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Abstract 

Many studies have reported significant empirical associations 

between family structure during childhood and children's outcomes 

later in life. It may be that living in a nonintact family has 

adverse consequences for children. On the other hand, it may be 

that some unobserved process jointly determines family structure 

and children's outcomes. How then should one interpret the 

empirical evidence on the relationship between family structure 

and children's outcomes? The answer depends on the question 

asked and on the prior information available to the researcher. 

We seek to interpret the association between family structure 

and high school graduation found among respondents in the 

National Longitudinal Survey of Youth. We seek to answer the 

traditional question of the literature on treatment effects: How 

would the probability of high school graduation vary with family 

structure if family structure were not selected by parents but 

were, instead, an exogenously assigned ntreatment,m as in a 

clinical trial or other controlled experiment? 

The inferential problem is that the data alone do not suffice 

to identify the treatment effect. Hence any attempt to estimate 

a treatment effect depends critically on the prior information 

available to the researcher. We develop alternative estimates of 

the effect of family structure on high school graduation, 

obtained under differing assumptions about the actual process 

generating family structure and high school outcomes. 



We first assume strong prior information and present estimates 

of a set of parametric latent-variable models explaining family 

structure and children1s outcomes. We then assume no prior 

information at all and report estimates of nonparametric bounds 

on the graduation probabilities. Finally, we give nonparametric 

estimates obtained under the assumption that family structure is 

exogenous with respect to high school graduation. 

Our empirical analysis strengthens the evidence that living in 

an intact family increases the probability that a child will 

graduate from high school. We also report that the probability 

of high school graduation increases markedly with both parents1 

education, regardless of family structure. At the same time, we 

stress that no empirical analysis of the effect of family 

structure on children's outcomes can be conclusive. In the 

absence of prior information, one can only bound the family 

structure effect. Any attempt to determine the effect more 

tightly must bring to bear prior information about the process 

generating family structure and children's outcomes. As long as 

social scientists are heterogeneous in their beliefs about this 

process, their estimates of family-structure effects may vary. 



Many studies in recent years have reported significant 

empirical associations between family structure during childhood 

and children's outcomes later in life. Several analyses have 

shown that, conditional on parental income, education, and other 

observed family characteristics, persons who live in single- 

parent families at some time during their childhood are more 

likely to become single parents themselves (Hetherington, Cox, 

and Cox, 1978; Hogan and Kitagawa, 1985). Other studies have 

shown that adolescents who live in single-parent families, step- 

parentlparent families, or with neither parent at age 14 are less 

likely to graduate from high school than are those who live with 

both biological parents at age 14 (Krein and Beller, 1986; 

McLanahan and Bumpass, 1988). These findings have been 

replicated with several data sets and appear to be consistent 

across the major racial and ethnic groups in the United States 

(Sandefur, McLanahan, and Wojtkiewicz, 1989). 

The recent increase in the prevalence of marital disruption 

and single parenthood makes it increasingly important to under- 

stand the documented associations between family structure and 

children's outcomes. It may be that, as the empirical evidence 

suggests, living in a nonintact family has adverse consequences 

for children. On the other hand, it may be that some unobserved 

process jointly determines family structure and children's 

outcomes. 
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For example, parents who are less committed to their families 

may be more likely to divorce and may also provide less guidance 

and emotional support to their children. Behavioral and/or 

medical problems such as alcoholism, depression, drug addiction, 

anxiety, or low self-esteem may make a person more likely to 

divorce and less effective as a parent. Another possibility is 

that parents take the interests of their children into account in 

making decisions about divorce. In particular, parents may 

compare the likely impact on their children of maintaining a 

marriage characterized by constant fighting and hostility with 

the impact of raising the children in a single-parent household. 

How then should one interpret the empirical evidence on the 

relationship between family structure and children's outcomes? 

The answer depends on the question asked and on the prior 

information available to the researcher. 

In this paper, we seek to interpret the association between 

family structure and high school graduation found among respon- 

dents in the National Longitudinal Survey of Youth (NLSY); 

Section 2 describes the NLSY data. We seek to answer the 

following question: How would the probability of high school 

graduation vary with family structure if family structure were 

not selected by parents but were, instead, an exogenously 

assigned "treatment," as in a clinical trial or other controlled 

experiment? Section 3 formalizes this question in the manner of 

Rosenbaum and Rubin (1983), Heckman and Robb (1985), and Manski 

(1990a) and discusses its relevance. This done, we explain the 
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identification problem that makes any attempt to answer the 

question so dependent on the available prior information. 

Given the formulated question, we develop alternative estimates 

of the effect of family structure on high school graduation. The 

estimates are obtained under differing assumptions about the 

actual process generating family structure and high school 

outcomes. Section 4, which assumes that the researcher has 

strong prior information, presents estimates of a set of 

parametric latent-variable models of the type found in Heckman 

(1978) and Maddala (1983). section 5, which assumes that the 

researcher has no prior information at all, reports estimates of 

the nonparametric bounds introduced in Manski (1989) and uses the 

estimated bounds to check the parametric models of Section 4. 

Section 6 reports nonparametric estimates obtained under the 

assumption that family structure is exogenous with respect to 

high school graduation. The concluding Section 7 summarizes the 

evidence. 

We hope that this paper serves both substantive and methodo- 

logical objectives. Our substantive concern, of course, is to 

better understand the association between family structure and 

children's outcomes. Our methodological goal is to provide a 

case study useful in the design of efforts to interpret empirical 

associations between treatments and outcomes. 



2. Data and Measures 

The data for our analysis are taken from the cross-sectional, 

supplemental black, and supplemental Hispanic panels of the NLSY. 

The NLSY was initiated in 1979 with a national sample of men and 

women aged 14-21. We confine our sample to individuals aged 

14-17 in 1979 for whom we have information on the respondent's 

family structure at age 14, high school graduation, and several 

covariates. The covariates include race and ethnicity, gender, 

region of birth, region of residence in 1979, and parental 

education. 

Family structure is operationally defined to be a binary 

variable, taken from the 1979 survey, indicating whether the 

respondent resided in an intact or nonintact family at age 14. A 

nonintact family is one that does not include both biological or 

adoptive parents; that is, a family with one parent, with a 

parent and stepparent, or with no parents. High school 

graduation is a binary variable, taken from the 1985 survey, 

indicating whether a respondent received a high school diploma or 

GED certificate by age 20. 

Race and ethnic identity are based on self-reports. Sex is 

measured by a dummy variable indicating whether the respondent is 

female. Mother's education and father's education are measured 

by years of schooling, sometimes aggregated into broader 

categories. Residence is measured by a set of dummy variables 

for the Northeast, North Central, South, and West regions. 
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Southern born is a dummy variable indicating that an individual 

was born in the South. 

Table 5 (see below, pp. 35-38) shows the composition of the 

sample by race, sex, parents1 schooling, and family status. See 

the column labeled I1Cell Sample Size." 

3. The Inferential Problem 

The title to this paper refers to the I1effectw of family 

structure on high school graduation. In this section, we 

formally define an "effectw1 and, in so doing, pose the question 

we would like to answer. This done, we then explain the 

identification problem that makes inference on family-structure 

effects critically dependent on the available prior information. 

Definition of the family-structure effect 

We assume that the NLSY respondents are drawn from a 

population of youth, each of whom is characterized by values for 

the variables (y,,y,,z,x). Here x is the vector of observed 

covariates describing a person's family (e.g., race and parental 

education). The binary variable z indicates family structure; 

z = 0 if the person resides in an intact family at age 14 and 

z = 1 otherwise. 

Each person is characterized by two hypothetical high school 

graduation outcomes, y1 and y,. Variable y1 indicates the outcome 
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if the person were to reside in an intact family; y, = 0 if the 

person would not graduate and y, = 1 otherwise. ~imilarly, yN 

indicates the outcome if the person were to reside in a nonintact 

family. Of the two outcomes y, and y,, one is realized and the 

other is latent; y, is realized if z = 0 and y, is realized if 

z = 1. (A more refined analysis would disaggregate the family- 

structure categories I1intactN and "nonintacttl so as to 

distinguish among several family types. If so, each person would 

be characterized by several graduation outcomes, of which one is 

realized and the remainder are latent.) 

Now consider P (yI=l 1 x) and P (yN=l 1 x) , the probabilities that a 
person with covariates x would graduate if he or she were to 

reside in an intact or nonintact family respectively. We define 

the effect of family structure on graduation to be the difference 

P (y~ll x) - P (y,=l ( x) . This quantity measures how the probabi- 

lity of high school graduation would vary with family structure 

if family structure were not self-selected but were, instead, 

exogenously assigned. 

Discussion 

Interest in knowing P (y,=l 1 x) and P (y,=ll x) can be motivated 
from social, personal, and scientific perspectives. First, 

consider the social problem of assessing the effects on children 

of two extreme policies, of which one requires all families to be 

intact and the other prohibits intact families. For children in 

families with attributes x, the difference in the high school 
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graduation rates associated with these policies is P(y,=lIx) 

- P(y*llx). Of course, such extreme policies are unrealistic; 

hence the seriousness of this motivation is questionable. 

Second, consider the personal problem of a couple who conceive 

a child and must then decide whether to live together or apart. 

The couple will presumably want to know how their decision will 

affect the child's outcomes. Suppose that the couple knows their 

value of the attributes x but does not possess other information. 

Then P (yl=l 1 x) - P (y,=ll x) appropriately measures the effect of 
the couple's family-structure decision on their child's probabil- 

ity of high school graduation. Note that P (yI=l ( x) - P (y,=ll x) 
does not appropriately measure the family-structure effect if the 

couple possesses information beyond x. 

Third, consider the scientific problem of establishing an 

acceptable convention for the reporting of treatment effects. A 

treatment effect, whether it be the effect of family structure on 

high school graduation or the effect of smoking on life-span, is 

the change in outcomes that occurs when different processes are 

used to assign persons to alternative treatments. As there are 

innumerable assignment processes, there are innumerable possible 

definitions of treatment effects. (See Maddala, 1983, 

Section 9.2, and Heckman and Robb, 1985 for discussions of this 

point.) What then should be the convention for scientific 

reporting? 

Exogenous assignment has merit as a convention for two 

reasons. First, exogenous assignment characterizes randomized 
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experiments and mandated policies, processes which are easily 

grasped. Second, in physical and biological science applica- 

tions, exogenous assignment is realistic; there, treatment 

effects have long been defined as the variation in outcomes 

associated with alternative exogenous assignment processes. 

Thus, for reasons of simplicity and consistency with practice 

elsewhere, exogenous assignment has become the convention for 

social science reporting of treatment effects. 

It should be understood, however, that a convention is just 

that. Other definitions of treatment effects, particularly ones 

assuming that treatments are self-selected, may well be more 

relevant in many social science applications. 

The identification problem 

The central problem we face in our attempt to learn the effect 

of family structure on children's outcomes is the failure of the 

available data to identify P(y,=l( x) and P(yN=l 1 x) . By the law 

of total probability, 

(la) P(Y,=~(x) = P(~~=~(X,Z=O)P(Z=O(X) + P(yil(x,Z=l)P(z=l(x) 

( ~ b )  ~ ( y ~ 1 J x )  = P(~,=I(x,z=o)P(z=o(x) + P ( ~ ~ = ~ ) x , z = I ) P ( ~ = ~ ( x ) .  

The sampling process generating the NLSY data identifies 

P (yI=l ( x, z=o) and P (yN=l 1 x, z=l) . It also identifies the 

probabilities of intact and nonintact family status, P(Z=O~X) and 

P(z=l(x). But the sampling process does not identify 
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P ( y ~ l l  x, z=l) and P (y,=l 1 x, z=0) . The reason, of course, is that 

y, is unobservable when z = 1 and y, is unobservable when z = 0. 

Hence, in the absence of prior information, the NLSY data cannot 

identify P (yill x) and P (yN=l 1 x) . 
The possibilities for inference on family-structure effects 

depend critically on the available prior information. See Manski 

(1989, 1990a, 1990b). It is, of course, impossible for us to 

examine the inferential problem in all potentially interesting 

informational situations. We therefore have selected a range of 

cases for study. Sections 4 through 6 specify the information 

brought to bear and present the findings. 

4. Estimates of Parametric Latent-Variable Models 

The effect of family structure on high school graduation is 

identified if the researcher has available sufficiently strong 

prior information about the probability distribution of (y,,y,,z) 

conditional on x. Prior information is often expressed through 

the medium of parametric latent variable models; see Maddala 

(1983). In this section we present estimates of a set of three 

such models. 

The models estimated are all cases of the following three- 

equation system: 



(2a) z = 1 if Bx + u > 0 

= 0 otherwise 

(2b) y, = 1 if Cx + e, > 0 

= 0 otherwise 

( 2 ~ )  YN = 1 i f C x + A + e N > O  

= 0 otherwise. 

Here B and C are parameter vectors of length commensurate with 

the observed covariate vector x, which includes an intercept 

term. The scalar parameter A allows the intercept in the 

equation explaining yN to differ from that in the equation 

explaining y,. A more general model, not considered here, would 

replace the parameter vector C appearing in (2b) and (2c) with 

two parameter vectors, C, and C, respectively. 

The contribution of unobserved covariates to the determination 

of family structure and outcomes is represented by the distur- 

bances (u,e,,e,) . Following convention, we maintain the 

assumption that these disturbances are statistically independent 

of x and distributed trivariate normal with mean zero and 

variances equal to one. It follows that 

where F(.) denotes the standard normal distribution function. 
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The estimated models differ in the assumptions they make about 

the covariance matrix of the disturbances. The model in Section 

4.1 assumes that u is statistically independent of (e,,e,). That 

in Section 4.2 assumes that e, = e,. The model in Section 4.3 

imposes no restrictions on the covariance matrix of (u,e,,e,). 

The analysis below focuses on the parameter estimates for these 

models. The implied estimates of graduation probabilities and 

treatment effects will be given in Tables 4 and 6, discussed in 

Sections 5 and 7. 

4.1. Probit Model with Exogenous Family Structure 

Researchers applying models of the form (2) to study the 

relationship between family structure and children's outcomes 

have typically assumed that u is statistically independent of 

(ee,). Viewed substantively, this assumption means that the 

unobserved factors that affect family structure and high school 

graduation are unrelated. From a probabilistic perspective, the 

assumption implies that 

Thus, a person's latent high school graduation outcomes (y,,y,) 

are statistically independent of his family structure, condi- 

tional on the covariates x. (Equation (4) does not, of course, 
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imply that the realized graduation outcome is independent of 

family structure; the realized outcome is y, if z = 0 and is yN 

if z = 1.) When (4) holds, family structure is said to be 

llexogenous*t (Maddala, 1983) or, synonymously, to be "strongly 

ignorablew (Rosenbaum and Rubin, 1983). 

Because P (yill x, z=0) and P (yN=l 1 x, z=l) are identified by the 

NLSY sampling process, condition (4) suffices to identify 

P(y,=ll x) and P (yN=l 1 x) . Nonparametric estimates of P (y,=lI x, z=0) 

and ~(y,=llx,z=l) will be reported in Section 5. The conventional 

practice, however, has been to combine (4) with the parametric 

assumption (3) . Taken together, (3) and (4) imply that 

The parameters C and A may be estimated by maximizing the binary 

probit likelihood given in (5). 

Table 1 reports our estimates of C and A based on the NLSY 

data. If we use a t-statistic of approximately 2 as the 

criterion of statistical significance, the results suggest that 

racial, ethnic, region-of-birth, and region-of-residence 

differences in high school graduation are not present after 

controlling for parental education and residence in a nonintact 

family. Women are more likely to graduate from high school than 

are men. 



TABLE 1: PROBIT MODEL WITH EXOGENOUS FAMILY STRUCTURE 

Variable 

- - -  

Parameter Estimate t-statistic 

Constant .466 5.813 

Race and ethnicitv (excluded category = white) 

Black 
Hispanic 

Female .225 4.648 

Parental education (excluded category = less than high school) 

Mother is high school graduate .427 
Mother has some college education .500 
Mother is college graduate .761 
Father is high school graduate .383 
Father has some college education .618 
Father is college graduate .847 
Mother's education greater 

than father's -. 044 
Residence (excluded category = Northeast) 

North Central 
West 
South 

Southern born -.009 -0.112 

Nonintact family 
at 14 

Note: The model specification also included categories for American 
Indian, other races, and no race reported. 
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The probability of high school graduation increases substan- 

tially with both mother's and father's schooling. Observe that 

the coefficients on the two sets of schooling variables have 

similar magnitudes; thus, it appears that both parents' education 

contribute equally to a child's success in school. We also 

included an educational heterogamy variable, M's ed gt f's ed, 

indicating that mother's education is higher than father's 

education. This interaction of the parental education variables 

is known from past work to be related to family structure; our 

results indicate that it is not related to the probability of 

high school graduation, conditional on family structure. See 

Section 6 for further analysis of the relationship between 

parent's education and children's outcomes. 

The main result, apparent in the estimate of A (see the 

variable Nonintact at 1 4 ) ,  is that residing in a nonintact family 

at age 14 has a strong negative effect on the probability of high 

school graduation. This result is consistent with the findings 

of past work (Astone and McLanahan, 1989; Sandefur, McLanahan, 

and Wojtkiewicz, 1989). In fact most of what we know about the 

relationship between family structure and children's outcomes is 

based on estimates of models like that in Table 1. Numerous 

studies have assumed models of the form (5) and have experimented 

with alternative sets of covariates x, the objective being to 

determine whether the estimate of A remains consistently negative 

as the specification of x is varied. 
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4.2. Bivariate Probit Model with Structural Shift 

We suggested in the Introduction that family structure and 

children's outcomes may be jointly determined by processes that 

we cannot observe directly. In the context of the latent- 

variable model ( 3 ) ,  this means that the disturbances (u,e,,e,) 

may be statistically dependent. If so, the estimates reported in 

Table 1 may be invalid. 

The "bivariate probit model with structural shiftmm of Heckman 

(1978) emerges if we impose no restriction on the covariance 

between u and e, but assume that e, = e,. Substantively, this 

assumption means that the unobserved factors that affect high 

school graduation are the same in intact and nonintact families. 

Probabilistically, this assumption permits us to rewrite the 

three-equation system (2) as a two-equation system 

(6a) z = 1 if Bx + u > 0 

= 0 otherwise 

(6b) y = 1 if Cx + Az + e > 0 

= 0 otherwise, 

where y = y,(l-z) + y,z is the observed high school graduation 

outcome and where e = e, = e,. 

Table 2 reports maximum likelihood estimates of a model of the 

form (6). The specified model imposes some exclusion restric- 

tions; that is, some components of B and C are assumed to equal 



TABLE 2: BIVARIATE PROBIT MODEL WITH STRUCTURAL SHIFT 

Variable Family Structure High School ~raduation 
Equation Equation 

Constant 

Race (excluded category = white) 

Black 

Hispanic 

Female 

Parental education (excluded category = less than high school) 

Mother is high school graduate 

Mother has some college education 

Mother is college graduate 

Father is high school graduate 

Father has some college education 

Father is college graduate 

Mother's education greater .I26 
than father's 2.27) 

Residence (excluded category = Northeast) 

North Central -.266 
(-4.18) 

West .026 
( 38) 

South -.222 
(-2.76) 

Southern born -.I51 
(-2.12) 

Nonintact family at 14 

Rho 

Note: The equations also included categories for American Indian, 
other races, and no race reported. The numbers in parentheses are 
the t-statistics for the parameter estimates. 
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zero. We assume that family structure does not vary with the sex 

of the family's children and varies with parental education only 

through the heterogamy variable. We assume that a child's high 

school graduation outcome does not vary with region of birth, 

region of residence, or educational heterogamy. 

The estimates of B indicate that the probability of living in 

a nonintact family at age 14 varies with race and ethnicity, 

educational heterogamy, region of residence, and region of birth. 

The estimates of C are very similar to those reported in Table 1. 

The estimate of A is more negative than the estimate in Table 1, 

but its statistical significance is marginal. The estimate of 

rho, the correlation between u and e, is small in magnitude and 

is not statistically significant. 

In addition to the model whose estimates are reported in 

Table 2, we estimated a number of alternative models invoking 

different exclusion restrictions. The estimate of A remained 

negative in all cases but its magnitude and statistical 

significance varied with the model specification. 

4.3. Trivariate Probit Model with Structural Shift 

Table 3 presents maximum likelihood estimates of the full 

three-equation system (2), with no restrictions imposed on the 

covariance matrix of (u,e,,e,). The model specification here 

maintains the same exclusion restrictions as in the model of 

Table 2. The only difference between the two cases is that we 
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TABLE 3: TRIVARIATE PROBIT MODEL WITH STRUCTURAL SHIFT 

Variable Family Structure High School ~raduation 
Equation Equation 

Constant 

Race (excluded category = white) 

Black 

Hispanic 

Female 

Parental education (excluded category = less than high school) 

Mother is high school graduate .399 
(10.81) 

Mother has some college education .447 
(6.48) 

Mother is college graduate .707 
(7.20) 

Father is high school graduate .393 
(10.61) 

Father has some college education .627 
(9.55) 

Father is college graduate .871 
(11.45) 

Mother's education greater than father's .I23 
(2.61) 

Residence (excluded category = Northeast) 

North Central -.267 
(-4.80) 

West .021 
( 36) 

South -.216 
(-3.11) 

Southern born -.I53 
(-2.44) 

Nonintact family at 14 

(Table continues) 



Rho [e (nint) , 
e (hsgrad-nint) J 

Rho [e(nint) , 
e(hsgrad-int)] 

TABLE 3 (continued) 

Note: The equations also included categories for American Indian, 
other races, and no race reported. The numbers in parentheses are 
the t-statistics for the parameter estimates. 
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now have estimates of two rho parameters, one giving the 

correlation between u and e, and the other that between u and e,. 

Note that the correlation between e, and e, is not identified, as 

each NLSY respondent realizes only one of y, and y,. 

Comparison of Tables 2 and 3 shows that the estimates of B and 

C are very similar. The estimate of A in Table 3 is negative and 

statistically significant; its magnitude is close to that of the 

estimate in Table 1. The estimates of the two rho parameters are 

both small in magnitude and statistically insignificant. Thus, 

the estimates of Tables 2 and 3 provide no evidence against the 

hypothesis, invoked in Table 1, that family structure is 

exogenous. 

5. Nonparametric Bounds on the Graduation Probabilities 

The foregoing models impose strong assumptions on the process 

determining family structure and high school graduation. These 

assumptions may well be inappropriate. If so, the parameter 

estimates in Tables 1 through 3 may all be misleading. 

Suppose that one has available no prior information at all 

about the probability.distribution of (y,,y,,z) conditional on x. 

Then, as we found in Section 3, P(y,=l(x) and ~ ( y p l  (x) are not 

identified. Nevertheless, these probabilities may still be 

bounded (Manski, 1989). Section 5.1 gives the simple derivation 

of the bounds. Section 5.2 describes estimation of the bounds. 



21 

Section 5.3 presents the estimates and uses them to check the 

parametric-model specifications of Section 4 .  

5.1. The Bounds 

Let us reconsider equation (1). Recall that the sampling 

process generating the NLSY data identifies P(yil)x,z=O), 

P (y,=l ( x, z=l) , P (z=0 1 x) , and P (z=11 x) but not P (y,=l. ( x, z=l) and 
P(y,=llx,z=0). The unidentified conditional probabilities must, 

however, lie in the interval [0,1]. It follows that 

(7a) P (y,=l ( x, z=0) P (z=O 1 x) 5 P (yI=l( x) 

< p (y,=l] x, z=0) P (z=0 1 x) + P (z=ll x) . - 
(7b) P(yN=l 1 x, z=1) P (z=11 x) 5 P(y,=l (x) 

< P (yN=l I X, Z=I) P (Z=I ( X) + P (Z=O 1 X) . - 

These bounds are remarkable in that they impose no assumptions on 

the process generating y,, y,, and z; they are functions of 

quantities identified by the sampling process alone. The bounds 

can be applied given any specification of the covariates x. 

Observe that the bound on P (y,=l( x) has width P (z=11 x) while 

that on P(y,=llx) has width P(Z=O~X). This finding is intuitive. 

The probability of living in an intact family is the probability 

that we observe a realization of y, rather than y,. Hence, as 

P(Z=O~X) increases, the sampling process reveals more about 

P (y,=l 1 x) and less about P (y,=l ( x) . 
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The bounds (7) imply a bound on the treatment effect 

P(yI(x) - p(yNIx) 1 

The lower bound in (8) is obtained by subtracting the upper bound 

in (7b) from the lower bound in (7a); the upper bound is obtained 

similarly. 

Inspection of (8) reveals that this bound has width one for 

all values of ~(z=llx). If the sample data were not available, 

the effect of family structure on high school graduation could 

only be said to lie in the interval [-1,1], which has width two. 

Thus, using sample data alone, we can cut in half the range of 

uncertainty regarding the treatment effect. Tighter bounds can 

be obtained only if prior information is available. The implica- 

tions of various forms of prior information are studied in Manski 

(1990a, 1990b). 



5.2. Estimation of the Bounds 

Estimation of the bounds entails estimation of P ( ~ ~ ~ ~ x , Z = O ) ~  

P (y,=ll x, z=l) , P (z=0 1 x) , and P (z=ll x) . - Each of these conditional 
probabilities is estimable using any of the numerous nonpara- 

metric regression estimators developed over the past twenty-five 

years. See, for example, Hardle (1990). 

The estimates presented here specify the covariates x as in 

Tables 2 and 3. That is, we estimate bounds on probabilities of 

high school graduation conditional on race, sex, and parental 

education. Race and sex are discrete variables; hence nonpara- 

metric estimation implies separation of the NLSY respondents into 

(race,sex) cells. The parental education data are father's and 

mother's years of schooling. We treat these two covariates as 

continuous variables. 

Within each (race,sex) cell, we compute kernel estimates of 

the bounds. The kernel is the standard spherical bivariate 

normal density function and the bandwidth is fixed at one. Thus, 

suppose we wish to estimate the bounds for a child i whose mother 

and father have M, and Fi years of schooling respectively. The 

weight given to an observation j with parents' schooling (M,,Fj) 

is proportional to g(M,-M,) g(Fi-Fj) , where g ( . ) is the univariate 

standard normal density function. 

Tables 4A through 4D report estimates for the following 

(race,sex) cells: white males, white females, black males, and 

black females. We have not estimated bounds for other 



TABLE 4: BOUNDS ON AND ESTIMATES OF THE GRADUATION PROBABILITIES 
P (y,=11 x) and P (y,=ll x) 

A. WHITE MALES 

Parents 
Schooling 
F M 

Family 
Status 

Nonparametric Nonparametric 
Bounds Model 

(L- L u (U+) 

Parametric 
Models 

1 2 3 

Key to symbols 

F = father M = mother 
I = intact family N = nonintact family 
(L-) = .05-quantile of bootstrapped distribution of lower-bound estimate 
L = actual lower-bound estimate 
U = actual upper-bound estimate 
(U+) = .95-quantile of bootstrapped distribution of upper-bound estimate 
models 1 through 3 = estimated probabilities using parameter estimates in 

Tables 1 through 3 

(Table continues) 



TABLE 4 (continued) 

B. WHITE FEMALES 

Parents 
Schooling 
F M 

Family 
Status 

Nonparametric  onp parametric 
Bounds Model 

(L-1 L u (U+) 

Parametric 
Models 

1 2 3 

(Table continues) 



TABLE 4 (continued) 

C. BLACK MALES 

Parents ' 
Schooling 
F M 

Family 
Status 

Nonparametric Nonparametric Parametric 
Bounds Model Models 

(L-1 L u (U+) 1 2 3 

(Table continues) 



TABLE 4 (continued) 

D. BLACK FEMALES 

Parents' Family Nonparametric Nonparametric Parametric 
Schooling Status Bounds Model Models 
F M (L-) L U (u+) 1 2 3 
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raciallethnic groups as the NLSY sample sizes were small. Within 

each of the four cells examined, we have estimated the bound at 

each value of parental years-of-schooling (e.g., father = 11 

years, mother = 14 years). To simplify the presentation, Table 4 

reports estimates for broader years-of-schooling categories: less 

than 12 years, 12 years, greater than 12 years. The aggregated 

estimates are computed by averaging the raw estimates over all 

NLSY respondents whose parental years-of-schooling falls within 

the broader category. 

The literature on nonparametric regression analysis has not 

yet settled on a convention for reporting the precision of an 

estimate. Several approaches are examined in Hardle (1990), 

Chapters 4 and 5. In this paper, we report bootstrapped 

confidence intervals for the bounds. Our procedure has the 

following steps: 

(a) estimate the conditional probabilities P[(y=i,z=j) 1x1, 

i = 0,1, j = 0,l nonparametrically (recall that y is the 

observed high school graduation outcome); 

(b) apply the estimated P[(y,z) 1x1 to draw a simulated 

realization of (y,z) for each member of the NLSY sample, 

hence generating a pseudo NLSY sample; 

(b) estimate the bounds on the pseudo-sample data; 

(d) repeat steps b and b five hundred times, thereby yielding a 

bootstrapped sampling distribution for the bounds; 
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(e) report in Table 4 the .05-quantile of the bootstrapped 

distribution of the lower bound and the .95-quantile of the 

bootstrapped distribution of the upper bound. 

5.3. Findings 

In this section, we interpret the findings reported in Table 4. 

We first consider the sampling precision of the bound estimates. 

This done, we examine the tightness of the bounds on P(y,=llx) 

and ~(y,=llx). We then use the bounds to check the parametric 

models of Section 4. 

Sampling precision of the bound estimates 

Substantive discussion of our estimates of the bounds is 

worthwhile only if these estimates are reasonably precise. The 

bootstrapped confidence intervals indicate that the estimates are 

precise. In 57 of 72 cases, the .05-quantile of the bootstrapped 

distribution of the lower-bound estimates lies less than .10 

below the actual lower-bound estimate; in every case, the 

.05-quantile lies less than .15 below the estimate. In 65 of 72 

cases, the .95-quantile of the bootstrapped distribution of the 

upper-bound estimates lies less than .05 above the actual upper- 

bound estimate; in every case, the .95-quantile lies less than 

.12 above the estimate. 
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Tightness of the estimated bounds 

Inspection of Table 4 shows that the estimated bound on 

~(y,=l (x) is in most cases tighter than that on P(y,=ll x) .  his 

is so because the probability of residing in an intact family 

exceeds the probability of residing in a nonintact family for 

most values of the covariates x. 

The estimated probability of residing in an intact family 

varies considerably with x; hence the width of the bounds varies 

considerably with x. The bound on ~(y,=llx) is tightest, and 

that on P(y,=llx) correspondingly loosest, when x = (white, male, 

father's schooling > 12, mother's schooling = 12). In this case, 

the estimated probability of residing in an intact family is .874 

and the estimated bounds on graduation probabilities are 

[.823,.949] and [.114,.988] respectively. Thus, in the absence 

of prior information, we can pin down ~ ( y i l l x )  quite well but 

can say little about P(y,=ll x) . 
The bound on ~ ( y i l l  x) is loosest, and that on P(y,=ll x) 

tightest, when x = (black, male, father's schooling > 12, 

mother's schooling < 12). Here the estimated probability of 

residing in an intact family is .420 and the estimated bounds on 

graduation probabilities are [.342,.922] and [.435,.855]. Thus, 

although we cannot pin down either P(y,=ll x) or P(y,=ll x) very 

well without prior information, we can restrict both probabi- 

lities to intervals of length less that .6. 
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Consistency of the parametric models with the bounds 

The estimated bounds have two uses in empirical analysis. One 

use, discussed above, is to provide interval estimates of 

P(y,=ll x) and P (yN=l 1 x) ; estimates that are valid in the absence 
of prior information. The second use, discussed here, is to test 

hypotheses on the process generating family structure and 

children's outcomes. 

Let it be hypothesized, for the moment, that P(y,=ll x) = f,(x) 

and that P(yN=l (x) = fN(x) , where f,(. ) and fN(. ) are specified 

functions of x. Also suppose that the nonparametric bounds on 

P (y,=ll x) and P (yN=l 1 x) are known. Then the stated hypothesis is 

testable. We can conclude that the hypothesis is incorrect if, 

for any value of x, either f,(x) or fN(x) lies outside the 

nonparametric bound on P (y,=l ( x) or P (yN=l ( x) respectively. On 

the other hand, we cannot reject the hypothesis if f,(x) and 

fN(x) lie within the bounds for all x. 

Now consider the realistic situation in which a parametric 

model explaining the determination of family structure and high 

school outcomes is hypothesized and the parameters of this model 

are estimated. Also suppose that the nonparametric bounds on 

P (y,=ll x) and P (yN=l 1 x) are estimated. Then we may use the 

estimated bounds to test the hypothesized model. In particular, 

we may reject the model if its implied estimates for P(y,=llx) 

and P(yN=llx) lie "too far" outside the estimated bounds on these 

probabilities. To choose a formal rejection region would require 

knowledge of the sampling distribution of the estimates and 
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specification of a significance level for the test. Here we 

shall proceed less formally. 

The last three columns of Table 4 give the estimates of 

P (yI=l (x) and P(y,=lI x) implied by the three parametric models of 

Section 4. To obtain these estimates, we first compute estimates 

for each NLSY respondent by applying equation (3) to the 

parameter estimates in Tables 1, 2, and 3. We then average the 

estimates over all NLSY respondents whose raciallethnic group, 

sex, and parental education values lie in the appropriate cell of 

Table 4. 

We find that the parametric estimates of ~(y,=lJx) and 

P(Y,=I)x) lie within the estimated bounds 67 of 72 times for 

model 1, 64 of 72 times for model 2, and 65 of 72 times for model 

3. Not surprisingly, the cases in which the estimated bounds are 

violated tend to be those in which the bounds are relatively 

tight. All of the violations concern the estimates for 

P(y,=llx); all but one occurs in the white group. 

Are the violations of the bounds sufficiently large as to 

warrant rejecting the parametric models? Probably not. In no 

case does a parametric estimate of P(y~l1 x) or P(y,=l 1 x) lie 
outside the bootstrapped confidence interval for the bounds, 

although a few estimates are close to the edge. As we interpret 

it, the evidence in Table 4 does not suffice to reject any of the 

three models. 



6. Non~arametric Estimates Assuminq Familv Structure Is Exoqenous 

Section 4 and 5 considered two polar informational situations. 

In this section, we examine the important intermediate case in 

which family structure is known to be exogenous but no further 

information is available. That is, we assume that (4) holds but 

do not restrict the form of the probability of high school 

graduation, as was done in (3). 

Recall that, given (4) , P(yI=l 1 x) and P (yN=l 1 x) equal 
P (yI=l I X, 2-0) and P (yN=l 1 x, z=l) respectively. Thus (4) alone, 

without any additional information, identifies P(y1=l(x) and 

P (yN=l ( X) . Inspection of the bounds ( 7 )  shows that P (yl=l ( x, z=O) 

and P (yN=l 1 x, z=l) necessarily lie within the bounds on P (y,=ll x) 
and P(yN=l(x) respectively. Hence, in the absence of prior 

information, the hypothesis that (4) holds cannot be rejected. 

Estimates of P (yl=l 1 x, z=O) and P (yN=l 1 x, z=l) are reported in 
Table 4 under the heading  onpa parametric Model." These estimates 

are algebraically related to our bound estimates. The estimate 

of ~(y*=l lx, z=0) is the lower bound on ~(y,=llx) divided by the 

width of the estimated bound on P(yN=11x). The estimate of 

P(yN=l(xtz=l) is computed analogously. Table 5 characterizes the 

sampling uncertainty of the nonparametric estimates by presenting 

quantiles of their bootstrapped sampling distributions. 

The remainder of this section discusses three aspects of the 

findings . 



Sampling precision of the estimates 

Examination of Table 5 shows that the precision of the esti- 

mates varies substantially with family structure and with 

parental education. The estimates are more precise for intact 

families and for ones in which both parents have similar years of 

schooling. This pattern reflects the distribution of x in the 

NLSY data, which is presented in the last column of the table. 

As is well known, the precision of kernel estimates increases 

with the concentration of data around the x-value of interest. 

A familiar quantitative summary of precision is the length of 

the interval between the .05 and .95 quantile of the sampling 

distribution. For whites in intact families, the interval length 

varies from .03 to .14, depending on parents' education. For 

whites in nonintact families, most of the intervals have length 

between .15 and .25, although a few are shorter or longer. For 

blacks, the interval lengths range from .03 to .18 in intact 

families and from to .08 to .26 in nonintact ones. 

Comparison with probit-model estimates 

The nonparametric-model estimates of high school graduation 

probabilities may be compared with those derived from the probit 

model of Section 4.1. The latter model invokes not only (4) but 

also the functional form assumption (3). The two sets of esti- 

mates differ by more than .05 in 18 of 72 cases and by more than 

.10 in 4 of 72 cases. We cannot say whether these discrepancies 

are severe enough to reject the functional form assumptions of 



TABLE 5: BOOTSTRAPPED SAMPLING DISTRIBUTIONS 
FOR THE NONPARAMETRIC MODEL ESTIMATES 

A. WHITE MALES 

Parent's Family 
schooling Status 
F M 5% 

Cell Sample Size Quant i le 
10% 25% 50% 75% 90% 

Sample size 

(Table continues) 



TABLE 5 (continued) 

B. WHITE FEMALES 

Parent's Family 
Schooling Status 
F M 

~uantile Cell sample Size 
10% 25% 50% 75% 90% 95% 

Sample size 

(Table continues) 



TABLE 5 (continued) 

C. BLACK MALES 

Parent's Family 
Schooling Status 
F M 

Cell Sample Size 
95% 

Sample size 

(Table continues) 



TABLE 5 (continued) 

D. BLACK FEMALES 

Parent s Family 
Schooling Status Cell Sample Size 

95% 

Sample size 
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the probit model. The literature does not offer a formal test of 

the hypothesis (3) given the maintained hypothesis (4). 

Variation of graduation probability with parental education 

In our Section 4.1 discussion of the probit model estimates, 

we observed that mother's and father's education appear to 

contribute substantially and equally to a child's success in 

school. The more flexible nonparametric model offers the 

opportunity to explore in greater depth the relationship between 

parents1 education and children's outcomes. In particular, the 

nonparametric model allows us to examine separately the effects 

of parental education in intact and nonintact families. (This 

was not done earlier because our probit model specification 

constrained the parameter vector C to be the same in equations 

(2b) and (2c). The family-structure specific effects of parental 

education could be investigated within the probit model framework 

by removing this constraint.) 

The mass of evidence in Table 4 clearly corroborates the 

earlier probit findings. In addition, two new findings warrant 

attention. First, we find that the effect of parental education 

on the probability of high school graduation is larger in 

nonintact families than in intact ones. Second, we find that, in 

nonintact families, the effect of father's education is at least 

as large as that of mother's education. This last finding is 

most intriguing. We had expected that mother's background would 
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be the dominant influence in nonintact families, as children in 

single-parent homes almost always live with their mothers. 

The magnitudes of these effects become apparent through a set 

of examples. For each of the four race and sex groups, let the 

mother have twelve years of schooling and let the father's 

education vary from <12 to >12. We find that, for white males, 

the probability of high school graduation rises from .869 to -942 

in intact families and from .680 to .905 in nonintact ones. For 

white females, the graduation probability rises from .903 to .968 

in intact families and from .709 to .926 in nonintact ones. For 

black males, the graduation probability rises from .776 to .950 

in intact families and from .696 to .842 in nonintact ones. For 

black females, the probability rises from .882 to .928 in intact 

families and from .776 to .942 in nonintact ones. 

Now, contrariwise, let the father have twelve years of 

schooling and let the mother's education vary from <12 to >12. 

For white males, the graduation probability rises from .845 to 

.905 in intact families and from .561 to .778 in nonintact ones. 

For white females, the graduation probability rises from .903 to 

.965 in intact families and from .698 to .898 in nonintact ones. 

For black males, the graduation probability rises from .847 to 

.860 in intact families and from .791 to .835 in nonintact ones. 

For black females, the probability rises from .905 to .990 in 

intact families and from .772 to .898 in nonintact ones. 

Thus, the probability that a child graduates from high school 

increases markedly with both parents1 education, regardless of 
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family structure. Our empirical findings do not, of course, 

reveal the mechanisms at work. It may be that educated parents 

value schooling more highly and transmit this value to their 

children. It may be that educated parents are wealthier and 

therefore are more able to support their children's continuation 

in school. The mechanisms at work for mothers need not be the 

same as those operating for fathers. To interpret our findings 

at a more basic level would require much richer data than are 

presently available. 

7. Conclusion: Evidence on the Effect of Family Structure 

Table 6 translates the findings of Table 4 into estimates of 

the effect of family structure on high school graduation. The 

estimates from the parametric and nonparametric models are 

essentially all non-negative. The estimates vary moderately in 

magnitude across models and across values of the covariates but 

rarely are below .03 or above .20. There is some tendency for the 

estimates to fall in magnitude as parents1 schooling increases. 

The estimated bounds have width one and so cannot determine the 

sign of the treatment effect. The bounds are informative nonethe- 

less. For example, the estimated bound for black females whose 

parents both have 12 years of schooling is [-.493,.507]. This 

does not imply that a positive treatment effect is as likely as a 

negative one. It does imply that, in the absence of prior 



TABLE 6: BOUNDS ON AND ESTIMATES OF THE TREATMENT EFFECT 
p (y,=1 I x) - p (y,=l l x) 

A. WHITE MALES 

Parentsf Nonparametric Nonparametric Parametric 
Schooling Bounds Model Models 
F M L U 1 2 3 

B. WHITE FEMALES 

Parentsf Nonparametric Nonparametric Parametric 
Schooling Bounds Model Models 
F M L U 1 2 3 

(Table continues) 



TABLE 6 (continued) 

BLACK MALES 

Parents 
Schooling 
F M 

Parents1 
Schooling 
F M 

Nonparametric Nonparametric Parametric 
Bounds Model Models 

L u 1 2 3 

Nonparametric 
Bounds 
L u 

D. BLACK FEMALES 

Nonparametric Parametric 
Model Models 

1 2 3 
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information, the effect of family structure on the probability of 

high school graduation can be pinned down to the range 

[-.493,.507]. 

In summary, our empirical analysis strengthens the evidence 

that living in an intact family increases the probability that a 

child will graduate from high school. ~arlier studies of the 

family-structure effect were performed under the strong assump- 

tions of Section 4.1; namely that family structure is exogenous 

and that the high school graduation probability has a particular 

functional form. Our estimates of latent-variable models that do 

not impose the exogeneity assumption, reported in Sections 4.2 

and 4.3, suggest that the exogeneity assumption is not far off 

the mark. Our nonparametric-bounds tests, reported in Section 5, 

do not reject the latent-variable-model specifications. Our 

nonparametric-model estimates, reported in Section 6, are of 

particular interest. These estimates indicate the existence of 

similar family-structure effects in all four of the race and sex 

groups studied. 

The foregoing remarks must be tempered by the realization that 

no empirical analysis of the effect of family structure on 

children's outcomes can be conclusive. In the absence of prior 

information, one can only estimate the bounds of Section 5. Any 

attempt to determine the family-structure effect more tightly 

must bring to bear prior information about the process generating 

family structure and children's outcomes. As long as social 
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scientists are heterogeneous in their beliefs about this process, 

their estimates of family-structure effects may vary. 
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