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ABSTRACT

In this paper we discuss the well-known empirical regularity

commonly referred to as "clustering on the main diagonal." We

show that this phenomenon is to be associated with certain

model types, in particular, with heterogeneity formulations. In_

contrast, the reverse situation--~nderpredictionof the main

diagonal elements of a Markov model--will arise when the under

lying process is a certain common semi-Markov model. We use these

main diagonal relations as an introduction to the general topic
,-

of model discrimination.
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CLUSTERING ON THE MAIN DIAGONAL

I. INTRODUCTION

An empirical regularity in mobility matrices which has given

rise to a considerable volume of research concerns the phenomenon

of "clustering on the main diagonal. 11 The reference model in

terms of which this regularity has been identified is the discrete-

time Markov chain with stationarytransitioa probabilities. By

this model we ,\deem the fo:cmal relation between stoch~'stic rna trices

{P (D, k) }k= 1,2, . .. given by

P(O,k) = P(O,l)k, k = 1,2,3, ... (1)

A

In practice PCD,l) is usually estimated by P(O,l), a transition

matrix constructed in the usual way from obseivations on a

1 . 1. 0 1popu atlon at tlmes t = ,. PCO,k) then is the k-step transition

matrix predicted via the formulation (1) and obtained by raising

the observed matrix to the k-th power~

The imagery consistent with the Markov model is one of a

homogenous population changing system states (occupations,
.- ,

industries, income categories, etc.) in a manner such that knowledge

of an individua1 f s current state conveys complete information

about his subsequent movements. This simple formulation has

found extensive use, both as a base-line model against which to

compare more complex .formulations (Hodge 1966; McFarland 1970;

McCall, 1971; Coleman 19Q4a), and as a method of forecasting the

evolution of social processes (Rogers 1966; Tarver and Gurley 1965;
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Lieberson and Fuguitt 1967). For further details on the

mathematics of Markov chains, the reader is referred to Feller

(1968, chapter 17).

The phenomenon of clustering on the main diagonal refers to

the fact that where observations can be taken on a population

at time k, k = 2,3, ... , as well.as at times 0 and 1, the main
A

diagonal entries of the observed k-step transition matrix P(O,k)

frequently bear the following relation to th~ main diagonal

entries predicted by the Markov model:

Q
~ \ A k
P(o,k)) .. > [P(O,l) ] .. ,

11 11
i = 1,2, ... r,. (2)

where r equals the number of system states. In words, the Markov

model tends to underpredict the observed main diagonal entries~

This fact has stimulated a considerable amount of research

since Blumen, Kogan and McCarthy (1955)--hereafter referred to

as BKM--first commented upon the phenomenon of clustering. BKM,

and most subsequent authors (Goodman 1961; Mayer 1972; McFarland

1970; Bartho1emew 1967; Spilerman 1972a, 1972b; Singer and

Spilerman 1974,-i976b,1977), have interpreted the presence of

clustering as evidence for heterogeneity--the fact that the

population being observed consists of individuals who differ in

rate of movement, in proclivity to make certain tr~nsitions, or

in both ways. It has also been remarked that the phenomenon (2)

can ari5e in a homogeneous population in which the length of
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stay by an individual in a system state is not exponentially

distributed (McGinnis 1968i Ginsberg 1971; Singer and Spilerman

1976~.2 Finally, Coleman (1964b) has pointed out that clustering

can occur as a consequence of "response uncertainty;" for our

purposes, a form of measurement error.

Given the"volume of discussion about clustering on the main

diagonal and the diverse "explanations that have been invoked

to" account for it, it seems reasonable to pDse several questions

in regard to the inequality (2). In particular, we wish to

ascertain which sorts of stochastic processes can produce this

phenomenon and which sorts of processes cannot. A second question

pertains to whether the reverse of inequality (2)--overprediction

of the observed main diagonal elements by a Markov model~-can occur,

and which sorts of processes will generate that regularity. The

value in posing these questions is that they speak to the much

neglected task of model discrimination; the construction of simple

tests for choosing among competing explanations of a social

process.

The particular model types that we shall compare against simple

Markov are mixtures of Markov processes and a special parametric

family of semi-Markov processes. We restrict attention to these

processes b~cause they provide the simplest setting in

which to discuss clustering phenomena while still exhibiting

the subtle behavior of more complicated models such as those

incorporating response uncertainty (Coleman 1964b). It is
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important to emphasize that we are discussing the behavior of

models per see Hence, from an empirical point of view, our

analysis is relevant to stochastic matrices generated by a

large number of observations. Although clustering as in (2) can

occur under a Markov model just due to sampling variability, we

do not discuss this important aspect of the clustering phenomenon

in the present pa.per.

To address the question of which model types satisfy

inequality (2) and which do not, it is necessary to consider

explicit formulations of each kind of process. In the next

section we therefore present two versions of the mover-stayer
-

model, a more general formulation of population heterogeneity,

and an example of a semi-Markov process. All of these models

have appeared in the sociological literature or otherwise make

. sense for social processes. The discussions will be brief and

the reader is referred elsewhere for fine details on the

mathematics and for estimation procedures. In sections III-V

we report our main results on the phenomenon of clustering in

relation to each of-the model types. In the final pages we

provide additional comments on the topic of data collection

design as it relates to the task of model discrimination.
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II. MODEL SPECIFICATION

In this section we outline the structures of four models

which later are compared with a Markov chain in regard to the

evolution of the main diagonal elements of the transition matrix

P(O,t). The initial three models are formulations of population

heterogeneity; these are appropriate in the many sociological

contexts in which it would be simplistic to treat a population

as homogeneous with respect to the behavior under study. In

each case, the underlying model for an individual in the popula

tion is Markovian; heterogeneity is expressed in the way the

individual-level processes are aggregated. The final model

constitutes a semi-Markov process; it refers to situations in

which one believes' an assumption of exponential waiting times

(no effect of duration in current state on an individual's

departure rate) to be unrealistic. McGinnis' (1968) formulation'

of "cumu'lative inertia" is a classic instance in which the theory

involved refers to the shape of the waiting time distribution, i.e.,

to whether or not it is exponential.

Heterogeneity formulations. The heterogeneity models we

consider fuay all be represented by the following generic formalism.

Denote by PA(O,t) the transition matrix for an individual with

expected rate of movement equal to A. (For each individual

PA(O,t) is assumed to evolve according to a first-order Markov'

chain with stationary transition probabilities.) The'observed

population-level process may then be written as
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(3)

where d~(A) is a distribution function which describes the

proportion of type-l individuals in the populatib~~n~~he

integral sign indica'tes that we sum the PA(0, t) arrays, each

weighted by the proportion of type-A individuals in the popula

tion, over all person-types A s A. Different formulations of

population heterogeneity then amount to different specifications

of d~(A).

It should be noted that the heterogeneity models we consider

all involve mixtures of Markov processes in which mixing is on

the rate o~ movement parameter A. This amounts to specif~ing

that all individuals in the population ~avethe same proclivities

of transferring to the various destination states when they move

(we denote this common propensity by the transition matrix M),

and that population heterogeneity can be expre~sed entirely in

terms of individual differences in the expected rate of movement.

While restrictive, this formulation is still sufficiently general

to per~it the observations we wish to make about model discrimin

ation and the-phenomenon of clustering. There is also precedent

for this formulation in that it underlies BKM's mover-stayer

model as well as Spilerman's (1972a) extension of the mover-stayer

model.

A second restriction, implicit in (3), on the diversity of

- population heterogeneity is the requirement that the rate of

movement parameter, A, be the same for an iridividual in all
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system states. This specification was not made by BKM in

their initial presentation of the mover-stayer model, though

they did propose it to make the mathematics of more complex

heterogeneity models tractable (BKM 1956, pp. 138-46) ; further,

Spi1erman's extension (1972 a ) does utilize this simplification.

For ease in comparing the three heterogeneity formulations which

we outline, th~ common generic structure (3).is retained throughout.

A. Blumen, .Kogan and McCarthy's (1956) mover-stayer model.

This simple formulation of heterogeneity consists of a discrete-

time process in which it is assumed that the population is

built up from two types of persons--stayers, who never leave

their origin states, and movers, who evolve in accordanc~ with

a first-order Markov chain with stationary transition probabilities.

Despite its simplicity--perhaps, because of this--the mover-stayer

model has been used widely to accommodate heterogeneity: in

studies of industry change (BKM 1956) and income ~vo1ution (McCall

1971), to cite but two examples.

Formally, let ~ = the sampling interval of the process

(3 months in BKM's study). The mover-stayer model then is defined

for the discrete time sequence T = {t : t = k6, k = 0, 1, 2, ... }.

Let A = {~l = 0, ~2 = l} ="{stayer, move~} and introduce the

mixing distribution



dl1 (>.) =

8

.s if A = Al

l-s if A ,;, >'2

o otherwise

_~ •• 4_-:'_. ------------

where s is a scalar, 0 < s < 1. Finally, define a k-step tran:

sition matrix for each subpopulation according to

. P
A

(O,kLl) r or I
k

I (Stayers) (4a)= ..PAl (O,Ll) = =
1

PA (O,kLl) = [PAZ (O'Al1f
def Mk (Movers) . (4b)

. 2

.With this specification we obtain for the population-level process

P (0, kLl)
11

k= sl + (l-s)M , k = 1, 2, . . . , . (5)

which is the familiar mover-stayer model subject to the additional

requirement that a common fraction of stayers, s, is present· irt

all origin states.

B. A continuous-time version of the mover-staye~ model. As

a second specification of heterogeneity, we consider a continuous-

time version of BKM's model. This formHlation will be useful in

highlighting some implications of continuous-time versus

discrete-time processes in modeling social phenomena ...Moreover,

as we have argued elsewhere .(Singer and Spilerman 1976W, for

processes which evolve continuously in time, a model having this same

characte~ has advantages with respect to identification of the
.<\~.

,
/
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.Structure of the evolutionary process. Indeed, for the

subject BKM studied--industrial mobility--we suggest that it

would have been advantageous for them to employ a continuous-

time formulation.

The continuous-time analog of the mixture (5) can be

specified by defining T = {non-negative real numbers}, with A

and p exactly as before. Then stayers sti11-evo1veaccording

to the identity ~~trix

= eOt(M-I) = IP
A

(O,t)
1

while movers evolve according to the continuous-time Markov

process,3

(6a)

In equation (6b) the rate of mov~ment paramet~r A
2

has the

interpretation, 1/A 2 = expected waiting time between transitions;

and M is a stochastic matrix which specifies movement procl~vities

PA (O,t)
2

A2t (M- 1)
= e (6b)

,

I,
i

when a transition occurs.

If observations on a continuous-time mover-stayer mixture

are taken at times t k = k~, k = 0,' 1, 2, ... and if you identify ~

with l/A (as BKM did 'implicitly), then the observed transition

\

I
\ 1

I,

II
:·1

II
j,
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matrices ca~ be represented by th~ recipe,

(7)

which is the continuous-time analog to (5).

C. A continuous distribution of types of individuals. We now

specialize equation (3) to mixtures of a continuous type,

00

P (O,t)
l.l

= f
°

PI.. (0, t) dl.l (A) (8)

As in the preceding model, each individual in the population is

assumed to evolve according to a continous-time Markov process

AtCM-I)
= e t ;;:: 0, (9)

where M is a stochastic matrix which describes ~ovement probabilities

when a transition occurs.

In contrast with the earlier models we assume now that

instead of two types of persons, or n types, there isa continuous

distribution of individuals identified by their expected rate of

movement. In particular, we specify heterogeneity according to

This function is a very general one and is able to accommodate

(10)S, A > 0.
= SC't AC't-l e -!3A dA

rCa)

the two par~meter family of gamma distributions
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a variety of unimodal shapes.

If observations on this continuous-time process are taken

at the instants t k = k~, k =' 0, 1, 2, ..., ;md if ~ is identified

with 11A for ease of comparison with the preceding models,
- -

the present heterogeneity formulation may be written as

(Spi1erman 1972a),

(11)

Semi-Markov processes. In the preceding models, eac~

individual-level process was. first-order Markov. This specifies,

first of all, that an individual's past locations are immaterial

to understanding his future moves; only current state is pertinent.

It is this feature of Markov chains which is usually articulated

when the assumptions underlying the process are explained (e.g.,

Tarver and Gurley 1965; Hodge 1966; Lieberson and Fuguitt 1967).

Yet, there is a further strong i2,ssumption in the Markov model,

namely that duration time T in state i follows an exponential

distribution (and is independent of duration times in prior

states):

Use of ,the exponential distribution4 amounts to stating that the

probability of d~parting from state i during,the infinitesimal

interval t + dt,_conditional on being in state i at time t, equals

Probi(T < t) = F. (t) = 1
1

-Ate 1 = 1, 2, ... ,r. (12)
i
I,I
:1
~ I



ri(t)dt =fi(t)dt
l-FiCt)

12

-At
= !I.e dt

i-(l-e- At )
= Adt, i = 1, 2, ••• , r (13)

where f.(t) is the density function corresponding to F. (t). Substan-
l l

tively, this result says that there is no impact of duration in a

system state on the probability of leaving. Individuals neither

settle down (in an occupation, residence location) nor grow weary of

the setting.

, It has been pointed out (Morrison 1967; McGinnis 1968; Land

1969) that this assumption of a constant departure rate is untenable

for many social processes. Indeed, McGinnis' (1968) "axiom of

cumulative inertial! speaks directly to this point; he contends that

individuals are more likely to remain at a residence locati6n, or in

a job, the longer they have been there. To model such a process, we

would need to have r.(t) in equation (13) appearing as a decreasing
l

function of time, rather than as a constant.

Semi-Markov models constitute a class of stochastic processes

which maintain the assumption that past locations are immaterial to

future states given current location, while permitting the duration-

time distribution to be more general than exponential. We require

the following terminology for this model class. Let M be a stochastic

matrix of transition probabilities which describe the propensity to

move to particular states when a tr~nsition occurs. Let P(D,t) be

the, transi tion matrix construe ted from observations on a population

ar times 0 and t. Finally, let FiCt),. i = 1, 2, ... ,r, be a distribu

t ion function which has the interpretat ion, "proba.bil i ty that a move

has occurred by time t;" w.e assume~ it has a density function f. Ct).
l

I
I

I
'I~,[
~"

l
1"
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The mathematical formalism of semi-Markov processes that

we use in the final two models derives from the system of integral

equations

p .. (O,t) =
1J

r t
8 .. [1 - F.(t)] + L f f i (s)m

1
.
k
PkJ·(0,t-s)ds,

1J 1 k=l ° (14 )

where 0.. = 1 if i = j, ° if i f j; and 1 S i, j S T. These expressions,
1J

known as the backwarrl equations for a coritinuous~time semi-Markov

process (Feller 1971, pp. 483-497), are amenable to the following

interpretation: (1) When i f j, p .. (0, t) consists of the sum of
1J .

products of three factors: the probability of a first departure from

state i at time s, the probability of a state i to state k transition

at that instant, and the probability of transferring to stage j by

some combination of moves in the interval t-s. The stimmation is

over all intermediate states k and over all time divisionss in the

interval (O,t). (2) When i = j, in addition to the above term, there

~is the possibility of not transferring out of state i during (O,t).

This probability is given by the first term.

Although this is not the most general formulation of semi

}furkov processes (see Pyke 1961a, 1961b; Ginsberg 1971; Singer and

Spilerman 1974 for more detailed statements), it is a convenient

starting point for our purposes. If we make the further assumption

that Fi(t) = F(t), i = 1, 2, ... , r--in keeping with our earlier

discussion concerning state independence of the waiting-time

distribution--then the semi-Markov model has a simple representation

i
!

i
I
f

j

f

". I
;·1

I
#.
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in matrix form,

P(O,t) = L
n=O

[F (t)
n

n
F l(t)]M
n+

(15)

5
where F (t) denotes the n-fold convolution of F(t) with itself.

n

This formulation often permi ts tractable representations to be

constructed once Fet) is specified. Note, incidentally, that

if ~(t) is specified by equation (12), the semi-Markov model

(IS) reduces to the familiar continuous-time Markov chain

P (0 , t) = eAt (M - I) [ see not e 3].

D. A semi-Markov model with increasing departure rate. This

formulation would pertain to processes in which the probability

of a move increases with duration in the state. Substantive contexts

in which this specification makes sense are the stage models of

developmental psychologists (e.g., Kohlberg 1973; Piaget 1954;

Loevinger 1966). The basic notion here is that an individual

passes through a more or less ordered sequence of states (develop-

mental stages), whose onsets are age dependent. For some behaviors

o! abilities (e.g., psychosexual stages), duration at a particular

developmenta+ level may be programmed genetically into the organism.,

For other phenomena (e.g., cognitive stages) experience through

interaction with the environment plays a more central role in pre-

paring an individual for entering the next developmental level.

In stage theories, then, there is a basic notion that the

probability of departure increases with duration in a state. We can

formalize this assumption by specifying Fet) to be a gamma distribu-

tion (equation 10), with a = 2 and S = A > 0 arbitrary:

Prob (1' < t) = F(t) = t 2 -AU
fA ue du =
o

-A t
1 - (1+ At) e
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Here, the rate of movement ·out of state i, i = 1, 2, .•. ,r, is

given by ret) = A2t/[1 + At], which increases monotonically to an

asymptote r(oo) = A (Figure 1). Specific theories as to stage

sequences could be built directly into the M matrix of equation (IS);

see Singer and Spilerman (1978) for details.

With the specification of F(t) in (16), the difference between

the n-fold and (n+l)-fold convolution is

= -Bt [CSt)zn + (St)21l+1]
Fn (t) - Fn+1 (t) e (2n)! (Zn+l)!' (17)

Substituting (17) into (IS) and evaluating the resulting power series

yields 6

in which cosh and sinh are hyperbolic functions of matrix argument.

Equation (18) is the transition matrix for a semi-Markov process

in which the probability of a ~tate change increases with duration _

in the state.

III. MOVER-STAYER MODELS AND CLUSTERING

Eigenvalue conditions. We will have at our disposal some

powerful mathematical machinery if we alter the definition of

Clustering very slightly. In particular, the specification



o

ret)

r-------~_==============~

o~~--------.....,.-~-------~---......-..---
-tiw,e

ar(t) = A for exponentially.distrlbuted waiting times.
for gamma distributed, waiting times.

Figure 1. Rate of MOvement Function ret) for Different Waiting-Time Distributions.
2

ret) = A t/[l + At]
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introduced by BKM (1956, pp. 79-95) and used by subsequent researchers

. 7
1S

k
(P (0,6)) .. < (P(0,k6)) .. ,

___. 1.1 11
i = 1, 2, ... ,r. (19)

In words, it is required that each diagonal element of the Markov

model underpredict the corresponding entry of the observed process.

The formulation of clustering we propose instead is

r
l:

i=l

equivalently,

k(P (0,6)) .. <
11

r
r (P(0,k6))ii

i=l
. (20)

k
trace P (0,6) - trace P (0,k6) < 0.

~ ~

Thus the inequality is assumed to' hold between the sums of main

(21)

diagonal elements, though not necessarily for each pair individually.

We will indicate momentarily the mathematical advantage of this

specification. First, we show that it is a reasonable definition

of clustering.

If equation (19) is satisfied for a mobility process, then

(21) will also hold. Thus, in this most common situation, the two
"

formulations will yield identical results. Similarly, if the reverse

of inequality (19) is satisfied (overprediction by the Markov model),

then the reverse'o~ (21) will hold. Only in instances where some

main diagonal elements satisfy (19), while others do not, are the two
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formulations in potential disagreement. Yet, in this case, under

(19) there is no explicit criterion as to when an inference of

clustering can be made; for example, do one or two reversals among

main diagonal entries in a large ~atrix invalidate such a conclusion?

BKM (1956, pp. 60-64) ,incidentally exhibited as evidence of

clustering matrices in which one reversal often was present. In

summary, ineq~ality (21) does not alter the character of the traditional

formulation and has the 'advantage of providing explicit criteria

under which clustering can be asserted when (19) is an excessiye1y

stringent requirement.

For mathematical purposes the attractiveness of inequality

(21) is that' it enables a relation between clustering and the

eigenvalue properties of matrices to be established. In particul~r,

let

o

D =

o

(22)

be the array of eigenvalues corresponding to some matrix P. It is

well known (e.g., Bellman, 1970, p. 96) that

def
trace P --

r
L

i=l
(P) " ::

11

r
L· O.

i=l 1

that is, the sum of the main diagonal elements of a matrix is equal
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to the sum of its eigenvalues. Thus if 0i is an eigenvalue of
k

P~(O,k~), and 0i an eigenvalue of p~ (O,~), an equivalent expression

to (21) is

r
l:

i=l
o~ 

i

r
l:

i=l
o. < o.

1
(23)

Mover-stayer mixtures. Now consider a transition matrix

P (O,k~), constructed from observations at t = 0 and t = k6. on
~

BKM's mover-stayer model (5),

k= sl + (l-s)M . (24)

If the eigenvalues of P~(O,k~) are represented by matrix D In (22)

and the eigenvalues of M by an analogous diagonal matrix V = {vi}' then

each eigenvalue o. may be expressed as
1

o. = s +
1

k
(l-s)v.

1
i = 1, 2, ... ,r. (25)

To see this assume that H is a matrix whose columns are eigenvectors

of P (O,k~) in (24). Then,
~ -

-1
D = H P~(O,k~)H

= H-1[sI + (l-S)Mk]H

-1 k= s I + ( 1 - s) [H MH]

-1 k .
= sI + (l-s)H M H

(26)

-1
Since D is a diagonal matrix,- H HH must also be a diagonal matrix--
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call it V--and its entries are the eigenvalues of M. Equation (25)

follows from this argument.

By similar reasoning ·i t can be shown that each eigenvalue

o~ of P k(O,~) has the form
i 1.l - --.-

k0: = [s + (l-s)v.]
1 1

(27)

With the above mathematical equipment at hand, the clustering criterion

(20) may be written as (using [23], [25] and [27]),

(28)

1~e have therefore transformed an inequality between main diagonal

elements of mover-stayer and Markov matrices into an inequality

between their eigenvalues. Further, the eigenvalues vi in (28)

pertain to the matrix of structural parameters' M, which is

constant over time even though P (O,t) is not.
1.l

To ascertain the conditions under which the inequality (28)

,will be satisfied, we first determine whether or not all terms

in the sum

(29)

i

-I
I
~

"r
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necessarily have the same sign. If v. is a positive real eigenvalue
1

other than vi = 1, then bi Jensen's inequality (Feller 1971, pp. 153-4),

k k
[s + (l-s)vi ] - [s + (l-s)vi J < 0 (30)

for k = 2, ~, 4, ... and all S E (0,1). Our first conclusion, therefore

is that in a comparison between BKM's mover-stayer mo~el· and a Markov

chain, if all eigenvalues of p~(a,~) are distinct, positive, and

real, the inequality (21) will hold and clustering on the main

diagonal will be observed.

We further see that if the difference (29) is ever to be

positive and a reversal of (28)--equivalently (21)--observed, it

must occur for matrices having complex conjugate or negative real

;1

.1
I

\1

\

I:
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eigenvalues for which Jensen's inequality is reversed. We therefore'

ask whether there are regions inside the unit disk in the

complex plane for which

k
Re [s + ( 1 - s) v]

k
- Re [s + ( 1 - s ) v ] > 0 (31)

where Re(.) denotes the real part of the eigenvalue. ,The unit disk

is the' relevant region to examine because all eigenvalues of stochastic

matrices are restricted to this region. Further, it is sufficient

to examine the real parts of the eigenvalues because complex eigen-

values of matrices with real entries come in conjugate pairs

(e.g., x + iy and x ~ iy), so that for matrix P with'eigenv~lues

0i' i = 1, 2, ... ,r,

trace P =
r
L:

i=l
o.

1

r
L: Re 0,.

i=l 1

Case k = 2 in equation 31. Writing v in th-e form v .... x + iy,

we obtain

2 2' 2 2
Re [s + (1 - s) v J - Re [s + (1- s) v ] = s (s -1) [ (1-x) - y ] > 0

-
which is satisfied by eigenvalues v with components such that

'I
(1 - x - y) (1 - x + y) < O. (32)
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An important consequence of (32) is that

2 2
Re[s + (l-s)v) ~ Re[s + (l-s)v ) < 0

for any eigenvalue v of a stochastic matrix M of order r ~ 4 and -for

every SE (0,1). This is a consequence of the iI'equalities of

Karpelewitsch (1951) [also see Singeran~ Spilerman (1976), pp. 10-13 ]

which restrict the eigenvalues of general r x r stocha~tic matrices

according to

(i + ~)rr ~ arg(v-l) ~ [~ - }]rr . (33)

These inequalities define the cone-shaped regions K and K drawn
3. 4

in dashed lines in Figure 2. We observe that when r ~ 4 all eigen-

values of a stochastic matrix mU$t lie in the complement of the shaded

region in Figure 2 and reversal of (21) cannot occur.
.

Case k = 3 in equation (31). The region for which the inequality

holds. is now more complicated geometric~lly than the shaded region

of Figure 2. Furthermore, the sign of the difference

3 3
Re[s + (l-s)v] - Re[s + (l-s)v ]
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Figure 2. Eigenvalue Region for a Reversal of" Equation 28 with k = ~

(Shaded area), Together with Cone-shaped Restrictions on
Eigenvalue Locations of 3 x 3, 4 x 4, and 6 x 6 Matrices

a
.

"a- Each cone-shaped region (dashed lines) is sylmnetric with respect to the
x-axis.
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depends on s, unlike in the situation for k = 2. By a calculation

similar to that in the previous case we obtain the shaded regions

in Figure 3 as the location of eigenvalues of matrices M for which

a reversal of (21) may occur. 9

The above restrictions have rather far-reaching implications

as will now be explained. To see this consider the "more refined

restrictions on eigenvalues of stochastic matrices of orders 3, 4,

and 6 due to Karpelewitsch (1951). In particular, the shaded areas

in Figures 4, S, and 6 display the regions within the unit circle"

of the complex plane in which all eigenvalues of matrices of orders 3,4,

and 6, respectively, must lie. These areas should be considered in con-

junction with the shaded region in Figure 3, which reports eigenvalue

conditions JleCessary for a reversal of (2l)--equivalently (28). It "is

evident that there is an overlap between the regions, even for

stochastic matrices of order 3 .. Further, the area of overlap widens

as the matrix order is increased.
For 3 x 3 stochastic matrices the region of overlap (Figures 3"

and 4) is restricted to negative real values~of v, in particular to

the region v £ [-1 - (l+sjJ. Note, incidentally, that this constrains, (2-s

s to the interval CO,}]. By a judiciouy choice of ~! and s we can

therefore illustrate mover-stayer mixtures in which this hetero-

geneity formulation underpredicts the diagonal elements of the

corresponding Markov process.
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Figure 3. Eigenvalue Regions fer a Reversal of Equation (28) with k = 3
(Shaded area)a.,

aValue of s in this graph = 0.18.



.I

..-
,/' /'

/ /'

'j

I ,../
I

-1 = e'lTi.:....·t=~===~t:;_~I~. ~/_---;-~,. ~,_i~O+-----__--::L~~l KE (V)

'}... ///
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8All eigenvalues of a 3 x 3 stochastic matrix must lie in the triangle
or .on the negative real axis.
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Figure 5. Restrictions on Eigenvalues of 4 x 4 Stochastic Matricesa •

aAll Eigenvalues of a 4 x 4 stochastic matrix must lie within Robin's
cape or on its boundary.
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Example 1. Suppose an empirical process evolves according

to the mover-stayer formulation,

Comparing the mixture model P~CO,k~)--i.e., the observed process-

with the Markov model pkCO~6) which uses P (0,6) as a. one-step
~ ~

transition matrix, we find

but

Continuing these calculations,

trace p~4CO,6) = 1. 248 < trace P~ CO ,_46) = 1.548

trace P 5 CO ,6) = .8248 > trace P (0,46) = .7784II
~

3t r ace p~ (0, 6) .6486 > trace P~(O,36) = .6089
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and so forth.

Example 2. As part of a study of interpersonal relationships

among American high school youth in the 1950's, J. Coleman (1961)

asked students in Northern Illinois high schools in October, 1957

and again in May, 1958 whether or not:

1) they perceived ,themselves to be members of the leading

crowd in their school;

2) they can maintain their principles and be a'member of the

Affirmative answers to each question were scored + and negative

answers were scored - Thus, an individual can respond to the above

questions in one of four possible ways at each observation time:

(response to (1), response to (2)) = (+,+), or (+,-), or (-,+),

or (-,-). We then identify these responses as possible states

of a stochastic process. In connection with this survey, Coleman

proposed a theory about attitude changes in an adolescent

population in which individuals could alter their views on

either issue (1) or (2) at anyone time but could not change

their attitude on both issues simultaneously. This theoretical

proposal implies that transition matrices M describing attitude

changes when they occur should be of the special form

M =

o

S

y

o

a.

o

o

o

I-a. 0

o l-S

o l-y

1-0 {)
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where 0 < a,l3,y,o < 1.

These matrices have eigenvalues vI = 1, v2 = -1,

liz 1/2
v3 = {~[A - (A Z - 4B)1/ Z]} and v

4
= -{irA _(Az - 4B)1/ Z]}

where

A = 0(1-13) + (l-y) (1-0) + as + y(l-a)

B = as(l-o) (l-y) - 130(1-0.) (l-y)

+ yo(l-a) (1-13) - ay(l-o) (1-13)

A somewhat tedious calculation verifies that if any M, as

defined above, is incorporated in a discrete-time mover-stayer

mixture, then there is an interval of stayer fractions (O,s*) such

that

3 3
t r ace (s I + (1 - s Hil) > t r ace (s I. + ( 1 - s ) M .) .

for every s E (O,s*), if an~_only if

4 Z 4 3
-2 + 3 E v. - 2 L v. =

i=2 1 i=2 1

Furthermore, for such ~I, s* lS given by the formula

4 2 4 3
2 - 3 L: v· + 2 L: v.

. ? 1 i=2 1- 1=~

s* = 4 3
L: (v. -1)

i=Z 1
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1To illustrate the calculations, suppose that a = B = 4

1 1 1
and y = 0 = 2' Then vI = 1, v

2
= -1, v

3
= 4' v

4
= -4 and

5* = 0.342. This means that for any value of ss(0,.342), a

mover-stayer mixture having the above M-matrix will show under

predictio~ of the main diagonal entries of the corresponding .

Markov process.

Despite the fact that reversals can take place for discrete-

time mover-stayer matrices of order 3 and 4, the anaJlogous ~~equalit~

cannot occur for any 3 x 3 o~ 4 x 4 continuous - time mover-stayer
(M - 1) .

mixture. This arises because every eigenvalue v of e , where

~l.is a stochastic matrix, must lie inside or on the boundary of

the heart-shaped region H in the complex plane (Figure 7)~ [See
r

Singer and Spilerman (1976, pp. 10-13) for details; see Runnenberg

(1962) for a proof.]

in Hr , all s s (0,1).

properly tontained in

Further, if v s'H , then s + (l-s)v is alsor .

Since for r ~ 4 the hearts H
3

and H
4

are

the complement of the shaded region in

Figure 2, reversals of (21) cannot occur for continuous-time models

of these orders.
With respect to mover-stayer mixtures we therefore conclude:

_(i) A reversal of (2l)--equivalently (28)--cannot occur when

all eigenvalues of P (0,6) are distinct, real, and positive. This
~

statement holds irrespective of whether the model is a discrete

or a continuous-time formulation; for all integer values of rand k,

and'for all spacings 6 > O.
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Figure 7. Restrictions on Eigenvalues of 3 x 3, 4 x 4, and 6 x €I
Continuous-Time Mover--Stayer Mixturesa..

aEach heart-shaped region includes the ones of smaller size. Thus, the
eigenvalues of a 3 x 3 continuous-time mover-stayer mixture must lie within
the inner-most region (H3), the eigenvalues of a 4 x 4 continuous-time mover
stayer mixture must lie within the intermediate region (H4) , etc.
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(ii) For k = 2 in (21) we have the further restriction that

a r~versal cannot occur for negative real eigenvalues (see Figure

2); complex eigenvalues are necessary.

(iii) As the order of matrix P is increased the eigenvalue

region in which reversals can occur becomes more extensive. It

is possible, however, to ex~ibit reversals for k = 3 in a discrete

time mover-stayer model even for matrices as small as 3 x 3 and

4 x 4.

(iv) Finally, a general sufficient condition for a reversal

of (21) is that all eigenvalues lie in the shaded region. In

large-order matrices a not uncommon situation would be for some to

fall in this region while others lie outside it. In this circumstance

the eigenvalue conditions constitute only necessary criteria and

a direct calculation of equation (~9) is necessary.

What has been demonstrated of importance in this section is that

mover-stayer mixtures do not necessarily imply clustering on the

main diagonal; in fact, under~prediction of the corresponding elements

in a Markov chain can occur. Thus, a failure to observe clustering

in an empirical process does not rule out the possibility that the

process was gen~rated by a mover-stayer mixture, as long as some
"-

eigenvalue of P(O,6) lies in the region of reversal (Figures 2,3).

However, a failure to observe clustering when no eigenvalue lies in

this region would rule out the possibility that the underlying model

is mover-stayer. In particular, when all eigenvalues are distinct,

real, and positive, clustering must occur when the empirical process

is mover-stayer.
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IV. A CONTINUOUS MASS DISTRIBUTION AND CLUSTERING

Consider the class of mixtures of continuous-time Markov

chains having transition probabilities given by (8) and (9),

i. e., by

.:

P (O,t)jl (34)

where the rate parameter A is distributed in the population according

to the probability measure jl(A) via the relation,

c
Pr 0 b (A < c) = f d jl (A) •

o
(35)

Even without specifying jl(A) further we can make a rather general

statement about clustering for this mixture process. In particular,

. if Pjl(O,t) has distinct, real, positive. eigenvalueslO , then for any

k and any spacing interval 6 we have

trace Pjlk(O,6) - trace Pjl(O,k6) < 0 (36)

Thus, inequality (21) holds and clustering must occur (see Appendix

1). A particularly important consequence of this result i~ that
"-

if an observed matrix P(O,6) satisfies the noted eigenvalue condition

but inequality (36) is reversed; no model of the form (34) could

have generated the matrix.

For arrays P (0,6) with complex eigenvalues, a reversal of (36)
1.1

can occur but the conditions for this are complicated and vary with

the parametric specification of d1.l(A), the order of the matrix, and

the eigenvalues themselves. To illustrate a reversal and report

some conditions which make it possible, we consider the particular
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case of order r 5 4 and gamma distributed mixtures, i.e., d~(A)

defined by (10).

To clarify what is at issue in producing a reversal it is

convenient to express the left-hand side of (36) in terms of the

eigenvalues of M-I and the mixing measure d~(A). To this end

let {c. (t)}, 1 ~ i 5 r be the eigenvalue of P (O,t). We then have
1 ~ .

4 k
== 2: C. (6)

. 1 11==

4
2: c. (k6)

i=l 1
(37)

Since P~(O,t) is defined by (34), its eigenvalues are mixtures of
Atz i At(M-I)

the eigenvalues e of e In particular

00 AtZ.
== f e . 1 d~ (A)

a
i == 1, ... ,r (~8)

where {z.}, 1~i5r, are the eigenvalues of M-I. With d~(A) specified
1

by (10) we obtain for (38)

l~i~r·

Thus equation (37) reduces to

a > 0 s > 0

(39)

( 40)
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Now, a matrix of order r = 4 can have only a single pair of

complex conjugate eigenvalues; thus, necessary conditions on

a, S, ~, and {zi} which determine the sign of expression (40)

can be presented as conditions which determine the sign of

a

(41 )

f h 1 . 1 11or t e camp ex elgenva ue z.
1

A numerical evaluation of (41)" was

performed for k = 2, 3, and 4; for (a,S) combinations defined by the

.1ist

a = .5, 1.5, 2, 3, 4, 6

S = .2, .5, .75, I, 1.5, 2, 3, 4, 6, 8;

and for ~z = x + iy taking on values on the grid defined by

x = -.7 k (.1),

Y = .1 + j (~l),

k = 0, 1, 2, , 10

j = 0, 1, 2, , 14.

These calculations reveal the (a,S) pairs for which it is possible

for (41) to be positive for some complex number that is an eigenvalue

of a 4 x 4 matrix M-I, with M stochastic. The results of this

exercise are ~eported in Figure 8. In particular, a necessary

I

;1

I
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condition for (41) to 'be positJ.·ve l'S that (a,S) lie in the

shaded region of the figure.

For a given (a,S) pair such that (41) can be positive we wish

to characterize the eigenvalue region 6Z = x + iy for which (41) is,

in fact, positive. Recall that the restriction

'IT(~ + 1) $ (A )2 r arg uZ S 'IT

together with its symmetric counterpart below the x-axis, is a

(42)

necessary condition for6z to be, an eigenvalue of an r x r intensity

matrix (Singer and Spilerman 1976a, pp. 10-12). Inequality-(42) \'lith r=4

restricts the eigenvalue region to that portion of the complex

plane below the 45 degree line in Figure 9. The bent line which'

defines the lower boundary derives from two further considerations.

First, the segment of this line closest to the origin arise~ from

the simulation calculations discussed above. The steeper rise,

to the left of the bend, is due to an asymptotic argument described'

in Singer and Spilerman (1977, p. 30). The slope of this line is

-tan('IT/12) which means that if M, and hence M-I, has complex

conjugate eigenvalues with a sufficiently small imaginary part,

(41), and thereby (40), will be negative for all 6 > O. In

particular, this will be the case if
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Figure 8. Region for which Equation (41) can be Positivea .

aShaded area shows (a,S) values for which equation (41) can be positive.
Calculations are for complex eigenvalues of 4 x 4 stochastic matrices where
V is a gamma mixture with parameters (a,S) and k = 2,3,4.
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( 43)

where z. = x. + iy. are eigenvalues of M-I.
J J - J

With this characterization of the region where (41) will be

positive, it is a straightforward matter to exhibit concrete gamma

mixtures of Markov chains for which, for example,

t l' ace P 2 (0 , l\ ) - t r ace P (0, 2tJ ) > 0
11 f.l

all !J. ~ 1.

Example 3. Suppose M is a 3 x 3 circulant matrix

a )
3

with a l = .3332, a
Z

~-.6620, a 3 = .0448. Then M-I has eigenvalues

zl = 0, z2 = -1 +.5i, z3 = -1 - .5i. The numerical calculations

described above reveal that for tJ == 1 and f.l (>") a gamma measure wi th

a == 6, B == 1,

trace P1l2(O,I) - trace Pf.l(O,Z) = 3.8 x 10- 4
> O.

- I
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Figure 9. Region for which Equation (41) is Positive. a

aShaded area shows eigenvalue region for which equation (~1) will be
positive. Calculations are for ~ a gamma mixture with a = 6, 8 = 1.
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Additional calculations and reference to (43) indicate that for

!:J. >.86

2 .
trace P

l1
(O,!:J.) - trace Pl1 (O,2l1) > 0

while for spacings II < .86 the reverse of this inequality holds.

V. A SEMI-MARKOV MODEL AND CLUSTERING

In each of the preceding mixture models if

Pl1 (O,lI) contains only distinct, real, positive eigenvalues~

cluster~ng on the main diagonal is guaranteed; i.e., a reversal

of (21) cannot occur. Moreover, this result is rather general,

holding for matrices PJP,lI) of any order, all values of k In (21),

all spacing intervals!:J., and any heterogeneity formula tion based on

a distribution of rates of movement. 12 Overprediction of the main

diagonal elements by a Markov model can occur in a mixture formulation

only if matrix Pl1(O,lI) has negative real or complex eigenvalues.

further, in a continuous-time mixture overprediction can occur only

if there are complex eigenvalues.

For practical purposes it would be useful to know what

proportion of transition matrices constructed from observations on

a social process contain only distinct, real, positive eigenvalues.

While we have not addressed this question in a systematic fashion,

our experience from examining published matrices suggests that upward

of 90% of arrays constructed from socIological data have distinct,

real, positive eigenvalues. Our results associating clustering with

heterogeneity are, therefore, strong statements with respect to data

analysis.
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We hasten to add that there is no obvious substantive

reason as to why ph'enomena such as· job turnover and

geographic migration, for example, should be associated

with the ge~eral class of matrices having distinct,

real, positive eigenvalues .. However, a proper subclass of these

matrices for which there is some meaningful interpretation is the

class of totally positive matrices. Such matrices, in addition to

having distinct, positive, real eigenvalues, satisfy the determinant

inequalities

. det > 0

for any ordered TOW indices i l < i 2 < < i k and column indices

jl < jz < ••• < jk' k = 2,3, ... ,4. These matrices arise from

birth and death processes--i.e~ movement at a single transition

can only take place to-nearest neighbor states, such as in an

ordered hierarchy where states are identified with prestige

rankings. Thus M in a birth and death process .must satisfy m.. ~ 0
lJ

if li-j I > 1. In this circumstance,
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is totally positive for every mixing distribution ~ and for every

!J. > 0.

A specific setting for which this class of models forms

a natural initial baseline is the study of careers in hierarchical

organizations such as a civil service bureaucracy or an industrial

firm. In this connection see S. Ste1~an's (1975) description of

promotion patterns .in the Michigan,State Police.

We underscore the importance of our results about eigenvalue

conditions by pointing out that when P(O,~), having distinc~, real,

positive eigenvalues, arises from a semi-Markov process, the

reverse of equation (21) can occur. Further, if (21) holds,

this rules out a semi-Markov process with gamma distributed
.~

waiting times, i.e., equation ·(18), and constitutes eviden~e for

heterogeneity.13 If the reverse of (21) is found, this rules out

any mixture model--mover-stayer or continuous mass distribution-

and constitutes evidence for a semi-Markov process (among the

classes of _models we have considered in this paper).

To provide the reader with the flavor of the argument regarding

over-prediction of the main diagonal elements of the semi-Markov

process (18) by a Markov model, we sketch the proof of

k
trace P (0,6) > trace P(O,k~) (44)

(i.e., a reversal of [21]) for the case k = 2 with P(O,6) a matrix
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having distinct, real, positive eigenvalues. Define

u(t,v.) =
1

00

E
n=O

nv.
1

where Fn(t) - Fn+l(t) is given by (17) and vi is an eigenvalue of

matrix M. u(t,v.) is then an eigenvalue of PCO,t). ThuSi
1

and

trace p
2

(O,/:') --
r 2
L: u (/:,., v . ),

i=l 1

r
trace P(O,2/:") = E u(2/:",vi).

i=l

Now, for any real number v E (0,1) we have (see note 6)

= e- 2B /:,. rcosh B/:,.fV + 1:. sinh B/:,. fV12

C IV

~ e - 2B/:,. ~osh' 2 B/:,/V +1 sinh 2 B/:,.1"0
L IV J

which, after some algebra and use of double· angle formulas, reduces

to
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u (t.,v) - u(2t.,v)

38

-2$6 2= e sinh $61V

This expression is positive for all v E (0,1), S > 0, 6 > O. Finally,
2observe that for the eigenvalue VI = 1, u (t.,V l ) - u(2t.,v

l
) = 1 - 1 = O.

Thus

A proof of (44) may be constructed along similar lines for

k = 3, 4 and any matrix M having distinct, real eigenvalue;.

Thus, we obtain rather general results; namely that for a semi

Markov process with gamma distributed .waiting times, there always

will be a reversal of equation {2l)--for k = 2, 3, 4,--if

P(0,6) has dis~inct, real, positive eigenvalues. With complex

eigenvalues it is possible for (21) and a reveysal of· (21) .to

both occur, the particular outcome depending 'on k, $, and

v~.' • •., .... .."., _ ,_. __ .~ _~. '••.. _ • n _ _._~ - ••~. -". _.~. '-'".- -.--~ •• ' •• ,. _ .-,_. ,,- - _.--. •. -.-- •• -. • -_ .• -- --••.••. ' _.' _.. --_ •...~ •... -- -",. -- .. - ••---- ._-,.' - ---
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the region of the complex plane in which the eigenvalues lay.

Determination of these conditions requires a numerical exercise

of the sort illustrated in the preceding section with the continuous

mass distribution function.

VI. CONCLUSIONS

We have sought to demonstrate in this paper that the

familiar pheiiomenon of clustering on the main diagonal is an

inherent consequence of the structure of certain model types.

Further, while it has not to our knowledge been discussed

previously, underprediction of the main diagonal elements of a

Markov model should be associated with other kinds of stochastic

models that are also applicable to soci~l processes. Our results

are strongest for matrices P(O,~) having distinct, real, positive

eigenvalues, which happens to be the most common situation with

respect to data from a social process.

'"In particular, if a matrix P(O,~) satisfies this eigen~~lue

condition, then if it arises from a heterogeneity formulation-~

whether mover-stayer or continuous mass distribution--a reversal of

(21) cannot occur; that is "clustering on the main diagonal" is a

'"consequence of the model's structure. If a matrix P(O,~) arises

from a semi-Markov ~rocess with gamma-distributed waiting times,

then a reversal of (21) will always occur. (Even in the case of

distinct, real, positive eigenvalues we cannot make a general

statement about all semi-Markov formulations, ~s could be stated

for heterogeneity formulations; it is possible that a semi-Markov

model with a different waiting time distribution function would be
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consistent with (21). Lacking appropriate general theorems

about semi-Markov processes, one must attempt to carry out the

sort of proof outlined in the preceding section for different

parametric formulations of this model type.)

Main diagonal conditions--whether clustering or underprediction

in relati?n to a Markov process--c~titute one sort of empirical

regularity that can be used to advantage in the activity of model

discrimination. Stated generally, by model discrimination we

mean a set of procedures which would allow a researcher to choose

among competing model types on the basis of a few strategic obser-

vations on an empirical process. Our findings in this paper

contribute to model discrimination techniques in that, under

appropriate eigenvalue conditions, we have shown that main'~iagonal

relationships can be used to reject a heterogeneity formulation or

to reject a particular semi-Markov model.

This paper does not, however, .constitute a concerted effort

to develop model discrimination procedures. That task is a

difficult one, and different criteria may have to be developed

depending on the sort of data one can collect on an empirical

process. (One immediate consequence of-our concern with model

discrimination is therefore a heightened interest .in questionnaire

and3ata collection design, to ensure that the proper information for

differentiating among competing models of an empirical process will

be available.) It is our intention to address this constellation

of issues in the near future.-
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APPENDIX I

Theorem: If z. is a real eigenvalue of matrix M-I, where

M is stochastic, and ~(A) is an arbitrary probability measure on

[0,00), then

for k = 2, 3, ... and all ~ > 0, where

00

. 8(~) = J eA~Z du(A).

°
Let 1\ be a random variable with distribution functionProof:

c
Prob (1\ < c) = J d~ (A). Consider

°in terms of 1\ according to Y =

the random variable Y, defined
~z1\ 14

e ,where ~ > ° and Z < o.
With these random variables we can write

Now introduce the convex functions fk(x) = i
k , k = 2, 3, ... , where

x ~ 0, and observe that a direct application of Jensen's inequality

(Feller 1971, pp. 153-4) yields

k~z1\
= E (e .) = 0 (k~) .
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NOTES

1By the symbol 11"'11 over a matrix or over entries in a

matrix we shall mean estimates made directly from observations.

Entries without this symbol will refer to calculations from a

mathematical model.

2With the discrete-time Markov chain, the waiting time to

a move follows a geometric, distribution. The exponential distribu-

tion is the continuous-time analog of the geometric, in the sense that

the conditional probability of an event occurring in time interval

(t, t+dt), given that no event occurred prior to time t, is independent

of the value of t.

3This formulation arises as follows. Assume that the duration

time in a state is exponentially distributed with average waiting

time equal to l/A. An equivalent statement is that moves occur in

tim~ accor~ing to a Poisson process in which the probability of

making exactly k moves during (O,t) is given by gk(O,t)

= (It)ke-lt/k !, k = 0, 1, 2, .... If M is the transition matrix

followed at each move, then P (0, t), the trans i tion ma tr ix ivhich

represents population movements between times 0 and t, can be viewed

as a weighted average of the terms Mk , k = 0, I, 2, ... ) in which

the weights are given by gk(O,t). That is
I

,I

1
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, P(O,t) = =

-At 00

= e L
k=O

, k
(AtM)

k!

4The parameter A is not indexed by system state since we have

00

assumed that A. = A, i = 1, 2, ... ,r.
1

SF (t) represents the probabiltiy that the waiting time for
n

L g'k ('0 , t) = gn (0, t) ,
n+ln

n events to occur is less than t; that is, Fn(t) = L gk(O,t)
k=n

where gk(O,t) = probability of exactly k events in the interval
co co

(O,t). Thus Fn(t) - Fn+1 (t) = L gk(O,t)

6The power series is initially constructed in scalar argument,

u (t , 0) = L~n (t) - Fn+1 (t)J on

(Stl8") 2n 1
(2n)! + r8"

00

L
n=O

(Stf6) 2n+1 J
(2n+l)!

= e-~t ~OSh ~tl8 + I~ sinh ~t/61

This .scalar valued analytic function can be extended to an analytic

function of matrix argument by any of the procedures in Singer and

. . ..,.. _. L__..... _. ------------- _._._--------

I

I"\ '

. ~ I

f.

fl
-I

, ~ .. ,. i
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'Spi1erman (1976).

7The matrices P(0,~6), k = 1;2, ... in '(19)-(21) refer to

transition matrices constructed from an arbitrary discrete-state

stochastic process. In particular, the notions of clustering

defined in (19)-(21) make sense for general discrete-state

processes. The matrices defined by (3) and (18) are specializations

to mixtures of Markov chains and to a special parametric family of

semi-Markov processes, respectively.

8Because each section of the shaded region is convex and

contains the eigenvalues 1 and v (or 1 and v, the complex conjugate

of v), s'l + (l-s)v [and s·l + (l-s)v] are also in the shaded region

for any sE(O,l). Thus the eigenvalue condition on M for a reversal

of (21)--i.e., presence in the shaded region of Figure .2-~pertains

as well to the eigenvalues of P~(0,6).

9Because the shaded regions now ·depend on s they pertain to

the eigenvalues of M, not P (0,6).
~

. l{)S d' f' Md' 1 dtate In terms 0 matrIx we nee reqUIre on y istinct,

real eigenvalues. This IS because each eigenvalue z. of M-I is
I

transformed into an eigenvalue O. (t) of P~ (0, t) via the relation
ro I

.r: f AtZi . x ..
u. (t) = e d~(A). SInce e takes on pOSItIve values for

1 0
any real argument x, and since the integration may be viewed as a

weighted average of different exponentials, o.(t) will be positive
1

for real, negative roots 7 + 1 of matrix M.
~i

.i
('
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llA matrix of order r = 4 with a pair of complex conjugate

eigenvalues will have two real roots. By Jensen's inequality

(Appendix I) the real roots add negative terms to the sum (40). A '

necessary condition for (40) to be positive is that (41) be Positive.1

A sufficient condition is that the sum of positive terms in (40)--~hi~h}

correspond to complex conjugate roots--exceed the sum contributed to

(40) by the real valued roots.

l3 0ur conclusl'ons wl"th t t h t "t fIt'respec 0 e erogenel y ormu a lons

differences!

I
i

l2We.remind the reader that we have considered only forms of

heterogeneity that can be expressed in terms of individual

in the ~ate of movement.

are general, not dependent on the parametric specification of

heterogeneity (other than the fact that mixing is on the rate of

movement term). Our results with regard to semi-Markov processes

are specific to the formulation we have analyzed, namely, gamma

distributed waiting times.

141f matrix M is stochastic then every real eigenvalue z of

M-I will be negative or zero.

I
I
I,

!,
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