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Abstract

_ This paper (1) derives asymptotic distributions for income
~share statistics, Lorenz curve ordinates, and estimated Gini coefficients,

and (ii) thence develops simple statistical inference procedures for these

commonly used tools of applied distribution analysis.

The basic concepts _underlying this work are population income

2P
quantiles gp defined by p; = Jo ! f(y)dy where f(y) is the population income

i
density and 0 < P; < 1. These are estimated by sample quantiles Ep based on
i

a sample of size N. Under general conditions, a vector of K sample quantiles,

A

€, is asymptotically normal with mean & and covariance matrix N_]/Z where Zi"-

J
pi(l—pj)/f(é )F(E_ ) for P; < P Since a vector of K sample Lorenz curve

P p J
~ 1 J A
ordinates ® can be expressed as differentiable functions of &, the asymptotic

N

distribution of ® is also normal with mean @ and covariance matrix N'] V where

V., =& E p. (1-p.)/u2 which does not depend on f(&_ ), so that distribution-
i3 7 Tpy ey T P
or model-free inferences can be carried out.

The paper then extends this result to income share statistics
and Gini coefficients, and then illustrates a number of computationally

simple statistical tests based on these results.




I. Introduction

One of the most fréquent1y uéed devices to descrfbe aﬁd cdmpafe(
distributional inequality in economics is the Lorenz‘curve. ff_has 1ntﬁ-
itive appeal and can be easily estimated. It is generally defined‘aﬁd
not dependent on any prior specification of an undér1y1ng.distribution
function. It is the basis of a necessary and sufficient condition for
ranking two distributions independent of specific utility functions [2].
It is also the basis for several summary measures of income (or wealth) in-
equality such as the Gini concentration coefficient, perhaps the most fre-
quently used single measure of inequality. Finally, the Lorenz curve also
provides a disaggregated overview of the share structure of inequality in
a distribution, so that one can see over which regions of a distribution

inequality is relatively marked.

So far, however, Lorenz curves and income shares have been used
essentially as descriptive devices and not as tools for rigorous statistical
“inference. This is at least in part due to the complexities of the sampling
distributions associated with these devices, but is also partly due a sur-
prising . lack of inquiry into the problem of formalizing statistical inference
with Lorenz curves. Such a state of affairs is particularly troublesome in
light of the massive oUtf]ow of recent empirical work using micro data to
compare income and wealth inequality in different distributions., and of the
current.genera1 interest in distributional considerations. This paper offers
a solution to this problem by forwarding a new approach to distributional

inference based on quantile analysis and the asymptotic distribution of -

sample income quantiles. Indeed, it will be shown that statistical_infer-
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ences with Lorenz cuyrves, income shares, and Gini coefficients are

(asymptotically) distribution-free or model-free 1in the sense that they

do not require knowledge of the underlying distribution model or parent

distribution of the sample.

So faf, statistical inference and confidence intervals have been
worked out only for a few summary inequality measures [16, 18]. But such
measures frequently hide much interesting distributional detail, and contain
implicit value norms that may not be adequately recognized or generally
acceptable. The present paper is written in the spirit of these studies,

but extends the analysis to disaggregated inequality levels so\as to permit

a much richer and more detailed understanding of the structure of inequality
in a distribution. As a useful corollary, the analysis also provides for

inferences and standard errors of the Gini coefficient as well.

This paper focuses on the problem of disaggregated statistical infer-
ence, and for convenience and clarity we will assume that we are working with
samples of micro data. The approach thus contrasts with that of Gastwirth [15]
‘and Gastwirth and Glauberman [17], who focus on interpolation methods for
estimation of Lorenz curves and thus on "interpolation error" as opposed to
"sampling error". 1In contrast to Gastwirth [16] and Kakwani [18], the
present approach is disaggregative in orientation and leads to model-free
inferences -- unlike maximum Tikelihood procedures, for example. And,in
contrast to Kakwani and Podder [19, 20] and Thurow [32], the current approach
does not require any curve-fitting or iterative nonlinear estimation tech-
niques in order to carry out inferences on Lbrenz curves and income shares.

The approach also avoids the need to fit specific distribution models or
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'density functions to empirical distributions in order to extract the rele-
vant inequality information from the data -- again in contrast to analyses,
- for example, by Aigner and‘Go1dberger [1] and K1oék and van Dijk [22, 23].
The present work, however, can be seen as an extension of the mode]-frée
approach of Beach [4] of basing distributional analysis on a set of income

quantiles, so that the overall structure of inequality in a distribution

can be studied without the need of fitting specific functional forms.

The objectives of the paper are thus (i) to draw economists' attention
to a body of statistical theory on sample quantiles that can be usefully ex-
- ploited in distributional analysis; and (ii) to provide model-free inference

techniques for Lorenz curves, income shares, and Gini coefficients.

The paper proceeds as follows. The next section introduces income
quantiles and reviews some of the basic sampling theory to be.used. Sections
ITI and IV apply the theory to derive asymptotic distributions of Lorenz
curve ordinates, income shares, and Gini coefficients. Sections V and VI
then illustrate various inference procedures, and a few general comments are

provided in the brief concluding section.

IT. Review of Sampling Distributions of Income Quantiles

II.1) Lorenz Curves and Quantiles

In order to define a Lorenz curve conveniently, let f(y) be the
(continuous) parent density function of income recipients. Then the pro¥
portion of recipients with incomes up to vy is the (cumulative) distribution

function (or c.d.f.)




Fly) = /Y £(u) du (2.1)

and the proportion of total income receipts in the distribution by recipients

with incomes up to y 1is the incomplete (first) moment function
1y
o(y) = ﬁ'f . u fu)du (2.2)

where the mean income level, u, is assumed to exist. Then just as the Lorenz
curve abscissa F(y) varies from 0 to 1, the Lorenz curve ordinate &(y) also
varies from 0 to 1 monotonically where we assume, for convenience, that all
incomes are positive. The so-called curve of concentration or Lorenz curve
is the function &(F) defined parametrically in terms of income levels y by

(2.1) and (2.2).]

An income quantile Ep corresponding to abscissa value p(0 < p < 1)

g
on a Lorenz curve is defined implicitly by p = fop f(u)du or F(£_) = p where

F(y) is assumed to be strictly monotonic. For example, the firsz decile

lTevel is g 4 such that .1 =f§']f(u)du, and the median income level is € &
such that .5 = f0'5 f(u)du, so that half the receipients have incomes less
than or equal to £_5 and half have more.2 Thus, corresponding to a set of

K abscissas py < p, < ... < p,, we have a set of K population income quantiles
1 2 K

1. For an explicit definition of & in terms of F, see Gastwirth [14]
and Dorfman [11].

2. It may be of interest to remark that concern with income quantiles
has also recently developed in the theoretical Titerature on measuring economic
inequality [31, p. 31: 10].



- 5'_v

gp] < gpz < ... < ng. Note that the gpifs are nct iﬁ general parameters
of a distribution, but simply distribution characteristics which we seek to
‘esﬁimate by sample statistics. Consequently, while quantile procedures are
"nonparametric", tHey are not necessari]y\“distributibn—free“ [7, p. 15].
Note also that the quantile abscissas, Py need not necessarily be equally
_spaced. We shall assume for conVenience in this paper that they are (e.g.,
that the gpi's are all deci]es,jcenti]es, or qdart11es, say). But if one
were particularly interested in upper and lower shares, for example, one

might choose closer quantiles over those regions than elsewhere in the

distribution.

I1.2) Exact Distributions of Order Statistics

Consider a random sample of N observations drawn from the probability
density model f(y) with corresponding c.d.f. F(y), and order the observations
from the smallest to the Targest. Then Yl in the ordered sample represents

the 2'th smallest observation where 1 < & < N. .The probability that (2-1)

of the sample observations fall below a value yQP.oné falls in the range
Yo * % dyz, and the remaining (N-%) fall aboye Y, is then given [21, pp. 236,

2523 33, p. 236] by the probability element

460r,) = mrprgeryr PO 0RO I o) @y 2)

The corresponding mean and variance of the &'th drderfstatistic,»Yz, are

thus given [28, p. 13] as

E(Y

S T Om S AT O3 h Ll T (DR A SO

z) (N-z)i(z-l




and
V(Y,) = E(Y) - E(v,)?
) (N—Ei!(%-l)! [ o TR DIV du

- 45 ulF() I 1R )1 (w)aur].

From these expressions it can be readily seen that exact sampling
distributions for order-statistics have two important characteristics. First,

3 or ident-

the observations in an ordered sample will no longer be independent
ically distributed even when the original sample observations were. Second,
the exact sampling distributions of order statistics are relatively complicated
to handle analytically and depend very directly upon the undér]ying parent
density model f(y), so that exact inferences about the parent quantiles Ep.

i
based on such order-statistics are not distribution-free or "mode]—free".4

- 3. Corresponding joint distributions and covariances for any two
order statistics Yy and Yk can also be found in [28, p. 13], [33, p. 236],
and [21, pp. 270, 325].

4. It is worth noting, however, that pairs of order-statistics can
be used to set distribution-free confidence intervals for population quantiles.
In particular, it can be easily shown that, if F(yz) <p §_F(yk),

oy o ke Ny g N
Prob(YQ f-gp j_Yk) Zj=z (j) pY (1-p)

for order-statistics-Yz, Yk [33, pp. 330-331; 21, pp. 517-18]. However, as

we shall want to work with functions or transforms of sample quantiles and
obtain smooth confidence bands for the set of transformed quantiles, we shall
deal directly with their sampling distribution functions and not just with
confidence intervals for conveniently selected order-statistics.
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IT.3 Asymptotic Distribution of Sample Quantiles

An asymptotic approximation to the distribution of sample quantiles,
\
however, does provide the basis for distribution-free inference for sample
shares and Lorenz curve ordinates. Given 'a random sample of N observations,

define an estimate of the,popu]ation.gp to be

1l

Ep, YNp if Np is an integer
| (2.4)

Y[Np]+1 if Np 1; not an 1§teger,

where [Np] denotes the greatest integer not exceeding Np. “These corres-
ponding sample quantiles are known to have several useful statistical pro-

perties.

In particular, it can be shown that, if F(y) is strictly monotonic,
g defined in (2.4) has the property of strong or almost sure consistency

[27 p. 355]; that is, 1im E gp with probability one, so that g_fortiéri

it is weakly consistent as we11. In addition, the Ep ‘s are also asymptot-
; :

1ca]1y normal with a relatively simple covariance structure. More formally,

we state this result (without proof) as the basic cornerstone of this paper.

5. Since this paper is concerned essentially with statistical
inference and not estimation, it is assumed throughout that the analyst has
access to actual micro data. If, however, he does not and the distribution
data are available only in interval or histogram form, then standard inter-
po]ation_procedures must be employed to obtain estimates of quantile income
levels and income shares (e.g., Gastwirth [15]) - In this case, interpolation

" errors occur in addition to sampling errors 1n est1mat1ng the g and in

~ computing asymptot1c standard errors. - o '1




Theorem 1:

‘Suppose that, for the set of proportions {p;} such that
N A N G S
sample quantiles from a random sample of size N drawn from a continuous

0< Py < Py < e s ng)' is a vector of K

i ~
f. , K. Then the vector vN (£-£) converges

; ) >0 forall i =1, ...

Hi

population density f(y) such that the Ep_'s are uniquely defined and
(g
P

in distribution to a K-variate normal distribution with mean zero and co-

W

variance matrix A. That is, £ is asymptotically normal with mean vector

£E=(. & 5 ..., £_ )" and asymptotic covariance matrix (1/N) A where
" ey (1-p) p1(1-py) 7]
2 fi g
A= . . (2.5a)
Rk —Z
. K -
If P denotes the matrix
BRI P
P P P2
p = : 2
P P Pk

p' = (p],A..., pK), and F =‘If5§'ff],'.}., fK]? A can be expressed in matrix
form as ' ‘

e - pptFT (2.5b)

=
[H]

Proofs of Theorem 1 can be found, for example, in Wilks [33, pp. 273-74],
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~and Kendall and Stuart [21 , pp. 237-39].6 Since.Ep, is a consistent estimate
-~ of gp » one can of course calculate a consistent asymptotic standard error of

a ] S 24

p, 2 [pi(1fp1)/Nf(Epi) 1%
. It is important to note, however, that asymptotic inference on

quénti]e income Tevels still requires.know1edge of the underlying distkibution

 mode1 f(*) in computing the standard errors."It is thus desirable to work with.

"‘tréﬁsfbrms of these quantile variabies which‘w111 allow mode]-free’inférehces.

We now make use of Theofem 1 in deriving asymptotic distributions of sample

share statistics and Lorenz curve ordinates.

III. Income Shares and lLorenz Curves-

III.1) Asymptotic Distribution of Lorenz Curve Ordinates

To estimate Lorenz curve ordinates, recall first of all from (2.2)

that
£ Fle, ) ¢
_ 1 P - P ;P uf(u)du
@(api) fo ~ uf(u)du = — 0 e,
= . =l E'Epi) Y
"R TTEM B

Consequently, the sample estimate of @(51) may be'compUted as
Epi y | .
)s i=1, cees K (3.1)

—<i

(Dj:

N .
Y./ 2. (=
i’ Yy i (

Y

where YE =3Iy . g‘ Yj/"i and n; = [Npij. This will be referred to as the
P J = "By . : ‘ .

. feasible or sample estimator of @(gp ).

. : i

6. Stronger and broader results than Theorem 1 can also be found
in [8, pp. 56,58] and [3].
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"It will also be convenient to define the population income share

function evaluated at the sample quantile estimate as

@(%p_) = uf(u)du. (3.2)

i

= |—

While this is a random variable, since it depends upon Ep , it is also
.i
clearly dependent on the (unknown) population distribution function. This

will be referred to as the infeasible estimator of @(ap ). A Lorenz curve
i
in this paper is represented by a set of K ordinates {®(£p )} which are to
i
be estimated from the sample. The line of argument of this section involves,

first, establishing the asymptotic distribution of the infeasible estimators

@(Epi) for i =1, ..., K as transforms of the sample quantiles (Lemma 1);

then arguing that o, and @(gpi) have the same limiting distribution (Lemma 2);
and thence concluding that the asymptotic distribution of the feasible estim-
ators 51, i=1, ..., K, is exactly that derived for the @(gpi)'s.

In order to derive the asymptotic distribution of a set of Lorenz

curve ordinates {@(gp )}, it is useful first of all to recall the following

‘ i
result [27, p. 321] on limiting distribution of continuous functions of

random variables. Suppose that T, is a K-dimensional statistic (t

e tone
a corresponding vector of constants such

N

cens tKN)' and 6 = (e], cens eK)'

that the 1imiting distribution of the scaled vector /N(TN - ) is a K-variate

normal with mean zero and covariance matrix Z. Suppose also that a scalar

function of the statistic vector Tn’ g(T,), is totally differentiable. Then

N
it follows that the 1imiting distribution of vN(g(TN) - g(6)) is also normal

with mean zero and variance v = j' Ij where



is the gradient vector of g(-) evaluated at 6. More generally, if
g = (g](TN), cees gM(TN))' is an M—dimen;iona] vectprjva1ued function
with each g; a function of the statistic:vector TN’ and if each 9, is -again
totally differentiable, the M-dimensional vector /N(g(TN) - g(6)) has an
M-variate normal Timiting distribution with zero mean and (M x M) covar-
jance matrix V = J I J) where

J = [d45] = [§€%£Iﬁ1]

JN 6

is now an (M x K) matrix in which the i'th row contains the gradient of

9s again'eva1uated at 6.

In order to apply these results to the present situation, let
95 i =1, ..., K, be the incomplete (first) moment function ®(y) defined
in (2.2). The gradient of the function (2.2) evaluated at the population

value Ep can be seen to be simply Ep_ fg )/u= (1/u)g_- fi' Consequently,

i i pi : p1 .
' i = ( s eaes ', 86 = s eeas ', = (@ s eees
setting T, ‘Ep] EpK) (Ep] EpK) g(TN) ( (Ep])
@(EPK))', and T = A, we note that J = Diag [(1/u0£p]‘f], L, (1/u)€pKfK],

so that the variance of the limiting distribution correspondjng to V in the

case of Lorenz curve ordinates is

%2 P,y
(=) p(-pg) o (ipg (1-py)
v = - : (3.3a)
0y py oy 2 |
( 2 o (-p) - o (5007 p(T-py)

REE - pp'JR (3.3b)
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where R = Diag [Ep MMy oony Ep /u]. We thus have the result
1 K

Lemma 1: Under the conditions of Theorem 1, the (scaled) vector of infeas-

~

ible Lorenz curve ordinate estimates with elements /N(Q(Ep ) - Qi) calcul-
i
ated from (3.2) is asymptotically K-variate normal with mean zero and co-

variance matrix Vi given in (3.3) Consequently, the (infeasible) Lorenz

curve ordinates ®(£p ) are asymptotically joint normal with mean ¢, = ¢(Ep )
i i
and asymptotic covariance matrix (1/N)VL.

So far, however, we have established the asymptotic distribution

only of an infeasible set of estimators {®(gp.)} of the Lorenz curve ordinates.
What are calculated from the sample are the f;asible or sample estimates {gi}
defined in (3.1). However, analogous to the results for Aitken generalized-
least-squares estimators in econometrics, the feasible and infeasible estim-

ators can be shown to be asymptotically equivalently distributed.

Lemma 2: Under the conditions of Theorem 1, if the population density has

finite mean and variance, /N(Qi - @1) and /N(@(api) - ®1) have the same Timit-
ing distributions. Proof of this result is based on a modification of Theorem
1 in Gastwirth [16] and is provided in the Appendix. Basically, the argument

involves showing that the conditional and unconditional means, Vg and

Y, in (3.1) are both asymptotically normal with appropriate means i and

~

variances inspite of the fact that Yg is stochastically conditioned.
Py

Combining Lemmas 1 and 2, one now has the principal result of this
paper.
Theorem 2: Under the conditions of Lemma 2, the vector of sample estimators

5 = (5], ches 5K) of Lorenz curve ordinates is asymptotically normal in that
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”~

/N(6 - @) has a limiting K-variate normal distribution with mean zero and

covariance matm'x'vL specified in (3.3).

Consequently, asymptotic standard errors for the sample estimates

¢, are given by

i ey /080 |
- (—) N for i = 1, ..., K, (3.4)

The impoftant thing to note about VL’ of course, is that, in contrast
to A, it does not require knowledge of the underlying model density function
f(-). It.depends solely upon the chosen proportions Pi» the population mean u,
and the population quantile income Tevels Epi’ which can be estimated con-
sistently from the sample. Thus statistical inferences about the Lorenz curve
ordinates can be carried out without having to knéw or estimate the underlying
model or parent density function. It is in this sense that we say that Lorenz
curve inferences are model-free. It is perhaps interesting to remark -that this
distribution-free aspect of Lorenz curve inference in the statistical field
usefully complements Atkinson's [2] Lorenz curve criterion in the field of
- welfare economics for making distributional inferences independent of the
exact form of underlying utility functions as well. Consequently, one has

further reason to be interested in using Lorenz curve analysis in applied

distribution work.

It is worth noting that the present result 1mp11es that it 1is
unnecessary-for Lorenz curve inference to fit functional forms to empirical
Lorenz curves as suggested, for example, by Kakwani and Podder [19, 20] and

Thurow [32]. It also implies that, to make Lorenz curve inferences, it is
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unnecessary as well to fit various density functipns to ‘empirical distributions
such as done in Aigner and Goldberger [1] and in Kloek and van Dijk [22, 23].

In addition, it suggests that, along with (cumulative) income shares and

means, it is useful in app]ied work ‘and published data also be provide estimates
of income quantiles. Indeed, the only new information that will be required

to compute standard errors and various test statistics for Lorenz curves is a

set of income quantiles, {gp }.
i

Furthermore, note from (2.1) and (2.2) that the derivatives of the
population Lorenz curve, |

do _ do(y)/dy . (y/u)f(y)
dF = “dF/dy f(y)

.Y/U’

is the so-called relative-mean-income curve [21, p. 49; 24], which has a
number of useful inequdlity properties in its own right. Corresponding to
the abscissa points Pys Pos -evs Pyos the relative-mean-income curve ordinates
are thus gp]/u, gpz/u, cees EPK/u.7 It can be seen, then, that the elements

of covariance matrix (3.3) are simply the products of selected proportions

7. As an illustration of a relative-mean-income curve, consider
the Pareto distribution with F(y) =1 -y % and o > 1. Then u = o/(a-1),

and Ep = (1-pi)_]/a, so that the relative-mean-income-curve ordinates are
i
Ep /u = (u-l/a)(]—pi)']/a. Thus for selected upper-tail values of P; and
i

alternative values of o, the corresponding relative-mean-income ordinates are
easily computed.

Pi = .7 _ .8 .9 95

a=15 - .7438 .9746 1.5474 2.4562
2.0 - .9129 1.1181 1.5813 2.2364

2.5 - .9712 1.1422 1.5072 1.9887

3.0 - 9958 1.7400 1.4362 1.8097

4.0 1.1216 1.3338 1.5860

- 1.0134
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and their corresponding Lorenz curve derivétives.8 Consequently, an alter-
native way of saying that it is useful for an‘applied distribution analyst
to provide a set of income quantiles to go with an estimated Lorenz curve
is that he should provide an estimated relative-mean-income curve as well,
as done, for example, in some work of Beach et. al. [6]. A relative-mean-
income curve thus has an important inferential role in applied work as well

as a useful descriptive role in distribution analysis.

Note also the relatively simple structure of the asymptotic covar-
jance matrix in.(3.3). For positive incomes, VL has all positive elements;

that is, between cumulative income shares, covariances are quite reason-
ally positive. As one moves down the principal diagonal of terms (Ep /u)2

p1(1—p1), the component pi(]—pi) increases to a maximum at the median value

Py = .5 and then decreases, while the square of the relative-mean-income

value increases steadily from (& /u)2 to (Ep /u)z. Thus the variances’
: A ¢

P

increase over the range Py to beyond the median and then may either increase

S

8. This should not be at all surprising since we know that (i) the

~ A

proportions F(£_ ) and F(gp ) for 1 < j are asymptotically normal with asymptotic
, i J C
covariance pi(1-pj)/N [33, p. 271], and that (ii) the derivative of the function
' @(F(gp )) is d@(gp )/ dF = gp /u. Consequently, the income share functions
i i i
@(F(Ep )) and @(F(gp )) are also asymptotically normal with asymptotic covar-
1 J
iance . {1-p.)/N.
(Epi/u) (Epj/u) psi DJ)/
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or decrease depending on which effect dominates.9 Typically, for skewed
distributiors of income or wealth, the estimated variances have been found

to reach a maximum in the interval between p = .70 and p = .85 and there-
after decline. Also note that the asymptotic squared correlation coeffic-
ient betveen cumulative shares corresponding to P and pj (pi < pj) is
‘p1(1-pj)/pj(1-pi). That is, the correlations are independent even of the
quantile levels and depend solely on the (known) abscissa proportions Pis pj.

As one moves along the minor diagonal of V, where P; + pj = 1, the correlation

L
is maximized at the median when i = j and minimized at the two ends of the

A A

diagonal where asy. cor2(®1, ©j) = p%/pﬁ.

I11.2 Asymptotic Distribution of Income Shares

The Tine of argument to derive the asymptotic distribution of Lorenz
curve ordinates holds also for a set of income shares. If the Lorenz curve
ordinates represent cumulative income shares, the differences between successive
ordinates corresponding to adjacent quantiles represent income shares between
different quantiles. If there are K quantiles (e.g., K = 9 in the case of

deciles), then there are K + 1 (population) quantile shares

wi = ®(€p1) - @(Epi_]) i= 1} 2y ooy Kt (3.5)

where we set ®(&_ ) = 0 and ¢(& ) = 1. Since ¥, = . - &, ] is just a
Po Pie1 ! i

9. In the case of the Pareto distribution with F(y) = 1 - y™° for
o > 1, the asymptotic variance is

V. 2 -2
S dy esl .) o
e ) G5 pi(1-py) o

For given N and a, this is maximized at
p*:.]..(__u‘_)

2 ta-1""
Consequently, when o = 2, 2.5, and 3, p* = 1.0, .8333, and .75 respectively.
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- difference in sample Lorenz curve ordinates which are asymptotically normal

with asymptotic covariance matrix (1/N)VL, it is clear that the sample income

share statistics are also asymptotically (K+1) - variate normal with asympt-
otic mean ¢‘='(¢], wz, cees ¢K+1)' and asymptotic covariance matrix (1/N)Vs

 where VS = Js VL J; and the (K+1) x K gradient matrix

JS = [g@fﬂ = -1 1 . (3.6)
J R

S . ]

‘Thusvcombining (3.3) and (3.6), one can check that the ij'th element of

the symmetric matrix VS where 1 2 i < j £ K+1 is equal to

S 2 | |
. = -p. 4) - p. (1-p, ;)
Vi; (1/u )[Epi_]ipj_] (1 pJ_1) Epi Epj_] i 3-1

- E B P
Pi1 Py 1

5 1 (]-pj) + g Eb pi(]-pj)} (3-7)

pi pj

where Py = 0,4pK+] =1, Epo = 0, and EPK+] is assumed finite.

Again, it is evident that Vs does not depend upon the underlying
population density function f(-), so that model-free inferences concerning
income shares are again feasible. Note also that,'in contrast to VL’ Vs is
of dimension (K+1) x (K+1) and singular since the sum of the K+1 income

shares is identically one.

In order to compute (asymptotic) standard errors for income sharés,

one simplifies (3.7) by setting i = j to

s 2, .2 o '
Vij = (1/u") [£p1_1 pi-](]_pi—T) - ngigpi-] pi-](]-pi)
2 .
+ gpi pi (1'p1)] . (3-8)
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It is ‘then immediately evident from (3.8) that, to compute standard errors
- for income shares, one need compute only 2K-1 elements -- the K diagonal

elements and K-1 first-superdiagonal elements -~ of the V, matrix and not

L

the full set of K(K-1)/2 different elements in V The (asymptotic) standard

L
error for the i'th income share @i can thus be computed as

_2 A2 ~ ~
* %g_ p;(1-p;) T2 (3.9)
1

The asymptotic variances of bottom and top income shares are
particularly easy to compute. The share statistic for the lowest 100 pi%

of the samp]e is s1mp]y w @ which has the (asymptotic) standard error

(——— 1 The share statistic for the top 100(1- -p; )% is w. =1-9
0 that the correspond1ng (asymptotic) standard error is also
g -
(_Ei) ___._PT'(] P!
v N

IV. Standard Errors for Gini Coefficients

A corollary of deriving the asymptotic distribution of sample Lorenz
curve ordinates is that one can also do so for an interpolated approximation
to the Gini coefficient, perhaps the single most frequently used summary
measure of income inequality in a distribution. While Gastwirth [16] and"
Kakwani [18] have derived asymptotic distributions for estimates of various
other summary 1nequa11ty measures, th1s appears to be the first such derivation
for the Gini coeff1c1ent The approach aga1n is mode] free and does not

require a priori specification of the under1y1ng parent d1str1but1on such as
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- is involved in maximum Tikelihood methods used by Kakwani [18]. 'The
geometric approach used here also avoids the rather substantial difficulties
of the perhaps more natural approach [21, 'p. 241] of first examining the

distribution of the mean absolute difference,
which appears in the numerator of the Gini coefficient.

The (population) Gini coefficient of concentration, T, Tyihg'in the
interval (0,1) for positive incomes, fs geometrically equal to twice the
area between the Lorenz curve.and the absolute equ&]fty‘aiagonal [21, p. 49].
If one interpolates linearly along the Lorenz curve between adjacent qQanti]e
‘ordinates and uses a trapezoidal integration formu]a,=thé Gini coefficient]O

may be estimated as

~ B _ K+‘I ~ - /\ .
r=6s= (1/Kf1) Ziiy Py =0 +py g - 05 y) (4.1) |

if the pi's are equally spaced. Therefore the (Kx1) gradient vector for
the Tinear transformation (4.1) is j = (-2/(K+1), ..., -2/(K+1))', and one
- obtains from the results of Section III.1 that /N(Gér) also has a limiting

normal distribution with mean zero and variance

Kk,

v s 24 K
SR TIE IR LV (S D AN

10. Note that this is the only point at which interpolation has
been used in this paper. The expression for the estimated variance of G
is thus approximate in that it reflects both sampling errors as well as
interpolation errors. One could if one wished also use an alternative
interpolation formula such as Gastwirth's [15] "upper-bound” interpolation
rule or some rule-of-thumb combination of the two.




- 20 -

where the summation:is over all elements of. the V., covariance matrix. The

L
correspondihgs(asymptotic)-standard error of G is thus
o, ik |
S.E.(G) = [ 0 i1, (4.2)

(K+1)

where vL (g /?) (gp./V) P, (1—pj) for i<j.
J

Since the Gini coefficient is expressed as a function of the
Lorenz curve ordinates for given pi's, it too has the property of allowing
model-free statistical inference. The relative-mean-deviation inequality
statistic, in contrast, does not (Beach [5]). However, the estimated coeffic-
ient and its standard error do depend on fhe coarseness of the interpolation
.intervals [Pf’ p1_1], so that it is advisable when reporting inference results
based on (4.1) and (4.2) to indicate also the interval size (e.g., deciles

or quintiles) used in the interpolation.

V. Hypothesis Testing with Quantile Results

V.1) Hypothesis Tests on Income Shares

Given the asymptotic distribution results on estimated income shares
derived in the last section, one is now able to consider directly the problem

of hypothesis testing with income shares.

i) Tests on Single Share Statistics

F1rst of al], cons1der the case where there is some hypothesized
value w to wh1ch the samp]e share statistic, w is being compared (for

examp]e, that the bottom 10% of rec1p1ents get only 5% of total 1nc0me)
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- From the results of Section III.2, it is ¢1ear that the appropriate test

~ 0)

. s 0 . s L s s .
statistic under H : ¢, = y; is z; = (Wi - 3 /(vii/N)i, which is to be

compared to the critical values on a Standerd normal table for a specified

level of significance q.

More typically, however, the distribution ana1yst is more interested
in comparing income shares between two alternat{ve distnibutions (for7examp1e,
"between two time periods or two regions). Specifically, suppose one has two
conresponding income share statistics @]i and @21 based respective1y on two
independent samples of sizes N1 and N2. According to a null hypotheéis,

H0; ¢]1 = Yoy against, say, H]: w]j # Vo for a given particu]ar,quanti]e
share. Under the independence aésumption, the eppropriate standard normal
test stat1st1c becomes zy = (@11 - &21)/[(3?}/N]) + (Qj?/N )]1 where Qj} and
Q1$ are the estimated variances based on (3.8) for samples 1 and 2 respect-
ively. | N

Tests on single share statistics such as just considered are most

Tikely to be appropriate when looking at either top or bottom shares in a

distribution. |

i1) Joint Test on a Set of Income Shares

When evaluating an overall distribution of income, one may be more

concerned with a set of income shares. For purposes of exposition, suppose

11. It may be remarked that standard "t-ratios" typically reported
for individual regression coefficients are not S0 interesting for estimated
share statistics. Perhaps the more appropriate "standard" on which to base
individual test statistics 1s the null hypothesis of abso]ute equa11ty Con-

sequently, instead of report1ng individual "t-ratios", t = w /Y v /N, it may
“be more appropriate to report individual "z-ratios", z = (wi - P; )// v11/N
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one is dinterested in the full set of K quantile share statistics (one share
statistic, say the last, is omitted as being linearly dependent on the others).
For example, one may have a model of income-generating behavior as in Fair
(1971) and wish to compare an actual distribution of income shares, say

@ = (@1, @2, cees $K)l’ to an.hypothesized set of income shares wo = (w?,

wg, cees wg)' specified by the theoretical model. In this case, one wishes

vto test HO: Y = wo against the uninformative alternative H]: Y # wo. From
the resu]ts of Section III.2, under the null hypothesis, /N(@ - wo) is asym-
potically distributed as a K-variate normal with mean zero and covariance

matrix VS, where the bar notation on VS indicates that the last row and column

of the VS matrix have been deleted. Consequently, the test statistic

- O). =1 (A O)

ey =M -0 T - (5.1)

is asymptotically distributed under H0 as a (central) chi-squared variate

with K degrees of freedom.

It should be remarked, however, that the actual computations involved
in the income share test (5.1) (and in subsequent tests as well) are much
simpler than may first appear as there is no need to invert the matrix VS

numerically. If the K x K) nonsingular matrix 55 is defined as

Cal
1
i
—_
—

- s

it can be seen that the share covariance matrix
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Thus any arbitrary quadratic form in the matrix (VS)_1 can be written as
a(v) la= b, | | (5.2)
s L= ' o
where
- . -
] 478,
(1)1, =
b—(JS) a= a]+a2+a3 , (5.3)
_'a]+a2+ e +aK ]

so that it becomes now a quadratic form in the matrix V'1, the inverse of

the Lorenz curve (asymptotic) covariance matrix.

VL,.h0wever, can be shown to have a simp]e ané]ytic inverse.
Specifically, it will be recalled that VL = RAR where R is a-diagonal
matrix and A = P - pp' from (3.3). Now the matrix A_] can be seen to have

a .very simple structure, with elements
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. P .
gl = 4] i-1

=P
(p1+]'p1)(p%'p1_])

it
—
-

for i

.5 Ky (5.43)

ai,1+1 N bt S I -1

(Pi497p;)

for i =1, ..., K-1, (5.4b)

and zeros elsewhere [26, p. 385]. Again, for convenience, set Py = 0 and

Pre1 = 1. Consequently, any quadratic form in the matrix VE] can be written

as
(Psra=Ps ) b.b.
-1 K i1 -1 2 K -]
b’V 'b = gt bi - 23 Ty O
L Z1=] (p1+]"P1)(P1'P1_1) 1 Z1=2 pi-pi-1 (5-5)

Thus one needs to compute only 2K-1 terms in (5.5) instead of inverting a
(KxK) matrix numerically. When one is working with deciles or vigintiles,
for examples, this is a substantial computational reduction. The test

statistic in (5.1) can thus be re-expressed as

(Psq=Ps_q) %p.
K it] "i-] j\-2 2
C = N[Z-_ ( ~ ) b'
1 =1 (psq-P;) (P5-Py_¢) o i
b. b, gp. -1 Ep. -1
K i -1 i j-1
-271. ~—) (—=—) 1, (5.6a)
=2 {py=pyy) * ] v

. . 0
b, = 3. - ).
where b, ZJ ! (wJ wJ)

Clearly, one could also work out an intermediate case where a test
is performed on a set of only L quantile shares where 1 < L < K based on an

asymptotic chi-squared statistic with L degrees of freedom.

iii) Joint Test of a Difference of Two Independent Sets of Incomé

Shares

When one is comparing alternative distributions, however, one may
be more concerned with testing for differences in sets of share statistics

between two sample distributions corresponding, for example, to different
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periods or different regions. Specifically, suppose one distribytion is

- characterized by a set of K quantile shares by = (¢11; Yyps wees ¢]K)' and

the second by wz = (wz]; w22’ ces wZK) and the samples are drawn inde- |
pendently of size N1 and N2‘respect1ve1y. The null hypothesis one may wish

to test then is

HO: 'w] = wgbagainst H]: wl #Iwz,

Now the two share-covariance matrices VS] and V32 can be seen to be

 equal if and only if (&, /u,) = (£, /u,) for all i; that is, if the relative
: , , 1pi 1 2p.’ 2

7y

* mean income curves are the same for the two distributions. But if the relative

mean income curves are the same, so also are the corresponding Lorenz curves,

"and the cokfesponding~sets of quantile share statistics. Consequently, under

the null hypothesis that w] = wz, we shall also assume that the two -covariance

‘matrlces are equal, VS1 = VsZ = Vs'

Under the nu]l hypothesis, then, one can see that the vector difference

Ay, - ) is,asymptotiéa]]y K-variate normal with mean zero and covariance
1 2 .

mafrix (1/N1 + 1/N2) VS. Consequently, an appropriate test statistic for HO is
¢ s 2y (G- 500 1T G -A“) (5.7)
2 7 WA, T Ve Uy - ¥ :

which will also be gsymptqtically chi-squared with K degrees of freedom.]2

: 12. Since covariance matrices _are assumed to be thevsamelin the two
samples, estimates of the elements of V_ should be based on a combined sample.

A convenient approximation to the combined relative-mean-income ordinates,

however, may be provided simply by the weighted average

N “1p, N,  op.

1
' 2

= >l >
s

1
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Following the same argument presented for Cqs One. can alternatively and
, more simply compute Cy by the formula (5.6a) where now
I
by = Zjoq (hyj - wgy)- | (?-7b)

Again one can also formulate joint tests for differences in subsets

of quantile shares as well.

V.2) Hypothesis Tests and Confidence Bands on Lorenz Curves

In the case of Lorenz curves, tests of individual ordinates are
-not, typically of much concern, so that we consider only. joint tests on the
full set of K Lorenz curve ordinates analogous to those just discussed for

income .shares.

i) Joint Tests on Lorenz Curve Ordinates

Since much of the framework for hypothesis testing of Lorenz curve

ordinates has already been laid out, the present diécussion can be fairly

brief. To compare a hypothetical or theoretical Loreni curve @0 = (@?, @2,

cees @E)"agaihét an empirically estimated curve & = (@1, o5 cees @K)' in
order to test HO: = @O S H]: o # @O, one can again use an asymptotic

- chi-squared test statistic

a=1

. c_ S0

C3 = N(o - o ) (5.8)

with K'qegrees of fréedom. To compare two-separate’Lorehz curve estimates
2 and 9 from independent samb]es, in order to test‘Ho: @1 =0, VS

H]: o, # ®,, one can use the statistic
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N, N N S T SN '
(1 = 05) (5.9)

which is also asymptotically chi-squared with K degrees of freedom under

the nu]] hypothesis and accompanying assumption of egual variances.

Just as the share test statistics can be computed without having

to invert numerically a (KxK) covariance matrix, so also can Cq andtc4.

Specifically, using the result in (5.5),Aone can re-express (5.8) as
g

(p‘ "p. ) p. __2 ~
A i+ 1 7] i 0,2
o = N[z._ ~ - ) (q)' _ ®.)
’ =1 iy P (Pympy ) P
25K 1 (5P1)-1 (£p1-1)‘1 6. - %6, 0 )] (5.10)
“i=2 (pope ) L L ~ i i-1774-1 .
A B B u 9 | |
and (5.9) as )
£
N N (p' —p’ ) p- A~ A :
= (—= V7 o .5 .
C4 (N]+N2)[ i=1 (p1+l-p1)(p1:p1_]) ( u ) ( 11 21) (5 ]])
g £ |
P. p. N . . .
L -1, Pic1,-1
- 2, - (=) (——) (04:0,. ) (07 1-9,. )],
i=2 (p;-ps_q) 0 ] 11 2i7\%1i-1"%24-1

'One particularly interesting problem where one may wish to apply the
above inference procedures is that of statistica]Ty testing Atkinson's [2]
distributional ranking criterion involving Lorenz curves. Specifically, one
may wish to use the criterion of nonintersecting Lorenz curves to define a
ranking or comparison of inequality between two distributions (as opposed to

defining a ranking of distributions per se), as applied, for example, in

Beach et.al. [6]. To test empirically the hypothesis of one Lorenz éurve

1ying.statisti¢a11y significantly inside another, one may start from a

situation of one estimated Lorenz curve ®] indeed lying uniformly above

~

another_cb2 (i.e.: @11 > 521 for all i = 1, ..., K), and then usé statistic-

¢y to test HO: @1 = @2 against the one-sided alternative H1: @1 > @2.
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ii) Confidence Band for Lorenz Curves

§

Along with the hypothesis tests so far described, it-would be
desirable from a graphical point of view to supplement an illustrated
Lorenz curve with some kind of confidence band about it over its full
length. One could then immediately see graphically how accurately the
illustrated Lorenz curve has been estimated, and particularly over some

regions more tightly than others.

Perhaps an initial approach to this problem might simply be to
construct a band of, say, two standard errors of gi on both sides of the
estimated Lorenz curve ordinates. While such a band may have some des-
criptive interest in illustrating the relative widths of individual ordinate
confidence intervals, it is not a very useful analytical device because it
treats individual ordinate estimates as separate and unrelated. What is
wanted instead is a joint confidence band or set of simultaneous confidence
intervals that incorporate the market interdependence of the individual
ordinate estimates for Lorenz curves. As is well known in the statistica]
literature this is the classical problem of determining a set of simultan-
eous confidence intervals or multiple comparisons for a given joint level
of confidence, and there is no unique way of handling the problem. Perhaps
the best khown approach is Scheffé's [29, pp. 68-70] projection method.

If d, = Vf*g—}s the square root of the 100 (1-0)% critical va]ue‘oh a

chi- square distribution w1th K degrees of freedom then the probab1]1ty

is at least 100(1-a)% that the K intervals - d, //v +d, /f—_-
joint]y contain the K popu]ation ordinates ®1, 05 wees ®K. Consequently,

an approximate set of simultaneous confidence intervals is provided by a
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band of du standard errors in width on both sides of the estimated Lorenz
curve ordinates. In the case of decile ordinates (K=9) with a‘= .05, the
corresponding value of da 1sfda = /15.919 = 4.11. This c@mpares with the
two-standard-errors rule that corresponds to treating the ordinates as

separate and unrelated.

Alternative approachés to the simultaneous confidence interval
problem ére also available [30, pp. 126-132]. Bonferroni t-intervals, for.

o/ 2K

example, are based on the critical value of tU for da from'the t-

distribution with v degrees of freedom. Asymptotica]]y, one may simply

use zOL/’2K from the standard norma]-distribution.for large micro data samples.
In the above case where o = .05.and K = 9, the Bonferronfvcritica] value is
da = 2.78 which is substantially smaller than that obtained from the Scheffé

procedure, and consequént]y in this case to be preferred.

VI. Illustrative Empirical Results

Several of the tests of Section V are now illustrated with two
sources of micro data, one for the United States from Danziger'and Taussig

[9],]3 and one for Canada from Beach et al, [6].

Table 1 provides the background data on decile income 1e9els, decile
shares, and Lorenz curve ordinates for Unijted States census unit househo]ds

(reporting positive income) from the CPS for the two years 1967 and 1976.

13. " The author would 1ike to thank Prof. She1doﬁ Danziger for
providing the data in Table 1.
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These estimates are based on very large data sets (N, = 48,191 for 1967

1

.and N2 = 58,063), and appear roughly similar except for the inflation of
income values over:the period; as a result, the sample mean increased

from $7692 in 1967 to $14,087 in 1976.

Table II provides (asymptotic) standard errors on the decile
income shares as computed by (3.9) (given in percents) for the two years,

) A

-y

and also z-statistics on the difference of individual shares, w]i i
Judging the shares separately, one can see the differences are individually
significantly different from zero in the first, third, fourth, fifth, and
eighth decile shares on conventional significance levels. Note also. how

the standard errors are consistently slightly smaller for 1976 because of the

larger sample size.

Table III provides more summary test statistics for differences in
overall inequality between the two years. A joint test of the difference
between the two Lorenz curves is computed from (5.11) to be C4 = 54.46 which
is seen to be highly significant at any conventional levels of significance.
The Gini coefficient standard errors are also computed (based on deciles)
and yield test statistics for significant difference from zero (1.e.; absolute
equality) of 163. and 183, for 1967 and 1976 respectively. However, the
difference between the two Ginis has a z-ratio of only -2.091 which 1ies
between a 95% and 99% confidence-level cut-off on the normal table with é
two-tailed test. Thus it is quite clear that a test on Gini coefficients is
not at all equivalent to a test on significant differences in the overall
Lorenz curve. In the first place, one is a single test, whi]e'the other a

joint test. Secondly, one has an assumed aggregation structure and implicit
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TABLE I

Decile Incomes, Share;, and Lorenz Curves: 1967, 1976

1) United States CPS Housého]ds,.1967 |

. Decile (10pi) Decile Level (gp ) Decile Share (100¢1) Lorenz C. Ord. (10051)
: ' i

—

1 $1,441 1.00% ©1.00%
2 2,700 2.66 | 3.66
3. 4,056 : 4.38 8.04
4 5,457 6.24 - 14.28
5 6,750 7.95 22.23
6 8,000 9.59 ~31.82
7 © 9,504 C11.34 43.16
8 11,390 ; 13.55 56.71
9 14,500 16.57 73.28
10 o 26.72 | 100.00

6, = .3992 7, = $7,692 . N, = 48,191

2) United States CPS Households, 1976

Decile (10pi) Decile Level (gp ) Decile Share (100&1) Lorenz C. Ord. (1005i)
i

1 $2,935 1.16% | 1.16%
2 4,875 2.73 3.89
3 7,000 4.18 8.07
4 9,285 5.78 | 13.85
5 11,870 7.50 21.35
6 14,580 9.36 | 30.71
7 17,540 11.37 " 42.08
8 21,350 14.10 ' 56.18
9 27,450 17.01 73.19
10 . 126.80 100.0
G, = .4061 ¥, = $14,087 , N, = 58,063

Source: See footnote 13, and Danziger and Taussig [9].
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TABLE II
Decile Shares and Standard Errors: United States 1967 and 1976

Decile 1967 1976 z dif.

1 1.00% 1.16% _4.40*
(0.026) (0.026)
2 2.66 2.73 -1.04
(0.051) (0.045)
3 4.38 4.18 2.06%
(0.074) (0.036)
4 6.24 5.78 3.66%
(0.096) (0.081)
5 7.95 7.50 2.93%
(0.116) (0.101)
6 9.59 9.36 1.27
(0.134) (0.121)
7 11.34 11.37 -0.14
(0.156) (0.143)
8 13.55 14.10 -2.20%
(0.182) (0.168)
9 16.57 17.01 -1.49
(0.215) (0.202)
10 26.72 26.80 -0.23
(0.258) (0.243)

*denotes significantly different from zero on the basis of a
two-tailed test of a standard normal variate with o = .05.

Source: Based on data in Table I.
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TABLE TI]

Summary_Test Statistics: United States 1967 and 1976

1967 1976
Gini Coefficient: | .3992 L4061
‘ 4(.00245)z=]62.9 (.00222)z=182.9
Lorenz Curve Difference: c4 = 54.46 > Xg = 23.59 at a = .005
Gini Coef. Difference: d ='G67 - G76 = -.0069
S.E.(d) = ,00330
zd = -2.091

[z(a=.05) = 1.960, z(a=.01) = 2.326].

Source: Based on.data in Table I,



S

social we]fdre function built into it while the other does not. In the
case of two intersecting Lorenz curves, for example, the corresponding
Gini coefficients can be the same while the Lorenz curves are quite differ-
ent. In general, the Lorenz curve joint test is to be preferred to that aon

the Gini coefficient as a less restrictive test.

It can also be seen that with such large sample sizes, even rather
similar looking distributions can be quite sharply distinguished as to their
relative strugcture of inequality. At the same time, the size of "sampling
error" jis on the low side relative to "interpolation error" as found, for
example, by Gastwirth [16], who computed interpolation error bounds on the
Gini coefficients for the 1967 CPS data with 10 income groups. The width
of the interval between upper and lower interpolation bounds for three
differenf interpolation procedures was calculated as .020, .019, and .009.
These may be compared to an approximate 95% confidence interval on G for

1967 of =2 standard errors or an interval width of .009.

Finally, Table IV provides Lorenz curve data on family total income
for all (census) family units in the province of Ontario, Canada, for 1973
taken from a recent empirical study by the author and others (Beach et al.
[6]) and computed based on a vigintile (K+1=20) income disaggregation and
a sample size of 7624 family units. This finer level of disaggregation shows
the Lorenz curve standard errors increasing up until the sixteenth vigintf]e
and then decreasing in size. The third column provides joint confidence
intervals for the nineteen vigintile ordinates based on "Bonferroni-z"
intervals. At a 95% level of confidence, the asymptotic Bqnferroni-z value

for d_ is 3.01 (Seber (1977), p. 131) compared to the corresponding
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TABLE IV

Lorenz Curve_Viginti1e Qrdin§t§s

"Family Total Incomé‘forJAJIVFamiiy'Uhits

"Optgyio, 1973 ﬁ.k

N = 7624.

(.00639) z = 58.5
Source: Beach et al. [6], Tables 9.1,

.4, and 9.5.

Vigintile Pt. Est. Est.3.01 S:E. S.E.
1 0.39% 10.29 - .0.49% 0.034%
2 1.23 1.03-- .1.43 0.067
3 2.37 2.05 - 2.70 ©0.108
4 3.95 3.45 - 4.45 0.166

5 5.98 5.31 - 6.65 0.223
6 8.47 ©7.61- '9.33 0.287
7 11.47 110.39.- 12.55 - 0.358
8 14.97 13.71 - 16,23 0.417
9 18.92 - 17.49 - 20.35 0.475
10 23.32 21.73 - 24.91 . 0.529
11 28.14 ' 26,42 « 29.86 0.572

12 133.38 " 31,53 - 35.23 0.614
13 39.07 ©.37.13 - 41.01 0.644
14 45.21 43.20 - 47.22 0.668
15 51.83 49,78 - 53.88 0.682
16 59.00 ~ 56.94 - 61.06. 0.684
17 66.83 64.81 - 68.85 0.670
18 75.5]1 £ 73.59 - 77.43 0.638
19(K) 85.63 83,95 - 87.3] | 0.558

¥ = $11,091 G = .374
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asymptotic Scheffé value for da which-would be da =/ X$9 = 5.49. Conse-

quently, the narrower Bonferroni intervals have been used in the table.

Finally, one may remark onh thé”substantiaiiy larger standard
error for the estimafed Gini coefficient in Table IV than in Table III
because'éf the smaller Sémp]e‘éize on which it is based. It has also been
compUted from viginti]e\vé]ues, whereas the earlier figures were based on
decile values. However,hif one recomputed the standard error in Table IV
in more aggregated fashion, one would obtain values of .006335 from decile
figures and .006160 from duintiié figures compared to .006391 from the
reported vigintile figuresf -That is, the Gini standard errors appear quite
insensitive to the level of aggregation used and differ less than 4% between

quintile and vigintile levels of disaggregation.

VII. Review and Conclusions

The general objeétive of this paper has been to extend the standard
techniques of statistical iﬁfereﬁceﬁto applied income distribution work at
a disaggregated level of‘ana]ysis.. Sections II-IV of the paper introduced
the essential background}materiai on the asymptotic distributions of income
quantiles, and then used them to derive model-free standard errors and con-
fidence intervals for income share statistics, Lorenz curve estimates, and
estimated Gini coefficients. The only additional information required to -
estimate the asymptotic:covariance matrices involved is that of a relative
mean income curve. Sections V and VI then provided several hypothesis
tests on income shares and Lorenz curves which are typically of most interest

to applied distribution analysts.
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Three general conclusions emerge from this paper. First, it clearly
follows that model-free statistical inference on Lorenz curves, income
shares, and Gini coefficients is both feasible and remarkedly simply to
carry out. Conseguently, 1tFis hoped that henceforth apb]ied distributidn
analysis will be carried on in fhe framework of standard statistical infer-
.ence. Second, when an analyst is reporting his empfrica] results in terms
of Lorenz curves, he should also report estimated relative-mean-income
ordinates so as to allow a reader to carry out inferences on the Lorenz
curve_figures. Third, statistical agencies providing published distribution
data shod]d also iﬁc]ude, along with income sharé-and histogram data, quantile
income level estimates such as decile levels which researchers can then use

for statistical inference purposes.
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| Appendix

. Lemma 2: Under the conditions of Theorem 1, if the population density has
finite mean and variance, /N(%i —A¢1) and /N(@(gp )-@i) have the same Timit-
ing distribution.

Proof: The first part of the proof is a modification of the arguments in

Gastwirth's [16] Theorem 1.

Recall, first of all, that by the Central Limit Theorem z = N* (¥ - 1)/o
“has an asymptotic standard normal distribution if the Y's are drawn (as
assumed) from a random sample. Also by Theorem 1 of the text,

g = N%(g - £
LRy :

o, (£, )/ Loy (197" e

“is asymptotically standard normal as well.

Now in order to transform a conditional mean problem into an

unconditional mean problem, introduce the random variable

1!
J

{]

TifY, <&
J D i : L
0 otherwise (A2)

where Yj denotes. the j'th observation in the random sample drawn from the
cohtinuous density f(-) with finite mean and variance. The number of obser-

vations less than gp is a binomial random variable with parémeters N and Pis

i ‘ .

and Ep. . |
= 1 =

) =1 v dRly) = py E(YIY; < g) ).

P

_ i

J

Consider then the asymptotic distribution of the conditional mean

.egtimator Y: o= (1/n5) Ly f-gp. Yj where n; = [Npi]. Let

Epi o J i




S‘i = VN Pj [YE - E(Yj|Yj < ‘Ep)]
Pj 1
. . R _ ¥ s
= YN [N ZY. <t ‘Yj T1] (A3.)
3 Pi N
Then consider the first term in (A3):
v A N ~ Y,
L Y, =310 1Y, +73 i
Y. < 1 Y H
3 __Epi N NN Js(ipi Epi)
. «N
=77 1Y, + R+ 0 (1 A4
] LYy e, R o) (A4)
where it is assumed for ﬁonvenience that € <& , and wheré R feprésents
. ‘i/\ 'i . L
the (signed) number of observations between &p and & . Since the number
i i
of observations in a small interval of length A about Ep is approximately
_ ; )
Nf(Ep )A, and since the (signed) length of the interval between Ep and Ep
i ‘ i i
is approximately
N (1-py)1* e/f(g, ) from (A1),
i
R = N[p, (1-p,)T%. (A5)
Thus, from (A4) and (A5),
s. =N =N (1. - )+ e [p.(1-p.)T% + 0.(1)
i T35 py i pr’’

where the.first term is asymptotically normal with mean zero by the Centrq]
Limit Theorem, and the second has also been shown to be asymbtotica11y normal

with mean zero in Theorem 1 of the text. Consequently, S.

j is also asymptot-

ically normal with mean zero, and pi_“ is asymptotica11y normal with mean

Y
Ep_
= 1
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pr, by the argument in Sectién II1.1, the ]imitind distribution of
a .continuous function of asymptotically normal random variables is also
asymptotically normal. In particular, éonsider the ratio Py Vg /Y both of
whose arguments have been shown to be asymptotically normal withimeans T

and u respectively. Then it follows that
y Epi T
N[pi 7 - U]

[
>
—_
1
]
o
—

is also asymptotically normal with mean zero and a constant variance for
) and /N(@(gp ) - Qi) have the same

i ~
probability 1imit of zero, so that the feasible estimator e, and the

i=1, ..., K That is, (6. - o,

~

infeasible estimator @(Ep ) are asymptotically equivalently distributed for:

;
all i =1, ..., K [27, p. 101]. \
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