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. Abstract

This paper (i) derives asymptotic distributions for income

share statistics, Lorenz curve ordinates, and estimated Gini coefficients,

and (ii) thence develops simple statistical inference procedures for these

commonly used tools of applied distribution analysis.

The basic concepts underlying this work are population income
~p .

quanti1es ~ defined by p. = f~ 1 f(y)dy where f(y) is the population income
Pi 1 A

density and 0 < p. < 1. These are estimated by sample quanti1es ~p based on
1 •

. 1

a sample of size N. Under general conditions, a vector of K sample quanti1es,

~, is asymptotically normal with mean ~ and covariance matrix N-l~ where Lij =

p.(l-p.)/f(~ )f(~ ) for p. < p.. Since a vector of K sample Lorenz curve
1 J A Pi Pj 1 J A

ordinates ~ can be expressed as differentiable functions of ~, the asymptotic

distribution of ~ is also normal with mean ~ and covariance matrix N-1 V where

Vij = ~p. ~p. Pi (1_Pj)/~2 which does not depend on f(~p.), so that distribution-
, J 1

or model-free inferences can be carried out.

The paper then extends this result to income share statistics

and Gini coefficients, and then illustrates a number of computationally

simple statistical tests based on these results.



1. Introducti on

One of the most frequently used devices to describe and compare

distributional inequality in economics is the Lorenz curve. It has intu

itive appeal and can be easily estimated. It is generally defined and

not dependent on any prior specification of an underlying .distribution

function. It is the basis of a necessary and sufficient condition for

ranking two distributions independent of specific utility functions [2J.

It is also the basis for several summary measures of income (or wealth) in

equality such as the Gini concentration coefficient, perhaps the most fre

quently used single measure of inequality. Finally, the Lorenz curve also

provides a disaggregated overview of the share structure of inequality in

a distribution, so that one can see over which regions of a distribution

inequality is relatively marked.

So far, however, Lorenz curves and income shares have been used

essentially as descriptive devices. and not as tools for rigorous statistical

'inference. This is at least in part due to the complexities of the sampling

distributions associated with these devices, but is also partly due a sur

prising.lack of inquiry into the problem of formalizing statistical inference

with Lorenz curves. Such a state of affairs is particularly troublesome in

light of the massive outflpw of recent empirical work using micro data to

compare income and wealth inequality in different distributions, and of the

current general interest in distributional considerations. This paper offers

a solution to this problem by forwarding a new approach to distributional

inference based on quantile analysis and the asymptotic distribution of '

sample income quantiles. Indeed, it will be shown that statistical.infer-
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ences with Lorenz curves, income shares, and Gini coefficients are

(asymptotically) distribution-free or model-free in the sense that they

do not require knowledge of the underlying distribution model or parent

distribution of the sample.

So far, statistical inference and confidence intervals have been

worked out only for a few summary inequality measures [16, 18J. But such

measures frequently hide much interesting distributional detail, and contain

implicit value norms that may not be adequately recognized or generally

acceptable. The present paper is written in the spirit of these studies,

but extends the analysis to disaggregated inequality levels so as to permit

a much richer and more detailed understanding of the structure of inequality

in a distribution. As a useful corollary, the analysis also provides for

inferences and standard errors of the Gini coefficient as well.

This paper focuses on the problem of disaggregated statistical infer

ence, and for convenience and clarity we will assume that we are working with

samples of micro data. The approach thus contrasts with that of Gastwirth [15J

and Gastwirth and G1auberman [17J, who focus on interpolation methods for

estimation of Lorenz curves and thus on "interpo1ation error" as opposed to

II samp1ing error ll
• In contrast to Gastwirth [16J and Kakwani [18J, the

present approach is disaggregative in orientation and leads to model-free

inferences -- unlike maximum likelihood procedures, for example. And,in

contrast to Kakwani and Podder [19, 20J and Thurow [32J, the current approach

does not require any curve-fitting or iterative nonlinear estimation tech

niques in order to carry out inferences on Lorenz curves and income shares.

The approach also avoids the need to fit specific distribution models or
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density functions to empirical distributions in order to extract the rele-

vant inequality information from the data again in contrast to analyses,

for example, by Aigner and Goldberger [1] and Kloek and van Dijk [22, 23J.

The present work, however, can be seen as an extension of the model-free

approach of Beach [4J of basing distributional analysis on a set of income

quantiles, so that the overall structure of inequality in a distribution

can be studied without the need of fitting specific functional forms.

The objectives of the paper are thus (i) to draw economists' attention
, I

to a body of statistical theory on sample quantiles that can be usefully ex

ploited in distributional analysis; and (ii) to provide model-free inference

techniques for Lorenz curves, income shares, and Gini coefficients.

The paper proceeds as follows. The next section introduces income

quantiles and reviews some of the basic sampling theory to be used. Sections

III and IV apply the theory to derive asymptotic distributions of Lorenz

curve ordinates, income shares, and Gini coefficients. Sections V and VI

then illustrate various inference procedures, and a few general comments are

provided in the brief concluding section.

II. Review of Sampling Distributions of Income Quantiles

11.1) Lorenz Curves and Quantiles

In order to define a Lorenz curve conveniently, let f(y) be the

(continuous) parent density function of income recipients. Then the pro

portion of recipients with incomes UP to y is the (cumulative) distribution

function (or c.d.f.)



F(y) = fY f(u) du
-00
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(2.1 )

and the proportion of total income receipts in the distribution by recipients

with incomes up to y is the incomplete (first) moment function

¢(y) = 1 fY u f(u)du (2.2)
l.l _00

where the mean income level, l.l, is assumed to exist. Then just as the Lorenz

curve abscissa F(y) varies from 0 to 1, the Lorenz curve ordinate ¢(y) also

varies from 0 to 1 monotonically where we assume, for convenience, that all

incomes are positive. The so-called curve of concentration or Lorenz curve

is the function ¢(F) defined parametrically in terms of income levels y by
1(2.1) and (2.2).

An income quantile ~p corresponding to abscissa value p(O < P < 1)
~ - -

on a Lorenz curve is defined implicitly by p = fOP f(u)du or F(~p) = P where

F(y) is assumed to be strictly monotonic. For example, the first decile
~

level is ;.1 SU~h that .1 =fo·lf(U)dU, and the median income level is ;.5

such that .5 = f o·5 f(u)du, so that half the receipients have incomes less
2than or equal to ;.5 and half have more. Thus, corresponding to a set of

K abscissas Pl < P2 < ... < PK' we have a set of K population income quantiles

1. For an explicit definition of ¢ in terms of F, see Gastwirth [14]
and Dorfman [11].

2. It may be of interest to remark that concern with income quantiles
has also recently developed in the theoretical literature on measuring economic
inequality [31, p. 31; 10].
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~ < ~ < ... < ~ Note that the ~ ~s are not in general parameters
Pl P2 PK Pi'

of a distribution, but simply distribution characteristics which we seek to

estimate by sample statistics. Consequently, while quantile procedures are

"nonparametri ell, they are not neces?arilylldi stri buti on-free" [7, p. 15J.

Note also that the quantile abscissas, Pi' need not necessarily be equally

spaced. We shall assume for convenience in thi's paper that they are (e.g.,

that the ~ IS are all deciles, centiles, or quartiles, say). But if one
Pi

were particularly interested ~n upper and lower shares, for example, one

might choose closer quantiles over those regions than elsewhere in the

distribution.

11.2) Exact Distributions of Order Statistics

Consider a random sample of N observations drawn from the probability

density model f(y) with corresponding c.d.f. F(y), and order the observations

from the smallest to the largest. Then y~ in the ordered sample represents

the ~'th smallest observation where 1 < ~ < N. The probability that (~-l)

of the sample ,observations fall below a val U7 y~, one falls in the range

y~ ± ~ dy~, and the remaining (N-~) fall aboyey~ is then given [21, pp. 236,

252; 33, p. 236J by the probability element

The corresponding mean and variance of the ~'th order~statistic, y~, are

thus given [28, p. 13J as
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and

V(Y
1

) = E(~~) - E(y
1

)2

NI [00 2 (\-{L- 1 ( )]N-l ( )
= (N-l)1{1-1)1 f O u [F un [l-F u f u du

- {J~ u[F(u)]1-1 [1-F(u)]N-lf (u)du}2].

From these expressions it can be readily seen that exact sampling

distributions for order:-statistics have two important characteristics. First,

the observations in an prdered sample will no longer be independent3 or ident

ically distributed even when the original sample observations we~e. Second,

the exact sampling distributions of order statistics are relatively complicated

to handle analytically and depend very directly upon the underlying parent

density model f(y.), so that exact inferences about the parent quantiles l;
Pi

based on such order-statistics are not distribution-free or IImodel-free ll
•
4

.3. Corresponding joint distributions and covariances for any two
order statistics Yl and Yk can also be found in [28, p. 13], [33, p. 236],
and [21, pp. 270,325].

4. It is worth noting, however, that pairs of order-statistics can
be used to set distribution-free confidence intervals for population quantiles.
In particular, it can be easily shown that, if F(Yl) ~ p ~ F(Yk)'

Prob(Y o < ~ < Yk) = L~=~ (~) pj (l_p)N-j
Yv - P - J~Yv J

for order-statistics Y1, Yk [33, pp. 330-331; 21, pp. 517-18]. However, as
we shall want to work with functions or transforms of sample quantiles and
obtain smooth confidence bands for the set of transformed quantiles, we shall
deal directly with their sampling distribution functions and not just with
confidence intervals for conveniently selected order-statistics.

j i
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11.3 Asymptotic Distribution of Sample Quantiles

An asymptotic approximation to the distribution of sample quantiles,
\

however, does provide the basis for distribution~free inference for sample

shares and Lorenz curve ordinates. Given 'a random sa~ple of N observations,5

define an estimate of the pOPulation~p to be

A

~p = Y
NP

if Np is an integer

= Y[NPJ+l if Np i~ not an integer,

(2.4)

where [NPJ denotes the greatest integer nQt exceeding Np.. These corres

ponding sample quantiles are known to have several useful statistical pro ...

perti es.

In particular, it can be shown that, if F(y) is strictly monotonic,

~p defined in (2.4) has the property of strong or almost sure consistency
A

[27, p. 355J; that is, lim ~ = ~p with probability one, so that a fortiori
N~ p A

it is weakly consistent as well. In addition, the ~p.IS are also asymptot
1

ically normal with a relatively simple covarianc~ structure. More formally,

we state this result (without proof) as the basic cornerstone of this paper.

5. Since this paper is concerned e$sentially with statistical
inference and not estimation, it is ass~med throughout that the analyst has
access to actual micro data. If, however, he does not anq the distribution
data are available only in interval 'or histogram form, then standard inter
polationprocedures must be employed to obtain estimate of quantile income
levels and income shares (e.g., Gastwirth [15J). In th s case, interpolation
~errors occur in addition to sampling errors in estimati 9 the e and in
. computing asy~ptotic standard errors. ~ Pi
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Theorem 1:

Suppose that, for the set of proportions {Pi} such that

0< Pl <P2 < : .. < PK<'l,\t = (~Pl"~P2' ... , ~PK)I is a vector of K

sample quantile~ ftom a rahdom sam~le of siz~ N drawn from a continuous

population density f(y) such that the ~p. IS are uniquely defined and
, A

f i = f(~p.) > 0 for all i = 1, ... , K. Then the vector IN (~-~) converges,
in distribution to a K-variate normal distribution with mean zero and co-

variance matrix 11..
A

That is, ~ is asymptotically normal with mean vector

• eo • , ~PK)~ and asymptotic covariance matrix (liN) II. where

Pl Cl~Pl") Pl(l-PK)

f2 f/K1
II. = (2.5a).

Pl(l-PK) PK(l-PK)
flf K f2

K

If P denotes the matrix

P =

pi = (Pl , ... , PK)~ and F =Di~9! tfl, ... , f K], II. can be expressed in matrix

form as

II. = F- l [P - PP'JF- l (2.5b)

Proofs of Theorem 1 can be found, for example, in Wilks [33, pp. 273-74J,
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. and Kendall and Stuart [21., pp. 237-39J. 6 Since ~p~ is a consistent estimate

.'of ~p.' one can of course calculate a consistent asymptotic standard error of
A' A 2 ~
~p. as [Pi(l-Pi)/Nf(~p.) J .,

It is important to note, however, that asy~ptotic inference on

quantile income levels still requires knowled~e Of the underlying distribution

model f(·) in computing the standard errors. It is thus desirable to work with

transforms of these quantile variables which will allow model-free inferences.

We now make use of Theorem 1 in deriving asymptotic distributions of sample

share statistics and Lorenz curve ordinates~

III. Income Shares and Lorenz Curves·

111.1) Asymptotic Distribution of Lorenz Curve Ordinates

To estimate Lorenz curve ordinates, recall first of all from (2.2)

that

~
1 Pi

~(~p.) = - f uf(u)du =
, )l a

E(YIY 2. ~p.)

= Pi' E(Y) ,

F(~ )p.
. ,

)l

T.

= -'
)l

uf(u)du
F(~ )p.,

Consequently, the

L A

y. < ~
J - p.,

ep. =,

sample estimate of ~(~i) may be computed as
A

Y~p.

Yj/L~=l Yj - Pi (T)' i = 1, ... , K (3.'1 )

where y~ Ly. < ~ Yj/n i and ni = [NPiJ. This will be referred to as the
Pi J - Pi

feasible or sample estimator of ~(~ ).. p.
. .,

6. Stronger and broader results than Theorem 1 can also be found
in [8, pp. 56,58J and [3J .

. _..--- - --- - - - - ._.- ---_.. -
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It will also be convenient to define the population income share

function evaluated at the sample quantile estimate as

S;
AlP·

4>(S; ) = - fa ' uf(u)du.
Pi II

A

While this is a random variable, since it depends upon S; ,it is also
Pi

clearly dependent on the (unknown) population distribution function. This

will be referred to as the infeasible estimator of 4>(S; ). A Lorenz curve
Pi

in this paper is represented by a set of K ordinates {4>(S; )} which are to
. Pi

be estimated from the sample. The line of argument of this section involves,

first, establishing the asymptotic distribution of the infeasible estimators
A

4>(S; ) for i = 1, ... , K as transforms of the sample quantiles (Lemma 1);
p,'

A A

then arguing that 4>. and 4>(s ) have the same limiting distribution (Lemma 2);
, Pi

and thence concluding that the asymptotic distribution of the feasible estim-
A A

ators 4>i' i=l, ... , K, is exactly that derived for the 4>(S; )'s.
Pi

In order to derive the asymptotic distribution of a set of Lorenz
A

curve ordinates {4>(S; )}, it is useful first of all to recall the following
Pi

result [27, p. 321J on limiting distribution of continuous functions of

random variables. Suppose that TN is a K-dimensional statistic (tlN , t 2N ,

... , tKN)1 and 8 = (8 1, ... , 8K)' a corresponding vector of constants such

that the limiting distribution of the scaled vector IN(TN - 8) is a K-variate

normal with mean zero and covariance matrix E. Suppose also that a scala~

function of the statistic vector Tn' g(TN), is totally differentiable. Then

it fo1l9WS that the Timiting distribution of IN(9(TN) - g(e)) is also normal

with mean zero and variance v = jl Ej where



j = [=-:3g,--(T_N_) ".....,3g,--(_TN_) ] I

3t
l
N , ... , 3t

KN
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e
is the gradient vector of g(.) evaluated at e. More generally, if

9 = (gl(TN), ... , gM(TN))' is an M-dimensional vector-valued function

with each g. a function of the statistic vector TN' and if each g. is again
l ' 1

totally differentiable, the M-dimensional vector IN(9(TN) - g(8)) has an

M-variate normal limiting distribution with zero mean and (M x M) covar-

iance matrix V = J L J~ where

is now an .(M x K) matrix in which the i 'th row contains the gradient of

gi' again evaluated at 8.

In order to apply these results to the present situation, let

g., i = 1, ... , K, be the incomplete (first) moment function ~(y) defined
1

in (2.2). The gradient of the function (2.2) evaluated at the population

value ~ can be seen to be simply ~ f(~ )/~ = (l/~)~ f .. Consequently,
Pi Pi Pi· Pi 1

A A A

setting TN = (~Pl' ... , ~PK)" 8 = (~Pl' ... , ~PK)" 9(TN) = (~(~Pl), ... ,
A r

~(~ ))1, and L = It, we note that J L = Diag [(IN\)~ f l , .;., (IN)~ fKJ,
PK Pl PK

so that the variance of the limiting distribution corresponding to V in the

case of Lorenz curve ordinates is

~P 2
1(-) P (l-p )

~ 1 1
(3.3a)

(3.3b)
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where R = Diag [~p Ill, ... , ~p Ill]. We thus have the result
1 K

Lemma 1: Under the conditions of Theorem 1, the (scaled) vector of infeas-
A

ible Lorenz curve ordinate estimates with elements IN(~(~ ) - ~.) calcul-
Pi 1

ated from (3.2) is asymptotically K-variate normal with mean zero and co-

variance'matrix VL given in (3.3) Consequently, the (infeasible) Lorenz
A

curve ordinates ~(~P.) are asymptotically joint normal with mean ~. = ~(~ )
1 1 Pi

and asymptotic covariance matrix (l/N)VL.

So far, however, we have established the asymptotic distribution
A

only of an infeasible set of estimators {~(~ )} of the Lorenz curve ordinates.
Pi A

What are calculated from the sample are the feasible or sample estimates {~i}

defined in (3.1). However, analogous to the results for Aitken generalized-

least-squares estimators in econometrics, the feasible and infeasible estim-

ators can be shown to be asymptotically equivalently distributed.

Lemma 2: Under the conditions of Theorem 1, if the population density has
A A

finite mean and variance, IN(~i - ~i) and IN(~(~ ) - ~.) have the same limit-
Pi 1

ing distributions. Proof of this result is based on a modification of Theorem

1 in Gastwirth [16] and is provided in the Appendix. Basically, the argument

i,nvolves showing that the conditional and unconditional means, V~ and
- p.
y~ in (3.1) are both asymptotically normal with appropriate means 1 and

variances inspite of the fact that Vi is stochastically conditioned.
Pi

Combining Lemmas 1 and 2, one now has the principal result of this

paper.

Theorem 2: Under the conditions of Lemma 2, the vector of sample estimators
A A A

~ = (~l' .•. , ~K) of Lorenz curve ordinates is asymptotically normal in that
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A

IN(~ - ~) has a limiting K-variate normal distripution with mean zero and

covariance matrix VL specified in (3.3).

Consequently, asymptotic standard errors for the sample estimates

~i are given by

~P. /1" (1-P. )
(~) 1 N 1

11

for i :;: 1, ... , K. (3.4)

The important thing to note about VL, of course, is that, in contrast

to 1\., it does not require knowledge of the underlying model density function

f( . ). It depends solely upon the chosen proportions p., the population mean 11,
1

and the population quantile income levels ~ , which can be estimated con~

Pi
sistentlyfrom the sample. Thus statistical inferences about the Lorenz curve

ordinates can be carried out without having to know or estimate the underlying

model or parent density function. It is in this sense that we say that Lorenz

curve inferences are model-free. It is perhaps interesting to remark that this

distribution-free aspect of Lorenz curve inference in the statistical field

usefully complements Atkinson's [2J Lorenz curve criterion in the field of

welfare economics for making distributional inferences independent of the

exact form of underlying utili~y functions as well. Consequently, one has

further reason to be interested in using Lorenz curve analysis in applied

distribution work.

It is worth noting that the present result implies that it is

unnecessary for Lorenz curve inference to fit functional forms to empirical

Lorenz curves as suggested, for example, by Kakwani and Podder [19, 20J and

Thurow [32J. It also implies that, to make Lorenz curve inferences, it is
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unnecessary as well to fit various density functions to -empirical distributions

such as done in Aigner and Goldberger [lJ and in K10ek and van Dijk [22, 23J.,

In addition, it suggests that, along with (cumulative) income shares and

means, it is useful in applied work and published data also be provide estimates

of income quanti1es. Indeed, the only new information that will be requirE~

to compute standard errors and various test statistics for Lorenz curves is a
,...

set of income quanti1es, {~p.}'

1

Furthermore, note from (2.1) and (2.2) that the derivatives of the

population Lorenz curve,

d¢ _ d¢(y)/dy = b/]J)f(y)
dF - dF/dy f(y)

is the so~ca11ed re1ative-mean-income curve [21, p. 49; 24J, which has a

number of useful inequality properties in its own right. Corresponding to

the ~bscissa points P1' P2' ... , PK' the re1ative~mean-income curve ordinates
7are thus~. /]J, ~ /]J, ... , ~ /]J. It can be seen, then, that the elements

P1 P2 PK
of covariance matrix (3.3) are simply the products of selected proportions

7. As an illustration of a re1ative-mean-income curve, consider
the Pareto distribution with F(y) = 1 - y-a and a > 1. Thpn]J = a/(a-1),
and ~p. = (l-Pi)-l/a, so that the re1ative-mean-income-curve ordinates are

1

~p./]J = (a-1/a)(1- Pi)-1/a. Thus for selected upper-tail values of Pi and
1

alternative values of a, the corresponding re1ative-mean-income ordinates are
easily computed.

p- = .7 .8 .9 .95
1

a = 1.5 .7438 .9746 1.5474 2.4562
2.0 .9129 1.1181 1.5813 2.2364
2.5 .9712 1.1422 1.5072 1.9887
3.0 .9958 1.1400 1.4362 1.8097
4.0 1.0134 1.1216 1.3338 1.5860



- 15 -

and their corresponding Lorenz curve derivatives. 8 Consequently, an alter-

native way of saying that it is useful for an' applied distributi·on analyst

to provide a set of income quantiles to go with an estimated Lorenz curve

is that he should provide an estimated relative-mean-income curve as well,

as done, for example, in some work of Beach et. al. [6J.A relative-mean

income curve thus has an important inferential role in applied work as well

as a useful descriptive role in distribution analysis.

Note also the relatively simple structure of the asymptotic covar

iance matrix in (3.3). For positive incomes, VL has all positive elements;

that is, between cumulative income shares, covariances are quite reason

ally positive. As one moves down the principal diagonal of terms (~ /~)2
Pi

Pi(l-Pi)' the component Pi(l-Pi) increases to a maximum at the median value

Pi = .5 and then decreases, while the square of the relative-mean-income

value increases steadily from (~~ /~)2 to (~PK/~)2. Thus the variances

increase over the range Pi to beyond the median and then may either increase

B. This should not be at all surprlslng since we know that (i) tbe
A A

proportions F(~ ) and F(~ ) for i < j are asymptotically normal with asymptotic
Pi Pj .

covariance p.(l-p.)/N [33, p. 271J, and that (ii) the derivative of the function
1 J

~(F(~ )) is d~(~ )/dF = ~ /~. Consequently, the income share functions
Pi Pi Pi

A A

~(F(~ )) and ~(F(~ )) are also asymptotitally normal with asymptotic covar-
Pi . Pj

iance (~ /~) (~ /~) p. (l-p.)/N.
Pi Pj 1 J
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or decrease dependi ng on whi ch effect domi nates. 9 Typi cally, for skewed

distributioffiof income or wealth, the estimated variances have been found

to reach a maximum in the interval between p = .70 and p = .85 and there

after decline. Also note that the asymptotic squared correlation coeffic

ientbetween cumulative shares corresponding to p. and p. (p. < p.) is
• 1 J 1 J

p.(l-p.)/p.(l-p.). That is, the correlations are independent even of the
1 J J 1

quantile levels and depend solely on the (known) abscissa proportions Pi' Pj.

As one ~oves along the minor diagonal of VL where Pi + Pj = 1, the correlation

is maximized at the median when i = j and minimized at the two ends of the
2 A A 2 2

diagonal where asy. cor (¢i' ¢j) = Pl/PK·

111.2 Asymptotic Distribution of Income Shares

The line of argument to derive the asymptotic distribution of Lorenz

curve ordinates holds also for a set of income shares. If the Lorenz curve

ordinates represent cumulative income shares, the differences between successive

ordinates corresponding to adjacent quantiles represent income shares between

different quantiles. If there are Kquantiles (e.g., K = 9 in the case of

deciles), then there are K+ 1 (population) quantile shares

ljJ. = ¢(~ )
1 p.

1

¢(~ )
p. 11-

i = 1, 2, .•• , K+ 1 (3.5)

where we set ¢(~p )
o

= 0 and ¢(~p ) = 1.
K+l

¢. 1 is just a
1-

-a= 1 - y for9. In the case of the Pareto distribution with F(y)
a > 1, the asymptotic variance is

vii 1 0.-1 2 0.-2
-N- = (N) (-a) Pi (l-Pi) a

For given N and a, this is maximized at

p* = 1 (-JL).
2 0.-1

Consequently, when a = 2, 2.5, and 3, p* = 1.0, .8333, and .75 respectively.
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difference in sample Lorenz curve ordinates which are asymptotically normal

with asymptotic covariance matrix (l/N)VL, it is clear that the sample income

share statistics are also asymptotically (K+l) - variate normal with asympt

otic mean ~ = (~l' ~2' ... , ~K+l)' and asymptotic covariance matrix {l/N)Vs
I

where V = J VL J and the (K+l) x K gradient matrixs s s

a~ . 1

l~Js = [ 1] = -1 1 (3.6)~
J -1

~. -1 .1

-1

Thus combining (3.3) and (3.6), one can check that the ij1th element of

the symmetric matrix Vs where 1 ~ i ~ j ~ K+l is ~qual to

~p. ~ p. (l-p. 1)
P 1 J-

1 j-l

(3.7)

where PO = O,PK+l = 1, ~Po = 0, and ~ is assumed finite.
PK+l

Again, it is evident that V does not depend upon the underlying. s

population density function f{'), so that model-free inferences concerning

income~hares ~re again feasible. Note also that, in contrast to VL, Vs is

of dimension (K+l) x (K+l) and singular since the sum of the K+l income

shares is identically one.

In order to compute (asymptotic) standard errors for income shares,

one simplifies (3.7) by setting i = j to

sv ..
11 = (1/~2) [~~. Pi-l(l~Pi-l)

1-1

+ ~2 p. (l-p.)]p. 1 1
1

2~p.~p. p. l{l-p.)
1 1-1 1- 1

(3.8)
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It is then immediately eVident from (3.8), that, to compute standard errors

for income shares, one need compute only 2K-l elements -- the K diagonal

elements and K-l first-superdiagonal elements -- of the VL matrix and not

the full set of K(K-l)/2 different elements in VL. The (asymptotic) standard
A

error for the i 'th income share ~i can thus be computed as

The asymptotic variances of bottom and top income shares are

particularly easy to compute. The share statistic for the lowest 100 p.%,
of the sample is simply ~. = ~. which has the (asymptotic) standard error

A , ,

~p. /P.(l-P.) A A

(~)' N ' . The share statistic for the top 100(1-p,.)% is~. = 1 - <p.,y , ,

so that the corresponding (asymptotic) standard error is also

~p. I}.P.(l-P.)
(~)V " ' N ' •y

IV. Standard Errors for Gi ni Coeffi ci ents

A corollary of deriving the asymptotic distribution of sample Lorenz

curve ordinates is that one can also do so for an interpolated approximation

to the Gini coefficient, perhaps the single most ,frequently used summary

measure of income inequality in a distribution. While Gastwirth [16] and'

Kakwani [18J have derived asymptotic distributions for estimates of various

other summary inequality measures, this appears to be the first such derivation

for the Gini coefficient. The approach again is model-free, and does not

require ~ priori specification of the underlying parent distribution such as
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is involved in maximum likelihood methods used by Ki;lkwani [18J. 'The

geometric approach used here also avoids the rather substantial difficulties

of the perhaps more natural approach [21, Ip. 241] of fi rs t exami ni ng the

distribution of the mean absolute difference,

which appears in the numerator of the Gini coefficient.

The (population) Gini coefficient of concentration, f, lying in the

interval (0,1) for positive incomes, is geometrically equal to twice the

Q.rea between the Lorenz curve and the absol uteequa'li ty diagonal [21, P. 49J.

If one interpolates linearly along the Lorenz curve between adjacent quantile

ordinates and uses a trapezoidal integration formula, .th~ Gini coeffici~ntlO

may be estimated as

K+l
f = G = (l/K+l) L;i=l (Pi

A

¢. + p. 1 .,. ¢. '1)
1 1- 1-

(4.1)

Therefore the (Kxl) gradient vectot forif the p. IS are equally spaced.
1

the linear transformation (4.1) is j = (-2/(K+l), ... , -2/(K+l))', and one

obtains from the results of Section 111.1 that IN(G-r) also has a limiting

normal distribution with mean zero and variance

Lv.. ,
1J

-,
10. Note that this is the only point at which interpolation has

been used in this paper. The expression for the estimated variance of G
is thus approximate in that it reflects both sampling errors as well as
interpolation errors. One could,if one wished also use an alternative
interpolation formula such as Gastwirth1s [15J lIupper-bound" interpolation
rule or some rule-of-thumb combination of the two .

.._----_. ~~--~~--~~,~~~~~-~-
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where the summation'i!; over all elements of the VL covariance matrix.

correspondingl{asymptotic) standard error of G is thus

" ,,"t 1

= 2 [6i6jVijJ~
S.E.(G) (K+l) N'

where ~~. = (~ I'l) (~ IV) p. (l-p.) for i<j.
lJ Pi Pj 1 J

The

Since the Gini coefficient is expressed as a function of the

Lorenz curve ordinates for given Pi 's, it too has the property of allowing

model-free statistical inference. The relative-mean-deviation inequality

statistic, in contrast, does not (Beach [5J). However, the estimated coeffic-

ient and its standard error do depend on the coarseness of the interpolation

. intervals (Pi' Pi-1J, so that it is advisable when reporting inference results

based on (4.1) and (4.2) to indicate also the interval size (e.g., deciles

or quintiles) used in the interpolation.

V. Hypothesis Testing with Quantile Results

V.l) Hypothesis Tests on Income Shares

Given the asymptotic distribution results on estimated income shares

derived in the last section, one is now able to consider directly the problem

of hypothesis testing with income shares.

i) Tests on Single Share Statistics

First of all,: consider the case where there is some hypothesized

value ~~ to which the sample share statistic, ~i is being compared (for

example, that the bottom 10% of recipients get only 5% of total income).



'-

- 21 -

From the results of Section 111.2, it is clear that the appropriate test
a '" -a "'s ~ .

statistic under Ho: ~i = ~i is zi = (~i - ~i)/(vii/N) , WhlCh is to be

compared to the critical values on a, standard normal table for a specified

level of significance a.

More typically, however, the distribution analyst is more interested

in comparing income shares between two alternative distributions (for example,

between two time periods or two-regions). Specifically, suppose one has two
'" '"corresponding income share statistics ~li and ~2i based respectively on two

independent samples of sizes Nl and N2. According to a null hypothesis,

Ho: ~li = ~2i against, say, Hl : ~li 1 ~2i for a given particular quantile

share. Under the independence assumption, the appropriate standard normal
. . '" '" ",sl - ",s2 ~ "'s,

test statlstlc becomes zi = (~li - ~2i)/[(vii/Nl) + (vii/N2~J where vii and
AS2 .
vii- are the estimated variances based on (3.8) for samples 1 and 2 respect-

i ve ly.

Tests on single share statistics such as just considered are most

likely to be appropriate when looking at either top or bottom shares in a

d ' t 'b t' 11lS rl Ulan.

ii) Joint Test on a Set of Income Shares

When evaluating an overall distribution of income, one may be more

concerned with a set of income shares. For purposes of exposition, suppose

11. It may be remarked that standard !It-ratios" typically reported
for individual regression coefficients are not so interesting for estimated
share stati sti cs. Perhaps the more appropri a,te "standard" on whi ch to base
individual test statistics is the null hypothesis of absolute equality. Con-
sequently, instead of reporting individual I't-ratios"~ t = ~./I V~l·/N, it may

'" 1 1
be more appropriate to report individual "z-ratios", z = (~i - Pi)/I v~i/N.

-~~~----_._----~-----_._-------_.._._------_..._--------~_ ..__._.---_._----------

j

I
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one is interested in the full set of K,quantile share statistic~ (one share

statistic, say the last, is omitted as being linearly dependent on the others).

For example, one may have a model of income-generating behavior as in Fair

(1971) and wish to compare an actual distribution of income shares, say

¢ = (¢l' ~2' ... , ¢K)J, to an hypothesized set of income shares ~O = (~~,

~~, ... , ~~)I specified by the theoretical model. In this case, one wishes

to test Ho: ~ = ~O against the uninformative alternative Hl : ~ r ~O. From

the results of Section 111.2, under the null hypothesis, IN(¢ - ~O) is asym-

potically distributed as a K-variate normal with mean zero and covariance

matrix Vs' where the bar notation on Vs indicates that the 1ast row and column

of the V matrix have been deleted. Consequently, the test statisti cs
'"

cl
= N(¢ _ ~O)I V- l (¢ _ ~O) (5.1 )s

is asymptotically distributed under H as a (central) chi-squared variate
o

with K degrees of freedom.

It should be remarked, however, that the actual computations involved

in the income share test (5.1) (and in subsequent tests as well) are much
A

simpler than may first appear as there is no need to invert the matrix Vs
numerically.

-
If the K x K) nonsingular matrix J s is defined as

-1

1

-1 1~
~

1

-1

it can be seen that the share covariance matrix
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I

V = J VL Jss s

so that

(Vs f 1 (J~)-l -1 (J f 1= VL s ,

where it can also be checked thqt

1

1 • . .

- -1Thus any arbitrary quadratic form in the ma~rix (Vs ) can be written as

where

al

al+a 2
b=(Jsf1a = al +a2+a 3

(5.2)

(5.3)

VL,however, can be shown to have a simple analytic inverse.

Specifically, it will be recalled that VL = RAR where R is a diagonal

matrix and A = P - ppl from (3.~). Now the matrix A- l can be seen to have

avery simple structure, with elements
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Pi+l - Pi-l= -,------.,--,,---,---......
(P·+l-P·)(P:-p· 1)1 1 1 1-

for i = 1, ... , K, (5.4a)

for i = 1, ... , K- 1 , (5.4b)

and zeros elsewhere [26, p. 385J. Again, for convenience, set Po = 0 and

PK+l = 1. Consequently, any quadratic form in the matrix VL
l can be written

as

b'V-lb = ~K. (Pi+l-Pi-l) 2 K
L f-, 1 ( )( ) b 1· - 2 L: 1· =21= P·+l-P· p.-p. 11 1 1 1 -

b.b. 1
1 1-

(P·-P·l)1 1 -
(5.5)

Thus one needs to compute only 2K-l terms in (5.5) instead of inverting a

(KxK) matrix numerically. When one is working with deciles or vigintiles,

for examples, this is a substantial computational reduction. The test

statistic in (5.1) can thus be re-expressed as

(5.6a)

(Pi+l-Pi)(Pi-Pi-l)
A

~p. -1
(~)

II

K b. b. 1
1 1-

-2L:· 2 ( )1= p.-p. 1
1 1-

i A 0
L:j=l (\)Jj - \)Jj).where b. =

1

Clearly, one could also work out an intermediate case where a test

is performed on a set of only L quantile shares where 1 ~ L~ K based on an

asymptotic chi-squared statistic with L degrees of freedom.

iii) Joint Test of a Difference of Two Independent Sets of Income
Shares

When one is comparing alternative distributions, however, one may

be more concerned with testing for differences in sets of share statistics

between two sample distributions corresponding, for example, to different
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periods or different regions. Specifically, suppo~e one distributiqn i~

A A A ~

characterized ~y a set of K quantile shares l/J l = (l/Jll ~ l/J12' ..• , 1/I1K) I and
A A ~ A

the second by 1/12 = (~2l ~ l/J22' ... , l/J2K) I and the samples are drawn inde-

pendently of size Nl an~ N2 respectively. The null hypothesi$ Qne may wish

to test then is

Now the two .share-~ovariance matrices Vsl and Vs2 can b~ seen to be

equal if and only if (~l .1°1) = (~2 ,1l,l2) for all i; that is, if the relative. . p,p,
income ~urves !;ire the ~ame for the two distributions. But if the relative

mean income curves are the same, so also are the corresponding' Lorenz curves,

'and the corresponding sets of quantile share statisti~s. Consequently~ under

the null hypothesi~ that l/J l = l/J2' we shall also assume that the two covariance

matrices are equal~ V 1 = V 2 = V .s s s

Under the null hypothesis, then, one can see that ~he vector diff~rence

A A •

(l/Jl - ~2) i$ asymptotically K·variate normal with mean zero and covariance

matrix (l/N l + l/N2) Vs ' Conseq~ently, an appropriate test statistic for HO is

N1N2 A A A 1 A A

C2 = (N
l

+N
2

) (l/Jl - W2)' V - (Wl - W2) (5.7)

which will also be &symptqtically chi-squared with K degrees of freedom. 12

,.".

l2~ SinGe covariance matrices are assumed to be the s~me in the two
samples, estimates qf the elements of Vs should be based on a combined sample.
A convenient approximation to the combined relative-mean-income ordinqtes,
however, may be provid~d simply by the ~eighted average

At· ~
~i Nl .1Pi N2 2Pi
-;;:- = (N +N ) (~) + (N +N .) (-A-)'
l,l 1 g l,ll. 1 2 li2

._.__ ._ _ ~--~~._~--_ _- --~.~-_.-_.~---------~ - - _._----_.
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Following the same argument presented for cp one, can a,lternatively and

more simply compute c2 by the formula (5.6a,) where now

b. = ~ ~ 1 (l~l· - 1~2·)·1 J= ~ J ~ J (5.7b)

Again one can also formulate joint tests for differences 'in subsets

of quantile shares as well.

V.2) Hypothesis Tests and Confidence Bands on Lorenz Curves

In the case of Lorenz curves, tests of individual ordinates are

not, ty.pically of much concern, so that we consiqer only joint tests on the

fulJ set orK Lorenz curve ordinates analogous to those just discussed for

income:~hares.

i) Joint Tests on Lorenz Curve Ordinates

Since much of the framework for hypothesis testing of Lorenz curve

ordinates has already been laid out, the present discussion can be fairly
o 0 0brief. To compare a hypothetical or theoretical Lorenz curve ~ = (~l' ~2'

... , ~~)I against an empirically estimated curve ~ = (~l' ~2' ... , ~K)' in

order to test HO: ~ = ~O vs Hl : ~ t ~O, one can again use an asymptotic

. chi-squared test statistic

(5.8)

with K'degrees of freedom. To compare two separate Lorenz curve estimates
I' A

~l and ~2 from independent samples, in order to test HO: <P l = ~2 vs

Hl : ~l t ~2' one can use the: statistic :i,
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N1N2 '", '" "-1" '"
(N +N ) (¢l - rp2) I VL (c/Jl - ¢2)

1 2
(5.9)

~hich is also asymptotically chi-squared with K degrees of freedom under

the null hypothesis and accompanying assu~ption of equal variances.

Just as the share test statistics can be comp~ted without having

to invert numerically a (KxK) covariance matrix, so also can c
3

and ,c
4

.

Specifically, using the result in (5.5)'",one can re-express (5.8) as

( ) ~p. -2 -K Pi+ l-Pi-l "0 2
c3 = N[2: i =1 (p. +1-P. ) (p .-p. 1) (~11) (¢ i - cI> i )

1 T 1 1- f

'" "

K 1 ~p. -1 E,:p. -1 '" o. '" 0
- 22:. 2 ( ') (~) ( 1 -

1) (¢. - cI>.) (¢. 1-¢. 1). J (5. 10)
1= P -p 1 1 1- 1-i 'i-l ~

~

and (5.9) as

K
22: i =2

(5.11)

One particularly interesting problem where one may wish to apply the

above inference procedures is that of statistically testing Atkinson's [2J

distributional ranking criterion involving Lorenz curves. Specifically, one

may wish to use the criterion of nonintersecting Lorenz curves to define a

ranking orcompartson of inequality between two distributions (as opposed'to

defining a ranking of distributions per se), as applied, for example, in

Beach et.al. [6J. To test empirically the hypothesis of one Lorenz curve

lying statistically significantly inside another, one may start from a
'"

situation of one estimated Lorenz curve ¢l indeed lying uniformly above
'" '" '"another, ¢2 (i .e.: ¢li > cI>2i for all i = 1, ... , K), and then use statistic,

c4 to test HO: cI>1 = ¢2 against the one-sided alternative Hl : ¢l > ¢2'

,----- --------- .- ----_. --~-------- -----~--~----------_.
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ii) Confidence Band for Lorenz Curves

Along witp the hypothesis tests so far described, it would be

desirable from a graphical point of view to supplement an illustrated

Lorenz curve with some kind of confidence band about it over its full

length. One could then immediately see graphically how accurately the

illustrated Lorenz curve has been estimated, and particularly over some

regions more tightly than others.

Perhaps an initial approach to this problem might simply be to

construct a band of, say, two standard errors of ¢i on both sides of the

estimated Lorenz curve ordinates. While such a band may have some des-

criptive interest in illustrating the relative widths of individual ordinate

confidence intervals, it is not a very useful analytical device because it

treats individual ordinate estimates as separate and unrelated. What is

wanted instead is a joint confidence band or set of simultaneous confidence

intervals that incorporate the market interdependence of the individual

ordinate estimates for Lorenz curves. As is well known in the statistical

literature this is the classical problem of determining a set of simultan-

eous confidence intervals or multiple comparisons for a given joint level

of confidence, and there is no unique way of handling the problem. Perhaps

the best known approach is Scheff~'s [29, pp. 68-70J projection method.

If da = / x~ is the square root of the 100 (l-a)% critical value on a

chi-square distribution with K degrees of freedom, then the probability
A ITA re-

is at least 100(1-a)% that the K intervals (¢. - d v.. , ¢. + d I v:.)
1 a 11 1 a 11

jointly contain the K population ordinates ¢i' ~2' ... , ¢K' Consequently,

an approximate set of simultaneous confidence intervals is provided by a
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band of dOl. standard error$ in width on both sides of the estimated Lorenz

curve ordinates. In the case of decile ordinates (K=9) with a = .05, the

corresponding value of d isd = /16.919 = 4.11. This compares with the
ex a '

two-standard-errors rule that corresponds to treating the ordinates as

separate and unrelated.

Alternative approaches to the simultaneous confidence interval

problem are also available [30, pp. 126-132J. Bonferroni t-intervals, for
a/2K '

example, are based on the critical value of tu for dOl. from the t-

distribution with u degrees of freedom. Asymptotically, one may simply

use za~2K from the standard normal, distribution for large micro data samples.

In the above case where a = .05,and K = 9~ the Bonferroni critical value is

d = 2.78 which is substantially smaller than that obtained from the Scheff~
a

procedure, and consequently in this case to be preferred.

VI. Illustrative Empirical Results

Several of the tests of Section V are now illustrpted with two

sources of micro data, one for the United States from Danziger and Taussig

[9J,13 and one for Canada from Beach et al. [6J.

Table 1 provides the background data on decile income levels, decile

shares, and Lorenz curve ordinates for United States census unit households

(reporting positive income) from the CPS for the tWQ years 1967 and 1976.

13. 'The author would like to thank Prof. Sheldon Danziger for
providing the data in Table 1.
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These estimates are based on very large data sets (N l = 48,191 for 1967

. and N2 = 58,063), and appear roughly similar except for the inflation of

income values over the period; as a result, the sample mean increased

from $7692 in 1967 to $14,087 in 1976.

Table II provides (asymptotic) standard errors on the decile

income shares as computed by (3.9) (given in percents) for the two years,

and also z-statistics on the difference of individual shares, ~li - ~2i'

Judging the shares separately, one can see the differences are individually

significantly different from zero in the first, third, fourth, fifth, and

eighth decile shares on conventional significance levels. Note also. how

the standard errors are consistently slightly smaller for 1976 because of the

larger sample size.

Table III provides more summary test statistics for differences in

overall inequal ity between the two years. A joint test of the difference

between the two Lorenz curves is computed from (5.11) to be C4 = 54.46 which

is seen to be highly significant at any conventional levels of significance.

The Gini coefficient standard errors are also computed (based on deciles)

and yield test statistics for significant difference from zero (i.e., absolute

equality) of 163. and 183. for 1967 and 1976 respectively. However, the

difference between the two Ginis has a z-ratio of only -2.091 which lies

between a 95% and 99% confidence-level cut-off on the normal table with a

two-tailed test. Thus it is quite clear that a test on Gini coefficients is

not at all equivalent to a test on significant differences in the overall

Lorenz curve. In the first place, one is a single test, while the other a

joint test. Secondly, one has an assumed aggregation structure and implicit
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TABLE I

Decile Incomes, Shares, and Lorenz Curves: 1967, 1976

1) United States CPS Hous~holds, 1967
"A A A

,Decile (lOPi) Decile Level (~p.) Decile Share (100ljJi) Lorenz C. Ord. (lOOq,i)
1

1 $1 ,441 1.00% 1.00%
2 2,700 2.66 3.66
3 4,056 4.38 8.04

4 5,457 6.24 14.28
5 6,750 7.95 22.23

6 8,000 9.59 31.82
7 9,504 11.34 43.16

8 11 ,390 13.55 56.71
9 14,500 16.57 73.28

10 26.72 100.00
G1 = .3992 Yl = $7,692 N1 = 48,191

2) United States CPS Households, 1976
A A A

Decile (lOp.) Decile Level (~ ) Decile Share (100tjJi) Lorenz C. Ord. (lOOq,i)
1 Pi

1

2

3

4

5

6

7

8

9

10
G =.40612

$2,935
4,875

7,000
9,285

11,870
14,580

17,540
21,350

27,450

1. 16%
2.73

4.18
5.78

7.50
,9.36
11.37
14.10

17.01
26.80

Y2 = $14,087

1.16%
3.89

8.07
13.85
21.35
30.71
42.08
56.18
73.19

100.0
N2 = 58,063

Source: See footnote 13, and Danziger and Taussig [9J.
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TABLE II

Decile Shares and Standard Errors: United States 1967 and 1976

Decile 1967 1976 z dif.

1 1.00% 1.16% -4.40*
(0.026) (0.026)

2 2.66 2.73 -1.04
(0.051 ) (0.045)

3 4.38 4.18 2.06*
(0.074) (0.036)

4 6.24 5.78 3.66*
(0.096) (0.081)

5 7.95 7.50 2.93*
(0.116) (0.101 )

6 9.59 9.36 1.27
(0.134 ) (0.121)

7 11.34 11.37 -0.14
(0.156) (0.143 )

8 13.55 14.10 -2.20*
(0.182 ) (0.168)

9 16.57 17.01 -1.49
(0.215) (0.202)

10 26.72 26.80 -0.23
(0.258) (0.243)

*denotes significantly different from zero on the basis of a
two-tailed test of a standard normal variate with a = .05.

Source: Based on data in Table I.
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TABLE III

Summary Test Statistics: United States 1967 and 1976

1967 1976

Gini Coefficient: .3992 .4061
. (.00245)z=162.9 (.00222)z=182.9

2Lorenz Curve Difference: C4 = 54.46 > X9 = 23.59 at a = .005

~ini Coef. Difference: d = G67 - GY6 = -.0069

S.E.(d)

zd

= .00330

= -2.091

[z(a=.05) = 1.960, z(a=.Ol) = 2.326J.

Source: Based on, data in Table I,
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social welfare function built into it while the other does not. In the

case of two intersecting Lorenz curves, for example, the corresponding

Gini coefficiepts can be the same while the Lorenz curves are quite differ~

ent. In general, the Lorenz curve joint test is to be preferred to that on

the Gini coefficient as a less restrictive test.
I

It can also be seen that with such large sample sizes, even rather

similar looking distributions can be quite sharply distinguished as to their

relative structure of inequality. At the same time, the size of "sampling

error" is on the low side relative to lIinterpolation error" as found, for

example, by Gastwirth [15J, who computed interpolation error bounds on the

Gin; soefficients for the 1967 CPS data with 10 income groups. The width

of the interval between upper and lower interpolation bounds for three

different interpolation procedures was calculated as .020, .019, and .009.

These may be comp?lred to an approximate 95% confidence interval on G for

1967 of ±2 standard errors or an interval width of .009.

Finally, Table IV provides Lorenz curve data on family total income

for all (census) family units in the province of Ontario, Canada, for 1973

taken from a recent empirical study by the author and otners (Beach et al.

[6]) and computed based on a vigintile (K+l=20) income disaggregation and

a sample size of 7624 family units. This finer level of disaggregation shows

the Lorenz curve standard errors increasing up until the sixteenth vigintile

and then decreasing in size. The third column proYides joint confidence

intervals for the nineteen vigintile ordinates based on IIBonferroni-z"

intervals. At a 95% level of confidence, the asymptotic Bonferroni-z value

for da is 3.01 (Seber (1977), p. 131) compared to the corresponding
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TABLE: IV

Lorenz Curv~ Vi gi ntil eOrdi,nates
. ''', - . ' .... , .... ,. (

Family Total I ncomeforA11 Family Units
t 1. ,

Ontario, 1973
"

Viginti1e

1

2
3

4

5

6

7

8

9

10
11

12

13
14
15
16

17
18
19 (K)

Pt. Est.

0.39%
1.23
2.37

3.95
5.98

8.47
11 .47
14.97
18.92
23.32
28.14
33.38.
39.07
45.21
51.83
59.00
66.83

, 75.51
85.63

i I

Est.:t3. Ql'S~(E.

0.29 - ' ,O. ,49%

1.03,,,. , 1.43
2.05'.,.' 2.70

3.45". 4.45
5.31 -6.65

7~61 .. 9.3~

10; 39 ,- 12.55
, ,

13.71 .. 16.~3,'

17.49 - 20.35

21.73 - 24.91
26,42 .,. 29.66
31,53 - 35.23

37.13 .. 41.01
43.20 .. 47.22

49.78 .. 53.88
56.94 -,61.06
,64.81 ... 68.85

: 73.59 - 77.43

83,~5 .. 87.31

S.E.

0.034% '

0.067
, 0.108

0.166
0.223

0.287
, 0.358

0.417
0.475
0.529
0.572
0.614
0.644
0.668

0.682
0.684

0.670
0.638

0.558

if = $11 ,091 G = .374
N = 7624. (.00639) z, = 58.5 '
Source: aeach et a1. [6J, Tables 9.1, 9.4, ~nd 9.5.
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asymptotic Scheffe value for da which-would be da =1' Xi9 = 5.49. Conse~

quently, the narrower Bonferroni intervals have been used in the table.

Finally, one may remark on the substantially larger standard,

error for the estimated Gini coefficient in Table IV than in Table III

because of the smaller ~ample ~ize on which it is based. It has also been

computed from vigintile values, whereas the earlier figures were based on

decile values. However, if one recomputed the standard error in Table IV

in more aggregated fashion, one would obtain values of .006335 from decile

figures and .006160 from quintile figures compared to .006391 from the

reported vigintile figu~es. That is, the Gini standard errors appear quite

insensitive to the level of aggr'egation used and differ less than 4% between

quintile and vigintile levels of disaggregation.

VII. Review and Conclusions

The general objective of this paper has been to extend the standard

techniques of statistical inference ,to applied income distribution work at

a disaggregated level ofanalysi~. Sections II-IV of the paper introduced

the essential background material on the asymptotic distributions of income

quantiles, and then use& them ,to derive model-free standard errors and con

fidence intervals for income share statistics, Lorenz curve estimates, and

estimated Gini coefficients. The, only additional information required to'

estimate the asymptot'ic'covariance matrices involved is that of a relative

mean income curve. Sections V and VI then provided several hypothesis

tests on income shares and Lorenz curves which are typically of most interest

to ~pplied distribution analysts.
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Three general conclusions emerge from this paper. First, it clearly

follows that model-free statistical inference on Lorenz curves, income

shares, and Gini co~fficients is both feasible and remarkedly simply to

carry out. Consequently, it'is hoped that henceforth applied distribution

analysis will be carried on in the framework of standard statistical infer-

,ence. Second, when an analyst is reporting his empirical results in terms

of Lorenz curves, he should also report estimated relative-mean-income

ordinates so as to allow a reader to carry out inferences on the Lorenz

curve figures. Third, statistical agencies providihg published distribution

data should also include, along with income shar~ and histogram data, quantile

income level estimates such as decile level~ which researchers can then use

for statistical inference purposes.



- 38 -

Appendix

Lemma 2: Under the condltions of Theorem 1,if the population density has

finite mean and variance, IN(~. - ¢.) and IN(¢(~ )-¢.) have the same limit-·
, . 1 . Pi 1

ing distribution.

Proof: The first part of the proof is a modification of the arguments in

Gastwirth's [16J Theorem 1:

Recall, first of all, that by the Central Limit Theorem z = N~(9 - ~)/o

has an asymptotic standard normal distribution if the Y'~ are drawn (as

assu~ed) from a random sample. Also by Theorem 1 of the text,

€ = N~(~ - ~ )f(~ )/[p.(l-p.)J~
Pi . Pi Pi ' ,

(A1)

·is asymptotically standard normal as well.

Now in order to transform a conditional mean problem into an

unconditional mean problem, introduce the random variable

(A2)

1 if Y. < ~
J "'p.,

= 0 otherwise

I~ =
J

where Yj denotes. the j I th observati on in the random sample drawn from the

continuous density f(·) with finite mean and variance. The number of obser-

vations less than ~p. is a binomial random variable with parameters N and Pi',
and

'[. =,
~. p.

E(I~Y.) = f 0' Y dF(y) = p. E(Y·IY. < ~ ).J J , J J - . p.,
Consider then the asymptotic distribution of the conditional mean

estimator y~ = (l/n i ) Ly . < ~
p. J - p., ,

Y. wheren. = [Np.J.J . , , Let



Si = IN Pi [Y~
Pi
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- E(v·lv. < t,; )]
J J - p.

1

= IN [N~l LV ~ V. - T.].
. < <., J 1J - p.

1

Then consider the first term in (A3):

=LN
l I.V. + S R + a (1)

J J Pi P

'"

(A3)

(A4)

where it is assumed for convenience that s < t,; ,and where R represents
Pi", Pi

the (signed) number of observations between sand t,; • Since the number
Pi Pi

of observations in a small interval of length t-, about s is approximatelyp.
1 '"

Nf(s )t-" and since the (signed) length of the interval between sand s
Pi Pi Pi

is approximately

N-~[Pi(l-Pi)]~ E/f(sp.) from (Al),
1

R = N~[Pi(l-Pi)]~E.

Thus, from (A4) and (AS),

Si = N-~ L~ (I .V. - T.) + S [p.(l-p')]~E + a (1),
J J 1 Pi 1 1 P

(AS)

where the first term is asymptotically normal with mean zero by the Central

Limit Theorem, and the second has also been shown to be asymptotically normal

with mean zero in Theorem 1 of the text.

p. E(V.jV. < S )= T·.
1 J J - p. 1

1

ically normal with mean zero,and P;Y~

Pi

Consequently, Si i$ also asymptot

is asymptotically normal with mean
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Now, by the argument in Section 111.1, the limiting distribution of

a ,continuous function of asymptotically normal random variables is also

asymptotically no~mal. In particular, consider the ratio Pi V~ IV both of
p.

whose arguments have been shown to be asymptotically norm~l with'means Ti
and ~ respectively. Then it follows that

VA
~p. T. A

IN [p. -' - -' ] = IN (¢. - ¢.), if ~ 1 1

is also asymptotically normal with mean zero and a constant variance for
A A

i= 1, ... , K. That is, IN(¢i - ¢i) and IN(¢(~p.) - ¢i) have the same
, A

probability limit of zero, so that the feasible estimator ¢i and the
A

infeasible estimator ¢(s ) are asymptotically equivalently distributed for
. . Pi

all i = 1, ... , K [27, p. 101].

--~-----'------~--~-----------._-----------~~-----'



,.,

Referen~es

[1] Aigner, D. J., and A. S. Goldberger: "Estimation of Pareto·s Law from

Grouped Observati ons" Journal of the American Statistical Association~

~ 65 (1970), 712-723;

[2J Atkinson, A. B.: "On the t~easurement of Inequality", Journal of

Economic Theory~ 2 (1970), 244-263.

[3J Bahadur, R. R.: "A Note on Quantiles in Large Samples", AnnaZs of

Mathematical Statistics~ 37 (1966), 577-580.

[4J Beach, C. M.: "Cyclical Sensitivity of Aggregate Income Inequality",

Review of Economics and Statistics~ 59 (1977), 56-66.

[5J "Inference with the Relative Mean Income Curve i;lnd

Associated Inequality Measures", Discussion Paper, Dept. of

Economics, Queen1s University (1979), forthcoming.

[6J , with the assistance of D. E. Card and F. Flatters.:

Distribution of Income and Wealth: Theory and Evidence for

Ontario. Toronto: Ontario Economic Council, 1980.

[7J Bradley, J. V.: Distribution-Free Statistical Tests. Englewood

Cliffs, N.J.: Prentice-Hall,1968.

[8J Chernoff, H., J. L. Gastwirth, and M. V. Johns, Jr.: "Asymptotic

Distribution of Linear Combinations of Functions of Order Statisti~s

with Appl ications to Estimation", Annals of Mathematical Statistics~

38 (1967), 52-72.

[9J Danziger, S. and M. K. Taussig: "The Income unit and the Anatomy of

Income Distribution", Institute for Research on Poverty Discussion

Paper No. 516-78, University of Wisconsin-Madison, 1978.

- 41 -



- 42 -

[10J Donaldson, D. and J. A. \'Jeymark: "A Single-Parameter Generalization

of the Gini Indices of Inequality", Discussion Paper 79-11, Dept.

of Economics, University of British Columbia, 1979.

[llJ Dorfman, R.: "A Formula for the Gini Coefficient", Review of

Economics and Statistics~ 61 (1979), 146-149.

[12J El teto, 0., and C Fri gyes: "New Income Inequality Measures as

EffiGient Tools for Causal Analysis and Planning", Econometrica~

36 (1968), 383-396.

[13] Fair, R.C.: "The Optimal Distribution of Income", Quarterly Journal

of Economics~ 85 (1971), 551-579.

[14J Gastwirth, J. L.: "A General Definition of the Lorenz Curve",

Econometrica~ 39 (1971), 1037-1039.

[15J

[16J

"The Estimation of the Lorenz Curve and Gini Index",

Review of Economics and Statistics~ 54 (1972), 306-316.

"Large Sample Theory of Some Measures of Income Inequality",

Econometrica~ 42 (1974), 191-196.

[17J Gastwirth, J. L., and M. Glauberman: "The Interpolation of the Lorenz

Curve and Gini Index from Grouped Data", Econometrica~ 44 (1976),

479-484.
,

[18J Kakwani, N. C.: "A Note on the Efficient Estimation of the New Measures

of Income Inequality", Econometrica~ 42(1974),597-600.

[19J Kakwani, N. C. and N. Podder: liOn the Estimation of Lorenz Curves from

Grouped Observat;ons lf
, Internationql Economic Review~ 14 (1973) 278-292.



[20J'
~---

- 43 -

"Efficient Estimation of the Lorenz Curve and Associated

.,

"

. Inequal,ity Measures from Grouped Observations ll , Econometrica" 44

(1976),137-148 .

[21] Kendall, .M.G. and A. Stuart: The Advanced Theory of statistics"

3rd Ed., Vol. I. London: Cha~les Griffen &Co., 1969.

[22J K1oek, T., and H. K. van Dijk: IIFurther Results on Efficient Estim-

ation of Income Distribution Parameters II , Economie Applique~, 30

(1977) 1-21.

.[23J "Efficient Estimation of Income Distribution Param~tersll,

Journal of Econometrics" 8 (1978), 61-74.

[24J Levine, D. B., and N. r~. Singer: liThe Mathematical Relation Between

the Income Density Function and the Measurement of Income Inequality ll,

Econometrica" 38 (1970), 3N -330 .

[25J Martie, L.: IIA Geometrical Note on New Income Inequality Measures '!,

Econometrica" 38 (1970), 936-937.

[26J Mosteller, F.: liOn Some Useful Inefficient Statistics", Annals of

Mathematical Statistics" 17 (1946), 377-407.

[27J Rao, C. R.: Linear Statistical Inference and Its AppZications.

New York: John Wiley &Sons, 1965.

[28J Sarhan, A. E., and B. G. Greenberg, ed.: Contributions to Order

Statistics. N.Y.: John Wiley &Sons, 1962.

[29J Scheffe, H.: The Analysis of Variance. N.Y.: John Wiley &Sons,

1959.



- 44 -

[30J Seber, G. A. F.: LineaY' RegY'ession AnaZysis. N. V. : John Wil ey & Sons,

1977 .

[31] Sen, A.: On Economic Inequality. Oxford: Clarendon Press, 1973.

[32J Thurow,~. C.: JlAnaly.?;ing the American Income Distriblltion Jl , 'AmeY'ican

Eaonomic RevieW3 60 (1970), 261-270.

[33J Wilks, S. S.: MathematiaaZ Statistics. N.V,: John Wiley &$ons,

1962.

[34J Wold, H.: JlA Study on the Mean Difference, Concentration Curves,

and Concentration Ratio Jl , MetY'on3 12 (1935), 39-58.




