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ABSTRACT

In this paper we discuss the well-known empirical regularity
commonly referred to as 'clustering on the main diagonal.' We
show that this phenomenon is to be associated with certain
model types, in particular, with heterogenei%y formulations. In
confrast, the reverse situation--underprediction of the main
diagonal elemeﬁts of a Markov model--will arise when the under-
lying process is a certain common semi-Markov model. We use these
main diagonal relations as an introduction to the general topic

-

of model discrimination.




CLUSTERING ON THE MAIN DIAGONAL

I. INTRODUCTION

An empirical regularity in mobility matrices which has given
rise to a considerable volume of research concerns the phenomenon
of "clustering on the main diagonal." The reference model in
terms of which this regularity has been identified is the discrete-
time Markov chain with stationary transition. probabilities. By
. this model we usiean the formal relation between stoqhnstic matrices

{P(O,k)}k=l 5 given by

P(0,k) = P(0,1)K, K =1,2,3,... . (1)

_ - ;
In practice P(0,1) is usually estimated by ﬁ(O,l), a transition ;

matrix constructed in the usual way from observations on a

S RN

population1 at times t = 0,1. P(0,k) then is the k-step tfansition
matrix predicted via the formulation (1) and obtained_by raisihg
the obsgrved matrix to the k-th power:

The imagery consistent with the Markov-model is one of a
homogenous population changing system states (occupations, |
industries, income categorieé, etc.) in a manner such that knowledge
of an individual's current state conveys complete information
about his subsequent movements. This simple formulation has - w
found extensive use, both as a base-line model against which to i
compare more complex .formulations (Hodge 1966; McFarland 1970;

McCall 1971; Coleman 19?4a), and as a method of forecasting the

evolution of social processes (Rogers 1966; Tarver and Gurley 1965;




Lieberson and Fuguitt 1967). For further details on the
mathematics of Markov chains, the reader is referred to Feller
(1968, chapter 17).

The phenomenon of clustering on the main diagonal refers to
the fact that where observations can be taken on a population
at time k, X = 2,3,..., as well.as at times 0 and 1, the main
diagonal entries of the observed k-step transition matrix ﬁ(O,kj
frequently bear the following relation to the main diagonal |

entries predicted by the Markov model:
$0,1)).. > [P0,k i = '
(Bro.0),; > o, ¥, i=1,2,...1, (2)

where v equals the number of system states. In words, the Markov

model tends to underpredict the observed main diagonal entries.

This fact has stimulated a considerable aﬁount ofAresearch
-since Blumen, Xogan and McCarthy (1955)e—hereafter feferred to
- as BKM--first commented upon the phenomenon of cIustering. BKM,
and most subsequent a;fhors (Goodman 1961; Mayer 1972; McFarland
1970; Bartholemew 1967; Spilerman 1972a, 1972b; Singer and
Spilerman 1974,-1976b,1977), have interpreted the presence of
clustering as evidence for heterogeneity--the fact that the
population being observed consists of individuals who differ in
rate of movement, in proclivity to make certain transitions, or

in both ways. It has also been remarked that the phenomenon (2)

can arise in a homogeneous population in which the length of




stay by an individual in a system state is not exponentially
distributed (McGinnis 1968; Ginsberg 1971; Singer and Spilerman
1976'b).2 Finally, Coleman (1964b) has pointed out that clustering
can occur as a consequence of '"response uncertainty;'" for our
‘purposes, a form of meésurement error. | |

Given the volume of discussion about clustering on the main
diagonal and the diverse explanations that have been invoked
to. account for it, it secms reasonable to po;e several questions
in regard to the inequality (2). In particular, we wish to
ascertain which sorts of stochastic processes can ﬁroduce this
phenomenon and which sorts of processes cannot. A second question.'
pertains to whether the reverse of inequality (2)--overprediction
of the observed main diagonal elements by a Markov model--can occur,
and which sorts of processes will generate that régularity. Tﬁe
value in posing these questions is thét they speak to the much

neglected task of model discrimination; the construction of simple

tests for choosing among competing explanations of a social
process.

The particular model types that we shalllcompare against simple
Markov are mixtures of Markov'processes and a special parémetric
family of semi-Markov processes. We restrict attention to these
processes because they provide the simplest setting in
which to discuss clustering phenomena while still exhibiting
the subtle behavior of more complicated models such as those

incorporating response uncertainty (Coleman 1864b). It is




important to emphasize that we are discussing the behavior of
models per se. Hence, from an empirical point of view, our
analysis is relevant to stochastic matrices generated by a

large numbe? of observations. Although clustefing as in (2) can °
oécur uﬁder a Markov model just due to sampling fariability, we
do not discuss this important aspect of the clustering phenomenon
in the present paper. | '

To address the quésfion of which model types satisfy
inequality (2) and which do not, it is necessary to consider
éxplicit formulations of each kind of process. In the next
section we therefore preéent two versioné of the mover—sfayer
model, a more general formulation of population heterogeﬁeity,
and an example of a semi-Markov précess. A1l of these models |
have appeared in the sociological literature or otherwise make
. sense for social processes. The discussions will be brief and

the reader is referred elsewhere for fine details on the

mathematics and for estimation procedures. In sections III-V
we report our main results on the phenomenon of clustering in
relation to each of the model types. In the finél pages we
provide additional comments on the topic of data collection

design as it relates to the task of model discrimination.




ITI. MODEL SPECIFICATION

In this section we outline the structures of four models

which later are compared with a Markov chain in regard to the

evolution of the main'aiagonal élementévéfwfﬁé f;ansition matrix
P(0,t). The initial three models are formulations of population
heterogeneity; these are appropriate in the many sociological
contexts in which it would be simplistic to treat a population
as homogenebus with respect to the behavior under study. In
each.case, the underlying model for an individual in the popula-
tion is Markovian; heterogeneity is expressed in the way the
individual-level processes are aggregated. The final model
constitutes a semi-Markov process; it refers to situations in

" 'which one believes an assumption of éxponential waiting times

(no effect of duration in curreﬁt state on an individual's
departure ratej to be unrealistic. McGinnis' (1968) fofmulation'

of "cumulative inertia" is a classic instance in which the theory

. involved refers to the shape of the waiting time distribution, i.e.,

to whether or not it is exponential.

Heterogeneity formulations. The heterogeneity models we

consider may all be represented by the fdllowing generic formalism.
Denote by PA(O,t) the transition matrix for an individual with
expected rate of movement equal to A. (For each individual

PA(O,t) is assumed to evolve according to a fifst—order Markov
chain with staﬁ}onary transition prébabilities.) The observed

population-level process may then be written as




P(0,t) = [, Py(0,t)du(n), | (3)

where dp(})) is a distribution function which describes the
proportion of type-A individuals in the population -and the ™
integral sign indicates that we sﬁm the PA(O,tj arrays,Aeach
weighted by the proportion of type-A individuals in the popula-
tion, over all person-types A £ A. Different formulations of
population heterogeneity then amount to different specifications
of du(iA).

| It should be noted that the heterogeneity models we consider
all involve mixtures of Markov processes in which mixing is on
the réte of movement parameter A. This amounts to specifying
 that all individuals in the population have the same proclivities

of transferring to the various destination states when they move

(we denote this common propensity by the transition matrix M),
and that population heterogeneity can be expressed entirely in
terms of individual differences in the expected rate of movement.
While restrictive, this formulation is still sufficiently general
to permit the observations we wish to make about model discrimin-
ation and the phenomenon of clustering.. There is also precedent
for this formulation in that it underlies BKM's mover-stayer
model as well as Spilerman's (1972a) extension of the mover-stayer
model. |

A second restriction, implicit in (3), on the diversity of
population heterogeneity is the requirement that the rate of

movement parameter, A, be the same for an individual in all



system states. This specification was not made by BKM in

their initial presentation of the mover-stayer model, though
they did propose it to make the mathematics of more complex
heterogeneity models tractable (BKM 1956, pp. 138-46); further,
Spilerman's extension (1972a) does utilize this simplification.

For ease in comparing the three heterogeneity formulations which

we outline, the common generic structure (3)-.is retained throughout.

A. Blumen, Kogan and McCarthy's (1956) mover-stayer model.

This simple formulation of heterogeneity consists of a discrete-
 time process in which it is assumed that the population is
built up from two types of persons--stayers, who never leave

their origin states, and movers, who evolve in accordance with

a first-order Markov chain with stationary transition probabilities.

Despite its simplicity--perhaps, because of this--the mover-stayer
model has been used widely to accommodate heterogeneity: in B
studies of industry change (BKM 1956) and income evolution (McCall
1971), to cite but two examples.

Formally, let A = the sampling interval of the process
(S'monthsin BKM's study). The mover-stayer model then is define@
for the discrete time sequence T = {t :‘t = kA, k=0, 1, 2,...1}.
Let A = {A, = 0,-A = 1} ={stayer, mover} and iﬁtroduce the

1 2
mixing distribution

s a1 Tt

Y -



. Sif}\=ll
du(i) = 1-s if A = AZ

0 otherwise
where s 1is a sééié?lﬂamzns < 1. Finally, define a k-step tran-
sition matrix for each subpopulation according to
[ k K

P,y (O,A)O = 1% =71 (Stayers) (4a)
1

il

P, (0,kA)
Aq

. - . =1 k .
P, o, def
2 .

I

PAZ(O’RA)

(Movers). - (4b)

9

With this specification we obtain for the population-level process

| ) | |
P (0,k8) = ST + (1-5)M, k=1, 2, ..., - (5)

which is the familiar mover-stayer model subject to the additional
requirement that a common fraction of stayers, s, 1is present;in
all origin states.

B. A continuous-time version of the mover-stayer model. As

a second specification of heterogeneity, we consider a continuous -
time version of BKM's model. This formulation will be useful in
highlighting some implications of continuous-time versus
discrete-time processes in modeling social phenomena. .Moreover,

as we have argued elsewhere .(Singer and Spilerman 1976b), for

processes which evolve continuously in time, a model having this same

character has advantages with respect to identification of the -

Ay
£



structure of the evolutionary process. Indeed, for the
subject BKM studied--industrial mobility--we suggest that it
would have been advantageous for them to employ a continuous-
tiﬁe formulation.

The continuous-time analog of the mixture (S) can be
épecified by defining T = {non-hegative real numbers},with A
‘ and'u exactly as before. Then stayers stiileevolve'according
to the idertity matrix

eOt(N:"I) - I (68—)

P, (0,t) =
Ay |

while movers evolve according to the continuous-time Markov

process,3

1

Ayt (M-1) .
PAZ(O,t) = e . | | (6b)

In equation (6b) the rate of movement parameter Az has the

interpretation, 1/A, = expected waiting time between transitions;

2
and M is a stochastic matrix which specifies movement proclivities
when a transition occurs.

If observations on a continuous-time mover-stayer mixture
are taken at times ty = kb, k = 0, 1, 2,... and ifAyou_identify A
with 1/x (as BKM did 'implicitly), then the observed transition

N A0

o am e b

- NIRRT . A AR e €
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matrices can be represented by the recipe,

k(M-I)

Pu(O,RA) = sI + (1-s)e (7)

which is the continuous-time analog to (5).

C. A continuous distribution of types of individuals. We now

specialize equation (3) to mixtures of a continuous type,
200 = [ Ro,;mG) . - (®)

As in the preceding model, each individual in the population is

assumed to evolve according to a continous-time Markov process

P, (0,t) = e“(M'I), t 2 0, . ‘ (9)

where M is a stochastic matrix which describes movement probabilities
when a transition occurs.

In contrast with the earlier models we assume now that

instead of two types of persons, or n types, there is a continuous
distribution of individuals identified by their expected rate of
movement. In particular, we specify heterogeneity according to

the two parameter family of gamma distributions

du(r) = B

a,a-1 -BA - '
A e di
SO o, B, A > 0. | (10)

This function is a very general one and is able to accommodate
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a variety of unimodal shapes.

If‘observations oh this continuous-time process are taken
at the instants tk = kA, k=0, 1, 2,..., and if A is identified
with 1/)A for ease of comparison with the preceding models;

the present héféroéenéity formulation may be written as

(Spilerman 1972a),

RPN e SR

Semi-Markov processes. In the preceding models, each

individual-level process was. first-order Markov. This specifies,

first of all, that an individual's past locations are immaterial

-—

to understanding his future moves; only current state is pertinent.

It is this feature of Markov chains‘which is usually articulated
when the assumptions underlying the process are explained (e.g.,
Tarver and Gurley 1965; Hodge 1966; Lieberson and Fuguitt 1967).
Yet, there is a further strong assumption in the Markov model,
namely that duration time 1 in state i follows an exponential

distribution (and is independent of duration times in prior

states):

Prob; (t < t) = Fi‘(t) =1-e" ", i=1, 2,...,r. (12)

4

Use of the exponential distribution™ amounts to stating that the

probability of departing from state i during the infinitesimal

interval t + dt,_conditional on being in state i at time t, equals
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f. “At
ro(eyde = SiBEE e Trar L ae i =1, 2,... .1 (13)
1 1-F.(t j At
1 1-(1-e )

whe;e fi(t) is the density function corresponding to Fi(t). Substan-
tively, this result says that there is no impact of duration in a
system state on the probability of leaving. Individuals neither
settle down (in an occupation, residence location) nor grow weary of
the setting.

" It has been pointed out (Morrison 1967; McGinnis 1968; Land
1969) that this assumption of a constant departure rate is untenable
for many social processes. Indeed, McGinnis' (1968) "axiom of
cumulative inertia" speaks directly to this point; he contends that
individuals are more likely to remain at a residence location, or in
a job, the longer they have been there. To model such a process,.we
would need to have ri(t) in equation (13) appearing as a decreasing
function of time, rather than as a constant.

Semi-Markov models constitute a class of stochastic processes
which maintain tﬁé assumption that past locations are immaterial to
future states given current location, while permitting the duration-
time distribution to be more gemeral than exponential. We require

the following terminology for this model class. Let M be a stochastic

"matrix of transition probabilities which describe the propensity to

move to pafticular states when a transition occurs. Let P(0,t) be
the transition matrix constructed from observations on a population

af”times 0 and t. Finally, let Fi(t),_i =1, 2;...,r, be a distribu-

tion function which has the interpretation, '"probability that a move

has occurred by time t;" we assume_ it has a density function fi(t).
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The mathematical formalism of semi-Markov processes that

we use in the final two models derives from the system of integral

equations
4 - : .
where aij = 1if i=7j, 0if i # j; and 1 £ i, j < r. These expressions,

known as the backwarl equations for a continuous=time semi-Markov
process (Feller 1971, pp. 483F497), are amenable to the following
interpretatipn: (1) When i F 3, pij(O,t) cbnsisﬁs of the sum of
products of three factors: the probability of a first departure from
state i at time s, the probability of a state i to state k transition
at that instant, and the probabiiity of transferring toAstage j by
some combination‘of moves in the interval t-s. The summation is

over all intermediate states k and over all time divisions.s in the
interval (0,t). (2) When i = j, in addition to the above term, there
_is the possibility of not transferring out of state i_during‘(o,t).
This probability is given by the first term.

Although this is not the most general formulation of semi-

Markov processes (see Pyke 1961a, 1961b; Ginsberg 1971; Singer and
Spilerman 1974 for more detailed statements), it is a convenient
starting point for our purposes. If we make the further assumption
that Fi(t) = F(t), i =1, 2,..., r--in keeping with our earlier
discussion concerning state independence of the waiting-time

distribution--thenh the semi-Markov model has a simple representation

it Tt
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in matrix form,

™ 8.

' n
P(O,6) = I [F (t) - F (O, - (15)

n=0

where F_(t) denotes the n-fold convolution of F(t) with itself.
n v '
This formulation often permits tractable representations to be

constructed once F(t) is specified. Note, dincidentally, that
if F(t) is specified by equation (12), the semi-Markov model
(15) reduces to the familiar continuous-time Markov chain

P(0,t) =.elt(M'I) [see note 3].

D. A semi-Markov model with increasing departure rate. This

formulation would pertain to processes in which the probability
of a move increases with duration in the state. Substantive contexts
in which this specification'makes sense are the stage model§ of.
developmental psychologists (e.g., Kohlberg 1973; Piaget 19é4;
Loevinger 1966). The basic notion here is that an individual
passes through a more or less ordered sequence of states (develop-
méntal stages), whose onéets are age dependent. For some behaviors
" or abilities (e.g., psychosexual stages), duration at a particular
developmental level may be programmed genetically into the organism.
For other phenomena (e.g;, cognitive stageé) experienée through
interaction with the environment plays a more centrallrole in pre-
paring an individual for entering the next developmental level.

In stége theories, then, there is a—basic notion that the
probability of departurekincreases with duration in a state. We can
formalize this assumption by specifying F(t) to be a gamma distribu--

tion (equation 10), with @ = 2 and B = A > 0 arbitrary: -

-At

"Prob(r < t) = F(t) =1 -(1+At)é . (16),

i
Ot
P
N

o
o
[« ¥
oot
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Here, the rate of movement out of state i, i =1, 2, ...,r, is
given by r(t) = kzt/[l + At], which increases monotonically to an
asymptote r(~) = X (Figure 1). Specific thedries as to stage
sequences could be built directly into the M matrix of équation (15);
see Singer and Spilerman (1978) for details.

With the specification of F(t) in (16), the difference between

the n-fold and (n+1)-fold convolution is

' : 2n 2n+1l -
-8 :
Fp(t) - Fpep(t) = e " [Egggl * (%Z%+l)!] ) (17)

-t

Substituting (17) into (15) and evaluating the resulting power series
yield56 ,
- -1/2 1/2
P(0,t) = e Bka {;osh BkAMl/2 + M / sinh BkAM / } , (18)

in which cosh and sinh are hyperbolic functions of matrix argument.
Equation (18) 1is the transition matrix for a semi-Markov process
in which the probability of a state change increases with duration

in the state.

III. MOVER-STAYER MODELS AND CLUSTERING

Eigenvalue conditions. We will have at our disposal some

powerful mathematical machinery if we alter the definition of

clustéring very siightly. In particular, the specification




ré)
| @) = A |

time

Figure 1. Rate of Movement Function r(t) for Different Waiting~Time Distributions.

2
8r(t) = X for exponentially distributed waiting times. 1r(t) = A" t/[1 + At]
for gamma distributed, waiting times. - A
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introduced by BKM (1956, pp. 79-95) and used by subsequent researchers

.7
is

(19)

]

k -
(P ,(,9_’_.4))i.i__..<_,,(,_P(O’kA))ii’_ 1= 13 2, ..,

In words, it is required that each diagonal element of the Markov
model underpredict the corresponding entry of the observed process.

‘The formulation of clustering we propose instead is

T X T

izl (P7(0,8)) 5, < 151 (P(0,kA)) ;4 5 h : (20)
equivalently, _

k _

trace Pu (0,A) - trace Pu(O,kA) < 0. (21)

Thus the inequality is assumed to hold between the sums of main
diagonal elements, though not necessarily for each pair individually.
We will indicate momentarily the mathematical advantage of this -
specification. First, we g@ow that it is a reasonable.definition
of clustering.

If equation (19) is satisfied for a mobility process, then
(21) will also hold. Thus, iﬁ this most common situation, the two

formulations will yield identical results. Similarly, if the reverse

of inequality (19) is satisfied (overprediction by the Markov model),

then the reverse of (21) will hold. Only in instances where some -

main diagonal elements satisfy (19), while others do not, are the two

s e
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formulations in potential disagreement. Yei,,in this case, under
(19) there is no explicit criterion as to when an ihference of
clustering can be made; for example, do one or two reversals among
main diagonal entries in a 1arge matrix invalidate such a conclusion?
BKM (1956, pp. 60-64), incidentally exhibited as evidence of
clustering matrices in which one reversal often was present. 1In
summary, inequality (21) does not alter the character of the traditional
formulation and has the 'advantage of providing explicit criteria |
under which clustering can be asserted when (19) is an excessively
stringent requirement.

For mathematical purpdses the attractiveness of inequaiity
(21) is that it enables a relation between clustering and the

eigenvalue properties of matrices to be established. In particular,

let

o

D = - < (zzj

=)
o

be the array of eigenvalues corresponding to some matrix P. It is

well known (e.g., Bellman, 1970, p. 96) that

trace P i§£

that is, the sum of the main diagonal elements of a matrix is equal

s - et A
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to the sum of its eigenvalues. Thus if §; is an eigenvalue of
PM(O,kA), and 6; an eigenvalue of PS(O,A), an equivalent expression

to (21) is

T T '
I 67 - I 85 <0, . (23)

Mover-stayer mixtures. Now consider a transition matrix
Pu(O,kA),constructed from observations at t = 0 and t = kA on

BKM's mover-stayer model (5),
k , :
Pu(O,kA) = sI+ (1-s)M . (24)

If the eigenvalues of PU(O,kA) are represented by matrix D fn-(ZZ)
and the eigenvalues of M by an analogous diagonal matrix V = {vi}, then

each eigenvalue §. may be expressed as
1

k
Gi = s + (l-s)vi , i=1, 2,...,T. (25)

To see this assume that H is a matrix whose columns are eigenvectors

of PU(O,kA) in (24). Then,

o
it

-1
H "P (0,kA)H 4 -

1k

Hl[sT + (1-s)MN]H = sI + (1-s)H "M'H

1

sI + (1-s)[H MH]k . o (26)

i

Since D is a diagonal matrix, H MH must also be a diagonal matrix--
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call it V--and its entries are the eigenvalues of M. Equation (25)
follows from this argument.
By similar reasoning -it can be shown that each eigenvalue

orm

57 of P X(0,4) has the
i u > oo

6£ = [s + (l—s)vi]k .. 4 (27)

With the above mathematical equipment at hand, the clusteriﬁg criterion

CZO) may be written és (using>[23], [25] and [27]),

T )Ik | k_‘l | '
151 [s + (l-s)YiJ -[s + (l-s)vi IJ < 0. (23)

We have therefore transformed an inequality between main diagonal
elements of movef;stayer and Markov matrices into an inequality
| between their eigenvalues. Further, the eigenvalﬁes vy in (28)
pertain to the matrix of structural parameters M, which is |
constant over time even though Pu(O,t) is not. .

To ascertain the conditions under which the inequality (28)

.Will be satisfied, we first determine whether or not all terms

in the sum

flewomp e oo

[ e ]

i

SN NV e e 1

it -

g o sy,
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necessarily have the same sign. If vy is a positive real eigenvalue

other than v, = 1, then by Jensen's inequality (Feller 1971, pp. 153-4),
k k
[s + (1-s)vy]" - [s + (1-s)v; ] <0 ‘ (30)

for k = 2, 3, 4,... and all s € (0,1). Our first conclusion, therefore

is that in a comparison between BKM's mover-stayer model and a Markov

chain, if all eigenvalues of P, (0,A) are distinct, positive, and

real, the inequality (21) will hold and clustering on the main

diagonal will be observed.

We further see that if the difference (29) is ever to‘be
positive and a reversal of (28)--equivalently (21)--observed, it

must occur for matrices having complex conjugate or negative real
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eigenvalues for which Jensen's inequality is reversed. We therefore’
ask whether there are regions inside the unit disk in the

complex plane for which

k
Re[s + (1-s)v] - Re[s + (1—s)vk] >0 (31)

where Re(.) denotes the real part of the eigenvalue. The unit disk

is the relevant region to examine because all eigenvalues of stochastic

matrices are restricted to this region. Further, it is sufficient
to examine the real parts of the eigenvalues because complex eigen-
values of matrices with real entries come in conjugate pairs

(e.g., x + iy and x - 1iy), so that for matrix P with'eigenvglues

Sy i=1, 2, ...,T,

i:

T T
trace P = Y 8. = X Re 6.

Case k = 2 in equation 31. Writing v in the form v = x + iy,
we obtain

2

Rels + (1-s)v]Z - Re[s + (1-s)v2] = s(s-1)[(1-x)% - y?1>0

which is satisfied by eigenvalues v with components such that

(1-x-y) (1-x+y) <0, | (32)
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The eigenvalues in the unit disk for which this inequality holds

are shown in the shaded region of Figure 2.8

An important consequence of (32) is that

Re[s + (1—s)v]2 - Rels ; (l—s)vz] ;Aé

for any eigenvalue v of a stochastic matrix M of order r < 4 and:for
every s € (0,1). This is a consequence of the iredualities of |
Karpelewitsch (1951) [also see Singer and Spilerman (1976), pp. 10-13 ]
which restrict the eigenvalues of general r x r stochastic matrices

according to

[% + %}n < arg(v-1) < {% _.l]w . . (33)

These inequalities define the cone-shaped regions K3 and K4 drawn
in dashed lines in Figure 2. We observe that when r < 4 all eigen-
values of a stochastic matrix must lie in the complement of the shaded

region in Figure 2 and reversal of (21) cannot occur.

Case k = 3 in equation (31). The region for which the‘inequality
holds is now more complicated geometrically than the shaded region

of Figure 2. Furthermore, the sign of the difference

3 3
Re[s + (1-s)v] - Re[s + (1-s)v ]



Figure 2. Eigenvalue Region for a Reversal of Equation 28 with k =2
(Shaded area), Together with Cone-shaped Restrictions on

. . . a

Eigenvalue Locations of 3 x 3, 4 x 4, and 6 x 6 Matrices .

" a, ' . . ..
Each cone-shaped region (dashed lines) is symmetric with respect to the
x-axis. ' )
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depends on s, unlike in the situation for k = 2. By a calculation
similar to that in the previous case we obtain the shaded regions
in Figure 3 as the location of eigenvalues of matrices M for which

a reversal of (21) may occur.9

The above restrictions have rather far—reachiﬁg implications
as will now be explained. To see this consider the more refined
restrictions on eigenvalues of stochastic matrices of orders 3, 4,
and 6 due to Karpelewitsch (1951). 1In particular, the shaded areas
in Figures 4, 5, and 6 display the regions within the unit circle-
of the complex plane in which all eigenvalues of matrices of orders 3,4,
and 6, respectively, must lie. These areas should be considered in con-

-

junction with the shaded region in Figure 3, which reports eigenvalue

conditions necessary for a reversal of (21)--equivalently (28). It ‘is

evident that there is an overlap between the regions, even for

stochastic matrices of order 3.. Further, the area of overlap widens

as the matrix order is increased.
For 3 x 3 stochastic matrices the region of overlap (Figures 3

and 4) is restricted to negative real values~of v, in particular to

. 1+s . s . .
the region v £ [-1, - %7T§%]. Note, incidentally, that this constrains
s to the interval (C,%]. By a judicious choice of M and s we can
therefore illustrate mover-stayer mixtures in which this hetero-

geneity formulation underpredicts the diagonal elements of the

corresponding Markov process.




Ln (v)

- Re (v)

Figure 3. Eigenvalue Regions for a Reversal of Equation (28) with k=3
(Shaded area)?.

#Value of s in this graph = 0.18.
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Figure 4. Restrictions on Eigenvalues of 3 x 3 Stochastic Matrices®.

ap11 eigenvalues of a 3 x 3 stochastic matrix must lie in the triangle
or on the negative real axis,




Figure'S. Restrictions on Eigenvalues of 4 x 4 Stochastic Matrices®.

8A11 Edigenvalues of a 4 x 4 stochastic matrix must lie within Robin's
cape or on its boundary.




Figure 6. Restrictions on Eigenvalues of 6 x 6 Stochastic Matrices>.

8A11 eigenvalues of 6 x'6 stochastic matrices must lie within Batman™s
cape or on its boundary.
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Example 1. Suppose an empirical process evolves according

to the mover-stayer formulation,

sl + (1-s)M

P (0,8)

1302 .0326  .8372
0352 .0963  .8685

{-8685  .0013 L1302
whefe s = .0625 énd
.0722 .0347 . 8931
M = .0375 .0361 .9264
| .9264 .0014 .0722;

Comparing the mixture model PU(O,kA)--i.e., the observed pr&cess--
with the Markov model PE(O;A) which uses P”(O,A) as a. one-step

transition matrix, we find

2
trace Pu (0,4) 1.502 < trace P (0,2A) = 1.755

but
3
trace Pu (0,4) = .6486 > trace Pu(O,SA) = ,6089 .
Continuing these calcﬁlationé,
4 : : :
trace Pu (0,A) = 1.248 < trace Pu(0x4ﬂ) = 1,548

5 oA
trace Pu (0,4) .8248 > trace P (0,4A) = .7784
) H -
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and so forth.

Example 2. As part of a study.of interpersonal relationships

among‘American high school youth in the 1950's, J. Coleman (1961)
asked students in Northern Illinois high schools in October, 1957
and again in May, 1958 whether or not:
1) they perceived themselves to be members of the leading
crowd in their school;
'2) they can maintain their principles and be a member of the
leading crowd. | |
Affirmative answers to each question were scored + and negative
answers were scored -. Thus, an individual can respond to the above
qqestions in one of four possible ways at each observation time:
(response to (1), response to (2)) = (+,+), or (+,-), or (-,+),
or (-,-). We then identify these responses as possible stafés
of a stochastic procesé. In connection with this survey, Coleman
proposed a theory about attitude changes in an adolescent
popuiation in which individuals could alter their views on
either issue (1) or (2) at any one time but could not change
their attitude on both issues simultaneously. This theoretical
proposal implies that transition matrice§ M describing attitude

changes when they occur should be of the special form

(0 « 1-a 0

M
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where 0 < «o,B,Y,0 < 1.

These matrices have eigenvalues vy = 1, vy = -1,
1/2 1/2
ve = (5a - a2 - 4?7 ana v = -flpa -l - am i
3 2 4 z
where
A= 6(1-8) + (1-y)(1-6) + aB + v(1-a)
B = aB(1-8)(1-v) - B§(l-a)(1-v)

+ y6(1-0) (1-8) - ay(1-8)(1-8)

" A somewhat tedious calculation verifies that if any M, as
defined above, is incorporated in a discrete-time mover-stayer

mixture, then there is an interval of stayer fractions (0,s*) such

that

trace (sI + (1-5)M)3 > trace (sI + (l—s)M?]-

for every s ¢ (0,s%), if and_only if

4 4 3 = |
2 +3 5 v -2 v, = 3[1+4 - /A48 ] > 0
= 1=2

Furthermore, for such M, s* is given by the formula
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To illustrate the calculations, suppose that a B =

] b

1 : ‘ 1 1
and y = § = 5 . Thenv_ =1, v_ = -1, = oy = .=
Y ) 1 5 Ve T g Yy, 1 and

s* = 0.342. This means that for any value of 58(0;.342), a

mover-stayer mixture having the above M-matrix will show under-

prediction of the main diagonal entries of the corresponding

Markov process.

Despite the fact that reversals can take place for discrete-

time mover-stayer matrices of order 3 and 4, the analogous inequality

cannot occur for any 3 x3 or 4 x 4 continuous-time mover-stayer

i . . i M-1)-
mixture. This arises because every eigenvalue v of e( , where

M.is a stochastic matrix, must lie inside or on the boundary of
the heart-shaped region Hr in the.complex plane (Figure 7))+ [See
Singer and Spilerman‘(1976, pp. 10-13) for details; see Runnenberg
(1962) for a proof.] Further, if v s'Hr, then s + (1-s)v is also
in Hr’ all s € (0,1). Since for r £ 4 the hearts H3 and H4 are

properly contained in the complement'of the shaded region in

Figure 2, reversals of (21) cannot occur for continuous-time models

of these orders. :
With respect to mover-stayer mixtures we therefore conclude:

- (1) A reversal of (21)--equivalently (28)——canﬁot occur when
all eigenvalues of PM(O,A) are distinct, real, and positive. This
statement holds irrespective of whether the model is a discrete
or a continuous-time formulation;'for all integer values of r and k,

and for all spacings A > 0.



Ec’«?‘tma (‘f reversal é’f
ngg',m.i'vm (28) with k=2,

Figure 7. Restrictions on Eigenvalues of 3 x 3, 4 x 4, and 6 x 6
Continuous-Time Mover-Stayer Mixtures?.

@8Each heart-shaped region includes the ones of smaller size. Thus, the
eigenvalues of a 3 x 3 continuous-time mover-stayer mixture must lie within
the inner-most region (H3), the eigenvalues of a 4 x 4 continuous-time mover-—
stayer mixture must lie within the intermediate région (Hy), etc. '




" is mover-stayer.
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(ii) For k = 2 in (21) we have the further restriction that
a reversal cannot occur for negative real eigenvalues (see Figure
2); complex eigenvalues are necessary. |

(iii) As the order of matrix P is increased the eigenvalue
region in which reversals -can occur becomes more extensive. It
is possible, however, to exhibit reversals for k = 3 in a discrete-
time mover-stayer model even for matrices as small as 3 x 3 and

4 x 4,

¥

(iv) Finally, a general sufficient condition for a reversal
of (21) is that all eigenvalues lie in the shaded region. 1In

large-order matrices a not uncommon situation would be for some to

fall in this region while others lie outside it. In this circumstance

the eigenvalue conditions constitute only necessary criteria and

a direct calculation of equation (29) is necessary.

What has been demonstrated of importance in this section is that

mover-stayer mixtures do not necessarily imply clustering on the

main diagonal; in fact, under-prediction of the corresponding elements

in a Markov chain can occur. Thus, a failure to observe clustering
in an empirical process doe; not rule out the possibility that the
process was generated by a mover-stayer mixture, as long as some |
eigenvalue of ﬁ(O,A) lies in the region of reversal (Figures 2,3).
However, a failure to observe clustering when no eigenvalue lies in
this region would rule out the possibility that the underlying model
is mover-stayer. In particular, when qllleigenvalues are distinct,

real, and positive, clustering must occur when the empirical process
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IV. . A CONTINUOUS MASS DISTRIBUTION AND CLUSTERING
Consider the class of mixtures of continuous-time Markov

chains having transition probabilities given by (8) and (9),

i.e., by

fwelt(M-I)

du(2) 34
O .

P (0,t) =
u( )
where the rate parameter X is distributed in the population according
to the probability measure u(A) via the relation,

Prob(A<c) = ? du(r) . ' o ‘ (SSj
0 | | 4

Even without specifying p()) further we can make a rather general
statement about clustering for this mixture process. In particular,
Cif Pu(o;) has distinct, real, positive,eigenvalueslo,then for any

k and any spacing interval A we have

trace Puk(O,A) - trace P (0,k8) <0 . (36)

Thus, inequality (21) holds and clustering must occur (see Appendix
1). A particularly important consequence of this resﬁlt'is that
if an observed matrix ?(O,A) satisfies the noted eigenvalue condition
but inequality (36) is reversed, no model of the form (34) could
have generated the matrix.

For arrays PM(O,A) with complex eigenvalues, a reversal of (36)
can occur but the conditions for this are complicated and vary with
the parametric specification of dpu(X), the order of the matrix, and

the eigenvalues themselves. To illustrate a reversal and report

some conditions which make it possible, we consider the particular
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case of order r < 4 and gamma distributed mixtures, i.e., du(A)
defined by (10). |

To clarify what is at issue in producing a reversal it is
convenient to express the left-hand side of (36) in terms of the
eigenvalues of M-I and the mixing measure du(A). To this end

let {Si(t)}, 1 <i <71 be the eigenvalue of Pu(O,t).. We then have
. .
trace PU(O’A) - trace Pu@,kA)

8 k(A) g
17 i=

il
™M

i 1
Since Pu(O,t) is defined by (34), its eigenvalues aré mixtures of

ATZ; At (M-1)
fe .

the eigenvalues e 0 In particular

Atz

=

8; (t) = [ e du(x) , i=1,...,r - (38)
0

where {zi}, 1<i<r, are the eigenvalues of M-I. With du(A) specified

by (10) we obtain for (38)

. . a ]
Gi(t) =[-S—*_—E-Z-l~] s 1 <i<<r. (39)
j .

Thus equation (37) reduces to

e
Z B<Az.| - |8 KAz, J
i=1]1 i B 1} .

di(kA) . | | (37].



31

Now, a matrix of order r = 4 can have only a single pair of
complex conjugate eigenvalues; thus, necessary conditions on
o, B, A, and {zi} which determine the sign of expression (40)

can be presented as conditions which determine the sign of

8 8 - |
{B-Az,} ) [e—kA'z‘“.“} (41)
1 ’ .

for the complex eigenvaluellzi, A numerical evaluation of (41) was
performed for k = 2, 3, and 4; for (a,8) combinations defined by the

list : ' : -
8 = .2, .5, .75, 1, 1.5, 2, 3, 4, 6, 8;

and for Az = x + iy taking on values on the grid defined by

-7 -k (.1, k

1+ g (L1, ]

0, 1, 2,..., 10

>
]

I

<
1

0, 1, 2,..., 14.

These calculations reveal the (o,B) paifs for which it is possible
for (41) to be positive for some complex number that is an eigenvalue
of a 4 x 4 matrix M-I, with M stochastic. The results of this

exercise are reported in Figure 8. In particular, a necessary.

3 g
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condition for (41) to be positive is that (a,B) lie in the

shaded region of the figure.

For a given (a,B) pair such that (41) can be positive we wish

to characterize the eigenvalue region Az = x + iy for which (41) is,

in fact, positive. Recall that the restriction
1 1 ‘ . _
TG+ P S arg (82) s, (42)

together with its symmetric counterpart below the x-axis, is a
necessary condition for Az to be an eigenvalue of an r x 1 intensity
matrix (Singer and Sﬁilerman1976a, pp. 10-12). Inequality"(42) with r=4
restricts the eigenvalue region to that portion of the complex
plane below the 45 degree line in Figure 9. The bent line which
defines the lower boundary derives from two further considerations.
First, the segment of this line closest to the origin arises from
the simulation calculations discussed above. The steeper rise,

to the left of the bend, is due to an asymptotic argument described-
in Singer an&:Spilefman (1977, p. 30). Thé slope of this line is
-tan(w/12) which méans.that if M, and hence M-I, has complex
conjugate eigenvalues with a sufficiently smali imaginary part,
(41), and théreby (40), will be negative for all A > 0. In

particular, this will be the case if



Figure 8. Region for which Equation (41) can be Positive?.

8Shaded area shows (a,8) values for which equation (41) can be positive.
Calculations are for complex eigenvalues of 4 x 4 stochastic matrices where
u is a gamma mixture with parameters (a,B8) and k = 2,3,4.
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1] Y 4
tan"1| 21| < %% - (43)
X,
J '
where zj'= X; + iyj are eigenvalues of M-I.

With this characterization of the region where (41) will be
positive, it is a straightforward matter to exhibit concrete gamma

mixtures of Markov chains for which, for example,
o 2
trace Pu (0,A) - trace Pu(O,ZA) >0

all A > 1. - ' -

Example 3. Suppose M is a 3 x 3 circulant matrix

with a; = .3332, a2 :-:6620, ag = .0448. Then M-I has eigenvalues

zy = 0, zp = -1 +.,51, Zg = -1 = .5i. The numerical calculations

described above reveal that for A= 1 and p{(iA) a gamma measure wifh'

trace Puz(O,l) - trace PU(O,Z) = 3.8 x 10-4 > 0.



A
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~
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i
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5 -4 ~3 ~2 -1 -lo
Figure 9. Region for which Equation (41) is Positive.a
8Shaded area shows eigenvalue region for which equation (41) will be
positive, Calculations are for uy a gamma mixture with_q 6, B = 1.
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Additional calculations and reference to (43) indicate that for

A >.86
trace Puz(O,A) - trace Pu(o,zA)'> 0
while for spacings A < .86 the reverse of this inequality holds.

V. A SEMI-MARKOV MODEL AND CLUSTERING

In each of the preceding mixture models if
PU(O,A) contains only distinct, real, poéitive eigenvélues,
clustering on the main diagonal is guaranteed; i.e., a reversal
of (le cannot occur. Moreover, this result is rather general,
holding for matrices PUULA) of any order, all values of k in (21),
all spacing intervalé A, and any heterogeneity formulation based on
a diﬁtribution of rates of movement.12 - Overprediction of the main
diagonal elements bf a Markov model can occur in a mixture formulation
only if matrix PU(O’A) has negative rTeal or complex eigenvalues. |
Further, in a continuous-time mixture overprediction can occur only
if there are complex eigenvalues.

For practical purposes it would be useful to know what
préportion of transition matrices constructed from observations on
a social process contain only distinct, reél, posifive eigenvalues.
Whiie wé have not addressed this question in a systematic fashion,
our experience from ekamining published mafrices suggests that upward
of 90% of arrays constructed from sociological data have distinct,
real, positive eigenvalues. Our results associating clustering with

heterogeneity are, therefore, strong statements with respect to data

analysis. _— -
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We hasten to add that there is no obvious substantive
reason as to why phenomena such as job turnover and
geographic migration, for example, should be associatéd
with the general class of matrices having distinct,
real, positive eigenvalues. However, a proper subclass of these
matriées for which there is some meaningful interpretation is the
class of totally positive matrices. Such matrices, in addition to

having distinct, positive, real eigenvalues, satisfy the determinant

inequalities
rp . P Y.
1131 1ljk
det . . > 0 -
P: - R s
] Kk

for any ordered rTow indices i, < '12 < ..;< ik and éolumn iﬁdices
j1 < j2 < ... < jk’ k = 2,5;...,4. ~These matrices arise from
birth and dedth processes--i.e., movement at a single transition
can only take place to-nearest neighbor states, such as in an

ordered hierarchy where states are identified with prestige

|
[wes)

rankings. Thus M in a birth and death process must satisfy mij

if |i-j] > 1. 1In this circumstance,

P (0,0) = [ BAA(M_I)dg(A)
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is totally positive for every mixing distribution u and for every
A > 0.
A specific setting for which this class of models forms
a natural initial baseline is the study of careers in hierarchical
organizations such as a civil service.bureaucracy or an industrial
firm. In this connection see S, Stewman's (1875) description of
promotion patterns.in the Michigan State Police.

We undefscore the importance of our resulfs about eigenvalue
conditions by pointing out that when P(0,4), having distinéﬁ, real;

positive eigenvalues, arises from a semi-Markov process, the

reverse of equation (21) can occur. Further, if (21) hoids,
this rules out a semi-Markov process with gamma aistributed
waiting times, i.e., equafion {18), and constitutes evidenée for
heterogeneity.13 If the reverse of (21) is found, this rules out
any mixture model--mover-stayer or continuocus mass distribution--
and constitutes evidence fof a semi-Markov process (among the
classes of models we have considered in this paper).

To provide the reader with the flavor of the argument regardiﬁg
over-prediction of the main diagonal elements of the semi-Markov

procegs (18) by a Markov model, we sketch the proof of
k
trace P (0,A) > trace P(0,kA) (44)

(i.e., a reversal ofv[Zl]) for the case k = 2 with P(0,A) a mafrix
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having distinct, real, positive eigenvalues. Define
- w 3 n
U(t,Vi) = z [Fn(t) - F]’l"‘l(t)‘] Vi
n=0 '
where Fn(t) - Fn+1(t) is given by (17) and v; is an eigenvalue of

matrix M. u(t,vi) is then an eigenvalue of P(0,t). Thus,

2 T, -
trace P (0,A) = I u (A,viL

i=1

and

trace P(0,24) = u(2a,vy).

o
}—

i
Now, for any real number v ¢ (0,1) we have (see note 6)

)
uZ(A,v) - u(2a,v) = e~ 2RA [%osh BAVYV + i sinh SA’;]
. v -

—e B osh 288vv + L sinn 28A»fvj
- v

which, after some algebra and use of double-angle formulas, reduces

to
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.
uZ(A,V) - u(24,v) = e—ZBA ]

sinh? BAVY lléx

This expression is positive for all v ¢ (0,1), 8 > 0, A > 0, 'Finally,

observe that for the eigenvalue vy = 1, uz(A,vl) - u(ZA’Vl) =1 -1-=0.

Thus

trace PZ(O,A) - trace P(0,24) =

[

i=1

LZ[A,Vi) - u(ZA,v.i)j}
L A .

= 0 + ; [%Z[A,v_) - u(ZA,v.{} > 0.
i=2 1 1
A proof of (44) may be constructéd along similar lines for

k = 3, 4 and any matrix M having.distinct, real eigénvalueg.

~ Thus, we obtain rather general results; namely that for a semi-
Markov process with gamma distributedlwaiting times, there always
will be a reversal of equation (21)--for k = 2, 3, 4,--1if
P(0,A) has distinct, real, positive eigenvalues. With complex
eigenvalues it is possible for (21) and a reversal of.(21) to

both occur, the particular outcome depending on k, B8, and

Ay A ey
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the region of the complex Plane in which the eigenvalues lay.
Determination of these conditions requires a numerical exercise
of the sort illustrated in the preceding section with the continuous

mass distribution function.

VI. CONCLUSIONS

We have sought to demonstrate in this paper that the
familiar phenomenon of clustering on the main ﬁiagbnal is an
inherent consequence of the structure of certain model types.
Furthér, while it has not to our knowledge been discussed
previously, underprediction of the main diagonal elements of a
Markov model should be associated with other kinds of stochastic
models that are also applicable to social processes. Our }esults
are strongest for matrices ﬁ(O,A) having distinct, real, positive
eigenvalues, which happens to be the most common situation with
respect to data from a social process.

In particular, if a matrix ?(O,A) satisfies this eigenvalue
condition, then if it arises from a heterogeneity formulation--
whether mover-stayer or continuous mass distribution--a reversal of
(21) cannot occur; that is "clustering on the main diaganal” is a
consequence of the model's structure. If a matrix ﬁ(O,A) arises
from a semi-Markov process with gamma-distributed waiting fimes,
»then a reversal of (21) will always occur. (Even in the case of
diétinct, real, positive eigenvalues wé cannot make a general
statement about all semi-Markov formulations,—és could be stated
 for heterogeneity formulations; it is possible that a semi-Markov

model with a different waiting time distribution function would be
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consistent with (21). Lacking appropriate general theorems
about semi-Markov processes, one must attempt to carry out the
sort of proof outlined in the preceding section for different
parametric formulations of this model type.)

Main diagonal conditions--whether clustering or uﬁderprediction
in relation to a Markov process-- constitute one sort of empirical
regularity that can be used to advantage in the activity of model
discrimination. Stated generéily, by mo&el discrimination we |
mean a set of procedures which would allow a researcher to choose
among competing model types on the basis of a few strategic obser-
vations on an empirical process. Qur findings in this paper
contribute to model discrimination techniques in that, under
appropriate eigenvalue conditions, we have shown that main ‘diagonal
relationships can be used to reject a heterogeneity formulation or
to reject a particular semi-Markov model.

This paper does not, however, constitute a concerted effort
to develop model discrimination procedures. _That task is a
difficult one, and different criteria may have to be developed
depending on the sort of data one can collect on an empirical
process. (One immediate consequence of our concern with ﬁodel
,discrimination is therefore a heightened interest in questionnaire
and data collection design, to ensure that the proper information for
differentiating among competing models of an empirical process will
be available.) It is our intentioﬁ to address this constellation

of issues in the near future. -~

Vet
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APPENDIX I

Theorem: If z.is a real eigenvalue of matrix M-I, where
M is stochastic, and p(A) is an arbitrary probability measure on

[0,2), then
§5(0) - 5(kA) < 0

for k = 2, 3,... and all A > 0, where

oo

s(a) = [ M2

du(r).

(el

Proof: Let A be a random variable with distribution function

c
Prob(A<c) = [ du(A). Consider the  random variable Y, defined
0

14
in terms of A according to Y = eAZA, where A > 0 and z < 0.

With these Tandom variables we can write

A

A \
EY = E(e * ) = Az

e hdu(n) = §(A).

Now introduce the convex functions fk(x) = xk, k=2, 3,.;.; where

x = 0, and observe that a direct application of Jensen's inequality

(Feller 1971, pp. 153-4) yields

sk(a) = En* < By = B = sy
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NOTES

1By the symbol """ over a matrix or over entries in a
matrix we shall mean estimates made directly from observations.
Entries without this symbol will refer to calculations from a

mathematical model.

2With the discrete-time Markov chain, the waiting time to

a move follows a geometric distribution. The exponential aistribu—
tion is the continuous-time analog of the geometric, in the sense that
the conditional probability of an event occurring in time interval
(t, t+dt), given that no event occurred prior to time t, is independent

of the value of t.

3This formulation arises as folloﬁs. Assume that the duration
time in a state is exponentially distributed with a?erage waiting
time equal to 1/A. An equivalent statement is that moves occur in
time according to a Poisson process in which the probability of
making exactly k'moves during (0,t) is given by gk(O,t)
= -(At)ke'“/kz, k=0, 1, 2,'.... If M is the transition matrix
follo&ed at each move, then P{0,t), the transition matrix which
represents population movements between times 0 and t, can be viewed
as a weighted average of the terms Mk, k - 0, 1, 2,..., in which

the weights are given by g, (0,t). That is -

g —— e
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oo k ® .- k -At k
P(0,t) = £ g (0,)M = 3 Qe o
k=0 k=0 :
e ok |
- e-At s (OtM) - e-ktektM - elt(M-I) .
k=0 K

4The parameter A is not indexed by system state since we have

assumed that Ai = A, 1 =1, 2,...,T.
SFn(t) represents the probabiltiy that the waiting time for
n events to occur is less than t; that is, E (t) = & g (0,t)
' k=n

where gk(O,t) = probability of exactly k events in the interval

o<}

(0,t). Thus F (t) - F ,,(t) = IZIT gx(0,t) - nfl g (0,t)= g, (0,t),

-

and equation 15 can be viewed as a sum of probabilities for making

k=20,1, 2,... transition events, each wéighted by Mk, the transition’

matrix followed when making k moves.

6The power series is initially constructed in scalar argument,

u(t,s) = ZEFn(t) - Fn+1(t)] 5"

' o o 2
Bt |y (8t/5) " L Ly (BYS) il
n:O (zn)! ‘/_6- n=0 (2n+1)1

e Bt |cosh 8t/5 + L sinh Btv/s |.
' /8

This .scalar valued analytic function can be extended to an analytic

function of matrix argument by any of the procedures in Singer gnd
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-Spilerman (1976).

"The matrices P(0,kA), k = 1,2,... in (19)-(21) refer to
transition matrices constructed from an arbitrary discrete-state
stochastic process. In particular, the notions of clustering
defined in (19)-(21) make sense for general discrete-state

processes. The matrices defined by (3) and (18) are specializations |,

to mixtures of Markov chains and to a special parametric family of |

semi-Markov processes, respectively.

8Because each section of the shaded region is convex and
contains the eigenvalues 1 and v (or 1 and Vv, the complex conjugate
of v), s*1 + (1-s)v [and s*1 + (1-s)Vv] are also in the shaded region
for any se(0,1). Thus the eigenvalue condition on M for a reversal
of (21)--i.e., presence in the shaded region of Pigure.z-—pértains

as well to the eigenvalues of PU(O,A).

9Because the shaded regions now -depend on s they pertain to
the eigenvalues of M, not PU(O’A)'
.10 . . . ' . s :
Stated in terms of matrix M we need require only distinct,'
real eigenvalues. This is because each eigenvalue zs of M-I is ;. -

transformed into an eigenvalue 6i(t) of P, (0,t) via the relation

co
§.(t) = [ e
* 0
any real argument x, and since the integration may be viewed as a

Atzi ] .. i
1du(k). Since eX takes on positive values for

weighted average of different exponentials, 6i(t) will be positi?e

for real, negative ToOts zi + 1 of matrix M.
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11 :
A matrix of order r = 4 with a pair of complex conjugate j

eigenvalues will have two real roots. By Jensen's ineqnality
(Appendix I) the real roots add negative terms to the sum (40). A
necessary condition for (40) to be positive is that (41) be positive.
. A sufficient condition is that the sum of positive terms in (40)--whi9h§
correspond to complex conjugate roots--exceed the sum contributed to f.
(40) by the real valued roots. ' . ‘ ;

2 . -
1 We-remind the reader that we have considered only forms of :

heterogeneity that can be expressed in terms of individual differences!

in the rate of movement.
13 . . L .
®Our conclusions with respect to heterogenelty formulations
are general, not dependent on the parametric specification of
heterogeneity (other than the fact that mixing is on the rate of
movement term). Our results with regard to semi-Markov processes

are specific to the formulation we have analyzed, namely, gamnma

distributed waiting times.

ldr¢ matrix M is stochastic then every real eigenvalue z of

M-I will be negative or zero.
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