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IRP Lectures Madison, WI, August 2008

Lecture 13, Wednesday, Aug 6th, 8.00-9.15am

Bayesian Inference

1. Introduction

In this lecture we look at Bayesian inference. Although in the statistics literature ex-

plicitly Bayesian papers take up a large proportion of journal pages these days, Bayesian

methods have had very little impact in economics. This seems to be largely for historial rea-

sons. In many empirical settings in economics Bayesian methods appear statistically more

appropriate, and computationally more attractive, than the classical or frequentist methods

typically used. Recent textbooks discussing modern Bayesian methods with an applied focus

include Lancaster (2004) and Gelman, Carlin, Stern and Rubin (2004).

One important consideration is that in practice frequentist and Baeysian inferences are

often very similar. In a regular parametric model, conventional confidence intervals around

maximum likelihood (that is, the maximum likelihood estimate plus or minus 1.96 times the

estimated standard error), which formally have the property that whatever the true value of

the parameter is, with probability 0.95 the confidence interval covers the true value, can in

fact also be interpreted as approximate Bayesian probability intervals (that is, conditional

on the data and given a wide range of prior distributions, the posterior probability that the

parameter lies in the confidence interval is approximately 0.95). The formal statement of

this remarkable result is known as the Bernstein-Von Mises theorem. This result does not

always apply in irregular cases, such as time series settings with unit roots. In those cases

there are more fundamental differences between Bayesian and frequentist methods.

Typically a number of reasons are given for the lack of Bayesian methods in econometrics.

One is the difficulty in choosing prior distributions. A second reason is the need for a fully

specified parametric model. A third is the computational complexity of deriving posterior

distributions. None of these three are compelling.
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Consider first the specification of the prior distribution. In regular cases the influence of

the prior distribution disappears as the sample gets large, as formalized in the Bernstein-Von

Mises theorem. This is comparable to the way in which in large samples normal approx-

imations can be used for the finite sample distributions of classical estimators. If, on the

other hand, the posterior distribution is quite sensitive to the choice of prior distribution,

then it is likely that the sampling distribution of the maximum likelihood estimator is not

well approximated by a normal distribution centered at the true value of the parameter in a

frequentist analysis.

A conventional Bayesian analysis does require a fully specified parameter model, as well

as a prior distribution on all the parameters of this model. In frequentist analyses it is

often possible to specify only part of the model, and use a semi-parametric approach. This

advantage is not as clear cut as it may seem. When the ultimate questions of interest do

not depend on certain features of the distribution, the results of a parametric model are

often robust given a flexible specification of the nuisance functions. As a result, extending

a semi-parametric model to a fully parametric one by flexibly modelling the nonparametric

component often works well in practice. In addition, Bayesian semi-parametric methods

have been developed.

Finally, traditionally computational difficulties held back applications of Bayesian meth-

ods. Modern computational advances, in particular the development of markov chain monte

carlo methods, have reduced, and in many cases eliminated, these difficulties. Bayesian anal-

yses are now feasible in many settings where they were not twenty years ago. There are now

few restrictions on the type of prior distributions that can be considered and the dimension

of the models used.

Bayesian methods are especially attractive in settings with many parameters. Examples

discussed in these notes include panel data with individual-level heterogeneity in multiple

parameters, instrumental variables with many instruments, and discrete choice data with

multiple unobserved product characteristics. In such settings, methods that attempt to es-

timate every parameter precisely without linking it to similar parameters, often have poor
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repeated sampling properties. This shows up in Bayesian analyses in the dogmatic poste-

rior distributions resulting from flat prior distributions. A more attractive approach, that

is succesfuly applied in the aforementioned examples, can be based on hierarchical prior

distributions where the parameters are assumed to be drawn independently from a common

distribution with unknown location and scale. The recent computational advances make

such models feasible in many settings.

2. Bayesian Inference

The formal set up is the following: we have a random variable X, which is known to have

a probability density, or probability mass, function conditional on an unknown parameter θ.

We are interested the value of the parameter θ, given one or more independent draws from

the conditional distribution of X given θ. In addition we have prior beliefs about the value

of the parameter θ. We will capture those prior beliefs in a prior probability distribution.

We then combine this prior distribution and the sample information, using Bayes’ theorem,

to obtain the conditional distribution of the parameter given the data.

2.1 The General Case

Now let us do this more formally. There are two ingredients to a Bayesian analysis. First

a model for the data given some unknown parameters, specified as a probability (density)

function:

fX |θ(x|θ).

As a function of the parameter this is called the likelihood function, and denoted by L(θ)

or L(θ|x). Second, a prior distribution for the parameters, p(θ). This prior distribution

is known to, that is, choosen by the researcher. Then, using Bayes’ theorem we calculate

the conditional distribution of the parameters given the data, also known as the posterior

distribution,

p(θ|x) =
fX,θ(x, θ)

fX(x)
=

fX |θ(x|θ) · p(θ)
∫

fX |θ(x|θ) · p(θ)dθ
.

In this step we often use a shortcut. First note that, as a function of θ, the conditional
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density of θ given X is proportional to

p(θ|x) ∝ fX |θ(x|θ) · p(θ) = L(θ|x) · p(θ).

Once we calculate this product, all we have to do is found the constant that makes this

expression integrate out to one as a function of the parameter. At that stage it is often easy

to recognize the distribution and figure out through that route what the constant is.

2.2 A Normal Example with Unknown Mean and Known Variance, and a

Single Observation

Let us look at a simple example. Suppose the conditional distribution of X given the

parameter µ is normal with mean µ and variance 1, denoted by N (µ, 1). Suppose we choose

the prior distribution for µ to be normal with mean zero and variance 100, N (0, 100). What

is the posterior distribution of µ given X = x? The posterior distribution is proportional to

fµ|X(µ|x) ∝ exp

(

−1

2
(x− µ)2

)

· exp

(

− 1

2 · 100µ2

)

= exp−1

2

(

x2 − 2xµ + µ2 + µ2/100

)

∝ exp

(

− 1

2(100/101)

(

µ − (100/101)x
)2

)

.

This implies that the conditional distribution of µ given X = x is normal with mean

(100/101) · x and variance 100/101, or N (x · 100/101, 100/101).

In this example the model was a normal distribution for X given the unknown mean µ,

and we choose a normal prior distribution. This was a very convenient choice, leading the

posterior distribution to be normal as well. In this case the normal prior distribution is a

conjugate prior distribution, implying that the posterior distribution is in the same family of

distributions as the prior distribution, allowing for analytic calculations. If we had choosen

a different prior distribution it would typically not have been possible to obtain an analytic

expression for the posterior distribution.

Let us continue the normal distribution example, but generalize the prior distribution.

Suppose that given µ the random variable X has a normal distribution with mean µ and
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known variance σ2, or N (µ, σ2). The prior distribution for µ is normal with mean µ0 and

variance τ 2, or N (µ0, τ
2). Then the posterior distribution is proportional to:

fµ|X(µ|x) ∝ exp

(

− 1

2σ2
(x − µ)2

)

· exp

(

− 1

2 · τ 2
(µ − µ0)

2

)

∝ exp−1

2

(

x2

σ2
− 2xµ

σ2
+

µ2

σ2
+

µ2

τ 2
− 2µµ0

τ 2
+

µ2
0

τ 2

)

∝ exp−1

2

(

µ2
σ2 + τ 2

τ 2σ2
− µ

2xτ 2 + 2µ0σ
2

τ 2 · σ2

)

∝ exp− 1

2(1/(1/τ 2 + 1/σ2))

(

(µ − (x/σ2 + µ0/τ
2)/(1/σ2 + 1/τ 2)

)

∼ N
(

x/σ2 + µ0/τ
2

1/σ2 + 1/τ 2
,

1

1/τ 2 + 1/σ2)

)

.

The result is quite intuitive: the posterior mean is a weighted average of the prior mean

µ0 and the observation x with weights adding up to one and proportional to the precision

(defined as one over the variance), 1/σ2 for x and 1/τ 2 for µ0:

E[µ|X = x] =
x
σ2 + µ0

τ2

1

σ2 + 1

τ2

.

The posterior precision is obtained by adding up the precision for each component

1

V(µ|X)
=

1

σ2
+

1

τ 2
.

So, what you expect ex post, E[µ|X], that is, after seeing the data, is a weighted average

of what you expected before seeing the data, E[µ] = µ0, and the observation, X, with the

weights determined by their respective variances.

There are a number of insights obtained by studying this example more carefully. Suppose

we are really sure about the value of µ before we conduct the experiment. In that case we

would set τ 2 small and the weight given to the observation would be small, and the posterior

distribution would be close to the prior distribution. Suppose on the other hand we are

very unsure about the value of µ. What value for τ should we choose? Obviously a large

value, but what is the limit? We can in fact let τ go to infinity. Even though the prior

distribution is not a proper distribution anymore if τ 2 = ∞, the posterior distribution is
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perfectly well defined, namely µ|X ∼ N (X, σ2). In that case we have an improper prior

distribution. We give equal prior weight to any value of µ. That would seem to capture

pretty well the idea that a priori we are ignorant about µ. This is the idea of looking for

an relatively uninformative prior distribution. This is not always easy, and the subject of

a large literature. For example, a flat prior distribution is not always uninformative about

particular functions of parameters.

2.3 A Normal Example with Unknown Mean and Known Variance and Mul-

tiple Observations

Now suppose we have N independent draws from a normal distribution with unknown

mean µ and known variance σ2. Suppose we choose, as before, the prior distribution to be

normal with mean µ0 and variance τ 2, or N (µ0, τ
2).

The likelihood function is

L(µ|σ2, x1, . . . , xN ) =

N
∏

i=1

1√
2πσ2

exp

(

− 1

2σ2
(xi − µ)2

)

,

so that with a normal (µ0, τ
2) prior distribution the posterior distribution is proportional to

p(µ|x1, . . . , xN ) ∝ exp

(

− 1

2τ 2
(µ − µ0)

2

)

·
N
∏

i=1

exp

(

− 1

2σ2
(xi − µ)2

)

.

Thus, with N observations x1, . . . , xN we find, after straightforward calculations,

µ|X1, . . . , XN ∼ N
(

µ0/τ
2 +

∑

xi/σ
2

1/τ 2 + N/σ2
,

1

1/τ 2 + N/σ2

)

.

2.4 The Normal Distribution with Known Mean and Unknown Variance

Let us also briefly look at the case of a normal model with known mean and unknown

variance. Thus,

Xi|σ2 ∼ N (0, σ2),

and X1, . . . , XN independent given σ2. The likelihood function is

L(σ2) =
N
∏

i=1

σ−N exp

(

− 1

2σ2
X2

i

)

.
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Now suppose that the prior distribution for σ2 is, for some fixed S2
0

and K0, such that the

distribution of σ−2 · S2
0 · K0 is chi-squared with K0 degrees of freedom. In other words, the

prior distribution of σ−2 is (S2
0 · K0)

−1 times a chi-squared distribution with K0 degrees of

freedom. Then the posterior distribution of σ−2 is (S2
0
· K0 +

∑

i X
2
i )−1 times a chi-squared

distribution with K0 + N degrees of freedom, so this is a conjugate prior distribution.

3. The Bernstein-Von Mises Theorem

Let us go back to the normal example with N observations, and unknown mean and

known variance. In that case with a normal N (µ0, τ
2) prior distribution the posterior for µ

is

µ|x1, . . . , xN ∼ N
(

x · 1

1 + σ2/(N · τ 2)
+ µ0 ·

σ2/(Nτ 2)

1 + σ2/(Nτ 2)
,

σ2/N

1 + σ2/(Nτ 2)

)

.

When N is very large, the distribution of
√

N (µ−x̄) conditional on the data is approximately

√
N (x̄− µ)|x1, . . . , xN ∼ N (0, σ2).

In other words, in large samples the influence of the prior distribution disappears, unless

the prior distribution is choosen particularly badly, e.g., τ 2 equal to zero. This is true in

general, i.e., for different models and different prior distributions. Moreover, in a frequentist

analysis we would find that in large samples (and in this specific normal example even in

finite samples),

√
N (x̄− µ)|µ ∼ N (0, σ2).

Let us return to the Bernoulli example to see the same point. Suppose that conditional on

the parameter P = p, the random variables X1, X2, . . . , XN are independent with Bernoulli

distributions with probability p. Let the prior distribution of P be Beta with parameters α

and β, or B(α, β). Now consider the conditional distribution of P given X1, . . . , XN :

fP |X1,...,XN
(p|x) ∝ pα−1+

P

N

i=1
Xi · (1 − p)β−1+N−

P

N

i=1
Xi,

which is a Beta distribution, B(α − 1 +
∑N

i=1
Xi, β − 1 + N − ∑N

i=1
Xi), with mean and
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variance

E[P |X1, . . . , XN ] =
α +

∑N

i=1
Xi

α + β + N
, and V(P ) =

(α +
∑N

i=1
Xi)(β + N − ∑N

i=1
Xi)

(α + β + N)2(α + β + 1 + N)
.

What happens if N gets large? Let p̂ =
∑

i Xi/N be the relative frequency of success (which

is the maximum likelihood estimator for p). Then the mean and variance converge to

E[P |X1, . . . , XN ] ≈ p̂,

and

V(P ) ≈ 0.

As the sample size gets larger, the posterior distribution becomes concentrated at a value

that does not depend on the prior distribution. This in fact can be taken a step further.

In this example, the limiting distribution of
√

N · (P − p̂) conditional on the data, can be

shown to be

√
N (p̂ − P |x1, . . . , xN

d−→ N (0, p̂(1 − p̂)),

again irrespective of the choice of α and β. The interpretation of this result is very impor-

tant: in large sample the choice of prior distribution is not important in the sense that the

information in the prior distribution gets dominated by the sample information. That is,

unless your prior beliefs are so strong that they cannot be overturned by evidence (i.e., the

prior distribution is zero over some important range of the parameter space), at some point

the evidence in the data outweights any prior beliefs you might have started out with.

This is known as the Bernstein-von Mises Theorem. Here is a general statement for the

scalar case. Let the information matrix Iθ at θ:

Iθ = −E

[

∂2

∂θ∂θ′
ln fX(x|θ)

]

= −
∫

∂2

∂θ∂θ′
ln fX(x|θ)fX(x|θ)dx,

and let σ2 be the inverse at a fixed value θ0.

σ2 = I−1

θ0
.
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Let p(θ) be the prior distribution, and pθ|X1,...,XN
(θ|X1, . . . , XN ) be the posterior distribution.

Now let us look at the distribution of a transformation of θ, γ =
√

N(θ − θ0), with density

pγ|X1,...,XN
(γ|X1, . . . , XN ) = pθ|X1,...,XN

(θ0 +
√

N ·γ|X1, . . . , XN )/
√

N . Now let us look at the

posterior distribution for θ if in fact the data were generated by f(x|θ) with θ = θ0. In that

case the posterior distribution of γ converges to a normal distribution with mean zero and

variance equal to σ2 in the sense that

sup
γ

∣

∣

∣

∣

pγ|X1,...,XN
(γ|X1, . . . , XN ) − 1√

2πσ2
exp

(

− 1

2σ2
γ2

)
∣

∣

∣

∣

−→ 0.

See Van der Vaart (2001), or Ferguson (1996). At the same time, if the true value is θ0, then

the mle θ̂mle also has a limiting distribution with mean zero and variance σ2:

√
N (θ̂ml − θ0)

d−→ N (0, σ2).

The implication is that we can interpret confidence intervals as approximate probability

intervals from a Bayesian perspective. Specifically, let the 95% confidence interval be [θ̂ml −
1.96 · σ̂/

√
N, θ̂ml + 1.96 · σ̂/

√
N ]. Then, approximately,

Pr
(

θ̂ml − 1.96 · σ̂/
√

N ≤ θ ≤ θ̂ml + 1.96 · σ̂/
√

N
∣

∣

∣
X1, . . . , XN

)

−→ 0.95.

There are important cases where this result does not hold, typically when convergence

to the limit distribution is not uniform. One is the unit-root setting. In a simple first

order autoregressive example it is still the case that with a normal prior distribution for the

autoregressive parameter the posterior distribution is normal (see Sims and Uhlig, 1991).

However, if the true value of the autoregressive parameter is unity, the sampling distribution

is not normal even in large samples. In that case one has to take a more principled stand

whether one wants to make subjective probability statements, or frequentist claims.

4. Markov Chain Monte Carlo Methods

Are we really restricted to choosing the prior distributions in these conjugate families as

we did in the examples so far? No. The posterior distributions are well defined irrespective

of conjugacy. Conjugacy only simplifies the computations. If you are outside the conjugate
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families, you typically have to resort to numerical methods for calculating posterior moments.

Recently many methods have been developed that make this process much easier, including

Gibbs sampling, Data Augmentation, and the Metropolis-Hastings algorithm. All three are

examples of M arkov-Chain-Monte-Carlo or MCMC methods.

The general idea is to construct a chain, or sequence of values, θ0, θ1, . . . , such that for

large k θk can be viewed as a draw from the posterior distribution of θ given the data. This

is implemented through an algorithm that, given a current value of the parameter vector θk,

and given the data X1, . . . , XN draws a new value θk+1 from a distribution f(·) indexed by

θk and the data:

θk+1 ∼ f(θ|θk, data),

in such a way that if the original θk came from the posterior distribution, then so does θk+1

(although θk and θk+1 in general will not be independent draws)

θk|data ∼ p(θ|data), then θk+1|data ∼ p(θ|data).

Even if we have such an algorithm, the problem is that in principle we would need a starting

value θ0 that such that

θ0 ∼ p(θ|data).

However, in many cases, irrespective of where we start, that is, irrespective of θ0, as k −→ ∞,

it will be the case that the distribution of the parameter conditional only on the data

converges to the posterior distribution:

θk|data
d−→ p(θ|data),

as k −→ ∞.

If that is true, then we can just pick a θ0, run the chain for a long time, collect the

values θ0, . . . , θK for a large value of K, and approximate the posterior distribution by the

distribution of θK0
, . . . , θK . For example, the mean and standard deviation of the posterior
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distribution would be estimated as

Ê[θ|data] =
1

K − K0 + 1

K
∑

k=K0

θk,

and

V̂[θ|data] =
1

K −K0 + 1

K
∑

k=K0

(

θk − Ê[θ|data]
)2

.

The first K0 − 1 iterations are discarded to let algorithm converge to the stationary distri-

bution, or “burn in.”

4.1 Gibbs Sampling

The idea being the Gibbs sampler is to partition the vector of parameters θ into two (or

more) parts, θ′ = (θ′1, θ
′
2). Instead of sampling θk+1 directly from a conditional distribution

of

f(θ|θk, data),

we first sample θ1,k+1 from the conditional distribution of

p(θ1|θ2,k, data),

and then sample θ2,k+1 from the conditional distribution of

p(θ2|θ1,k+1, data).

It is clear that if (θ1,k, θ2,k) is from the posterior distribution, then so is (θ1,k, θ2,k).

4.2 Data Augmentation

This is best illustrated with an example. Suppose we are interested in estimating the

parameters of a censored regression or Tobit model. There is a latent variable

Y ∗
i = X ′

iβ + εi,

with εi|Xi ∼ N (0, 1). (I assume the variance is known for simplicity. This is not essential).

We observe

Yi = max(0, Y ∗
i ),
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and the regressors Xi. Suppose the prior distribution for β is normal with some mean µ,

and some covariance matrix Ω.

The posterior distribution for β does not have a closed form expression. This is not due

to an awkward choice for the prior distribution, because there is no conjugate family for this

problem. There is however a simple way of obtaining draws from the posterior distribution

using data augmentation in combination with the Gibbs sampler. The first key insight is to

view both the vector Y∗ = (Y ∗
1 , . . . , Y ∗

N) and β as unknown random variables. The Gibbs

sampler consists of two steps. First we draw all the missing elements of Y∗ given the current

value of the parameter β, say βk. This involves drawing a series of truncated univariate

normal random variables:

Y ∗
i |β, data ∼ T N (X ′

iβ, 1, 0) ,

if observation i is truncated, where T N (µ, σ2, c) denotes a truncated normal distribution

with mean and variance (for the not truncated normal distribution) µ and σ2, and truncation

point c (truncated from above). (Note that we do not need to draw the observed values of

Y ∗
i .) Second, we draw a new value for the parameter, βk+1 given the data and given the

(partly drawn) Y∗. The latter is easy given the normal prior distribution: the posterior is

normal:

p (β|data,Y∗) ∼ N
(

(

X′X + Ω−1
)−1 ·

(

X′Y + Ω−1µ
)

,
(

X′X + Ω−1
)−1

)

.

In this example it would still have been feasible to do evaluate the likelihood function di-

rectly using numerical integration. Another example where the computational advantages

of using data augmentation are even more striking is the multinomial probit model with an

unrestricted covariance matrix. See Rossi, Allenby and McCulloch (2005).

4.3 Metropolis-Hastings

We are again interested in p(θ|data). In this case p(θ|data) is assumed to be easy to

evaluate, but difficult to draw from. Suppose we have a current value θk. Then we draw a new

candidate value for the chain from a candidate distribution q(θ|θk, data). This distribution
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may (but need not) depend on θk. Denote the candidate value by θ. We will either accept

the new value, or keep the old value. Then we calculate the ratio

r(θk, θ) =
p(θ|data) · q(θk|θ, data)

p(θk|data) · q(θ|θk, data)
.

The probability that the new draw θ is accepted is

ρ(θk, θ) = min (1, r(θk, θ)) ,

so that

Pr (θk+1 = θ) = ρ(θk, θ), and Pr (θk+1 = θk) = 1 − ρ(θk, θ).

The optimal choice for the candidate distribution is

q∗(θ|θk, data) = p(θ|data),

so that ρ(θk, θ) = 1 and every draw will get accepted. The trouble is that it is difficult to

draw from this distribution. In practice you want to have a relatively dispersed distribution

as the candidate distribution, so that the ratio r(θk, θ) does not get too large.

5. Examples

Here we discuss a number of applications of Bayesian methods. All models contain

parameters that are difficult to estimate consistently, and in all cases numerical methods are

required to obtain draws from the posterior distribution. The first two are about random

coeffiecients. In that case Bernstein-Von Mises would only apply to the individual level

parameters if the number of observations per individual would get large.

5.1 Demand Models with Unobserved Heterogeneity in Preferences

Rossi, McCulloch, and Allenby (1996, RMA) are interested in the optimal design of

coupon policies. Supermarkets can choose to offer identical coupons for a particular product

(tuna cans is the example they use). Alternatively, they may choose to offer differential

coupons based on consumer’s fixed characteristics. Taking this ever further, they could make

the value of the coupon a function of the purchase history of the individual, for example
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tailoring the amount of the discount offered in the coupon to the evidence for price sensitivity

contained in purchase patterns. RMA set out to estimate the returns to various coupon

policies. It is clear that for this investigation to be meaningful one needs to allow for

household-level heterogeneity in taste parameters and price elasticities. Even with large

amounts of data available, there will be many households for whom these parameters cannot

be estimated precisely. RMA therefore use a hieararchical or random coefficients model.

RMA model households choosing the product with the highest utility, where utility for

household i, product j, j = 0, 1, . . . , J , at purchase time t is

Uijt = X ′
itβi + εijt,

with the εijt independent accross households, products and purchase times, and normally

distributed with product-specific variances σ2
j (and σ2

0
normalized to one). The Xit are

observed choice characteristics that in the RMA application include price, some marketing

variables, as well as brand dummies. All choice characteristics are assumed to be exogenous,

although that assumption may be questioned for the price and marketing variables. Because

for some households we have few purchases, it is not possible to accurately estimate all βi

parameters. RMA therefore assume that the household-specific taste parameters are random

draws from a normal distribution centered at Z ′
iΓ:

βi = Z ′
iΓ + ηi, ηi ∼ N (0, Σ).

Now Gibbs sampling can be used to obtain draws from the posterior distribution of the βi.

To be a little more precise, let us describe the steps in the Gibbs sampler for this example.

For more details see RMA. RMA use a normal prior distribution for Γ, a Wishart prior

distribution for Σ−1, and inverse Gamma prior distributions for the σ2
j . To implement the

Gibbs sampler, the key is to treat the unobserved utilities as parameters.

The first step is to draw the household parameters βi given the utilities Uijt and the

common parameters Γ, Σ, and σ2
j . This is straightforward, because we have a standard

normal linear model for the utilities, with a normal prior distribution for βi with parameters
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Z ′
iΓ and variance Σ, and Ti observations. We can draw from this posterior distribution for

each household i.

In the second step we draw the σ2
j using the results for the normal distribution with

known mean and unknown variance.

The third step is to draw from the posterior of Γ and Σ, given the βi. This again is just

a normal linear model, now with unknown mean and unknown variance.

The fourth step is to draw the unobserved utilities given the βi and the data. Doing

this one household/choice at a time, conditioning on the utilities for the other choices, this

merely involves drawing from a truncated normal distribution, which is simple and fast.

For some households, those with many recorded purchases and sufficient variation in

product characteristics, the posterior distribution will be tight, whereas for others there may

be little information in the data and the posterior distribution, conditional on the data as

well as Γ and Σ, will essentially be the prior distribution for βi, which is N (Z ′
iΓ, Σ).

To think about optimal coupon policies given a particular information set it is useful

to think first about the posterior distribution of the household specific parameters βi. If

a supermarket had full information about the household parameters βi, there would be no

additional value in the household characteristics or the purchase history. When we therefore

compare a blanket coupon policy (where every household would receive a coupon with the

same value) with one that depends on a larger information set that household demographics,

or one that also includes purchase histories, the key question is how much precision the

information adds about the household level parameters. Specifically, how does the marginal

distribution of the household parameters compare with the conditional distribution given

purchase histories or given demographics. To make this specific, suppose that the there is

only one choice characteristic, price, with household parameter βi.

The starting point is the case with no household information whatsoever. We can simulate

draws from this distribution by drawing from the conditional distribution of βi given the data

for randomly selected households. In the second case we allow conditioning on the household
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demographic characteristics Zi. This leads to less dispersed posterior distributions for the

price coefficients. In the third case we also condition on purchase histories. Figure 1, taken

from RMA shows for ten households the boxplots of the posterior distribution of the price

coefficient under these information sets, one can see the increased precision that results from

conditioning on the purchase histories.

5.2 Panel Data Models with Multiple Individual Specific Parameters

Chamberlain and Hirano (1999, CH), see also Hirano (2002), are interested in deriving

predictive distributions for earnings using longitudinal data. They are particularly interested

in allowing for unobserved individual-level heterogeneity in earnings variances. The specific

model they use assumes that log earnings Yit follow the process

Yit = X ′
iβ + Vit + αi + Uit/hi.

The key innovation in the CH study is the individual variation in the conditional variance,

captured by hi. In this specification X ′
iβ is a systematic component of log earnings, similar

to that in specifications used in Abowd and Card () (CH actually use a more general non-

linear specification, but the simpler one suffices for the points we make here.) The second

component in the model, Vit, is a first order autoregressive component,

Vit = γ · Vit−1 + Wit,

where

Vi1 ∼ N (0, σ2

v), Wit ∼ N (0, σ2

w).

The first factor in the last component has a standard normal distribution,

Uit ∼ N (0, 1).

Analyzing this model by attempting to estimate the αi and hi directly would be misguided.

From a Bayesian perspective this corresponds to assuming a flat prior distribution on a

high-dimensional parameter space.
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To avoid such pitfalls CH model αi and hi through a random effects specification.

αi ∼ N (0, σ2

α). and hi ∼ G(m/2, τ/2).

In their empirical application using data from the Panel Study of Income Dynamics (PSID),

CH find strong evidence of heterogeneity in conditional variances. Some of this heterogeneity

is systematically associated with observed characteristics of the individual such as educa-

tion, with higher educated individuals experiences lower levels of volatility. Much of the

heterogeneity, however, is within groups homogenous in observed characteristics.

The following table, from CH, presents quantiles of the predictive distribution of the

conditional standard deviation 1/
√

hi for different demographic groups: Up to here one

Table 1: quantiles of the predictive distribution of the conditional standard

deviation

Quantile
Sample 0.05 0.10 0.25 0.50 0.75 0.90 0.95

All (N=813) 0.04 0.05 0.07 0.11 0.20 0.45 0.81
High School Dropouts (N=37) 0.06 0.08 0.11 0.16 0.27 0.49 0.79
High School Graduates (N=100) 0.04 0.05 0.06 0.11 0.21 0.49 0.93
College Graduates (N=122) 0.03 0.04 0.05 0.09 0.18 0.40 0.75

could have done essentially the same using frequentist methods. One could estimate first the

common parameters of the model, β, σ2
v, σ2

w, m, τ , and σ2
α by maximum likelihood given the

specification of the model. Conditional on the covariates one could for each demographic

group write the quantiles of the conditional standard deviation in terms of these parameters

and obtain point estimates for them.

However, CH wish to go beyond this and infer individual-level predictive distributions

for earnings. Taking a particular individual, one can derive the posterior distribution of

αi, hi, β, σ2
v, and σ2

w, given that individual’s earnings as well as other earnings, and predict

future earnings. To illustrate this CH report earnings predictions for a number of individuals.
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Taking two of their observations, one an individual with a sample standard deviation of log

earnings of 0.07 and one an individual with a sample standard deviation of 0.47, they report

the difference between the 0.90 and 0.10 quantile for the log earnings distribution for these

individuals 1 and 5 years into the future.

Table 2:

0.90-0.10 quantile
individual sample std 1 year out 5 years out

321 0.07 0.32 0.60

415 0.47 1.29 1.29

The variation reported in the CH results may have substantial importance for variation

in optimal savings behavior by individuals.

5.3 Instrumental Variables with Many Instruments

In Chamberlain and Imbens (1995, CI) analyze the many instrument problem from a

Bayesian perspective. CI use the reduced form for years of education,

Xi = π0 + Z ′
iπ1 + ηi,

combined with a linear specification for log earnings,

Yi = α + β · Z ′
iπ1 + εi.

CI assume joint normality for the reduced form errors,

(

εi

ηi

)

∼ N (0, Ω).

This gives a likelihood function

L(β, α, π0, π1, Ω|data).
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The focus of the CI paper is on inference for β, and the sensitivity of such inferences to the

choice of prior distribution in settings with large numbers of instruments. In that case the

dimension of the parameter space is high. Hence a flat prior distribution may in fact be a

poor choice. One way to illustrate see this is that a flat prior on π1 leads to a prior on the

sum
∑K

k=1
π2

ik that puts most probability mass away from zero. If in fact the concern is that

collectively, the instruments are all weak, one should allow for this possibility in the prior

distribution. To be specific, if the prior distribution for the π1k is dispersed, say N (0, 1002),

then the prior distribution for the
∑

i π
2
1k is 100 times a chi-squared random variable with

degrees of freedom equal to K, implying that a priori the concentration parameter is known

to be large.

CI then show that the posterior distribution for β, under a flat prior distribution for

π1 provides an accurate approximation to the sampling distribution of the TSLS estimator,

providing both a further illustration of the lack of appeal of TSLS in settings with many

instruments, and the unattractiveness of the flat prior distribution.

As an alternative CI suggest a hierarchical prior distribution with

π1k ∼ N (µπ, σ2

π).

In the Angrist-Krueger 1991 compulsory schooling example there is in fact a substantive

reason to believe that σ2
π is small. If the π1k represent the effect of the differences in the

amount of required schooling, one would expect the magnitude of the π1k to be less than the

amount of variation in the compulsory schooling. The latter is less than one year. Since any

distribution with support on [0, 1] has a variance less than or equal to 1/12, the standard

deviation of the first stage coefficients should not be more than
√

1/12 = 0.289. Using the

Angrist-Krueger data CI find that the posterior distribution for σπ is concentrated close to

zero, with the posterior mean and median equal to 0.119.

5.4 Binary Response with Endogenous Discrete Regressors

Geweke, Gowrisankaran, and Town (2003, GGT) are interested in estimating the effect of

hospital quality on mortality, taking into account possibly non-random selection of patients
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into hospitals. Patients can choose from 114 hospitals. Given their observed individual

characteristics Zi, latent mortality is

Y ∗
i =

113
∑

j=1

Cijβj + Z ′
iγ + εi,

where Cij is an indicator for patient i going to hospital j. The focus is on the hospital effects

on mortality, βj. Realized mortality is

Yi = 1{Y ∗
i ≥ 0}.

The concern is about selection into the hospitals, and the possibility that this is related to

unobserved components of latent mortality GGT model latent the latent utility for patient

i associated with hospital j as

C∗
ij = X ′

ijα + ηij,

where the Xij are hospital-individual specific characteristics, including distance to hospital.

Patient i then chooses hospital j if

C∗
ij ≥ Cik, for k = 1, . . . , 114.

The endogeneity is modelled through the potential correlation between ηij and εi. Specifi-

cally, GGT asssume that as

εi =

113
∑

j=1

ηij · δj + ζi,

where the ζi is a standard normal random variable, independent of the other unobserved

components. GGT model the ηij as standard normal, independent across hospitals and

across individuals. This is a very strong assumption, implying essentially the independence

of irrelevant alternatives property. One may wish to relax this by allowing for random

coefficients on the hospital characteristics.

Given these modelling decisions GGT have a fully specified joint distribution of hospi-

tal choice and mortality given hospital and individual characteristics. The log likelihood
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function is highly nonlinear, and it is unlikely it can be well approximated by a quadratic

function. GGT therefore use Bayesian methods, and in particular the Gibbs sampler to ob-

tain draws from the posterior distribution of interest. In their empirical analysis GGT find

strong evidence for non-random selection. They find that higher quality hospitals attract

sicker patients, to the extent that a model based on exogenous selection would have led to

misleading conclusions on hospital quality.

5.5 Discrete Choice Models with Unobserved Choice Characteristics

Athey and Imbens (2007, AI) study discrete choice models, allowing both for unobserved

individual heterogeneity in taste parameters as well as for multiple unobserved choice charac-

teristics. In such settings the likelihood function is multi-modal, and frequentist approxima-

tions based on quadratic approximations to the log likelihood function around the maximum

likelihood estimator are unlikely to be accurate. The specific model AI use assumes that the

utility for individual i in market t for choice j is

Uijt = X ′
itβi + ξ′jγi + εijt,

where Xit are market-specific observed choice characteristics, ξj is a vector of unobserved

choice characteristics, and εijt is an idiosyncratic error term, independent accross market,

choices, and individuals, with a normal distribution centered at zero, and with the variance

normalized to unity. The individual-specific taste parameters for both the observed and

unobserved choice characteristics normally distributed:

(

βi

γi

)

|Zi ∼ N (∆Zi, Ω),

with the Zi observed individual characteristics.

AI specify a prior distribution on the common parameters, ∆, and Ω, and on the values of

the unobserved choice characteristics ξj . Using gibbs sampling and data augmentation with

the unobserved utilities as unobserved random variables makes sampling from the posterior

distribution conceptually straightforward even in cases with more than one unobserved choice

characteristic. In contrast, earlier studies using multiple unobserved choice characteristics



Imbens/Wooldridge, IRP Lecture Notes 13, August ’08 22

(Elrod and Keane, 1995; Goettler and Shachar, 2001), using frequentist methods, faced much

heavier computational burdens.
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