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IRP Lectures Madison, WI, August 2008

Lecture 1, Monday, Aug 4th, 8.30-9.45am

Estimation of Average Treatment Effects Under Unconfoundedness, Part I

1. Introduction

In this lecture we look at several methods for estimating average effects of a program,

treatment, or regime, under unconfoundedness. The setting is one with a binary program.

The traditional example in economics is that of a labor market program where some individ-

uals receive training and others do not, and interest is in some measure of the effectiveness

of the training. Unconfoundedness, a term coined by Rubin (1990), refers to the case where

(non-parametrically) adjusting for differences in a fixed set of covariates removes biases in

comparisons between treated and control units, thus allowing for a causal interpretation of

those adjusted differences. This is perhaps the most important special case for estimating

average treatment effects in practice. Alternatives typically involves strong assumptions link-

ing unobservables to observables in specific ways in order to allow adjusting for the relevant

differences in unobserved variables. An example of such a strategy is instrumental variables,

which will be discussed in Lecture 3. A second example that does not involve additional

assumptions is the bounds approach developed by Manski (1990, 2003).

Under the specific assumptions we make in this setting, the population average treat-

ment effect can be estimated at the standard parametric
√
N rate without functional form

assumptions. A variety of estimators, at first sight quite different, have been proposed for

implementing this. The estimators include regression estimators, propensity score based es-

timators and matching estimators. Many of these are used in practice, although rarely is

this choice motivated by principled arguments. In practice the differences between the esti-

mators are relatively minor when applied appropriately, although matching in combination

with regression is generally more robust and is probably the recommended choice. More im-

portant than the choice of estimator are two other issues. Both involve analyses of the data

without the outcome variable. First, one should carefully check the extent of the overlap



Imbens/Wooldridge, IRP Lecture Notes 1, August ’08 2

in covariate distributions between the treatment and control groups. Often there is a need

for some trimming based on the covariate values if the original sample is not well balanced.

Without this, estimates of average treatment effects can be very sensitive to the choice of,

and small changes in the implementation of, the estimators. In this part of the analysis

the propensity score plays an important role. Second, it is useful to do some assessment of

the appropriateness of the unconfoundedness assumption. Although this assumption is not

directly testable, its plausibility can often be assessed using lagged values of the outcome as

pseudo outcomes. Another issue is variance estimation. For matching estimators bootstrap-

ping, although widely used, has been shown to be invalid. We discuss general methods for

estimating the conditional variance that do not involve resampling.

In these notes we first set up the basic framework and state the critical assumptions in

Section 2. In Section 3 we describe the leading estimators. In Section 4 we discuss variance

estimation. In Section 5 we discuss assessing one of the critical assumptions, unconfounded-

ness. In Section 6 we discuss dealing with a major problem in practice, lack of overlap in the

covariate distributions among treated and controls. In Section 7 we illustrate some of the

methods using a well known data set in this literature, originally put together by Lalonde

(1986).

In these notes we focus on estimation and inference for treatment effects. We do not dis-

cuss here a recent literature that has taken the next logical step in the evaluation literature,

namely the optimal assignment of individuals to treatments based on limited (sample) in-

formation regarding the efficacy of the treatments. See Manski (2004, 2005, Dehejia (2004),

Hirano and Porter (2005).

2. Framework

The modern set up in this literature is based on the potential outcome approach developed

by Rubin (1974, 1977, 1978), which view causal effects as comparisons of potential outcomes

defined on the same unit. In this section we lay out the basic framework.

2.1 Definitions
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We observe N units, indexed by i = 1, . . . , N , viewed as drawn randomly from a large

population. We postulate the existence for each unit of a pair of potential outcomes, Yi(0)

for the outcome under the control treatment and Yi(1) for the outcome under the active

treatment. In addition, each unit has a vector of characteristics, referred to as covariates,

pretreatment variables or exogenous variables, and denoted by Xi.
1 It is important that

these variables are not affected by the treatment. Often they take their values prior to the

unit being exposed to the treatment, although this is not sufficient for the conditions they

need to satisfy. Importantly, this vector of covariates can include lagged outcomes. Finally,

each unit is exposed to a single treatment; Wi = 0 if unit i receives the control treatment

and Wi = 1 if unit i receives the active treatment. We therefore observe for each unit the

triple (Wi, Yi, Xi), where Yi is the realized outcome:

Yi ≡ Yi(Wi) =

{

Yi(0) if Wi = 0,
Yi(1) if Wi = 1.

Distributions of (Wi, Yi, Xi) refer to the distribution induced by the random sampling from

the population.

Several additional pieces of notation will be useful in the remainder of these notes. First,

the propensity score (Rosenbaum and Rubin, 1983) is defined as the conditional probability

of receiving the treatment,

e(x) = Pr(Wi = 1|Xi = x) = E[Wi|Xi = x].

Also, define, for w ∈ {0, 1}, the two conditional regression and variance functions:

µw(x) = E[Yi(w)|Xi = x], σ2
w(x) = V(Yi(w)|Xi = x).

2.2 Estimands: Average Treatment Effects

1Calling such variables exogenous is somewhat at odds with several formal definitions of exogeneity
(e.g., Engle, Hendry and Richard, 1974), as knowledge of their distribution can be informative about the
average treatment effects. It does, however, agree with common usage. See for example, Manski, Sandefur,
McLanahan, and Powers (1992, p. 28).
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In this discussion we will primarily focus on a number of average treatment effects (ATEs).

For a discussion of testing for the presence of any treatment effects under unconfoundedness

see Crump, Hotz, Imbens and Mitnik (2007). Focusing on average effects is less limiting

than it may seem, however, as this includes averages of arbitrary transformations of the

original outcomes.2 The first estimand, and the most commonly studied in the econometric

literature, is the population average treatment effect (PATE):

τP = E[Yi(1) − Yi(0)].

Alternatively we may be interested in the population average treatment effect for the treated

(PATT, e.g., Rubin, 1977; Heckman and Robb, 1984):

τP,T = E[Yi(1) − Yi(0)|W = 1].

Most of the discussion in these notes will focus on τP , with extensions to τP,T available in

the references.

We will also look at sample average versions of these two population measures. These

estimands focus on the average of the treatment effect in the specific sample, rather than in

the population at large. These include, the sample average treatment effect (SATE) and the

sample average treatment effect for the treated (SATT):

τS =
1

N

N
∑

i=1

(

Yi(1) − Yi(0)
)

, and τS,T =
1

NT

∑

i:Wi=1

(

Yi(1) − Yi(0)
)

,

where NT =
∑N

i=1 Wi is the number of treated units. The sample average treatment effects

have received little attention in the recent econometric literature, although it has a long

tradition in the analysis of randomized experiments (e.g., Neyman, 1923). Without further

assumptions, the sample contains no information about the population ATE beyond the

2Lehman (1974) and Doksum (1974) introduce quantile treatment effects as the difference in quantiles
between the two marginal treated and control outcome distributions. Bitler, Gelbach and Hoynes (2002)
estimate these in a randomized evaluation of a social program. Firpo (2003) develops an estimator for such
quantiles under unconfoundedness.
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sample ATE. To see this, consider the case where we observe the sample (Yi(0), Yi(1),Wi, Xi),

i = 1, . . . , N ; that is, we observe for each unit both potential outcomes. In that case the

sample average treatment effect, τS =
∑

i(Yi(1)−Yi(0))/N , can be estimated without error.

Obviously the best estimator for the population average effect, τP , is τS. However, we cannot

estimate τP without error even with a sample where all potential outcomes are observed,

because we lack the potential outcomes for those population members not included in the

sample. This simple argument has two implications. First, one can estimate the sample ATE

at least as accurately as the population ATE, and typically more so. In fact, the difference

between the two variances is the variance of the treatment effect, which is zero only when

the treatment effect is constant. Second, a good estimator for one average treatment effect

is automatically a good estimator for the other. One can therefore interpret many of the

estimators for PATE or PATT as estimators for SATE or SATT, with lower implied standard

errors.

The difference in asymptotic variances forces the researcher to take a stance on what the

quantity of interest is. For example, in a specific application one can legitimately reach the

conclusion that there is no evidence, at the 95% level, that the PATE is different from zero,

whereas there may be compelling evidence that the SATE is positive. Typically researchers

in econometrics have focused on the PATE, but one can argue that it is of interest, when one

cannot ascertain the sign of the population-level effect, to know whether one can determine

the sign of the effect for the sample. Especially in cases, which are all too common, where

it is not clear whether the sample is representative of the population of interest, results for

the sample at hand may be of considerable interest.

2.2 Identification

We make the following key assumption about the treatment assignment:

Assumption 1 (Unconfoundedness)

(

Yi(0), Yi(1)
)

⊥⊥ Wi

∣

∣

∣
Xi.
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This assumption was first articulated in this form in Rosenbaum and Rubin (1983a). Lech-

ner (1999, 2002) refers to this as the “conditional independence assumption,” Following a

parametric version of this in Heckman and Robb (1984) it is also referred to as “selection

on observables.” In the missing data literature the equivalent assumption is referred to as

“missing at random.”

To see the link with standard exogeneity assumptions, suppose that the treatment effect

is constant: τ = Yi(1)−Yi(0) for all i. Suppose also that the control outcome is linear in Xi:

Yi(0) = α +X ′
iβ + εi,

with εi ⊥⊥ Xi. Then we can write

Yi = α+ τ ·Wi +X ′
iβ + εi.

Given the constant treatment effect assumption, unconfoundedness is equivalent to inde-

pendence of Wi and εi conditional on Xi, which would also capture the idea that Wi is

exogenous. Without this constant treatment effect assumption, however, unconfoundedness

does not imply a linear relation with (mean-)independent errors.

Next, we make a second assumption regarding the joint distribution of treatments and

covariates:

Assumption 2 (Overlap)

0 < Pr(Wi = 1|Xi) < 1.

Rosenbaum and Rubin (1983a) refer to the combination of the two assumptions as ”stongly

ignorable treatment assignment.” For many of the formal results one will also need smooth-

ness assumptions on the conditional regression functions and the propensity score (µw(x)

and e(x)), and moment conditions on Yi(w). I will not discuss these regularity conditions

here. Details can be found in the references for the specific estimators given below.
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There has been some controversy about the plausibility of Assumptions 1 and 2 in eco-

nomic settings and thus the relevance of the econometric literature that focuses on estimation

and inference under these conditions for empirical work. In this debate it has been argued

that agents’ optimizing behavior precludes their choices being independent of the potential

outcomes, whether or not conditional on covariates. This seems an unduly narrow view.

In response I will offer three arguments for considering these assumptions. The first is a

statistical, data descriptive motivation. A natural starting point in the evaluation of any

program is a comparison of average outcomes for treated and control units. A logical next

step is to adjust any difference in average outcomes for differences in exogenous background

characteristics (exogenous in the sense of not being affected by the treatment). Such an

analysis may not lead to the final word on the efficacy of the treatment, but the absence of

such an analysis would seem difficult to rationalize in a serious attempt to understand the

evidence regarding the effect of the treatment.

A second argument is that almost any evaluation of a treatment involves comparisons

of units who received the treatment with units who did not. The question is typically not

whether such a comparison should be made, but rather which units should be compared, that

is, which units best represent the treated units had they not been treated. Economic theory

can help in classifying variables into those that need to be adjusted for versus those that do

not, on the basis of their role in the decision process (e.g., whether they enter the utility

function or the constraints). Given that, the unconfoundedness assumption merely asserts

that all variables that need to be adjusted for are observed by the researcher. This is an

empirical question, and not one that should be controversial as a general principle. It is clear

that settings where some of these covariates are not observed will require strong assumptions

to allow for identification. Such assumptions include instrumental variables settings where

some covariates are assumed to be independent of the potential outcomes. Absent those

assumptions, typically only bounds can be identified (e.g., Manski, 1990, 1995).

A third, related, argument is that even when agents optimally choose their treatment, two

agents with the same values for observed characteristics may differ in their treatment choices



Imbens/Wooldridge, IRP Lecture Notes 1, August ’08 8

without invalidating the unconfoundedness assumption if the difference in their choices is

driven by differencese in unobserved characteristics that are themselves unrelated to the

outcomes of interest. The plausability of this will depend critically on the exact nature

of the optimization process faced by the agents. In particular it may be important that

the objective of the decision maker is distinct from the outcome that is of interest to the

evaluator. For example, suppose we are interested in estimating the average effect of a

binary input (e.g., a new technology) on a firm’s output. Assume production is a stochastic

function of this input because other inputs (e.g., weather) are not under the firm’s control,

or Yi = g(W, εi). Suppose that profits are output minus costs, πi(w) = g(w, εi) − ci ·w, and

also that a firm chooses a production level to maximize expected profits, equal to output

minus costs:

Wi = arg max
w

E[πi(w)|ci] = arg max
w

E[g(w, εi) − ci · w|ci],

implying

Wi = 1{E[g(1, εi) − g(0, εi) ≥ ci|ci]} = h(ci).

If unobserved marginal costs ci differ between firms, and these marginal costs are independent

of the errors εi in the firms’ forecast of production given inputs, then unconfoundedness will

hold as

(g(0, εi), g(1, εi)) ⊥⊥ ci.

Note that under the same assumptions one cannot necessarily identify the effect of the input

on profits since (πi(0), πi(1)) are not independent of ci. See for a related discussion, in the

context of instrumental variables, Athey and Stern (1998). Heckman, Lalonde and Smith

(2000) discuss alternative models that justify unconfoundedness. In these models individuals

do attempt to optimize the same outcome that is the variable of interest to the evaluator.

They show that selection on observables assumptions can be justified by imposing restrictions
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on the way individuals form their expectations about the unknown potential outcomes. In

general, therefore, a researcher may wish to, either as a final analysis or as part of a larger

investigation, consider estimates based on the unconfoundedness assumption.

Given strongly ignorable treatment assignment one can identify the population average

treatment effect. The key insight is that given unconfoundedness, the following equalities

holds:

µw(x) = E[Yi(w)|Xi = x] = E[Yi(w)|Wi = w,Xi = x] = E[Yi|Wi = w,Xi = x],

and µw(x) is identified. Thus one can estimate the average treatment effect τ by first

estimating the average treatment effect for a subpopulation with covariates X = x:

τ (x) ≡ E[Yi(1) − Yi(0)|Xi = x] = E[Yi(1)|Xi = x] − E[Yi(0)|Xi = x]

= E[Yi(1)|Xi = x,Wi = 1] − E[Yi(0)|Xi = x,Wi = 0]

= E[Yi|Xi,Wi = 1] − E[Yi|Xi,Wi = 0].

To make this feasible, one needs to be able to estimate the expectations E[Yi|Xi = x,Wi = w]

for all values of w and x in the support of these variables. This is where the second assumption

enters. If the overlap assumption is violated at X = x, it would be infeasible to estimate

both E[Yi|Xi = x,Wi = 1] and E[Yi|Xi = x,Wi = 0] because at those values of x there would

be either only treated or only control units.

Some researchers use weaker versions of the unconfoundedness assumption (e.g., Heck-

man, Ichimura, and Todd, 1998). If the interest is in the population average treatment effect,

it is in fact sufficient to assume that

E[Yi(w)|Wi, Xi] = E[Yi(w)|Xi],

for w = 0, 1. Although this assumption is unquestionably weaker, in practice it is rare that

a convincing case is made for the weaker assumption without the case being equally strong
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for the stronger Assumption 1. The reason is that the weaker assumption is intrinsically

tied to functional form assumptions, and as a result one cannot identify average effects on

transformations of the original outcome (e.g., logarithms) without the strong assumption.

One can weaken the unconfoundedness assumption in a different direction if one is only

interested in the average effect for the treated (e.g., Heckman, Ichimura and Todd, 1997).

In that case one need only assume Yi(0) ⊥⊥ Wi

∣

∣

∣
Xi. and the weaker overlap assumption

Pr(Wi = 1|Xi) < 1. These two assumptions are sufficient for identification of PATT because

moments of the distribution of Y (1) for the treated are directly estimable.

An important result building on the unconfoundedness assumption shows that one need

not condition simultaneously on all covariates. The following result shows that all biases due

to observable covariates can be removed by conditioning solely on the propensity score:

Result 1 Suppose that Assumption 1 holds. Then:

(

Yi(0), Yi(1)
)

⊥⊥ Wi

∣

∣

∣
e(Xi).

Proof: We will show that Pr(Wi = 1|Yi(0), Yi(1), e(Xi)) = Pr(Wi = 1|e(Xi)) = e(Xi),

implying independence of (Yi(0), Yi(1)) and Wi conditional on e(Xi). First, note that

Pr(Wi = 1|Yi(0), Yi(1), e(Xi)) = E[Wi = 1|Yi(0), Yi(1), e(Xi)]

= E

[

E[Wi|Yi(0), Yi(1), e(X), Xi]
∣

∣

∣
Yi(0), Yi(1), e(Xi)

]

= E

[

E[Wi|Yi(0), Yi(1), Xi]
∣

∣

∣
Yi(0), Yi(1), e(Xi)

]

= E

[

E[Wi|Xi]
∣

∣

∣
Yi(0), Yi(1), e(Xi)

]

= E [e(Xi)|Yi(0), Yi(1), e(Xi)] = e(Xi),

where the last equality but one follows from unconfoundedness. The same argument shows

that

Pr(Wi = 1|e(Xi)) = E[Wi = 1|e(Xi)] = E

[

E[Wi = 1|Xi]
∣

∣

∣
e(Xi)

]

= E [e(Xi)|e(Xi)] = e(Xi).
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�

Extensions of this result to the multivalued treatment case are given in Imbens (2000)

and Lechner (2001).

To provide intuition for the Rosenbaum-Rubin result, recall the textbook formula for

omitted variable bias in the linear regression model. Suppose we have a regression model

with two regressors:

Yi = β0 + β1 ·Wi + β ′
2Xi + εi.

The bias of omittingXi from the regression on the coefficient on Wi is equal to β ′
2δ, where δ is

the vector of coefficients on Wi in regressions of the elements of Xi on Wi. By conditioning on

the propensity score we remove the correlation between Xi and Wi because Xi ⊥⊥Wi|e(Xi).

Hence omitting Xi no longer leads to any bias (although it may still lead to some efficiency

loss).

2.4 Efficiency Bounds and Asymptotic Variances for Population Average

Treatment Effects

Next we review some results on the effiency bound for estimators of the average treat-

ment effects τP . This requires strong ignorability and some smoothness assumptions on the

conditional expectations of potential outcomes and the treatment indicator (for details, see

Hahn, 1998). Formally, Hahn (1998) shows that for any regular estimator for τP , denoted

by τ̂ , with

√
N · (τ̂ − τP )

d−→ N (0, V ),

we can show that

V ≥ E

[

σ2
1(Xi)

e(Xi)
+

σ2
0(Xi)

1 − e(Xi)
+ (τ (Xi) − τP )2

]

. (1)

Knowing the propensity score does not affect this efficiency bound.
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Hahn also shows that asymptotically linear estimators exist that achieve the efficiency

bound, and hence such efficient estimators can be approximated as

τ̂ = τP +
1

N

N
∑

i=1

ψ(Yi,Wi, Xi, τP ) + op(N
−1/2),

where ψ(·) is the efficient score:

ψ(y, w, x, τP) =

(

wy

e(x)
− (1 − w)y

1 − e(x)

)

− τP −
(

µ1(x)

e(x)
+

µ0(x)

1 − e(x)

)

· (w − e(x)). (2)

3. Estimating Average Treatment Effects

Here we discuss the leading estimators for average treatment effects under unconfounded-

ness. What is remarkable about this literature is the wide range of ostensibly quite different

estimators, many of which are regularly used in empirical work. We first briefly describe a

number of the estimators, and then discuss their relative merits.

3.1 Regression

The first class of estimators relies on consistent estimation of µw(x) for w = 0, 1. Given

µ̂w(x) for these regression functions, the PATE and SATE are estimated by averaging their

difference over the empirical distribution of the covariates:

τ̂reg =
1

N

N
∑

i=1

(

µ̂1(Xi) − µ̂0(Xi)
)

. (3)

In most implementations the average of the predicted treated outcome for the treated is

equal to the average observed outcome for the treated (so that
∑

i Wi · µ̂1(Xi) =
∑

iWi ·Yi),

and similarly for the controls, implying that τ̂reg can also be written as

τ̂reg =
1

N

N
∑

i=1

Wi ·
(

Yi − µ̂0(Xi)
)

+ (1 −Wi) ·
(

µ̂1(Xi) − Yi

)

.

Early estimators for µw(x) included parametric regression functions, for example linear re-

gression (e.g., Rubin, 1977). Such parametric alternatives include least squares estimators
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with the regression function specified as

µw(x) = β ′x+ τ · w,

in which case the average treatment effect is equal to τ . In this case one can estimate τ

simply by least squares estimation using the regression function

Yi = α+ β ′Xi + τ ·Wi + εi.

More generally, one can specify separate regression functions for the two regimes, µw(x) =

β ′
wx. In that case one estimate the two regression functions separately on the two subsamples

and then substitute the predicted values in (3).

These simple regression estimators can be sensitive to differences in the covariate dis-

tributions for treated and control units. The reason is that in that case the regression

estimators rely heavily on extrapolation. To see this, note that the regression function for

the controls, µ0(x) is used to predict missing outcomes for the treated. Hence on average

one wishes to use predict the control outcome at XT =
∑

iWi · Xi/NT , the average covari-

ate value for the treated. With a linear regression function, the average prediction can be

written as ȲC + β̂ ′(XT − XC). If XT and the average covariate value for the controls, XC

are close, the precise specification of the regression function will not matter much for the

average prediction. However, with the two averages very different, the prediction based on

a linear regression function can be sensitive to changes in the specification.

More recently, nonparametric estimators have been proposed. Imbens, Newey and Ridder

(2005) and Chen, Hong, and Tarozzi (2005) propose estimating µw(x) through series or sieve

methods. A simple version of that with a scalar X would specify the regression function as

µw(x) =

LN
∑

l=0

βw,l · xk,

with LN , the number of terms in the polynomial expansion, an increasing function of the

sample size. They show that this estimator for τP achieves the semiparametric efficiency
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bounds. Heckman, Ichimura and Todd (1997, 1998), and Heckman, Ichimura, Smith and

Todd (1998) consider kernel methods for estimating µw(x), in particular focusing on local

linear approaches. Given a kernel K(·), and a bandwidth hN let

(

α̂w,x, β̂w,x

)

= arg min
αw,x,βw,x

N
∑

i=1

K

(

Xi − x

hN

)

· (Yi − αw,x − βw,x ·Xi)
2 ,

leading to the estimator

µ̂w(x) = α̂w,x.

3.2 Matching

Regression estimators impute the missing potential outcomes using the estimated regres-

sion function. Thus, if Wi = 1, Yi(1) is observed and Yi(0) is missing and imputed with a

consistent estimator µ̂0(Xi) for the conditional expectation. Matching estimators also im-

pute the missing potential outcomes, but do so using only the outcomes of nearest neighbours

of the opposite treatment group. In that sense matching is similar to nonparametric kernel

regression methods, with the number of neighbors playing the role of the bandwidth in the

kernel regression. In fact, matching can be inrrepreted as a limiting version of the standard

kernel estimator where the bandwidth goes to zero. This minimizes the bias among nonneg-

ative kernels, but potentially increases the variance relative to kernel estimators. A formal

difference with kernel estimators is that the asymptotic distribution is derived conditional on

the implicit bandwidth, that is, the number of neighbours, which is often fixed at one. Using

such asymptotics, the implicit estimate µ̂w(x) is (close to) unbiased, but not consistent for

µw(x). In contrast, the regression estimators discussed earlier relied on the consistency of

µw(x).

Matching estimators have the attractive feature that given the matching metric, the re-

searcher only has to choose the number of matches. In contrast, for the regression estimators

discussed above, the researcher must choose smoothing parameters that are more difficult

to interpret; either the number of terms in a series or the bandwidth in kernel regression.
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Within the class of matching estimators, using only a single match leads to the most credible

inference with the least bias, at most sacrificing some precision. This can make the matching

estimator easier to use than those estimators that require more complex choices of smoothing

parameters, and may explain some of its popularity.

Matching estimators have been widely studied in practice and theory (e.g., Gu and Rosen-

baum, 1993; Rosenbaum, 1989, 1995, 2002; Rubin, 1973b, 1979; Heckman, Ichimura and

Todd, 1998; Dehejia and Wahba, 1999; Abadie and Imbens, 2002, AI). Most often they

have been applied in settings with the following two characteristics: (i) the interest is in

the average treatment effect for the treated, and (ii), there is a large reservoir of potential

controls. This allows the researcher to match each treated unit to one or more distinct con-

trols (referred to as matching without replacement). Given the matched pairs, the treatment

effect within a pair is then estimated as the difference in outcomes, with an estimator for the

PATT obtained by averaging these within-pair differences. Since the estimator is essentially

the difference in two sample means, the variance is calculated using standard methods for

differences in means or methods for paired randomized experiments. The remaining bias is

typically ignored in these studies. The literature has studied fast algorithms for matching

the units, as fully efficient matching methods are computationally cumbersome (e.g., Gu

and Rosenbaum, 1993; Rosenbaum, 1995). Note that in such matching schemes the order in

which the units are matched is potentially important.

Here we focus on matching estimators for PATE and SATE. In order to estimate these

targes we need to match both treated and controls, and allow for matching with replacement.

Formally, given a sample, {(Yi, Xi,Wi)}N
i=1, let `m(i) be the index l that satisfies Wl 6= Wi

and

∑

j|Wj 6=Wi

1
{

‖Xj −Xi‖ ≤ ‖Xl −Xi‖
}

= m,

where 1{·} is the indicator function, equal to one if the expression in brackets is true and

zero otherwise. In other words, `m(i) is the index of the unit in the opposite treatment group

that is the m-th closest to unit i in terms of the distance measure based on the norm ‖ · ‖.
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In particular, `1(i) is the nearest match for unit i. Let JM(i) denote the set of indices for

the first M matches for unit i: JM(i) = {`1(i), . . . , `M (i)}. Define the imputed potential

outcomes as:

Ŷi(0) =

{

Yi if Wi = 0,
1
M

∑

j∈JM(i) Yj if Wi = 1,
Ŷi(1) =

{

1
M

∑

j∈JM(i) Yj if Wi = 0,

Yi if Wi = 1.

The simple matching estimator is then

τ̂ sm
M =

1

N

N
∑

i=1

(

Ŷi(1) − Ŷi(0)
)

. (4)

AI show that the bias of this estimator is of order O(N−1/K), where K is the dimension

of the covariates. Hence, if one studies the asymptotic distribution of the estimator by

normalizing by
√
N (as can be justified by the fact that the variance of the estimator is of

order O(1/N)), the bias does not disappear if the dimension of the covariates is equal to

two, and will dominate the large sample variance if K is at least three.

Let us make clear three caveats to the AI result. First, it is only the continuous covariates

that should be counted in K. With discrete covariates the matching will be exact in large

samples, therefore such covariates do not contribute to the order of the bias. Second, if

one matches only the treated, and the number of potential controls is much larger than the

number of treated units, one can justify ignoring the bias by appealling to an asymptotic

sequence where the number of potential controls increases faster than the number of treated

units. Specifically, if the number of controls, N0, and the number of treated, N1, satisfy

N1/N
4/K
0 → 0, then the bias disappears in large samples after normalization by

√
N 1.

Third, even though the order of the bias may be high, the actual bias may still be small

if the coefficients in the leading term are small. This is possible if the biases for different

units are at least partially offsetting. For example, the leading term in the bias relies on the

regression function being nonlinear, and the density of the covariates having a nonzero slope.

If either the regression function is close to linear, or the density of the covariates close to

constant, the resulting bias may be fairly limited. To remove the bias, AI suggest combining

the matching process with a regression adjustment.
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Another point made by AI is that matching estimators are generally not efficient. Even

in the case where the bias is of low enough order to be dominated by the variance, the

estimators are not efficient given a fixed number of matches. To reach efficiency one would

need to increase the number of matches with the sample size, as done implicitly in kernel

estimators. In practice the efficiency loss is limited though, with the gain of going from two

matches to a large number of matches bounded as a fraction of the standard error by 0.16

(see AI).

In the above discussion the distance metric in choosing the optimal matches was the

standard Euclidan metric dE(x, z) = (x − z)′(x − z). All of the distance metrics used in

practice standardize the covariates in some manner. The most popular metrics are the

Mahalanobis metric, where

dM (x, z) = (x− z)′(Σ−1
X )(x− z),

where Σ is covariance matrix of the covairates, and the diagonal version of that

dAI(x, z) = (x− z)′diag(Σ−1
X )(x− z).

Note that depending on the correlation structure, using the Mahalanobis metric can lead to

situations where a unit with Xi = (5, 5) is a closer match for a unith with Xi = (0, 0) than

a unit with Xi = (1, 4), despite being further away in terms of each covariate separately.

3.3 Propensity Score Methods

Since the work by Rosenbaum and Rubin (1983a) there has been considerable interest in

methods that avoid adjusting directly for all covariates, and instead focus on adjusting for

differences in the propensity score, the conditional probability of receiving the treatment.

This can be implemented in a number of different ways. One can weight the observations

in terms of the propensity score (and indirectly also in terms of the covariates) to create

balance between treated and control units in the weighted sample. Hirano, Imbens and

Ridder (2003) show how such estimators can achieve the semiparametric efficiency bound.
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Alternatively one can divide the sample into subsamples with approximately the same value

of the propensity score, a technique known as blocking. Finally, one can directly use the

propensity score as a regressor in a regression approach or match on the propensity score.

If the researcher knows the propensity score all three of these methods are likely to be

effective in eliminating bias. Even if the resulting estimator is not fully efficient, one can

easily modify it by using a parametric estimate of the propensity score to capture most of

the efficiency loss. Furthermore, since these estimators do not rely on high-dimensional non-

parametric regression, this suggests that their finite sample properties would be attractive.

In practice the propensity score is rarely known, and in that case the advantages of

the estimators discussed below are less clear. Although they avoid the high-dimensional

nonparametric estimation of the two conditional expectations µw(x), they require instead

the equally high-dimensional nonparametric estimation of the propensity score. In practice

the relative merits of these estimators will depend on whether the propensity score is more

or less smooth than the regression functions, or whether additional information is available

about either the propensity score or the regression functions.

3.3.1 Weighting

The first set of “propensity score” estimators use the propensity score as weights to

create a balanced sample of treated and control observations. Simply taking the difference

in average outcomes for treated and controls,

τ̂ =

∑

WiYi
∑

Wi
−

∑

(1 −Wi)Yi
∑

1 −Wi
,

is not unbiased for τP = E[Yi(1)−Yi(0)] because, conditional on the treatment indicator, the

distributions of the covariates differ. By weighting the units by the inverse of the probability

of receiving the treatment, one can undo this imbalance. Formally, weighting estimators rely

on the equalities:

E

[

WY

e(X)

]

= E

[

WYi(1)

e(X)

]

= E

[

E

[

WYi(1)

e(X)

∣

∣

∣

∣

X

]]

= E

[

E

[

e(X)Yi(1)

e(X)

]]

= E[Yi(1)],
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and similarly

E

[

(1 −W )Y

1 − e(X)

]

= E[Yi(0)],

implying

τP = E

[

W · Y
e(X)

− (1 −W ) · Y
1 − e(X)

]

.

With the propensity score known one can directly implement this estimator as

τ̃ =
1

N

N
∑

i=1

(

WiYi

e(Xi)
− (1 −Wi)Yi

1 − e(Xi)

)

. (5)

In this particular form this is not necessarily an attractive estimator. The main reason is

that, although the estimator can be written as the difference between a weighted average of

the outcomes for the treated units and a weighted average of the outcomes for the controls,

the weights do not necessarily add to one. Specifically, in (5), the weights for the treated

units add up to (
∑

Wi/e(Xi))/N . In expectation this is equal to one, but since its variance

is positive, in any given sample some of the weights are likely to deviate from one. One

approach for improving this estimator is simply to normalize the weights to unity. One can

further normalize the weights to unity within subpopulations as defined by the covariates.

In the limit this leads to the estimator proposed by Hirano, Imbens and Ridder (2003) who

suggest using a nonparametric series estimator for e(x). More precisely, they first specify a

sequence of functions of the covariates, e.g., a power series, hl(x), l = 1, . . . ,∞. Next, they

choose a number of terms, L(N), as a function of the sample size, and then estimate the

L-dimensional vector γL in

Pr(W = 1|X = x) =
exp((h1(x), . . . , hL(x))γL)

1 + exp((h1(x), . . . , hL(x))γL)
,

by maximizing the associated likelihood function. Let γ̂L be the maximum likelihood esti-

mate. In the third step, the estimated propensity score is calculated as:

ê(x) =
exp((h1(x), . . . , hL(x))γ̂L)

1 + exp((h1(x), . . . , hL(x))γ̂L)
.
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Finally they estimate the average treatment effect as:

τ̂weight =
N

∑

i=1

Wi · Yi

ê(Xi)

/

N
∑

i=1

Wi

ê(Xi)
−

N
∑

i=1

(1 −Wi) · Yi

1 − ê(Xi)

/

N
∑

i=1

(1 −Wi)

1 − ê(Xi)
. (6)

Hirano, Imbens and Ridder (2003) show that this estimator is efficient, whereas with the true

propensity score the estimator would not be fully efficient (and in fact not very attractive).

This estimator highlights one of the interesting features of the problem of efficiently es-

timating average treatment effects. One solution is to estimate the two regression functions

µw(x) nonparametrically; that solution completely ignores the propensity score. A second

approach is to estimate the propensity score nonparametrically, ignoring entirely the two

regression functions. If appropriately implemented, both approaches lead to fully efficient

estimators, but clearly their finite sample properties may be very different, depending, for

example, on the smoothness of the regression functions versus the smoothness of the propen-

sity score. If there is only a single binary covariate, or more generally with only discrete

covariates, the weighting approach with a fully nonparametric estimator for the propensity

score is numerically identical to the regression approach with a fully nonparametric estimator

for the two regression functions.

One difficulty with the weighting estimators that are based on the estimated propensity

score is again the problem of choosing the smoothing parameters. Hirano, Imbens and Rid-

der (2003) use series estimators, which requires choosing the number of terms in the series.

Ichimura and Linton (2001) consider a kernel version, which involves choosing a bandwidth.

Theirs is currently one of the few studies considering optimal choices for smoothing param-

eters that focuses specifically on estimating average treatment effects. A departure from

standard problems in choosing smoothing parameters is that here one wants to use non-

parametric regression methods even if the propensity score is known. For example, if the

probability of treatment is constant, standard optimality results would suggest using a high

degree of smoothing, as this would lead to the most accurate estimator for the propensity

score. However, this would not necessarily lead to an efficient estimator for the average

treatment effect of interest.
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3.3.2 Blocking on the Propensity Score

In their original propensity score paper Rosenbaum and Rubin (1983a) suggest the fol-

lowing “blocking propensity score” estimator. Using the (estimated) propensity score, divide

the sample into M blocks of units of approximately equal probability of treatment, letting

Jim be an indicator for unit i being in block m. One way of implementing this is by dividing

the unit interval into M blocks with boundary values equal to m/M for m = 1, . . . ,M − 1,

so that

Jim = 1{(m− 1)/M < e(Xi) ≤ m/M},

for m = 1, . . . ,M . Within each block there are Nwm observations with treatment equal to

w, Nwm =
∑

i 1{Wi = w, Jim = 1}. Given these subgroups, estimate within each block the

average treatment effect as if random assignment holds,

τ̂m =
1

N1m

N
∑

i=1

JimWiYi −
1

N0m

N
∑

i=1

Jim(1 −Wi)Yi.

Then estimate the overall average treatment effect as:

τ̂block =
M

∑

m=1

τ̂m · N1m +N0m

N
.

Blocking can be interpreted as a crude form of nonparametric regression where the un-

known function is approximated by a step function with fixed jump points. To establish

asymptotic properties for this estimator would require establishing conditions on the rate

at which the number of blocks increases with the sample size. With the propensity score

known, these are easy to determine; no formal results have been established for the unknown

case.

The question arises how many blocks to use in practice. Cochran (1968) analyses a case

with a single covariate, and, assuming normality, shows that using five blocks removes at least

95% of the bias associated with that covariate. Since all bias, under unconfoudnedness, is
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associated with the propensity score, this suggests that under normality five blocks removes

most of the bias associated with all the covariates. This has often been the starting point

of empirical analyses using this estimator (e.g., Rosenbaum and Rubin, 1983b; Dehejia

and Wahba, 1999), and has been implemented in STATA by Becker and Ichino (2002).

Often, however, researchers subsequently check the balance of the covariates within each

block. If the true propensity score per block is constant, the distribution of the covariates

among the treated and controls should be identical, or, in the evaluation terminology, the

covariates should be balanced. Hence one can assess the adequacy of the statistical model

by comparing the distribution of the covariates among treated and controls within blocks.

If the distributions are found to be different, one can either split the blocks into a number

of subblocks, or generalize the specification of the propensity score. Often some informal

version of the following algorithm is used: If within a block the propensity score itself is

unbalanced, the blocks are too large and need to be split. If, conditional on the propensity

score being balanced, the covariates are unbalanced, the specification of the propensity score

is not adequate. In the illustrations in the next lecture a particular algorithm is decribed for

choosing the blocks.

3.3.3 Regression on the Propensity Score

The third method of using the propensity score is to estimate the conditional expectation

of Y given W and e(X) and average the difference. Although this method has been used

in practice, there is no particular reason why this is an attractive method compared to the

regression methods based on the covariates directly. In addition, the large sample properties

have not been established.

3.3.4 Matching on the Propensity Score

The Rosenbaum-Rubin result implies that it is sufficient to adjust solely for differences in

the propensity score between treated and control units. Since one of the ways in which one

can adjust for differences in covariates is matching, another natural way to use the propensity

score is through matching. Because the propensity score is a scalar function of the covariates,
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the bias results in Abadie and Imbens (2002) imply that the bias term is of lower order

than the variance term and matching leads to a
√
N -consistent, asymptotically normally

distributed estimator. The variance for the case with matching on the true propensity score

also follows directly from their results. More complicated is the case with matching on

the estimated propensity score. We are not aware of any results that give the asymptotic

variance for this case.

3.4. Mixed Methods

A number of approaches have been proposed that combine two of the three methods de-

scribed earlier, typically regression with one of its alternatives. These methods appear to be

the most attractive in practice. The motivation for these combinations is that, although one

method alone is often sufficient to obtain consistent or even efficient estimates, incorporating

regression may eliminate remaining bias and improve precision. This is particularly useful

because neither matching nor the propensity score methods directly address the correlation

between the covariates and the outcome. The benefit associated with combining methods is

made explicit in the notion developed by Robins and Ritov (1997) of “double robustness.”

They propose a combination of weighting and regression where, as long as the parametric

model for either the propensity score or the regression functions is specified correctly, the re-

sulting estimator for the average treatment effect is consistent. Similarly, because matching

is consistent with few assumptions beyond strong ignorability, thus methods that combine

matching and regressions are robust against misspecification of the regression function.

3.4.1 Weighting and Regression

One can rewrite the HIR weighting estimator discussed above as estimating the following

regression function by weighted least squares,

Yi = α+ τ ·Wi + εi,
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with weights equal to

λi =

√

Wi

e(Xi)
+

1 −Wi

1 − e(Xi)
.

Without the weights the least squares estimator would not be consistent for the average

treatment effect; the weights ensure that the covariates are uncorrelated with the treatment

indicator and hence the weighted estimator is consistent.

This weighted-least-squares representation suggests that one may add covariates to the

regression function to improve precision, for example as

Yi = α+ β ′Xi + τ ·Wi + εi,

with the same weights λi. Such an estimator, using a more general semiparametric regression

model, is suggested in Robins and Rotnitzky (1995), Robins, Rotnitzky and Zhao (1995),

Robins and Ritov (1997), and implemented in Hirano and Imbens (2001). In the parametric

context Robins and Ritov argue that the estimator is consistent as long as either the regres-

sion model or the propensity score (and thus the weights) are specified correctly. That is, in

the Robins-Ritov terminology, the estimator is doubly robust.

3.4.2 Blocking and Regression

Rosenbaum and Rubin (1983b) suggest modifying the basic blocking estimator by using

least squares regression within the blocks. Without the additional regression adjustment the

estimated treatment effect within blocks can be written as a least squares estimator of τm

for the regression function

Yi = αm + τm ·Wi + εi,

using only the units in block m. As above, one can also add covariates to the regression

function

Yi = αm + τm ·Wi + β ′
mXi + εi,
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again estimated on the units in block m.

3.4.3 Matching and Regression

Since Abadie and Imbens (2002) show that the bias of the simple matching estimator

can dominate the variance if the dimension of the covariates is too large, additional bias

corrections through regression can be particularly relevant in this case. A number of such

corrections have been proposed, first by Rubin (1973b) and Quade (1982) in a parametric

setting. Let Ŷi(0) and Ŷi(1) be the observed or imputed potential outcomes for unit i; where

these estimated potential outcomes equal observed outcomes for some unit i and its match

`(i). The bias in their comparison, E[Ŷi(1) − Ŷi(0)] − (Yi(1) − Yi(0)), arises from the fact

that the covariates for units i and `(i), Xi and X`(i) are not equal, although close because

of the matching process.

To further explore this, focusing on the single match case, define for each unit:

X̂i(0) =

{

Xi if Wi = 0,
X`(i) if Wi = 1,

X̂i(1) =

{

X`(i) if Wi = 0,
Xi if Wi = 1.

If the matching is exact X̂i(0) = X̂i(1) for each unit. If not, these discrepancies will lead to

potential bias. The difference X̂i(1) − X̂i(0) will therefore be used to reduce the bias of the

simple matching estimator.

Suppose unit i is a treated unit (Wi = 1), so that Ŷi(1) = Yi(1) and Ŷi(0) is an imputed

value for Yi(0). This imputed value is unbiased for µ0(X`(i)) (since Ŷi(0) = Y`(i)), but not

necessarily for µ0(Xi). One may therefore wish to adjust Ŷi(0) by an estimate of µ0(Xi) −
µ0(X`(i)). Typically these corrections are taken to be linear in the difference in the covariates

for units i and its match, that is, of the form β ′
0(X̂i(1)−X̂i(0) = β ′

0(Xi−X`(i)). One proposed

correction is to estimate µ0(x) directly by taking the control units that are used as matches for

the treated units, with weights corresponding to the number of times a control observations

is used as a match, and estimate a linear regression of the form

Yi = α0 + β ′
0Xi + εi,
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on the weighted control observations by least squares. (If unit i is a control unit the correc-

tion would be done using an estimator for the regression function µ1(x) based on a linear

specification Yi = α1 + β ′
1Xi estimated on the treated units.) AI show that if this correction

is done nonparametrically, the resulting matching estimator is consistent and asymptotically

normal, with its bias dominated by the variance.

4. Estimating Variances

The variances of the estimators considered so far typically involve unknown functions.

For example, as discussed earlier, the variance of efficient estimators of PATE is equal to

VP = E

[

σ2
1(Xi)

e(Xi)
+

σ2
0(Xi)

1 − e(Xi)
+ (µ1(Xi) − µ0(Xi) − τ )2

]

,

involving the two regression functions, the two conditional variances and the propensity

score.

4.1 Estimating The Variance of Efficient Estimators for τP

For efficient estimators for τP the asymptotic variance is equal to the efficiency bound

VP . There are a number of ways we can estimate this. The first is essentially by brute force.

All five components of the variance, σ2
0(x), σ

2
1(x), µ0(x), µ1(x), and e(x), are consistently

estimable using kernel methods or series, and hence the asymptotic variance can be estimated

consistently. However, if one estimates the average treatment effect using only the two

regression functions, it is an additional burden to estimate the conditional variances and

the propensity score in order to estimate VP . Similarly, if one efficiently estimates the

average treatment effect by weighting with the estimated propensity score, it is a considerable

additional burden to estimate the first two moments of the conditional outcome distributions

just to estimate the asymptotic variance.

A second method applies to the case where either the regression functions or the propen-

sity score is estimated using series or sieves. In that case one can interpret the estimators,

given the number of terms in the series, as parametric estimators, and calculate the vari-

ance this way. Under some conditions that will lead to valid standard errors and confidence
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intervals.

A third approach is to use bootstrapping (Efron and Tibshirani, 1993; Horowitz, 2002).

Although there is little formal evidence specific for these estimators, given that the estimators

are asymptotically linear, it is likely that bootstrapping will lead to valid standard errors and

confidence intervals at least for the regression and propensity score methods. Bootstrapping

is not valid for matching estimators, as shown by Abadie and Imbens (2007) Subsampling

(Politis and Romano, 1999) will still work in this setting.

4.2 Estimating The Conditional Variance

Here we focus on estimation of the variance of estimators for τS , which is the condi-

tional variance of the various estimators, conditional on the covariates X and the treatment

indicators W. All estimators used in practice are linear combinations of the outcomes,

τ̂ =
N

∑

i=1

λi(X,W) · Yi,

with the λ(X,W) known functions of the covariates and treatment indicators. Hence the

conditional variance is

V (τ̂ |X,W) =
N

∑

i=1

λi(X,W)2 · σ2
Wi

(Xi).

The only unknown component of this variance is σ2
w(x). Rather than estimating this through

nonparametric regression, AI suggest using matching to estimate σ2
w(x). To estimate σ2

Wi
(Xi)

one uses the closest match within the set of units with the same treatment indicator. Let

v(i) be the closest unit to i with the same treatment indicator (Wv(i) = Wi). The sample

variance of the outcome variable for these 2 units can then be used to estimate σ2
Wi

(Xi):

σ̂2
Wi

(Xi) =
(

Yi − Yv(i)

)2
/2.

Note that this estimator is not consistent estimators of the conditional variances. However

this is not important, as we are interested not in the variances at specific points in the
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covariates distribution, but in the variance of the average treatment effect. Following the

process introduce above, this is estimated as:

V̂ (τ̂ |X,W) =
N

∑

i=1

λi(X,W)2 · σ̂2
Wi

(Xi).
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