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ABSTRACT

A major drawback with the traditional Markov formulation of social mobility is

.that it 'assumes homogeneity among persons in an origin state with regard to

their transition behavior. This requirement has led to a deemphasis in con

sideration of the ways in which the transition probabilities vary among indi

viduals. In this paper a regression procedure is introduced which allows a

,heterogeneous population to be examined within a Markov framework. The advan

tages of this formulation are threefold: (a) it allows the sources of varia

tionin the population transition probabilities to be determined; (b) it

facilitates distinguishing between over-time change in the transition proba

bilities which results from shifts in the population on particular attributes

and genuine structural change in which the rules governing transitions have

altered; (3) it enables individual-level transition matrices to be constructed

which are necessary for projecting to the k-step population matrix in the pres

ence of heterogeneity. The techniques developed in this paper are applied to

an analysis of geographic migration.
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1. INTRODUCTION

The use of Markov chains as a structure for analyzing change in the dis-

tribution of a population has achieved considerable popularity in recent years.

Although rather stringent assumptions must be met by the data for the Markov

model to be formally applicable [see,McFarland (1970) for a discussion of these

requirements], it will reproduce most social processes reasonably well for a

few time periods even when the requirements are not satisfied. This fact has

encouraged its application in projecting growth and migration (Fuguitt 1965;

Tarver and Gurley 1965), analyzing social mobility (Prais 1955; Matras 1960;

Lieberson and Fuguitt 1967), and measuring social distance (Beshers and Laumann

1967), in addition to its more conservative use as a base line model for assess-

ing the extent to which a process diverges from the Markov assumptions (Hodge

1966).

Aside from computational simpli~ity, the attractiveness of this model

derives from its focus upon interrelationships as a system. Over-time change

in the state distribution of a population is viewed as a consequence of the

interdependencies acting through time and, perhaps, changing in the process as

well. This formulation leads to a consideration of properties of dynamic sys-

terns such as "equilibrium" and "rate of convergence," concepts which rarely

arise in causal analyses of change yet are fundamental to an understanding of

adaptive social systems. Unfortunately, several difficulties emerge when apply-

ing Markov models tD the study of social mobility, even when each individual

~ ----~~---~--~~~•.._._-_ .. _~._-----'



in the population conforms to the central assumption of a first order Markov

process, namely that his probabilities of making particular transitions are

determined. solely by his present state and are-independent of past history.·

These difficulties arise because traditional Markov theory is concerned with

state changes by a single individual, ,while in' applications to social mobility

we consider the movements of an entire population.

(a) Heterogeneity. As several researchers (Blumen, Kogan, and McCarthy

~955; Hodge 1966; McFarland 1970) have noted, the Markov model fails to pro-

vide correct projections in the context of population heterogeneity, a condi-

tion which is common in many instances of social mobility. If individuals

differ in either their rates of mobility or in the transition matrices which

govern their movements, the Markov model will underpredict the observed pro-

portion of the population who fail to move in subsequent time periods. There

, is consequently a need for devising projection methods that are suitable for

a heterogeneous population.

(b) Change in the transition probabilities. Change over time in the ele-

ments of a transition matrix is commonly attributed to structural alterations

in the underlying relationships. For example, successive intergenerational

occupational mobility matrices may differ because technological developments

2

",.1

have altered the demand for particular vocational skills. This is usually

-----,

what is meant by a "non-stationary" process, namely that the rules which condi-

tion a son's occupational alternatives in terms of his father's position have

changed. However, change in the elements of the population transition matrix

can also result from heterogeneity. As McFarland (1970:469) has indicated, the

P"t elements in the one-step population transition matrix at time t,
1J

- ~

!
f
~

"



3

(1)

Thus Pt (1) and P (1), the one-step
o t l .

however, two types of analyses become feasible:

where E Pi't = 1 for all i, represent averages of the origin state rows from
j J

the individual-level transition arrays.

population transition matrices at times to and t
l

, may be different because the

distribution of individuals (and hence the weighted sum of the individual-level

transition matrices) is different at the two time points even though the rule

governing transitions has remained unchanged for every person. Consequently,

in the presence of heterogeneity there is a need to qistinguish between genuine

structural change (where the rules of the game have altered) and changes in

Pt(l) which result solely from demographic shifts in the population.

(c) The analysis of heterogeneity and change. Related to the above con-

siderations is the necessity for making sociologically meaningful statements

about the components of heterogeneity and change. Since the Markov formula-

tion focuses upon the results of a process (the population transition probabili-

ties and the state distribution of the population) rather than upon the deter-

minants of change, it has not been very useful as an analytic tool, as distinct

from a projection device. With the explicit consideration of heterogeneity,

(1) the p .. elements in the
~J

population. transition matrix can be analyzed in terms of characteristics of

individuals to determine which attributes are responsible for the heterogeneity,

and (2) the extent to which demographic shifts over time in the one-step popu-

lation transition matrix are the result of particular 1ndividual characteristics

can be ascertained. Thus, by relaxing the requirement that all persons need

transfer according to a single transition array, we are led to a consideration

..~~--~._._~~~~~~~
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of the impact of individual differences on the population-level process, and to

the importance of distinguishing between two sources of change in the aggregate

matrix, that which results from structural alterations and from demographic

shifts.

Having argued that these analyses become conceptually meaningful when

heterogeneity is formally considered within a Markov' framework directs our con-

cerns to the manner by which they could be carried out. These questions are

examined in this paper. A regression procedure is first introduced which allows

the population heterogeneity to be attributed to particular characteristics of

persons. This analysis also provides a framework for examining the change over

time in the population transition matrix, and apportioning this change between

demographic shifts and structural alterations. These topics are discussed in

section 2. In section 3 consideration is.given to the construction of individ-

ual-level transition matrices, and to projecting from these to the k-step popu-

lation matrix.

2. HETEROGENEITY IN THE STATE TRANSITioN PROBABILITIES

In order to contend with population heterogeneity within the Markov frame-

work, Blumen, Kogan, and McCarthy (1955) proposed dividing the population into

two types of persons--movers and stayers. The former are considered to be

homogeneous in their transition behavior and to follow a Markov chain, while

the latter are viewed as permanent residents in their origin states. More

recently, Spilerman (1970) has extended this model-to a continuous distribu-

tion of persons in terms of mobility rates. Each time an individual undergoes

a state change, however, his destination is determined by a transition matrix M

which is the same for all persons. Thus, in these models, the burden of explain--

'II,I:,

I!
{I
~ i
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".'1

ing population heterogeneity is cast entirely upon variations in the rate of

Ie
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movement since, by assumption, the transition matrix is invariant across

individuals •

An alternative approach to heterogeneity would be to assume that each

individual c makes a single transition in a time interval but follows an M
c

matrix which is unique to him, specifying his probabilities for transferring

to the various destination states. Here, heterogeneity would mean that the

taste or opportunity for making a particular transition is influenced by indi-

vidual characteristics. Thus, in place of locating the impact of individual

differences in the rate at which persons move, the present approach sees social

characteristics as differentially affecting the transition probabilities.

Like t~e prior extension of the mover-stayer model (Spilerman 1970), this

formulation is also a generalization of the Blumen, Kogan, and McCarthy (1955)

approach to heterogeneity. One may conceive of the mover-stayer process as con-

sisting of two types of individuals, all of whom move in each time interval.

"Stayers" s,imply transfer according to the identity matrix. The present model

is not, however, a generalization of the mover-stayer extension (Spilerman 1970).

Were it not for the stochastic nature of that extension, it could be viewed as

a process in which every person undergoes a transition in each time interval,

with the heterogeneity being expressed by permitting persons to follow different

matrices. Thus, while some follow the matrix I, others would transfer according

to M, Mt, M3 , or Some higher power of M. Now, if a person always moved _~ccording

to the same MP matrix, the present formulation would be a generalization of the

mover-stayer extension since the individual transition arrays could be either

powers of M or other matrices. However, the mover-stayer extension only requires

the expected number of transitions to be constant for an individual; the actual

number (and hence the power of M) varies over the time units in a random manner.
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Thus, the present generalization of the mover-stayer model, which attrib-

utes heterogeneity to differences in the individual-level transition matrices,

is not a generalization of the prior extension, but represents a conceptually

different approach to heterogeneity. There are instances where either model

could apply--industrial mobility and geographic migration are examples. There

are also social processes for which only the present model would be applicable

such as inter-generational mobility, where the notion of individual differences

in the number of transitions made would seem conceptually inappropriate.

The problem of analyzing heterogeneity. Casting the problem of hetero-

geneity into this framework directs attention toward explaining the individual

differences in the transition probabilities. If persons follow unique transi-

tion matrices, this fact should be attributable to differences among them in

personal characteristics. Consistent with this reasoning, the common procedure

for ascertaining the way by which transition probabilities vary with social

attributes is to construct separate arrays for subpopulations. For example,

Rogers (1966) and Tarver and Gurley (1965), using Markov formulations to analyze

geographic migration, disaggregate the population to produce separate transi-

tion matrices by age and race. To subdivide a population in this manner is

highly inefficient, however, since even with a large number~of observations

it is usually not possible to control on several attributes simultaneously and

retain sufficient cases for estimating the p .. 's of the transition matrix. More
~J

over, the generation of subpopulation matrices complicates the analytic problem

of attributing the heterogeneity to particular factors since we must compare

arrays which represent complex patterns of change, rather than single elements.

Thus, even if it were possible to control on several variables simultaneously, the

problem of disentangling the effects of these attributes would be immense.

---~-_._-_. -------_._.-_._--_._-~~~~~
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The usual manner for handling complexities of this nature is to resort
\

to regression analysis. In this section we present a method for incorporating

independent variables into a transition matrix via a regression formulation and,

using the resulting equations, constructing separate transition matrices for sub

populations. l More generally, we wish to consider the reverse of the problem

addressed recently by McFarland (1970). Given individual-level transition

matrices, McFarland shows how they may be aggregated to obtain the population

transition matrix. Our problem, instead, is to efficiently disaggregate the

transition matrix for a heterogeneous population. This is also a question of

greater analytic importance since we seek to expose the effects of heterogeneity

on the structure of the transition matrix.

The regression model. Consider the following approach. Let Pt (1) be the
o

observed to to t l transition matrix for a population (see equation 1; the sub

script t will henceforth be omitted whenever the time referent is clear). For

the purpose of illustration we will assume that the substantive problem concerns

geographic migration although this analysis would be equally applicable to indus-

trial or occupational mobility. Each cell entry p .. in pel) therefore represents
~J

the proportion of individuals in system state (geographic region) Si at time to

who have migrated to Sj by t l . Since-P(l) is a population transition matrix it

has been estimated from the movements of individuals who presumably differ· from

one another in their probabili~~es of making a particular transition. For

example, the transition from state S. to S. may be a function of age, race, occu-
~ J

pation, region of birth, or of other variables.

Instead of the usual procedure of disaggregating the population into sepa-

rate transition arrays to reduce the heterogeneity on these variables, we con-

2struct m regression equations, where m equals the number of system states. For

each origin state S. -at to define an individual level variable y .. which equals
~ ~J
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one if a person moved to Sj by t l , and is zero otherwise. Corresponding to

each origin state Si' m such variables can be defined (Y'l' y. 2 , ••• , y. ).J. J. J.m

Exactly one element of this vector will equal one for an individual, specified

by his destination state.

at to' regress

Now, using as observations all individuals in S.
J.

K
y .. = a .. + L: b. 'kXk + e ..

J.J J.J k J.J J.J
for j = 1, ... ) m (2)

where the ~'s are individual characteristics which are expected to explain the

heterogeneity in the transition probabilities, and e., is the error term for the
J.J

, ,th t'J.J equa J.on. This procedure will yield m equations for each origin state Si'

and m2 equations for the full array .

.d h" th f h P (I) F ' d' . d I . SConsJ. er t e J.J entry 0 t e array . or an J.n lVJ. ua c J.n ,at
J.

to' having attribute profile (Xlc ' "', ~c),

(3)

is an estimate of his probability of making the i-j transition. This

probability interpre~ation results from the dependent variable having been

coded 0-1, and will be of importance in subsequent sections. With the depen-

dent variable coded in this manner, y., can also be interpreted as the
1J c

2expected number of transitions by individual c from S. to S..
1 J

The ex~ected number interpretation is important because, unlike probabili-

ties, these values can be summed over observations. Thus, for the subpopula-

tion in Si at to' the expected number of Si to Sj transitions is given by

N.J..

L: Yijc' where Ni . is the number of persons in location Si at to' Now, letting
c=l

i
'I

f i

_~ ~__ ~ _I'
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N
ij

equal the number of these persons who have moved to state j by t
l

, we have

N. N.
~. ~.

A

L Yijc = L Yijc = N..
c c ~J

where the first equality derives from the least squares procedure of fitting

a regression line, and the second from the definition of y .. , Since the
~J

standard', estimation formula for the transition probabilities3 of a Harkov

where the terms Lx. IN. for k = 1, ••• , K can be interpreted as the "typical"
-lec ~.

c

Ni ·
. chain is p.. = .2:J..

N
we obtain

~J .
~.

profile of an individual in Si at to'

Equation (4) gives the desired decomposition of p .. in terms of the con
~J

,
l
I

I
i

I,

(4)+ ~ b"k(~~C)
k ~J N.

~.

a ..
~J

=

2We therefore have a matrix of m equations,

c

N.
~.

1
N.
~.

=

N.
~. N..A

I L Yijc = .2J. = Pij
N. N.c ~.

~.

Therefore, substituting from equation 3,

ditioning variables (Xl' ••• , ~).
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'" '" '" '"
= all + EbllkXk , . . . , Ylm = aIm + Eblmk~

Y = (5)
'" '" A '"

= amI + Ebmlk~' . . . , Ymm = a + EbmmkXmm k

in which the b's which are significant in an equation indicate the social

characteristics responsible for heterogeneity with respect to that transi-

tion. In an equation where all b's are insignificant, y .. = a .. and no
1.J 1.J

heterogeneity is present.

The matrix Y of regression equations therefore reveals the components of

heterogeneity in the population transition matrix. Moreover, pel) can be cal-

culated directly from Y. When the regressions are evaluated on the "typical"

individual profile at each origin state S. for i = 1, "., mwe obtain4 by
1.

equation (4) P(l).= Y.

Disaggregating the population transition matrix. In addition to repro-

ducing the pel) matrix, the array Y of regression equations enables transition

matrices to be constructed for subpopulations [pel) matrices]. For example,
s

if one of the regression variables were a dummy for race (e.g., X
R

= 1 for

non-whites, zero for whites) then the non-white transition matrix pel)
nw

could be estimated from Y by evaluating the regression equations on indi-

viduals having X
R

= 1 --

pel) =nw = 1
N.

1..

(6)

where Ni • is the number of non-whites in Si at to' and Yijc is specified by

equation (3) • This estimate of the non-white transition matrix will not be
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identical to the observed non-white matrix pel) since the error term e
~ ~

A

satisfies Ze
i

. = a for the entire population that is used to estimate the
c JC

regression surface, but not necessarily for a subset of the observations.

The estimates of p .. in pel) have been made under the assumption that
1J nw

non-whites have b-weights which are identical to those of whites on all vari-

abIes except for a term for race (and factors which are interactions with race

if these are present). The p .. value for non-whites will therefore differ from
1J

its white counterpart as a result of the additive effect of the race term b
R

and because of racial differences in the individual profiles of attributes

(XK's). In this manner, the matrix Y of regression equations can be used to

construct a ·transition array for persons with any given attribute or combina-

tion of characteristics.

When dummy variables are used with a single dimension (such as age) or

where dummy variable regressors are provided for the main effects and all pos-

sible interactions among several dimensions (such as when categorical variables

are used for .age deciles and for race), then the evaluation of the Y matrix on

individuals having a particular attribute combination (e.g., 20 to 30 years old

and Negro) will yield identical results to what would be obtained from con-

structing a separate transition matrix from the observed movements of this sub-

population. The advantages of the regression format are threefold: First, it

allows a variable such as age to be treated as continuous. This means a loss of

fewer degrees of freedom, and an opportunity to simultaneously consider several

variables. Second, as a result of using a continuous variable formulation it

becomes possible to extrapolate to values for which few or no observations are

present. Third, subject to the assumptions of the regression equation, it is

possible to construct a separate transition matrix for each person in the popu-

lation. This point will be developed in section 3.
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Geographic migration. Using data made available by Karl Taeuber from his

analysis of residential mobility in the United States (Taeuber et. a1., 1968),

the above procedures were applied to inter-regional transitions by males. The

Taeuber data were collected in 1958 from retrospective reports about prior

residences and are described in detail elsewhere (Taeuber et. al., 1968).5 For

the purpose of this study four geographic regions were defined as states of the

process: (1) Northeast, (2) North-central, (3) South, and (4) West. The time

points that were used are to = 1937, t 1 = 1944, t z = 1951, and t
3

= 1958. These

were selected to provide residence histories for the adult years of this cohort.

The t
o
-t

1
transition matrix for the population, calculated from the observed

movements, is presented in Table 1, together with the number of persons repre-

sented by each transition probability.

Table 1 about here

Individual-level data are available from this study for a number of popu-

1ation characteristics: birthplace, race, age, occupation in 1958, class of

worker in 1958, city size, and duration of stay at each residence. For this

illustration the effect of each variable was assumed to be additive. Also,

with the exceptions of age and duration of residence, for which there is evi-

dence for non-linear effects (Land 1969:139; Morrison 1970:11, 14), all re1ation-

ships were assumed to be linear or binary. The following regression model was

6therefore used, the observations being all persons in origin state S. in 1937:
1

17
Y-4J' = a., + ~ b. 'kXk + e-4J'k

... 1J k=l 1J ...
for i,j = 1, .•. , 4 (7)

where yij = 1 if a person was in S. in 1937 and S. in 1944, and zero otherwise,
1 J

;1
11
j

if
f,
t
t__~ i



TABLE 1. Population Transition Probabilities for Inter-regional
Migration, 1937-44

A. Transition Matrix

P1937 (1) =

.9705

.0069

.0111

.0027

.0096

.9473

.0280

.0150

.0121

.0154

.9383

.0168

.0078

.0304

.0226

.9655

L P ..
. ~J
J

1.000

1.000

1.000

1.000

B. Number of Individuals

N..
~.

3358 33 46 27 3460

29 3991 65 128 4213
N1937 (1) = 47 119 3984 96 4246

3 17 19 1090 1129

._--_.~----~-~----
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and Xl = lit upper white collar, zero otherwise

X2 = I if lower white collar, zero otherwise

X3 = 1 if upper blue collar, zero otherwise

X4 = 1 if lower blue collar, zero otherwise

(the farming trades were taken as the base category for the

occupation variables 7)

Xs = 1 if privately employed, zero otherwise

X
6 = 1 if government employee, zero otherwise

("self-employed" was taken as the base category for the class-

of-worker variables)

X
7

= 1 if non-white, zero otherwise

Xa = I if resident of a large city in 1937, zero otherwise

X
9

= I if resident of a medium-sized city in 1937, zero otherwise

("small city" was taken as the base category for the city

size variables)

Xla = age in 1937

Xl! = years at current residence as of 1937

X12 = number of residences as of 1937

Xl3 = age in 1937 (squared)
-~

Xl4 = years at current residence (squared)

XIS = 1 if born in region 2, zero otherwise

Xl6
= 1 if born in region 3, zero otherwise

X17
= 1 if born in region 4, zero otherwise

(birthplace in region 1 was taken as the base category for

the birthplace variables8).

The most important from among these variables, as judged by a partial F

criterion, was selected from each equation by means of a stepwise regression

-------------
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9procedure. The use of this method is justified when one is concerned with

obtaining an efficient set of predictors by deleting superfluous variables,

as is our interest here, rather than with testing theories about particular

variables. The resulting equations are presented in Table 2.

Table 2 about here

It is evident from the R
2

values in the bottom row that these 17 variables

do not explain very much of the variation among individuals in migration behav-

ior. None of the entries exceeds .05 in magnitude. Despite these small values

it is possible that the most important demographic variables which influence

migration have been included in the analysis. When dealing with individual-

level data relating to the occurrence or non-occurrence of an event, a very

large idiosyncratic component may be involved so that even small increases in

the explained variance require the consideration of many additional variables

[see Stinchcombe (1968:67-68) on the relationship between explanations at the

individual and at the aggregate level]. In fact, in order for the homogeneity

requirement of the Markov model to be satisfied, all explanatory variables would

have to be insignificant so that the migration differences among individuals

become chance factors, unrelated to their social attributes.

2It must also be remembered that the R values depend upon how well the

independent variables distinguish among the movements of all persons in an ori-

gin state. For example, if Negroes were to make a particular transition, but

whites were as likely to do so as not, the R
2

value would be small even though

the regression equation would predict perfectly the migration behavior of every

Negro. It is the b-weights for particular variables and not the R2 values which

must concern us. Using these we could distinguish the migration behavior of

Negroes from that of whites and, in general, the differences among any subgroups.

!
l.

1
!

t
I
I
!
\
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TABLE 2. Unstandardized Regression Coefficients Estimated from
Inter-regional Transitions, 1937 - 44

,II

Equation fora_-
Independent

Y11 Y12 Y13 Y14 Y21 Y24Variable YZ2 YZ3

Constant .942 .0299 .0585 .0240 .107 .862 .0394 .0668

Xl -.0236 .00988 .0115 .00908 -.0231 .0148

X2

X3 .0172

X4

X5 -.OZ50

X6 .0112 -.0453 .0245

X7 .0417 -.0209 -.0220 .0409 -.0256 -.0296

X8 -.00970

X9

X10 -.00312 -.00300 .00138 -.000674

XII -.000714 .00271 -.000479
I

X12 .00905 -.00613 -.00450 .0113 -;0107

Xl3 .000436 .0000350

X14 .0000573 -:-.0000239 -.0000696

X15 -.157 .133 .0302 -.0475

X16 -.0440 .0265 .0348 -.0472 .0275

X17 -.171 .123

RZ .030 .049 .007 .005 .019 .024 .015 .011

a Each reported entry has a t-va1ue greater than 2.00.

'!

i
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TABLE 2 (con' t)

Independent
Variable Y31 Y32 Y·33 Y34 Y41 Y42 Y43 Y44

Constant .106 .0232 .912 .0225 .0620 .0673 .0534 .824

Xl .0280 -.0340

X2 .0337 -.0397

X3 .0308 -.0360

X4 .0248 -.0354 .0165

X5 .00682 -.0202 .00937
I

X6

X7 .0217 .0316 -.0636

X8 -.0104

X9 -.0174 .0120 -.00864

X10

XII -.000761 -.00583 -.00144 .00884

X12 -.00817 -.00342 -.0109 -.00873 .0222

X13 -.00000562 .0000239 -.0000111

X14 -.0000165 .000152 -.000202"

XIS -.0941 .0601 -.0437 .0406

I I X16 -.0999 .0647 -.0444 .0382

X17 -.0435 .0411

R2 .026 .016 .032 .008 .038 .042 .017 .043

I
IiL •__, ~__ ..
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Turning to a consideration of the determinants of population hetero-

geneity in geographic migration, the equations in Table 1 exhibit the follow-

ing main patterns:

(1) Upper white collar persons are more likely to make inter-

regional transitions, irrespective of their region of origin (except for the

West).

(2) Negroes in the North and Midwest are less likely to move; Negroes in

the South are more likely to change region. On the average, a southern Negro

has a probability of migrating that is .06 larger than the value for a white

man in this· region with an identical attribute profile (note the coefficient

for X7 in equation Y33)'

(3) The probability of not making a regional change increases with dura-

tion at a residence.

(4) There is a strong tendency for persons to return to their region of

birth, irrespective of which region this is or where they currently reside.

These appear to be the main sources of population heterogeneity with

respect to regional change. Not only does the matrix of regression equations

provide this information, it also permits separate transition matrices to be

d f h b 1 · 10constructe or eac su popu at~on. This is accomplished~by evaluating Y

over individuals having the appropriate attributes, in the manner described

in connection with equation 6. 11 Matrices for Negroes and for upper white

collar persons were estimated and are presented in Table 3, alongside the

observed transition arrays for these groups. It is evident that this simple

regression model, which assumes the effects of the attributes to be entirely

additive, reproduces the observed subpopulation matrices reasonably well. These

arrays should also be compared with the transition matrix for the entire popula-

tion (Table 1). The important comparisons involve the main diagonal elements
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since the number of observations in the off-diagonal cells is very small.
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These

comparisons suggest much the same findings as were reported above in points (1)

and (Z). The results are not identical, however, since the equations present

the net effects of particular attributes, while other characteristics of indi-

viduals are not controlled for in the subpopulation transition matrices. Final-

ly, as an example of a highly mobile subgroup, the matrix for white, white col-

lar persons, residing outside their regions of birth in 1937, is presented in

row C of Table 3.

Table 3 about here

3 • ANALYZING CHANGE OVER TIME

Two problems arise in the analysis of mobility processes in a Markov for-

mulation. There is the problem of determining the extent to which demographic

shifts in the population are responsible for changes in the one-step popula-

tion transition matrix, and there is the question of how to project forward in

time to the k-step transition matrix in the presence of heterogeneity.

Change in the one-step transition matrix over time. The first problem is

an analytic one, and can be posed in Ene following way. We have profiles of

persons which contain, among other attributes, their locations at equally

spaced time points, to' t l , tZ~_t3"'" Using this information, we can construct

one-step transition matrices P
t

(1), Pt (1), P (1), etc. These arrays will
o 1 t z

normally differ from one another as a result of two processes. First, the

influence of particular attributes on an individual's probability of making a

given transition may change; for example, the demand for skilled labor in a geo-

graphic region may decrease, so the contribution from this occupational affilia-
)

- 1tion to a decision to migrate there would be lowered. Change of this nature CI
J'
f

-----~ - ~------~



TABLE 3. Predicted and Observed Transition Matrices for
Subpopu1ations, 1937-44

....
L: Pij N.Predicted

a
j Observed ~.

A. Negroes

.9862 .0001 . 0068 .0098 1.003 .9687 .0000 .0067 .0067 150

.0045 .9827 .0058 .0058 .999 .0058 .9825 .0058 .0058 171

.0275 .0497 .8885 .0289 .995 .0275 .0496 .8881 .0348 947

.0020 .0112 .0478' .9372 .996 .0000 .0000 .0000 1.0000 12

-

B. White collar

. 9496 .0185 .0207 .0082 .997 .9501 .0185 .0206 .0109 921

.0137 .9321 .0266 .0257 .998 .0138 .9318 .0267 .0277 1012

.0072 .0278 .9461 .0184 1.000 .0122 .0277 .9456 .0144 901

.0018 .0168 .0161 .9645 .999 .0000 .0239 .0269 .9493 335

C. White, white collar, residing outside
region of birth in 1937

.8422 .1011 .0302 .0264

1
1.000 .7963 .1481 .0370 .0185 54

.0379 .9208 .0450 .0293 1.033 .0313 .9064 ' .0469 .0156 64

.0426 .0593 .8934 .0178) 1.013 .0385 .0641 .8974 .0000 78

.0037 .0321 .0185 .9447 .999 .0000 .0403 .0268 .9329 149

.a
Predictions obtained by evaluating Y on the subpopulation with the requisite

-attributes.
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means that the b-coefficients in the regressions (equation 5) will differ in

successive time periods. This question could be pursued by reestimating the

matrix Y of regression equations from the transitions in subsequent time inter-

vals, and examining the sequence of b-coefficients corresponding to each of the

variables.

However, the Pt(l) matrix could also change over time even though the fac

tors which determine the movements of individuals, the coefficients in the

regression equations, remain constant. This would result from a shift in the

distribution of individuals among the system states or, more generally, from a

change in the demographic structure of the population, that is to say, in the

way that particular attributes are distributed in the population. For example,

as our society becomes more educated the average earnings of individuals will

increase, even though the income return from education may remain unchanged. It

is a shift in the distribution of the population on the education variable which

is responsible for the alteration.

An example of where these considerations would be relevant can be drawn

from the work of Robert W. Hodge (1966). Using Gladys Palmer's study of intra-

generational occupational mobility in six cities (Palmer 1954), Hodge computes

transition matrices for males during 1940-44 and 1945-49. These matrices are

not identical, so one may wish to assess the extent to which the differences are

due to changes in factors such as age of the cohort, level of educational

attainment, and industry of employment.

These questions could be examined by estimating the matrix Y of regression

equations from data in the initial time interval, then using Y together with the

profile of individual characteristics at t l (1945) to generate Pt (1), and the
1

individual profiles in subsequent time periods, if these are available, to
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estimate later transition matrices. A measure of the effect of demographic
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shifts on the Pij elements, under the assumption of a constant relationship

between the p .. 1 S and the individual characteristics, can be obtained by com
1.J

paring the observed t1 to t 2 transition matrix, Pt (1), with P (1), the matrix
1 t l

estimated from Y. The contribution from population shifts is indicated by the

extent to which Pt (1) provides a better estimate of P (1) than is given by
1 S

P (1), the estimator that would be used with a stationary Markov chain. This
to

procedure therefore measures the change which should occur in a transition

matrix from demographic shifts alone.

The above discussion can be illustrated with the geographic migration data.

For each time interval, 1944-51 and 1951-58, the matrix Y of regression equa-

tions was evaluated on the profiles of individual characteristics from the appro-

priate origin year. This operation permits transition matrices to be con-

structed which are based on the relationships between individual attributes and

migration propensities which existed during the time interval '1937-44. By evalu-

ating the matrix Y on the individual profiles at subsequent time points we are

able to attribute all of the resulting change in the matrix elements to shifts

in the distribution of the population on particular attributes.

The results of this analysis are presented in Tables 4 and 5. In Table

4, the predictions from the above procedure are reported alongside the observed

transition matrices for the intervals 1944-51 and 1951-58. Comparable arrays

are not presented for the period 1937-44 since, by the requirements of ordinary

least squares regression, the predicted population-transition matrix will be

identical to the observed one for this period. The 1937-44 matrix is presented

in Table 1.

Tables 4 and 5 about here

------------ ----- -- --

I
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TABLE 4. Predicted and Observed One-Step Transition Matrices
for 1944-51 and 1951-58

A

a Ep lj Observed NiPredicted

A. 1944-51

.9733 .0084 .0110 .0061 .999 .9645 .0087 .0122 .0145 3437

.0029 .9621 .0107 .0251 1.001 .0048 .9575 .0120 .0257 4160

.0090 .0256 .9502 .0172 1.002 .0114 .0255 .9494 .0136 4110

.0014 .0144 .0163 .9668 .999 .0082 .0291 .0157 .9475 1341

B. 1951-58

3393

4157

1483

4015

.9803 .0047 .0091 .0059

.0057 .0134 .9701 .0107

.0022 .9750 .0082 .0147

.0013 .0088 .0067 .9831.999

1.002

1.006

1.004

.9748 .0077 .0141 .0054

.0025 .9758 .0059 .0218

.0058 .0229 .9651 .0104

.0009 .0095 .0131 .9756

apredictions obtained by evaluating Y on the profiles of individual attributes at
the origin year.

--- -~----------~



TABLE 5. Indices of Dissimilarity Between Observed and Predicted
Transition Matrices for 1944-51 and 1951-58

Index of Dissimi1aritya

Between
observed 1944-51
transition matrix
and--

Between
.observed 1951-58
transition matrix
and--

Region of
origin

All origin"
states com
binedc

Observed
1937-44
Matrix

.7

1.0

1.2

2.0

1.3

Predicted
1944-51
Matrix

.9

.4

.3

2.1

.6

Observed
1937-44
Matrix

1.0

2.8

3.2

1.8

2.3

Predicted
1951-58
Matrix

.8

.5

.8

.8

.8

aID = 1/2 EIP
i

- P1 1- See Taeuber and Taeuber (1965:236) for a discussion

of this index.

bEach entry gives the percentage of persons who would have to change
their destination states to bring the observed distribution into accord
with the predicted.

cThe average of the indices, weighted by the number of observations in an
origin state, indicates the proportion of all persons whose destinations
would have to be changed to bring the observed distribution into accord
with the predicted.
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Comparing the observed transition arrays for the three time periods, it

is evident that the amount of change in Pt(l) is not very great. Nevertheless,

some trends are apparent, the most pronounced being the tendency for the main

diagonal elements to increase in size over time. As was suggested, this could

be a consequence of either structural change--an alteration in the attractive-

ness of regional migration for individuals who have a particular array of

attributes, or of demographic shifts--change in the distribution of the popu-

lation over the profile of attributes, including region of residence. However,

the predicted arrays in Table 4 make it evident that the pattern of change

noted with the observed data can be accounted for by the relationships between

regional migration and individual characteristics which existed during 1937-44.

Thus, the increase in the size of the main diagonal elements appears to be

largely a consequence of demographic shifts, and not due to structural change.

Normally, to estimate the one-step transition matrix P (1) at some time
t.
~

point t i subsequent to to we would use Pt (1). That is, having no knowledge
o

about how the transition matrix is changing, we assume a stationary Markov

chain. To investigate the change in Pt (1) over time" and the proportion of this

change which can be attributed to demographic shifts on the 17 variables con-

sidered in this analysis, Indices of Dissimilarity were computed between sev-

eral pairs of arrays. These compare the observed transition matrices at 1944

and 1951, in Table 4, with P1937 (1) from Table 1 to obtain measures of the total

change in this array. Also, the'observed and predicted matrices for 1944 and

1951 (from Table 4) are compared in order to measure the amount of residual

change, which is not accounted for by population shifts. The results are pre-

sented in Table 5.

In the first four rows index values are reported for each region of resi-

dence in 1944 and 1951. Each entry has an interpretation as the percentage of

------------------
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persons in the origin state ,who would have to change ,their destinations to

bring the observed distribution of moves into accord with the predicted distri-

bution (Taeuber and Taeuber 1965:236). For example, the first two entries in

row 2 indicate that a 1.0 percent change has taken place in the pattern of

movement of individuals residing in region 2 during the period 1937 to 1944,

but only 0.4 percentage points cannot be accounted for by demographic shifts.

The comparable values for changes in the row 2 probabilities between 1937 and

1951 are 2.8 for the total amount of change, and 0.5 for the residual change

which is not attributable to demographic shifts on the 17 variables.

Averages of the entries in each column, weighed by the number of persons

in an origin state, are presented in row 5. These values report the propor-

tions of the total population who would have to change destinations in order

to bring the pair of matrices being compared into agreement. Although the total

amount of change in the observed matrix is small, 1.3 percent between P1937 (1)

and P
1944

(1), 2.3 percent between P1937 (1) and P195l (1), less than half of

these values is attributable to structural alterations (0.6 percentage points

for the first pair of arrays, 0.8 percentage points for the second pair).

Thus, a major proportion of the change in the migration behavior of this cohort

is due to shifts in the distribution of the population, and not to alterations

in underlying relationships.

The projection problem. In the absence of heterogeneity, P(k), the

observed k-step transition matrix, may be estimated from the Markov property

A

P(k) = (8)

which reduces to the familiar relation, P(k) = pk when P is constant over time.
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The projection problem arises because equation (8) does not hold in the pres-

ence of population heterogeneity. In this situation, the main diagonal elements

of P(k) will exceed the corresponding entries on the diagonal of P(k).

However, if we assume that each person independently is following a Markov

process, then, using the matrix Y of regression equations, we can obtain an

estimate of P(k) in the presence of heterogeneity.12
,

This is accomplished in

the following manner: For each individual c a separate transition matrix M (1)
c·

. d b 1 . h 16 . 13. h' b f 11S constructe y eva uat1ng t e equat10ns 1n Y on 1S attri ute pro i e

in 1937. 14 Now, let N be a matrix with 1 on the main diagonal of the i-th
c

row and zero in all other cells, where i denotes individual CIS region of resi-

deuce in 1937. We then have (McFarland 1970:469)

pel) = N-I EN M (1)
c c

c
(9)

where N is a diagonal matrix, N = EN. Since each person is assumed to follow
c

a Markov chain with his individual transition matrix M (1), the k-step populac

tion transition matrix is given by

P(k) = J«l)
c (10)

Equation (10) holds under the assumption that the individual transition

matrices Mc(l) are constant over time. However, usin~ the methods of the pre-

vious section we can relax this requirement and incorporate over time changes

in the elements of-the M (1) arrays which affect all persons in an identical
c

manner. The most common example of this is the effect of age. Change on this

variable c~~ be handled by generating time specific transition matrices Mct(l)

in which the age contribution for an individual depends upon the time period t

to which the matrix pertains. The k-step transition matrix then becomes

- !
- 1

.. i
I
!



P(k) = N-
l

EN IT M tel)
c c t c

(11)
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Although equation (11) represents a time-varying Markov process~ all rela-

tionships and profile data are from the initial time period. The changing
,

impact of age on an individual's transition probabilities is estimated from

the cross-sectional relationships in this time interval. Consequently, projec-

tion from equation (11) is comparable to projection in a time-homogeneous Markov

process in that both models require data at only two time points for parameter

estimation. This method departs from the Markov formulation by explicitly

incorporating the effects of population heterogeneity and~ for this reason~ indi-

vidual-level data are required.

The projection procedure can be illustrated with the geographic migration

data. Using the individual profiles from 1937 together with a matrix Y' of

i . h . . . 15 . d f h . diregress on equat1ons~ tree trans1t10n matr1ces were est1mate or eac 1n -

vidual: Mc1937(1), Mc1944(1), and Mc195l (1). The array Y' differs from Y~ the

matrix of regression equations presented in Table 2, in that variables whose

values change with the occurrence of a' transition have been removed. Without

making further assumptions about the migration process we have no knowledge con-

cerning characteristics such as city size, durat~un of residence~ or number of

residences for an individual subsequent to 1937. 16 For the purpose of projec-

tion, the regressions reported in Table 2 were therefore reestimated with vari-

abIes XS'X9'Xll,X12' and X14 deleted. By this procedure, the three Mct(l)

matrices for an individual will differ only as a result of the effect of the

seven year-age interval between successive evaluations of Y'.

Estimates of P
1937

(2) and P
1937

(3) were constructed by using the Mct(l)

matrices with equation (11). These arrays are presented in row 3 of Table 6~

below the observed two and three-step transition arrays (row 1), and the
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estimates of these matrices from a time-dependent Markov chain in which the

observed one-step population transition matrices for successive time intervals

have been multiplied together following equation (8) (row 2). Compar~ng the

main diagonal entries it is evident that the estimates from the present model

are superior to the Markov projections even though the latter are based upon

observed transitions covering all time periods. This impression is confirmed

by computing Indices of Dissimilarity between the observed two and three-s~ep

arrays and the projected matrices. These results are reported in Table 7,

separately for each origin state in 1937 and for comparisons between entire

matrices. The entries in the last row indicate that while the observed two-

step matrix is in disagreement with the Markov projection by 1.6 percent, the

discrepancy with the projected array obtained from the present method is 1.0

percent. The corresponding index values for the three-step prejections are 2.4

and 1.8 percent. Thus, with the geographic migration data one can do better

in projecting from an assumption of heterogeneity and using only data from the

initial time interval, than by assuming a Markov process at the population

level &ld using the observed one-step transition matrices from each time inter-

val.

Tables 6 and 7 about here

4. CONCLUSIONS

A major drawback with the traditional Markov formulation of social mobility

is that it assumes homogeneity among persons in an origin state with regard to

their transition behavior. This requirement leads to an underestimation of the

main diagonal entries when projecting forward in time to the k-step matrix in

the presence of heterogeneity, but what is more important conceptually, the



TABLE 6. Observed and Projected Two and Three-Step Population Transition
Matrices for 1937-44 and 1937-51

A. Observed Matrices

P1937 (2) P1937 (3)

.9477 .0145 .0194 .0185 .9344 .0176 .0251 .0288

.0083 .9238 .0176 .0503 .0088 .9084 .0199 .0629

.0177 .0445 .9074 .0304 .0203 .0520 .8900 .0377

.0035 .0230 .0186 .9548 .0035 .0239 .0177 .9548

B. Projected Transition Matrices Using.
Markov Formulation (equation 8)

'"
P1937 (2) = P1937(1)P1944(1) P1937 (3) = P1937(1)P1944(1)P1951Cl)

.9362 .0180 .0235 .0219 .9180 .0226 .0318 .0276

.0116 .9084 .0266 .0534 .0136 .8865 .0337 .0662

.0217 .0515 .8916 .0351 .0266 .0627 .8658 .0449

.0108 .0430 .0313 .9150 .0120 .0504 .0370 .9006

C. Projected Transition Matrices Using
Method of Equation. (11)a

'" '"
P1937(2) P1937 (3)

.9486 .0179 .0218 .0153 .9336 .0254 .0333 .0225

.0086 .9147 .0238 .0535 .0098 .8978 .0268 .0706
;

.0181 .0479 .8950 .0381 .0211 .0616 .8669 .0477 f

.0061 .0290 .0320 .9414 .0101 .0424 .0461 .9288 t
j
1r

aNegative estimates of individual probabilities were set equal to zero, values
greater than one were set equal to one.



TABLE 7. Indices of Dissimilarity Between Observed and Projected
Two and Three-Step Transition Matrices

Index of Dissimi1aritya

Between P1937(2) and-- Between P1937 (3) and--·

"
Region of P

1937
(2) P

1937
(2) P1937 (3) P1937 (3)

origin (Markov) (equation 11) (Markov) (equation 11)

Sb 1.2 .5 1.8 1.21

S2 1.5 .8 2.2 1.3

83
1.6 1.2 2.4 2.1

S4 4.0 1.8 5.4 4.0

All origin
states com- 1.6 1.0 2.4 1.8
binedc

aID = 1/2 !: Ip. - P./.
~ ~

bEach entry gives the percentage of persons who would have to change
their destinations to bring the observed distribution into accord with
the projected distribution.

c The average of the indices, weighted by the number of observations in an
origin state, indicates the proportion of all persons whose destination
states would have to be changed to bring the observed distribution into
accord with the projected.



24

Markov model diverts attention from a consideration of the determinants of the

transition probabilities. With the explicit consideration of heterogeneity, how

ever, we are able to examine the transition behavior of the population in terms

of the variables which condition the individual propensities. Thus, the ques-

tion of who moves and where receives a sociological answer.

Previous attempts to incorporate heterogeneity within a Markov framework

have taken the direction of permitting individual variations in the rate at which

transitions occur (Blumen, Kogan, McCarthy 1955; Spilerman 1970). At each move,

however, a transition matrix which is identical for all persons is used. The

problem of heterogeneity was examined from a different perspective in this

paper. Instead of req~iring that it be expressed in individual differences in

the rate of mobility, the strategy here was to permit the transition probabili-

ties themselves to vary among persons. Each individual is assumed to follow a

Markov process, but in accordance with his own transition matrix, which is esti-

mated by the regression procedure introduced in section 2. With these indi-

vidual-level matrices, projection to the k-step array may be accomplished in the

context of population heterogeneity by employing the method proposed recently by

McFarland (1970).

For sociological analysis a more fundamental matter than projection con-

cerns the analysis of change. The regression formulation contributes to this

objective by suggesting the necessity for distinguishing between two sources

of change in the transition probabilities. Change may occur as a result of

demographic shifts in the population, in which the rules governing individual

transitions remain intact but the distribution of relevant attributes in the

population has altered, or because of structural change, in which the rules

themselves have altered. In examining geographic migration we found that_the

former process was primarily responsible for the over-time variations in the

~~.~.~.-_...--.----------~----"-~-_._-~--_._-
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transition probabilities. Although the focus in this study was explicitly on

accounting for demographic shifts in the population, with structural change

being relegated to the residual category, structural change could also be ana-

lyzed directly. The most evident procedure would be to reestimate the regres-

sian model in successive time intervals and compare the changes in each regres-

sion coefficient over the time sequence.

Having now considered two alternative approaches to the incorporation of

population heterogeneity within a Markov framework--by permitting variations in

the rate of mobility or in the transition probabilities--what can be said about

their comparative merits? Conceptually, it appears that there are some social

processes for which only the latter model could apply, although both formula-

tions are plausible for a wide range of mobility processes. The present model

is preferable in studies of inter-generational mobility since the notion of

different rates at which these transitions occur has little conceptual merit.

With respect to intra-generational occupational mobility, change in industry

affiliation, or geographic migration, both formulations seem plausible: per-

sons may differ in the rate at which they move; also, individual characteristics

may influence the "probability of making particular transitions. 17 Thus, the

higher geographic mobility of white collar persons may be a rate of mooility

effect since this pattern was noted in all regions, while the differential

mobility of Negroes, depending upon whether they were residing in the South

or elsewhere, could be ascertained only by the model of this paper.

In terms of an ability to make sociologically interesting statements, the

-
model developed in this paper seems more promising. It enables the different

sources of change to be distinguished; also, the notion that individual charac-

teristics relate to the likelihood of making particular transitions is appealing.

MOreover, the detail at which information is provided about the process exceeds



that in the alternative formulation. 2In this model, n regressions are car-
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18ried out, one for each pair of origin and destination states; in the mover-

stayer extension only a single regression is appropriate to the model (with

the dependent variable being the number of moves made by an individual). Thus,

while greater detail is obtained in the mover-stayer extension for distinguish-

ing among persons according to their probabilities of moving, no information

is forthcoming on the variation with regard to making particular transitions.

Nevertheless, where both formulations are conceptually plausible each will com-

plement the other in contributing to an understanding of the process.
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APPENDIX 1

The regression model presented in the text (equation 5) for estimating

the population transition matrix involves a comparison between individuals

making a transition from i to j and a mixture of two other groups: persons

who fail to transfer out of the origin state i, and persons who make a

transition but not to j. Although both groups are assigned the same value

on the dependent variable, y .. = 0, it is probably the case that different
~J

conditioning variables are important in distinguishing the·i-j movers from

each of these groups. For example, in geographic migration, duration at a

residence is important for differentiating movers from non-movers, but

probably not for distinguishing between i-j movers and migrants to a differ-

ent region. To avoid this composite character of the reference category

it would seem desirable to compare i-j movers with only one of the above

groups. A comparison with non-movers seems preferable since the category

"movers to a state other than j" will itself change as the destination

state of interest is varied.

The most direct procedure would be to perform regressions like those in

equation 2 for each off-diagonal element, but to take as observations only

individuals who make either an i-j or an i-i transition. Thus, Yij would

equal one for persons making the transition of interest and zero for the

reference group, wn~ch now contains only individuals exhibiting a common

behavior. (The equation for Yii would use the same observations as

before since the reference category for non-movers would be all persons

transferring out of state i.) However, this formulation presents a prob-

lem in that the observations for each regression in row i will no longer

be the same (and equal to N.). As a result, the simple relationship of
~.

equation 4, which allows P .. to be derived from Y.. , no longer pertains.
~J ~J
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How, then, can this procedure be used for estimating the transition probabil-

ities of a Markov chain?

Consider the following approach: Construct regression equations as

indicated in the preceding paragraph. For each transition probability on

the main diagonal of pel) we have from equation 4

= 1
N. ~ Yiic

1.

= Y..
11

=
N..

11

N.
1.

where the term Yij is introduced for notational convenience and will equal

L Yi' divided by the number of observations in the particular regression.
c JC

For each off-diagonal equation y.. we now obtain, summing over.the predicted
1J

values from the appropriate individual profiles,

Y..
I

L
N..

= Yijc
= 1J

1J N •• + Nii c
1J N.. + N..

1J 11

Therefore, N..
11

Y•. Y•• N.
1J 11 1.

=
" N..

I - Y•. 1 1J
1J N.. + N..

1J 11

[ N..N.. j [N.. + N. j= 1J 11 1J 11

(N .. + N.. )N. N..
1J 11 1. 11

=
Nij
N.
1.

= p ..
1J
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Consequentl~, an alternative computation of P(l) is given by

P(l) =

Yl1 . . . . . . .

.Y
mm

While the regression equations corresponding to this model result from

more valid comparisons than the approach used in the text, the row sums of

probabilities derived from these estimates tend to exhibit a greater devia-

tion from the value one when subpopulation matrices are estimated. It there-

fore seems preferable to use the former method for constructing transition

matrices when the off-diagonal elements are small, since the reference obser-

vations would then consist largely of non-movers.



NOTES

1Somewhat related approaches to heterogeneity have been presented by

Coleman (1964:Chap. 6) and Orcutt et al. (1961). Coleman decomposes the

transition intensities of a continuous-time Markov process by assuming indi-

vidual flows between states in a structured manner. The states are construc-

ted to correspond to combinations of the independent variables, consequently

the rate of flow between pairs of states provides an indication of the

importance of particular variables. By tying the independent variables to

states of a discrete-state process Coleman is unable to incorporate variables

in a continuous formulation. Also, in contrast with the present analysis,

the number of transition probabilities to be estimated increases with the

number of variables considered. Orcutt ~ al. use regression techniques

to estimate probabilities but, while they discuss Markov processes (1964:

286-94), they fail to combine the two models and treat them instead as

alternative formulations.

2For a random variable x,E(x) =
00

E.xP •o x If x = 1 with probability

Yijc and zero with probability 1 - Yijc' E(x) = O(l-Yijc) +1 (YijC) =

Yijc '

30bserved frequencies and estimates of these which are constrained to

yield precisely the observed values will be written as population values

(without hats).

= 0 for each regression equation, this estimation of pel)

will

4 "Since Eei ,
C JC

yield Pij 's which are identical to the observed frequencies, Nij
N.
~.

5From the perspective of substantive findings, the reader is cautioned

that the data used here are biased. Histories were collected only for the



NOTES (con' t)

four most recent residences of an individual and for his birthplace. As a

result, persons with more than five locations had gaps in their histories

and had to be excluded from the analysis. Since individuals with many

residences are likely to have made regional changes, this exclusion results

in a reduction in the size of off-diagonal elements, and in the extent of

population heterogeneity.

6It is possible to object to this model because of the heterogeneous

nature of the Yij = 0 category. Individuals are assigned this value if they

failed to move, or if they made a transition to a state other than j. It

seems likely that the individual attributes which relate to these two types

of behavior will be differen~ and consequently persons who make an i-j

transition (y .. = 1) should be compared to one or the other of the reference
1J

groups, not to a mixture of both. In terms of the number of individuals in

each group in the present example, the regression model is tantamount to

comparing Yij = 1 persons with the subpopulation that fails to move (see

Panel B of Table 1). If the sizes of the off-diagonal elements in the

transition matrix were substantial, a formulation which explicitly compares

the i-j movers with only individuals who make an i-i transition should be

used. (See Appendix 1 for the development of such a model.) _~n practice,

that model would entail a cost of increasing the discrepancy between the row

sums in estimated transition matrices and the value one.

7The occupation categories were constructed as follows: Upper white

collar--professional and managerial; Lower white collar--clerical and

sales; Upper blue collar--craftsmen and operatives~Lower blue collar--
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NOTES (can't)

private household workers, service, and laborers; Farm occupations--

farmers and farm laborers.

8The region variables were defined as follows: Region l--New England

and Middle Atlantic states; Region 2--East North Central and West North

Central; Region 3--South Atlantic, East South Central and West South Central;

Region 4--Mountain states and West.

9 .
The backwards option of the'stepwise regression program was used. All

variables were initially entered into the equation. They were removed and

reentered one at a time according to the test criterion. A .05 significance

level was used for cutoff.

10This procedure assumes there is at least one person from the sub-

population in each geographic region at t so the regression equations cano

be evaluated on an attribute profile.

11Because of the requirement that Ep .. = 1 in a transition matrix, only
• :l.J
J

m-l equations are actually required for estimating the m row probabilities.

However, since the error terms of the regressions do not necessarily sum to

zero over a subgroup, the row sums of the matrix will not equal one exactly.

All m equations were therefore used to estimate the p .. IS in order to assess
_- :l.J

the magnitude of the discrepancy. From the resulting row sums, which are

presented in Table 3, it is evident that the error term is quite small.

l2If none of the bls in equation (5) is significant this suggests that

the process is Markovian, in which case equation (8) could be used to

estimate P(k).

!

t

I



NOTES (con't)

13
While only m(m-l) = 12 regression equations are necessary for estimat-

ing the individual p .. 's, m
2 = 16 equations were used in order to obtain an

~J

indication of the extent to which the row sums will deviate from Ep .. = 1.
• J.J. J

l41n contrast to the estimation of the population transition matrix,

Pt (1), where only the profiles of individuals at an origin state were used
1

with a row of equations, here each person's profile is inputed to all

equations in Y. This method therefore assumes that an individual's charac-

teristics summarize all relevant information about his behavior. If he were

to change states his transition propensities would conform to that of others

in the new state who have profiles which are identical to his.

l5Since the Pi' elements in M (1) are estimated from regression
JC c

equations which have 0-1 dummy dependent variables, it is possible for the

predicted values to exceed one or be less than zero. There are meaningless

estimates for a probability, so values outside the 0-1 range were truncated

at the probability limits. These adjustments had a negligible effect on

the results. On the averag~, only one out of each 110 estimates fell out-

side the 0-1 range by as much as .01. Likewise 96 percent of the time the

sum of the row probabilities for an individual was within the range .98 -

1.02. Procedures which constrain the estimated probabilities to the 0-1

range, such as logit and probit techniques (Thiel 1970), are available.

However, the adjustments would have been minor and these methods lack the

simplicity of interpretation available to the b-coefficients in a linear

regression model which uses a dichotomous dependent variable.



cannot be handled by these computations.

NOTES (con' t)

16Individual attributes which are contingent upon a state change

Although an M (1) matrix indicatesc

probabilities for making various transitions, an individual will make one or

another, and his value on such a variable will be altered by the resulting

transition. Variables of this nature can therefore be handled only through

a simulation procedure in which each person is assigned to a destination

state by comparing a random number with his p .. values, and has character
~JC

is tics which depend upon the transition made assigned to him in a similar

fashion. While information on such variables are available from the Taeuber

study and were used in the analysis of over-time change in PtCl), we are

concerned here with projection into the future and assume the unavailability

of these data.

l7It should be noted that an i-to-i transition has different meanings

in the two models. In the mover-stayer extension the moves occur randomly

in time. An i-i transition can therefore be interpreted as a within-region

change of residence, if the problem is one of regional migration, or a

within-industry job change if the process concerns industrial mobility.

In the present generalization, an i-i transition does not distinguish

-between the absence of a move and an occurrence in which a change of state

fails to occur.

18 2 'In fact, n systems of equations could be estimated in order to

incorporate complex structural assumptions as to the determinants of each

Pij in the transition matrix.
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