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ABSTRACT 

This article considers anew the problem of estimating a 

regression ~(ylx) when realizations of (y,x) are sampled randomly 

but y is observed selectively. The central issue is the failure 

of the sampling process to identify ~(ylx). The problem faced by 

the researcher is to find correct prior restrictions which, when 

combined with the data, identify the regression. 

Two kinds of restrictions are examined here. One, which has 

not been studied before, is a bound on the support of y. Such a 

bound implies a simple, useful bound on ~(ylx). The other, which 

has received much attention, is a separability restriction 

derived from a latent variable model. 

The selection problem is sometimes confused with the problem 

of identifying a treatment effect when persons self-select into 

treatment. This article clarifies the distinction. 



1. INTRODUCTION 

This article seeks to expose the essence of a problem that has 

drawn much attention in the past fifteen years: estimation of a 

regression from selectively observed random sample data. 

Suppose that each member of a population is characterized by a 

triple (y,z,x), where y is a real number, z is a binary indica- 

tor, and x is a real vector. A researcher observes a random 

sample of realizations of (z,x) and, moreover, observes the 

realizations of y when z = 1. I shall assume that the researcher 

wants to learn the regression function E(y(x) on the support of 

the conditioning variable x. 

The central issue is identification. The sampling process 

identifies the regressions E (ylx, z=l) and E (z lx) = ~(z=l(x) . 
Given minimal regularity, these functions of x can be estimated 

consistently. The literature on nonparametric regression 

analysis offers numerous approaches. 

The sampling process does not identify E(y(x,z=O) nor 

On the other hand, ~(ylx) may be identified if one can combine 

the data with suitable prior restrictions on the population 

distribution of (y,z) conditional on x. The problem faced by the 

researcher is to find restrictions which are both correct and 

useful. 



Until the early 1970s, researchers almost universally assumed 

that, conditional on x, y is mean independent of z. That is, 

As the sampling process identifies E(ylx,z=l), restriction (2) 

identifies ~(ylx). The plausibility of (2) has subsequently been 

questioned sharply, especially by researchers who use latent 

variable models to explain the determination of (y,z). See 

Gronau(1974). 

I shall examine two alternatives to conditional mean indepen- 

dence. Section 2 poses a weak restriction that has not been 

studied before, namely a bound on the support of y conditional on 

x. I show that such a bound implies a simple, useful bound on 

~(ylx) and present an empirical illustration. 

Section 3 examines separability restrictions derived from 

latent variable models. Leading cases include the familiar 

normal-linear model and recently developed index models. 

Section 4 considers the problem of identifying a treatment 

effect when persons may self-select into treatment. The problem 

of identifying a treatment effect is often confused with the 

selection problem. I clarify the distinction. 

Section 5 draws conclusions. 



2. BOUND ON THE CONDITIONAL SUPPORT OF v 

Suppose it is known that, conditional on x and on z = 0, the 

distribution of y is concentrated in a given interval [KOx,Klx], 

where Kox K,,. That is, 

Then we may derive an estimable bound on E(y(x). To obtain the 

bound, observe that 

(4) P{y e [Kox,Klx] (x, z=O) = 1 KO, I E(y)x,z=O) I KlX- 

Apply this inequality to the right-hand side of equation (1). 

The result is 

Thus the lower bound is the value E(y(x) takes if, in the non- 

selected subpopulation, y always equals KO. The upper bound is 

the value of E(y(x) if all the non-selected y equal K1. 

This bound on E(y(x) is determined by the bound [KOx,Klx] on y, 

which is known, and by the regressions E(y(x,z=l) and P(z(x) , 



which are identified by the sampling process. So the bound can 

be made operational. Methods for estimating the bound from 

sample data will be provided in Section 2.3. 

The bound is informative if P(Z=O~X) < 1 and if the bound 

[Kox,KIx] on the conditional support of y is nontrivial. Its 

width is (K~,-%,) P (z=0 1 x) . Thus the width does not depend on 

~(y(x,z=l). The bound width varies with x in proportion to the 

two quantities (KIx-KO,) and P(Z=O lx) . This behavior is intuitive. 
The wider the bound on the conditional support of y, the less 

prior information one has. The larger is P(Z=O~X), the smaller 

is the probability that y is observed. 

It is useful to consider the bound width as a fraction of the 

width of the original bound on y. The fractional width is 

P(z=o(x), the probability of not being selected conditional on x. 

Thus the fractional width does not depend on the variable y whose 

regression on x is sought. Researchers facing selection problems 

routinely estimate selection probabilities. So they may easily 

determine how informative the bound (5) will be for any choice of 

y and at any value of x. 

It is of some historical interest to ask why the literature on 

selection has not previously recognized the identifying power of 

a bound on y. The explanation may have several parts. 

Timing may have played a role. The literature on selection 

developed in the 1970s, a period when the frontier of 

econometrics was nonlinear parametric analysis. At that time, 

nonparametric regression analysis was just beginning to be 



formalized by statisticians. Economists were generally unaware 

that consistent nonparametric regression was possible. 

It may be that the historical fixation of econometrics on 

point identification has inhibited appreciation of the potential 

usefulness of bounds. Econometricians have occasionally reported 

useful bounds on quantities that are not point-identified; see, 

for example, McFadden (1975) , Klepper and Leamer (1984) , 
Varian(1985), and Manski(l988a). But the conventional wisdom has 

been that bounds are hard to estimate and rarely informative. 

Whatever the validity of this conventional wisdom in other 

contexts, it does not apply to the bound (5). 

Perhaps the preoccupation of researchers with the estimation 

of wage equations has been a factor. The typical wage regression 

defines y to be the logarithm of wage. This variable has no 

obvious upper bound, although minimum wage legislation may 

enforce a lower bound. Whether or not the logarithm of wage is 

bounded, wage distributions are always boundable. This is shown 

in Section 2.1. 

2.1. Binary y 

When y is a binary indicator variable, the bound takes an 

especially simple form. Here y is definitionally bounded, with 

KO, = 0 and K,, = 1 for all x. Moreover, ~(ylx) = P(y=l lx) and 

E(ylx,z=l) = P(y=llx,z=l). Hence (5) reduces to 



The binary indicator case may seem special. Actually it has 

very general application; it provides a bound for any conditional 

probability. To see this, let w be a random variable taking 

values in a space W. Let A be any subset of W. Suppose that a 

researcher wants to bound the probability that w is in A, 

conditional on x. To do so, one need only observe that 

where I[*] is the indicator function taking the value one if the 

bracketed logical condition holds and zero otherwise. So the 

bound (6) applies with y = l[w~A]. 

For example, let w be the logarithm of a worker's wage. Suppose 

that the support of w conditional on x is unbounded. Then the 

bound (5) on ~(wlx) is the trivial (-,a). But one can obtain an 

informative bound on the conditional probability P(w<~(x) for any 

real number r. Just define y = 1 [wsr] and apply (6) . Varying r, 

one may bound the distribution function of w conditional on x. 

It may seem surprising that one should be able to bound the 

distribution function of a random variable but not its mean. 

The explanation is a fact that is widely appreciated by 

researchers in the field of robust statistics: the mean of a 



random variable is not a continuous function of its distribution 

function. Hence small perturbations in a distribution function 

can generate large movements in the mean. See Huber(l981). 

To obtain some intuition for this fact, consider the following 

thought experiment. Let w be a random variable with 1-c of its 

probability mass in the interval (-,TI and c mass at some point 

S > T. Suppose w is perturbed by moving the mass at S to some 

S, > S. Then P(WST) remains unchanged for T < S and falls by at 

most c for r 2 S. But E (w) increases by the amount c (S,-S) . Now 

let S, -> -. The perturbed distribution function remains within 

an r-bound of the original one but the mean of the perturbed 

random variable converges to infinity. 

2.2. ~ounding the Effect of a Change in x 

The objective of a regression analysis is sometimes not to 

learn ~(ylx) at a given value of x but rather to learn how ~(ylx) 

moves as x changes. One can use (5) to bound the magnitude of 

this movement. In some cases one can bound its direction. 

Suppose that one wants to learn E(y(x=<) - E(ylx=p), where < 
and p are given points in the support of x. The bound (5) implies 

that E(ylx=<) - E(ylx=p) is bounded from below by the difference 

between the lower bound on E(ylx=<) and the upper bound on 

E (yIx=p) . Similarly, E (ylx=<) - E(ylx=p) is bounded from above 

by the difference between the upper bound on E(ylx=<) and the 

lower bound on E(ylx=p) . That is, 



The width of this bound is the sum of the widths of the bounds on 

E (yl x=<) and on E (y(x=p) . Depending on the case, the bound may 

or may not lie entirely to one side of the origin. 

The foregoing concerns a finite change in x. On occasion one 

would like to learn the derivative aE(y(x)/ax. A bound on y does 

not by itself restrict this derivative. A bound on y combined 

with one on aE (ylx, z=O)/ax does. 

The argument extends that leading to (5). It follows from (1) 

that 

provided that these derivatives exist. Of the quantities on the 

right-hand side of (9), all but E(ylx,z=O) and aE(y(x,z=~)/ax are 



identified by the sampling process. Suppose that (3) holds. 

Moreover, let it be known that, for a given [DO,, Dl,] , 

Then the unidentified quantities are both bounded. The result is 

a bound on aE(ylx)/ax, namely 

I shall not discuss this bound further. The knowledge needed 

to obtain it is much less readily available than that which 

suffices to bound the finite difference E(ylx=<) - ~(ylx=~). The 
support of y is often definitionally bounded. The derivative 

aE (ylx, z=0)/ax is rarely so. 



2.3. Estimation of the Bound 

A simple way to estimate the bound on ~(ylx) is to estimate 

E(ylx,z=l) and P(zlx), both of which are identified by the 

sampling process. I shall present an equivalent approach whose 

statistical properties are a bit easier to derive. 

First rewrite (5) in an equivalent form. Observe that 

Also observe that 

It follows from (12) and (13) that (5) may be rewritten as 

The above shows that to estimate the bound, it suffices to 

estimate two linear combinations of ~(yzlx) and E (1-z(x) . I 

shall first pose a simple method that works at values of x having 

positive probability in the population. I shall then extend the 

method to make it work at any point in the support of x. 

Consider a point < such that P(x=<) > 0. Let N denote the 

sample size. The natural estimates for E (yz lx=<) and E (1-z 1 x=<) 



are the sample averages of yz and 1-2 across those observations 

for which x = <, namely 

and 

Note that bN< is computable even though yi is not always observed: 

if zi = 0, then yizi = 0. Given (5'), (14), and (15), we may 

estimate the bound at < by 

This estimate is consistent. The strong law of large numbers 

implies that as N -> a, 

almost surely. Hence (16) converges almost surely to the true 

bound. 



The estimate has a limiting normal distribution if, conditional 

on x = <, the bivariate random variable (yz,l-z) has finite 

variance matrix. Let ZC denote the variance matrix. The central 

limit theorem implies that as N -> a, 

in distribution. Hence JN times the difference between 

(b,<+K,~~~~,b~~+K,~c<~) and the true endpoints of the bound has a 

limiting normal distribution with mean zero and variance matrix 

Now consider the problem of estimating the bound at values of 

x that have probability zero in the population but are in the 

support of x. That is, let 11 1 denote a norm and consider < such 
that P(x=<) = 0 but P[llx-<11<6] > 0 for all 6 > 0. 

Estimating ~(yzlx=<) and ~(1-zlx=<) by (14) and (15) clearly 

will not work; with probability one there are no sample observa- 

tions for which x = <. On the other hand, it seems reasonable to 
estimate these quantities by the sample averages of yz and 1-2 

across those observations for which x is wclosew to <, provided 

that one tightens the criterion of closeness appropriately as the 

sample size increases. This intuitive idea does work; it is the 

basis of nonparametric regression analysis. 



To formalize the idea, let WNi (<)  , i = 1, . . . ,N be chosen 
weights that sum to one and redefine (bNF,cNE)to be estimates of 

the form 

The earlier definitions of (bN< , cNt) are subsumed by (19) ; they 

are the special case in which 

A large menu of nonparametric regression estimates having the 

form (19) are available for application. Perhaps the simplest is 

the "histogramw method. Here the researcher selects a "bandwidthn 

6 > 0 and lets 

If the weights are chosen as in (21) and if 6 is fixed, we have a 

consistent estimate of [E (yz 1 llx-< 11~6) , E (1-z 1 llx-< [Id) ] . On the 

other hand, if the researcher lets S vary with the sample in a 

way that makes 6 -> 0 as N -> a, it is plausible that we obtain a 



consistent estimate of [E(yzlx),~(l-zlx)].   his turns out to be 

so, provided that the rule used to choose 6 makes 6 -> 0 

sufficiently slowly as N -> a. 

Two classes of nonparametric regression methods that have 

drawn much attention are the "kernelw estimators and the 

"nearest-neighborn estimators. Both classes have the form (19); 

they choose the weights W in different ways. The histogram 

estimator is a member of the kernel class. Bierens(l987) and 

Hardle(1988) provide excellent expositions of kernel regression, 

complete with numerical examples. Prakasa Rao(1983) and 

Hardle(1988) cover the nearest-neighbor approach. Manski(l988b) 

introduces a close cousin of the kernel and nearest-neighbor 

methods, called "smallest neighborhoodw estimation. 

It would carry us too far afield to survey here the asymptotic 

properties and operational characteristics of the many available 

procedures. A few general remarks will suffice. 

First, almost any intuitively reasonable estimator of the form 

(19) provides a consistent estimate of [E(yzlx),E(l-zlx)]. Most 

estimators have limiting normal distributions, although not 

always centered at zero. The rate of convergence is generally 

slower than the J N  rate obtainable in classical estimation 

problems. Bierens(l987) introduces an easily computed kernel type 

estimate that converges as rapidly as is possible and that has a 

limiting normal distribution centered at zero. 



Second, some researchers find it uncomfortable that so many 

different choices of the weights WNi(C), i =I, ..., N yield 
estimates with similar asymptotic properties. simply put, the 

problem is that the available statistical theory gives the 

researcher too little guidance on choosing the weights in 

practice. Many researchers advocate use of llcross-validationn to 

select an estimator. In cross-validation, one computes alter- 

native estimates on subsamples and uses them to predict y on the 

complementary subsamples. One selects the estimate which has the 

best predictive power. 

Third, there is consensus among practitioners that nonpara- 

metric regression methods usually work well when the regressor 

variable x has low dimension. On the other hand, it is common to 

find that, in samples of realistic size, performance is poor when 

the dimension of x is high. This phenomenon has led some 

researchers to develop approaches that impose dimension-reducing 

restrictions on the regression but remain nonparametric in part. 

Section 3.3 will describe applications to the analysis of 

selection problems. 



2.4. An Empirical Example: Attrition in a Survey of the Homeless 

To illustrate the bound, I consider a selection problem that 

arose in a recent study of exit from homelessness undertaken by 

Piliavin and Sosin(1988). These researchers wished to learn the 

probability that an individual who is homeless at a given date 

has a home six months later. Thus the population of interest is 

the set of people who are homeless at the initial date. The 

variable y is binary, with y = 1 if the individual has a home six 

months later and y = 0 if he or she remains homeless. The 

regressors x are individual background attributes. The objective 

is to learn E (y 1 x) = P (y=ll x) . 
The investigators interviewed a random sample of the people 

who were homeless in Minneapolis in late December 1985. Six 

months later they attempted to reinterview the original 

respondents but succeeded in locating only a subset. So the 

selection problem is attrition from the sample: z = 1 if a 

respondent is located for reinterview, z = 0 otherwise. 

Let us first estimate the bound on a very simple regression, 

that in which x is the respondent's sex. Consider the males. 

First interview data were obtained from 106 men, of whom 64 were 

located six months later. Of the latter group, 21 had exited 

from homelessness. So the estimate of ~(yzlmale) is bNmale = 21/106 

and that of E (1-zlmale) is cNmle = 42/106. The estimate of the 

bound on ~(y=l(male) is [21/106,63/106] [.20,.59]. 



Now consider the females. Data were obtained from 31 women, 

of whom 14 were located six months later. Of these, 3 had exited 

- 17/31. The from homelessness. So bNfmle = 3/31 and cNfemale - 

estimated bound on ~(y=llfemale) is [3/31,20/31] = [.10,.65]. 

Interpretation of these estimates should be cautious, given 

the small sample sizes. Taking the results at face value, we 

have a tighter bound on ~(y=l(male) than on ~(y=lIfemale). The 

attrition frequencies, hence bound widths, are .39 for men and 

.55 for women. The important point is that both bounds are 

informative. Having imposed no restrictions on the selection 

process, we are nevertheless able to place meaningful bounds on 

the probability that a person who is homeless on a given date is 

no longer homeless six months later. 

The foregoing illustrates estimation of the bound when the 

regressor is a discrete variable. To provide an example in which 

x is continuous, I regress y on sex and an income variable. The 

latter is the respondent's response, expressed in dollars per 

week, to the question l1What was the best job you ever had? How 

much did that job pay?I1 

Usable responses to the income question were obtained from 89 

men and from 22 women. The sample of women is too small to allow 

meaningful nonparametric regression analysis so I shall restrict 

attention to the men. To keep the analysis simple, I ignore the 

selection problem implied by the fact that 17 of the 106 men did 

not respond to the income question. 



Let x be the bivariate regressor (male,income). ~igure 1 

graphs a nonparametric estimate of P(Z=O(X) on the sample income 

data. This and the estimate of ~(yzlx) were obtained by cross- 

validated logistic kernel regression, using the program NPREG 

described in Manski and Thompson(l987). Observe that the 

estimated attrition probability increases smoothly over the 

income range where the data are concentrated but seems to turn 

downward in the high income range where the data are sparse. 

Figure 2 graphs the estimate of the bound on ~(y=l(x). The 

lower bound is the estimate of E(yzlx), which is flat on the 

income range where the data are concentrated but turns downward 

eventually. The upper bound is the sum of the estimates for 

E(yz1x) and for P(z=OJx). 

Observe that the estimated bound is tightest at the low end of 

the income domain and spreads as income increases. The interval 

is [.24,.55] at income $50 and [.23,.66] at income $600. This 

spreading reflects the fact, shown in Figure 1, that the 

estimated probability of attrition increases with income. 
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3. SEPARABILITY RESTRICTIONS DERIVED FROM LATENT VARIABLE MODELS 

Prevailing practice in the econometric literature on selection 

is to identify E(y(x) by assuming that E(ylx,z=l) is the sum of 

E(y(x) and another function that is distinguishable from ~(ylx). 

Suppose it is known that ~(y(x) and ~(ylx, z=l) have the forms 

for some gl E G1 and g2 E G2, where G1 and G2 are specified 

families of functions mapping x into the real line. The sampling 

process identifies E (y 1 x, z=l) ; hence gl ( * )  + g2 ( * )  is identified. 

The functions gl and g2 can be separately identified if knowledge 

of gl(*) + g2(*) is combined with prior restrictions on G1 and G2. 
The literature provides various specifications for (Gl,G2) that 

suffice. These specifications have been motivated by reference 

to the latent variable model 



where [fl ( * )  , f2 ( * )  1 are real functions of x and (u, ,u2) are 

unobserved real random variables. Condition (24) normalizes 

location if fl(*) is unrestricted but is an assumption otherwise. 

The latent variable model implies that 

So (22) holds with 

~estrictions imposed on fl(*) translate directly into a specifi- 

cation of GI. Restrictions imposed on f2(*) and on the distribu- 

tion of (ul,u2) conditional on x induce a specification of G2. 

Sections 3.1 through 3.3 consider three restrictions that have 

received considerable attention. In each case I give the 

resulting specification of (GlrG2). The restrictions to be 

discussed are neither nested nor mutually exclusive. A latent 

variable model may impose any combination of the three. 

3.1. The Model with Conditionally Independent Disturbances 

The early literature assumed that ul and u2 are statistically 

independent conditional on x.   his and (24) imply that 



So GZ contains only the function g2(x) = 0. In other words, the 

conditional mean independence restriction (2) holds. 

The model with conditionally independent disturbances imposes 

no restrictions on fl(*). Hence this model has no implications 

beyond (2), which just identifies ~(ylx). In practice, 

researchers have typically imposed supplementary restrictions on 

fl(*); most of the applied literature makes fl(*) linear. 

3.2. parametric Models 

A second type of restriction became prominent in the middle 

1970s. Suppose that fl(*) is known up to a finite dimensional 

parameter p,, f2(*) up to a finite dimensional parameter pzt and 

the distribution of (ul,uz) conditional on x up to a finite 

dimensional parameter 7. Then (27) implies that G, is a finite 

dimensional family of functions parametrized by p1 and Gz is a 

finite dimensional family parametrized by (p2,7). SO we may 

write 



Sufficiently strong parametric restrictions identify P I ,  hence 

E (ylx) . One widely applied model makes fl ( * )  and f2 ( * )  linear 

functions, (ul,u2) statistically independent of x, and the 

distribution of (ul,u2) normal with mean zero. See Heckman(l976). 

In this case, 

where d(*) and a ( * )  are the standard normal density and distri- 

bution functions and where -y = E(ulu2). ~dentification of P1 

hinges on the fact that the linear function x8B1 and the non- 

linear rd(~'B2)/@(~'/12) affect ~(ylx,z=l) in different ways. 

There is a common perception that the normal-linear model 

generalizes the model with conditionally independent distur- 

bances. Barros(1988) observes that the two models are, in fact, 

not nested. The normal-linear model permits u, and u2 to be 

dependent but assumes linearity of [ fl ( * )  , f, (*)  ] , normality of 

(ul , u,) , and independence of (u, , u,) from x. The model with 

conditionally independent disturbances assumes ul and u2 to be 

independent conditional on x but restricts neither the form of 

[f, ( * )  , f2 ( * )  1, the distribution of ul conditional on x, nor the 

distribution of u, conditional on x. Given this, Barros argues 

that the model with conditionally independent disturbances 

warrants renewed attention. 



3.3. Index Models 

Parametric models have increasingly been criticized for their 

fragility; seemingly small misspecifications may generate large 

biases in estimates of ~(ylx). Several articles have reported 

that estimates obtained under the normal-linear model are 

sensitive to misspecification. Hurd(1979) has shown the 

consequences of heteroskedasticity. Arabmazar and Schmidt(l982) 

and Goldberger(l983) have described the effect of non-normality. 

The lack of robustness of parametric models is particularly 

severe when the x components that enter g2 are the same as those 

that determine gl. In this case, identification of gl hinges 

entirely on the imposed functional form restrictions. Recogni- 

tion of this has led to the recent development of a third class 

of models, one which weakens functional form restrictions at the 

cost of imposing exclusion restrictions. 

Let hl (x) and h2(x) be I1indicesl1 of x; that is, many-to-one 

functions of x. Suppose that fl(x) is known to vary with x only 

through hl (x) . Suppose that f2 (x) and the distribution of (ul, u2) 

conditional on x are known to vary with x only through h2(x). 

Then G1 is a family of functions that depend on x only through 

hl(x) and G2 is a family of functions that depend on x only 

through h2 (x) . So we may write 



An example is the model in which fl (x) = fl [hl (x) 1, 

f2 (x) = f2[h2 (x) 1 , and (ul ,u2) is statistically independent of x. 

This model weakens the assumptions of the normal-linear model in 

some respects but strengthens them in others. The index model 

does not force f, and f2 to be linear nor the distribution of 

(ulru2) to be normal. On the other hand, it assumes that fl and 

f2 are determined by distinct indices, a condition not imposed by 

the normal-linear model. 

When combined with restrictions on the family G1 of feasible 

regression functions, index restrictions can identify gl. 

Powell(1987) expresses the basic idea, which is to difference-out 

the function g2 as in fixed effects analyses of panel data. 

Let (<,p) denote a pair of points in the support of x such 

that h2 (<) = h2 (p) but hl (<) f hl (p) . For each such pair, (3 lb) 

implies that 

The left-hand side of (32) is identified by the sampling process. 

The right-hand side is determined by the function of interest gl 

and not by the vvnuisanceu function gz. Hence (32) restricts gl. 

Identification hinges on whether the support of x contains enough 

pairs (<,p) for (32) to pin gl down to a single function within 

the family of feasible functions GI. 



The statistics literature on "projection pursuit" regression 

offers approaches to the estimation of gl when the family G, is 

restricted only qualitatitively. See Huber(1985). Econometricians 

studying index models have typically assumed that gl is linear. 

See Ichimura and Lee(1988) , Powell (1987) , and Robinson(l988) for 

alternative estimation approaches. The first two papers are 

concerned with an extension of the index model in which the form 

of the index function h2 is not known but is estimable. 

As the dates of the foregoing citations indicate, the 

literature on index models is young. The work so far has been 

entirely theoretical. Empirical applications have yet to appear. 

3.4. Latent Variable Models and the Bound Restriction 

It is of interest to juxtapose the restrictions on ~(ylx) 

implied by latent variable models with those implied by a bound 

on the conditional support of y. For purposes of this discussion, 

I shall suppose that the bound on y is specified properly. This 

is an assumption in some applications but is a truism when y is 

definitionally bounded. 

Consider a researcher who has specified a latent variable 

model. The researcher can check whether the hypothesis 

[E (ylx) = fl (x) ] is consistent with the bound on E (yl x) . I use 

the informal term Ifcheckff rather than the formal one I1testn 

intentionally; sampling theory for these bounds-checks remains to 

be developed. 



For example, suppose that the researcher has specified the 

normal-linear model. Normality of ul implies that y has unbounded 

support conditional on x. Hence acceptance of the normal-linear 

model implies that the bound on ~(ylx) is ineffective. But the 

bound on the conditional distribution P(ysr lx) , 6 R' is 

effective, as was shown in Section 2.1. The normal-linear model 

implies that 

where U, is the standard deviation of ul. So we may check the 

validity of the model by estimating (pl,ul), computing the 

estimate of (33), and comparing the result with an estimate of 

the bound on the conditional distribution function. 

It may be thought that bounds-checks of latent variable models 

are impractical in those applications where the dimension of x is 

high. The ostensible reason, stated in Section 2.3, is that 

nonparametric regression estimation tends to perform poorly in 

high dimensional settings. Nevertheless, informative checks are 

practical, as follows. 

Consider E(ylxeA), where A is any region in x-space such that 

P(xeA) > 0. The bound on E(ylxe~) is easily estimated by (16). 

Let a latent variable model be specified. The model implies that 

E (y 1 x) = f (x) . Hence it implies that 



Let fl,(x) be an estimate of fl(x). Then the latent variable 

model implies the following estimate of E(y1xeA): 

One may check the latent variable model by comparing (35) with 

the estimate of the bound on E (y 1 X ~ A )  . 

4. IDENTIFICATION OF TREATMENT EFFECTS 

The selection problem studied in sections 1 through 3 is 

sometimes confused with the problem of identifying a treatment 

effect when persons self-select into treatment. This section 

seeks to clarify the distinction. To keep the presentation simple 

I restrict attention to a binary treatment. Moreover, I use only 

probabilistic terms, making no reference to latent variable 

models. See Heckman and Robb(1985) for a discussion framed in 

latent variable terms. 



Let y denote the relevant outcome variable. Let t be a binary 

variable indicating receipt of treatment; t = 1 if a person 

receives treatment and t = 0 if not. A common labor economics 

application makes y a person's wage and t his participation in 

some program meant to enhance his human capital. 

Let v denote a set of observable variables characterizing the 

person. Let r be a binary variable indicating the person's 

preference for treatment; r = 1 if a person prefers treatment and 

r = 0 if not. The variables r and t are conceptually distinct. 

With typical survey data, a researcher can observe realizations 

of t but not of r. 

The "treatment effect1' is defined to be 

that is, the expected effect on y of receipt of treatment, 

holding fixed the person's observable characteristics v and his 

preference for treatment r. Some discussions of the treatment 

effect suppose that the researcher wants to learn ( 3 6 ) .  Others 

suppose that the researcher wants to identify the average 

treatment effect across persons with different preferences for 

treatment. The latter quantity is 



Assume that a researcher observes a random sample of realiza- 

tions of (y,v,t). Whether the researcher wants to learn (36) or 

(37), the obvious problem is that the preference indicator r is 

not observed. How then can the researcher proceed? 

The problem of identifying the average treatment effect (37) 

is easily solved if it is known that, conditioning on v, 

preference for and receipt of treatment are statistically 

independent. That is, 

This restriction holds, for example, in an experiment with 

randomized assignment to treatment. Given (38), the average 

treatment effect (37) reduces to 

an expression which does not involve the unobserved r and is 

identified by the sampling process. To see this, observe that 



The right-hand side generally differs from the average treatment 

effect (37) but coincides with it if P(rlv,t) = ~(rlv) . 
Much of the recent literature assumes that persons self-select 

into treatment. If so (38) does not hold. Rather, 

Given (41), the preference indicator r is indirectly observable 

through observation of t. The treatment effect (36) reduces to 

for persons who are observed to select treatment and 

for persons who do not select treatment. 

Random sampling of (y,v,t) identifies E(y(v,t). The problem 

is that ~(ylv,r=l,t=O) and ~(yJv,r=o,t=l) are not identified. In 

fact, the population contains no persons such that (r=l,t=O) nor 

any such that (r=O, t=l) . 
The foregoing makes clear that the problem of identifying a 

treatment effect when people self-select into treatment is not 

the same as the problem of selective observation. The selection 

problem concerns a researcher who selectively observes y and 

wants to learn the regression E(y(x) on the support of x. The 



treatment-effect problem concerns a researcher who always 

observes y and who wants to extrapolate the regression E(ylv,r,t) 

off the support of x = (v, r, t) . 
Suppose that treatment is self-selected in the population 

under observation. It is of interest to ask whether a bound on y 

implies a bound on the treatment effect (42). The answer is that 

the magnitude of the effect can be bounded but, in general, not 

its sign. Suppose it is known that 

Then the treatment effect must lie in the interval 

(44a) [E(Y(v,~=~) -L1., E(ylv,t=l) -LOv] 

for persons who select treatment and 

(44b) [Mov-E(~(v,t=O) , M1,-~(~lvtt=0) I 

for those who do not. 



5. CONCLUSION 

Fifteen years ago few economists paid attention to the fact 

that selective observation of random sample data has implications 

for empirical analysis. Then the profession became sensitized to 

the selection problem. The heretofore maintained assumption, 

conditional mean independence of y and z, became a standard 

object of attack. For a while the normal-linear latent variable 

model became the standard llsolution" to the selection problem. 

But researchers soon became aware that this model does not solve 

the selection problem. It trades one set of assumptions for 

another. 

Today there is no conventional wisdom. Some applied research- 

ers, such as LaLonde(l986), have leaped from disenchantment with 

the normal-linear model to the conclusion that econometric 

analysis is incapable of interpreting observations of natural 

populations. In rebuttal, Heckman and Hotz(1988) argue that 

latent variable models are useful empirical tools provided that 

applied researchers take seriously the task of model 

specification. 

Econometricians are seeking to widen the menu of separable 

regression specifications derived from latent variable models. 

The recent work on index models weakens the parametric 

assumptions of the normal-linear model at the cost of requiring 

exclusion assumptions. There is also a revival of interest in 

the model with conditionally independent disturbances. 



I find the current diversity of opinion unsurprising. More- 

over, I expect it to persist. selection creates an identification 

problem. ~dentification always depends on the prior knowledge a 

researcher is willing to assert in the application of interest. 

As researchers are heterogeneous, so must be their perspectives 

on the selection problem. 

Econometricians can assist empirical researchers by clarifying 

the nature of the selection problem and by widening the menu of 

prior restrictions for which estimation methods are available. 

Work on restrictions derived from latent variable models is 

welcome. I also believe that researchers should routinely 

estimate the simple bound developed in Section 2. To bound 

E(y1x) one need only be able to bound the variable y. One need 

not accept the latent variable model. 
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