take the basic in-

strument and interact it with 50 state and 9 year of birth dummies. Here we take this

a bit further, and following Chamberlain and Imbens (2004) we interact the single binary

instrument with state times year of birth dummies to get 500 instruments. Denote the 500

dimensional vector of interactions of year and state of birth by Wi, and let Xi = (W ′

iEi)
′

be 501 dimensional the vector of included covariates (both endogenous and exogenous) and

Zi = (W ′

i , Qi · W ′

i )
′ be the 1000 dimensional vector of exogenous variables (including both

the excluded instruments Qi · Wi and the included exogenosu regressors Wi). This leads to

the following model:

Yi = X ′

iβ + εi = W ′

iβ0 + Ei · β1 + εi, E[Zi · εi] = 0.

Let Y, X, and Z be the N × 1 vector of log earnings, the N × 501 matrix with regressors,

and the N × 1000 matrix of instruments. The TSLS estimator for β is then

β̂TSLS =
(

X′Z (Z′Z)
−1

Z′X
)

−1 (

X′Z (Z′Z)
−1

Z′Y
)

.

For these data this leads to

β̂TSLS = 0.073 (0.008).

The LIML estimator adds a normal model for the relation between the L vector Xi and the

K-vector Zi, of the form

Ei = π′Zi + νi,
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and is based on maximization of the log likelihood function

L(β, π, Ω) =
N
∑

i=1

(

−1

2
ln |Ω| − 1

2

(

Yi − β ′

0Wi − β1 · π′Zi

Ei − π′Zi

)

′

Ω−1

(

Yi − β ′

0Wi − β1 · π′Zi

Ei − π′Zi

))

,

where Ω is the reduced form covariance matrix (the covariance matrix of (ε, νi)
′.

For this subset of the AK data we find, for the coefficient on years of education,

β̂LIML = 0.095 (0.017).

In large samples the LIML and TSLS are equivalent under homoskedasticity.

2.2 The Bound-Jaeger-Baker critique

BJB found that are potential problems with the AK results. They suggested that despite

the large samples used by AK large sample normal approximations may be very poor. The

reason is that the instruments are only very weakly correlated with the endogenous regressor.

The most striking evidence for this is based on the following calculations, that are based

on a suggestion by Alan Krueger. Take the AK data and re-calculate their estimates after

replacing the actual quarter of birth dummies by random indicators with the same marginal

distribution. In principle this means that the standard (gaussian) large sample approxima-

tions for TSLS and LIML are invalid since they rely on non-zero correlations between the

instruments and the endogenous regressor. Doing these calculations once for the single and

500 instrument case, for both TSLS and LIML, leads to the results in Table 2
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Table 2: Real and Random QOB Estimates

Single Instrument 500 Instruments

TSLS LIML

Real QOB 0.089 (0.011) 0.073 (0.008) 0.095 (0.017)

Random QOB -1.958 (18.116) 0.059 (0.085) -0.330 (0.1001)

With the single instrument the results are not so disconcertening. Although the confidence

interval is obviously not valid, it is wide, and few researchers would be misled by the results.

With many instruments the results are much more troubling. Although the instrument con-

tains no information, the results suggest that the instruments can be used to infer precisely

what the returns to education are. These results have provided the motivation for the re-

cent weak instrument literature. Note that there is an earlier literature, e.g., Phillips (1984)

Rothenberg (1984), but it is the BJB findings that got the attention of researchers doing

empirical work.

2.3 Simulations with Weak Instruments and Varying Degrees of Endogeneity

Here we provide slightly more systematic simulation evidence of the weak instrument

problems in the AK setting. We create 10,000 artificial data sets, all of size 160,000, designed

to mimic the key features of the AK data. In each of these data sets half the units have

quarter of birth (denoted by Qi) equal to 0 and 1 respectively. Then we draw the two reduced

form residuals νi and ηi from a joint normal distribution

(

νi

ηi

)

∼ N
((

0
0

)

,

(

0.446 ρ ·
√

0.446 ·
√

10.071

ρ ·
√

0.446 ·
√

10.071 10.071

))

.

The variances of the reduced form errors mimic those in the AK data. The correlation

between the reduced form residuals in the AK data is 0.318. The implied OLS coefficient is
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ρ ·
√

0.446/
√

10.071. Then years of education is equal to

Ei = 12.688 + 0.151 · Qi + ηi,

and log earnings is equal to

Yi = 5.892 + 0.014 · Qi + νi.

Now we calculate the IV estimator and its standard error, using either the actual qob

variable or a random qob variable as the instrument. We are interested in the size of tests

of the null that coefficient on years of education is equal to 0.089 = 0.014/0.151. We base

the test on the t-statistic. Thus we reject the null if the ratio of the point estimate minus

0.089 and the standard error is greater than 1.96 in absolute value. We repeat this for 12

different values of the reduced form error correlation. In Table 3 we report the proportion

of rejections and the median and 0.10 quantile of the width of the estimated 95% confidence

intervals.

Table 3: Coverage Rates of Conv. TSLS CI by Degree of Endogeneity

ρ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
implied OLS 0.00 0.02 0.04 0.06 0.08 0.11 0.13 0.15 0.17 0.19 0.20 0.21

Real QOB 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.95 0.95 0.95 0.95
Med Width 95% CI 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.06 0.05 0.05 0.05
0.10 quant Width 0.08 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.05 0.04 0.04 0.04

Random QOB 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.92 0.82 0.53
Med Width 95% CI 1.82 1.81 1.78 1.73 1.66 1.57 1.45 1.30 1.09 0.79 0.57 0.26
0.10 quant Width 0.55 0.55 0.5403 0.53 0.51 0.48 0.42 0.40 0.33 0.24 0.17 0.08
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In this example, unless the reduced form correlations are very high, e.g., at least 0.95,

with irrelevant the conventional confidence intervals are wide and have good coverage. The

amount of endogeneity that would be required for the conventional confidence intervals to

be misleading is higher than one typically encounters in cross-section settings. It is likely

that these results extend to cases with a low degree of over-identification, using either TSLS,

or preferably LIML. Put differently, although formally conventional confidence intervals are

not valid uniformly over the parameter space (e.g., Dufour, 1997), there are no examples we

are aware of where they have substantively misleading in just-identified examples. This in

contrast to the case with many weak instruments where especially TSLS can be misleading

in empirically relevant settings.

3. Weak Instruments

Here we discuss the weak instrument problem in the case of a single instrument, a single

endogenous regressor, and no additional exogenous regressors beyond the intercept. More

generally the qualitative features of these results by and large apply to the case with a few

weak instruments. We consider the model

Yi = β0 + β1 ·Xi + εi,

Xi = π0 + π1 · Zi + ηi,

with (εi, ηi) ⊥⊥ Zi, and jointly normal with covariance matrix Σ. (The normality is mainly

for some of the exact results, and it does not play an important role.) The reduced form for

the first equation is

Yi = α0 + α1 · Zi + νi,

where the parameter of interest is β1 = α1/π1. Let

Ω = E

[(

νi

ηi

)

·
(

νi

ηi

)

′
]

, and Σ = E

[(

εi

ηi

)

·
(

εi

ηi

)

′
]

,
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be the covariance matrix of the reduced form and stuctural disturbances respectively. Many

of the formal results in the literature are for the case of known Ω, and normal disturbances.

This is largely innocuous, as Ω can be precisely estimated in typical data sets. Note that

this it not the same as assuming that Σ is known, which is not innocuous since it depends

on Ω and β, and cannot be precisely estimated in settings with weak instruments

Σ =

(

Ω11 − 2βΩ12 + β2Ω22 Ω12 − βΩ22

Ω12 − βΩ22 Ω22

)

.

The standard estimator for β1 is

β̂IV

1
=

1

N

∑N

i=1

(

Yi − Y
) (

Zi − Z
)

1

N

∑N

i=1

(

Xi − X
) (

Zi − Z
) ,

where Y =
∑

i Yi/N , and similarly for X and Z.

A simple interpretation of the weak instrument is that with the concentration parameter

λ = π2

1
·

N
∑

i=1

(

Zi − Z
)2
/

σ2

η.

close to zero, both the covariance in the numerator and the covariance in the denomina-

tor are close to zero. In reasonably large samples both are well approximated by normal

distributions:

√
N

(

1

N

N
∑

i=1

(

Yi − Y
) (

Zi − Z
)

−Cov(Yi, Zi)

)

≈ N (0, V (Yi · Zi)) ,

and

√
N

(

1

N

N
∑

i=1

(

Xi − X
) (

Zi − Z
)

− Cov(Xi, ZI)

)

≈ N (0, V (Xi · Zi)) .

These two normal approximations tend to be accurate in applications with reasonable sample

sizes, irrespective of the population values of the covariances. If π1 6= 0, as the sample size

gets large, then the ratio will eventually be well approximated by a normal distribution
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as well. However, if Cov(Xi, Zi) ≈ 0, the ratio may be better approximated by a Cauchy

distribution, as the ratio of two normals centered close to zero.

The weak instrument literature is concerned with inference for β1 when the concentration

parameter λ is too close to zero for the normal approximation to the ratio to be accurate.

Staiger and Stock (1997, SS) formalize the problem by investigating the distribution of

the standard IV estimator under an alternative asymptotic approximation. The standard

asymptotics (strong instrument asymptotics in the SS terminology) is based on fixed param-

eters and the sample size getting large. In their alternative asymptotic sequence SS model π1

as a function of the sample size, π1N = c/
√

N , so that the concentration parameter converges

to a constant:

λ −→ c2 · V (Zi).

SS then compare coverage properties of various confidence intervals under this (weak instru-

ment) asymptotic sequence.

The importance of the SS approach is not in the specific sequence. The concern is more

that if a particular confidence interval does not have the appropriate coverage asymptotically

under the SS asymptotics, then there are values of the (nuisance) parameters in a potentially

important part of the parameter space (namely around πi = 0) such that the actual coverage

is substantially away from the nominal coverage for any sample size. More recently the issue

has therefore been reformulated as requiring confidence intervals to have asymptotically the

correct coverage probabilities uniformly in the parameter space. See for a discussion from

this perspective Mikusheva (2007). For estimation this perspective is not helpful: there

cannot be estimators that are consistent for β∗ uniformly in the parameter space since if

π1 = 0, there are no consistent estimators for β1. However, for testing there are generally

confidence intervals that are uniformly valid, but they are not of the conventional form, that

is, a point estimate plus or minus a constant times a standard error.

3.1 Tests and Confidence Intervals in the Just-identified Case
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Let the instrument Z̃i = Zi − Z be measured in deviations from its mean. Then define

the statistic

S(β1) =
1

N

N
∑

i=1

Z̃i · (Yi − β1 · Xi) .

Then, under the null hypothesis that β1 = β∗

1 , and conditional on the instruments, the

statistic
√

N · S(β∗

1) has an exact normal distribution

√
N · S(β∗

1) ∼ N
(

0,
N
∑

i=1

Z̃2

i · σ2

ε

)

.

Importantly, this result does not depend on the strength of the instrument. Anderson and

Rubin (1949, AR) propose basing tests for the null hypothesis

H0 : β1 = β0

1 , against the alternative hypothesis Ha : β1 6= β0

1 ,

on this idea, through the statistic

AR
(

β0

1

)

=
N · S(β0

1)
2

∑N

i=1
Z̃2

i

·
(

(

1 −β0
1

)

Ω

(

1
−β0

1

))

−1

.

This statistic has an exact chi-squared distribution with degrees of freedom equal to one. In

practice, of course, one does not know the reduced form covariance matrix Ω, but substituting

an estimated version of this matrix based on the average of the estimated reduced form

residuals does not affect the large sample properties of the test.

A confidence interval can be based on this test statistic by inverting it. For example, for

a 95% confidence interval for β1, we would get

CIβ1

0.95 = {β1 |AR(β1) ≤ 3.84} .

Note that this AR confidence interval cannot be empty, because at the standard IV estimator

β̂IV
1 we have AR(β̂IV

1 ) = 0, and thus β̂IV
1 is always in the confidence interval. The confidence
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interval can be equal to the entire real line, if the correlation between the endogenous re-

gressor and the instrument is close to zero. This is not surprising: in order to be valid even

if π1 = 0, the confidence interval must include all real values with probability 0.95.

3.3 Tests and Confidence Intervals in the Over-identified Case

The second case of interest is that with a single endogenous regressor and multiple in-

struments. We deal separately with the case where there are many (similar) instrument,

so this really concerns the case where the instruments are qualitatively different. Let the

number of instrumens be equal to K, so that the reduced form is

Xi = π0 + π′

1Zi + ηi,

with Zi a k-dimensional column vector. There is still only a single endogenous regressor,

and no exogenous regressors beyond the intercept. All the results generalize to the case with

additional exogenous covariates at the expense of additional notatio. The AR approach can

be extended easily to this over-identified case, because the statistic
√

N · S(β∗

1) still has a

normal distribution, but now a multivariate normal distribution. Hence one can base tests

on the AR statistic

AR
(

β0

1

)

= N · S
(

β0

1

)

′

(

N
∑

i=1

Z̃i · Z̃ ′

i

)−1

S
(

β0

1

)

·
(

(

1 −β0
1

)

Ω

(

1
−β0

1

))

−1

.

Under the same conditions as before this has an exact chi-squared distribution with degrees

of freedom equal to the number of instruments, k. A practical problem arises if we wish

to construct confidence intervals based on this statistic. Suppose we construct a confidence

interval, analogously to the just-identified case, as

CIβ1

0.95 =
{

β1

∣

∣AR(β1) ≤ X 2

0.95(K)
}

,

where X 2
0.95(k) is the 0.95 quantile of the chi-squared distribution with degrees of freedom

equal to k. The problem is that this confidence interval can be empty. The interpretation
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is that the test does not only test whether β1 = β0

1
, but also tests whether the instruments

are valid. However, one generally may not want to combine those hypotheses.

Kleibergen (2002) modifies the AR statistic and confidence interval construction. Instead

of the statistic S(β1), he considers a statistic that looks at the correlation between a particular

linear combination of the instruments (namely the estimated endogenous regressor) and the

residual:

S̃
(

β0

1

)

=
1

N

N
∑

i=1

(

Z̃ ′

iπ̂1(β
0

1)
)

·
(

Yi − β0

1 · Xi

)

,

where π̂ is the maximum likelihood estimator for π1 under the restriction β1 = β0
1 . The test

is then based on the statistic

K
(

β0

1

)

=
N · S(β0

1)
2

∑N

i=1
Z̃2

i

·
(

(

1 −β0
1

)

Ω

(

1
−β0

1

))

−1

.

This statistic has no longer an exact chi-squared distribution, but in large samples it still

has an approximate chi-square distribution with degrees of freedom equal to one. Hence the

test is straightforward to implement using standard methods.

Moreira (2003) proposes a method for adjusting the critical values that applies to a

number of tests, including the Kleibergen test. His idea is to focus on similar tests, test

that have the same rejection probability for all values of the nuisance parameter. The

nuisance parameter is here the vector of reduced form coefficients π, since we assume the

residual covariance matrix is known. The way to adjust the critical values is to consider the

distribution of a statistic such as the Kleibergen statistic conditional on a complete sufficient

statistic for the nuisance parameter. In this setting a complete sufficient statistic is readily

available in the form of the maximum likelihood estimator under the null, π̂1(β
0
1). Moreira’s

preferred test is based on the likelihood ratio. Let

LR
(

β0

1

)

= 2 ·
(

L
(

β̂1, π̂
)

− L
(

β0

1 , π̂(β0

1)
)

)

,
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be the likelihood ratio. Then let cLR(p, 0.95), be the 0.95 quantile of the distribution of

LR(β0
1) under the null hypothesis, conditional on π̂(β0

1) = p. The proposed test is to reject

the null hypothesis at the 5% level if

LR
(

β0

1

)

> cLR(π̂(β0

1
), 0.95),

where conventional test would use critical values from a chi-squared distribution with a

single degree of freedom. This test can then be converted to construct a 95% confidence

intervals. Calculation of the (large sample) critical values is simplified by the fact that they

only depend on the number of instruments k, and a scaled version of the π̂(β0
1). Tabulations

of these critical values are in Moreira (2003) and have been programmed in STATA (See

Moreira’s website).

3.4 Conditioning on the First Stage

The AR, Kleibergen and Moreira proposals for confidence intervals are asymptotically

valid irrespective of the strength of the first stage (the value of π1). However, they are not

valid if one first inspects the first stage, and conditional on the strength of that, decides to

proceed. Specifically, if in practice one first inspects the first stage, and decide to abandon

the project if the first stage F-statistic is less than some fixed value, and otherwise proceed

by calculating an AR, Kleibergen or Moreira confidence interval, the large sample coverage

probabilities would not necessarily be the nominal ones. In practice researchers do tend

to inspect and report the strength of the first stage. This is particularly true in recent

instrumental variables literature where researchers argue extensively for the validity of the

instrumental variables assumption. This typically involves detailed arguments supporting

the alleged mechanism that leads to the correlation between the endogenous regressor and the

instruments. For example, Section I in AK (page 981-994) is entirely devoted to discussing

the reasons and evidence for the relation between their instruments (quarter of birth) and

years of education. In such cases inference conditional on this may be more appropriate.

Chioda and Jansson (2006) propose a clever alternative way to construct a confidence

interval that is valid conditional on the strength of the first stage. Their proposed confidence
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interval is based on inverting a test statistic similar to the AR statistic. It has a non-standard

distribution conditional on the strength of the first stage, and they suggest a procedure that

involves numerically approximating the critical values. A caveat is that because the first

stage F-statistic, or the first stage estimates are not ancillary, conditioning on them involves

loss of information, and as a result the Chioda-Jansson confidence intervals are wider than

confidence intervals that are not valid conditional on the first stage.

4. Many Weak Instruments

In this section we discuss the case with many weak instruments. The problem is both

the bias in the standard estimators, and the misleadingly small standard errors based on

conventional procedures, leading to poor coverage rates for standard confidence intervals in

many situations. The earlier simulations showed that especially TSLS, and to a much lesser

extent LIML, have poor properties in this case. Note first that resampling methods such as

bootstrapping do not solve these problems. In fact, if one uses the standard bootstrap with

TSLS in the AK data, one finds that the average of the bootstrap estimates is very close to

the TSLS point estimat, and that the bootstrap variance is very close to the TSLS variance.

The literature has taken a number of approaches. Part of the literature has focused on

alternative confidence intervals analogues to the single instrument case. In addition a variety

of new point estimators have been proposed.

4.1 Bekker Asymptotics

In this setting alternative asymptotic approximations play a bigger role than in the single

instrument case. In an important paper Bekker (1995) derives large sample approximations

for TSLS and LIML based on sequences where the number of instruments increases propor-

tionally to the sample size. He shows that TSLS is not consistent in that case. LIML is

consistent, but the conventional LIML standard errors are not valid. Bekker then provides

LIML standard errors that are valid under this asymptotic sequence. Even with relatively

small numbers of instruments the differences between the Bekker and conventional asymp-

totics can be substantial. See also Chao and Swanson (2005), and Hansen, Hausman and
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Newey () for extensions.

Here we describe the Bekker correction to the standard errors for the model with a single

endogenous regressors, allowing for the presence of exogenous regressors. We write the model

as:

Yi = β ′

1X1i + β ′

2X2i + εi = β ′Xi + εi,

where the single endogenous variable X1i satisfies:

X1i = π′

1Z1i + π′

2X2i + ηi = π′Zi + ηi.

Define the matrices PZ and MZ as:

PZ = Z(Z′Z)−1Z′, MZ = I −Z(Z′Z)−1Z′.

Let σ2 be the variance of εi, with consistent estimator σ̂2. The standard TSLS variance is

Vtsls = σ̂2 · (XPZX)−1 .

Under the standard, fixed number of instrument asymptotics, the asymptotic variance for

LIML is identical to that for TSLS, and so in principle we can use the same estimator. In

practice researchers typically estimate the variance for LIML as

Vliml = σ̂2 ·
(

XPZX− λ̂ · X′MZX
)

−1

,

To get Bekker’s correction, we need a little more notation. Define

Ω =
(

Y X
)

PZ

(

Y X
)

/N =

(

Ω11 Ω12

Ω′

12
Ω22

)

,

so that

Ω11 = YPZY/N, Ω12 = YPZX/N, and Ω22 = XPZX/N.
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Now define

A = N · Ω′

12
Ω12 − Ω22βΩ12 −Ω′

12
β ′Ω22 + Ω22ββ ′Ω22

Ω11 − 2Ω12β + β ′Ω22β
.

Then:

Vbekker = σ̂2 ·
(

XPZX − λ̂ · X′MZX
)

−1

× (XPZX− λ · A) ·
(

XPZX− λ̂ · X′MZX
)

−1

.

4.2 Random Effects Estimators

Chamberlain and Imbens (2004, CI) propose a random effects quasi maximum likelihood

estimator. They propose modelling the first stage coefficients πk, for k = 1, . . . , K, in the

regression

Xi = π0 + π′

1Zi + ηi = π0 +

K
∑

k=1

πk · Zik + ηi,

(after normalizing the instruments to have mean zero and unit variance,) as independent

draws from a normal N (µπ, σ2

π) distribution. (More generally CI allow for the possibility that

only some of the first stage coefficients come from this common distribution, to take account

of settings where some of the instruments are qualitatively different from the others.) The

idea is partly that in most cases with many instruments, as for example in the AK study, the

instruments arise from interacting a small set of distinct instruments with other covariates.

Hence it may be natural to think of the coefficients on these instruments in the reduced

form as exchangeable. This notion is captured by modelling the first stage coefficients as

independent draws from the same distribution. In addition, this set up parametrizes the

many-weak instrument problem in terms of a few parameters: the concern is that the values

of both µπ and σ2
π are close to zero.

Assuming also joint normality for (εi, ηi), one can derive the likelihood function

L(β0, β1, π0, µπ, σ2

π, Ω).



Imbens/Wooldridge, IRP Lecture Notes 15, August ’08 18

In contrast to the likelihood function in terms of the original parameters (β0, β1, π0, π1, Ω),

this likelihood function depends on a small set of parameters, and a quadratic approximation

to its logarithms is more likely to be accurate.

CI discuss some connections between the REQML estimator and LIML and TSLS in

the context of this parametric set up. First they show that in large samples, with a large

number of instruments, the TSLS estimator corresponds to the restricted maximum likeli-

hood estimator where the variance of the first stage coefficients is fixed at a large number,

or σ2
π = ∞:

β̂TSLS ≈ arg max
β0,β1,π0,µπ

= L(β0, β1, π0, µπ, σ2

π = ∞, Ω).

From a Bayesian perspective, TSLS corresponds approximately to the posterior mode given

a flat prior on all the parameters, and thus puts a large amount of prior mass on values of

the parameter space where the instruments are jointly powerful.

In the same setting with a large number of instruments, no exogenous covariates, and a

known reduced form covariance matrix, the LIML estimator corresponds approximately to

the REQML estimator where we fix σ2
π · (1 β1)

′Ω−1(1 β1)
′ at a large number. In the special

case where we fix µπ = 0 and the random effects specification applies to all isntruments, CI

show that the REQML estimator is identical to LIML. However, like the Bekker asymptotics,

the REQML calculations suggests that the standard LIML variance is too small: the variance

of the REQML estimator is approximately equal to the standard LIML variance times

1 + σ−2

π ·
((

1
β1

)

′

Ω−1

(

1
β1

))−1

.

This is similar to the Bekker adjustment.

4.3 Choosing Subsets of the Instruments

In an interesting paper Donald and Newey (2001) consider the problem of choosing a

subset of an infinite sequence of instruments. They assume the instruments are ordered,
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so that the choice is the number of instruments to use. Given the set of instruments they

consider a variety of estimators including TSLS and LIML. The criterion they focus on

is based on an approximation to the expected squared error. This criterion is not feasible

because it depends on unknown parameters, but they show that using an estimated version of

this leads to approximately the same expected squared error as using the infeasible criterion.

Although in its current form not straightforward to implement, this is a very promising

approach that can apply to many related problems such as generalized method of moments

settings with many moments.

4.4 Other Estimators

Other estimators have also been investigated in the many weak instrument settings.

Hansen, Hausman and Newey (2006), and Hausman, Newey and Woutersen (2007) look at

Fuller’s estimator, which is modification of LIML that has finite moments. Phillips and Hale

(1977) (and later Angrist, Imbens and Krueger, 1999) suggest a jackknive estimator. Hahn,

Hausman and Kuersteiner (2004) look at jackknife versions of TSLS.

4.5 Flores’ simulations

Many simulations exercises have been carried out for evaluating the performance of testing

procedures and point estimators. In general it is difficult to assess the evidence of these

experiments. They are rarely tied to actual data sets, and so the choices for parameters,

distributions, sample sizes, and number of instruments are typically arbitrary.

In one of the more extensive simulation studies Flores-Lagunes (2007) reports results

comparing TSLS, LIML, Fuller, Bias corrected versions of TSLS, LIML and Fuller, a Jack-

nife version of TSLS (Hahn, Hausman and Kuersteiner, 2004), and the REQML estimator, in

settings with 100 and 500 observations, and 5 and 30 instruments for the single endogenous

variable. He looks at median bias, median absolute error, inter decile range, coverage rates,

and He concludes that “our evidence indicates that the random-effects quasi-maximum like-

lihood estimator outperforms alternative estimators in terms of median point estimates and

coverage rates.” Note that Flores-Lagunas does not include LIML with the Bekker standard
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errors.
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