
355-76

NSTTUTE FOR
RESEARCH ON
POVERTYD,scWl~~~

AN EQUILIBRIUM MODEL OF URBAN POPULATION

AND THE DISTRIBUTION OF INCOME

John Yinger and
Sheldon Danziger

~
'~~~.}.. ~

,))('
/ . !.\
J!,." .,,'
t.'~i
"::~~

UNIVERSITY OF WISCONSIN ~MADISON .~lti

_.

. . - .

-~. ----~ ---~-~~~



!
!
l
T
-~

j
'~

,
,;

i
!

1
!

AN EQUILIBRIUM MODEL OF URBAN POPULATION
AND THE DISTRIBUTION OF INCOME

John Yinger and Sheldon Danziger

July 1976

This research was supported by funds granted to the Institute for
Research on Poverty at the University of Wisconsin by the Department
of Health, Education, and Welfare pursuant to the provisions of the
Economi~ Opportunity Act of 1964. The opinions expressed are solely
those of the author.

---- ~--~~------------



ABSTRACT

The relationship between the level of income and the population of

an urban area is a familiar concern in urban economics. In an equilbrium

model of urban location, households will migrate among urban areas until

real income levels are equalized across all areas. This equality of.

real incomes implies differentials in money incomes across urban areas.

Money incomes will be higher in urban areas with larger populations

to compensate households for the higher housing prices and higher

transportation costs in those areas.

Existing models of the relationship between income levels and

urban population assume that there is a homogeneous labor force and,

hence, a world in which there is no inequality in the size distribution

of income within an urban area. In this paper we model a world in

which there are two classes of workers and examine the relationship

between urban population and the distribution of income between these

two classes. In particular, we determine what happens to the degree

of inequality in money incomes as urban population increases, if each

class of worker is compensated for the higher costs associated with

larger urban size.

The analysis in this paper is based on a mathematical model of an

urban area which allows us to calculate how the income distribution--as

measured by a Gini coefficient--changes as urban population changes.

This model is solved numerically for a variety of assumptions about

the initial size of the urban population and its division between skill

classes, initial income distribution, commuting costs, and several other

parameters. The findings of the simulations using this model are then

tested using data for a sample of metropolitan areas.



AN EQUILIBRIuF1 MODEL OF URBAN POPULATION
AND THE DISTRIBUTION OF INCOME

The relationship between the level of income and the population

of an urban area-~s a familiar concern in urban economics (Mansfield ~949; Evans

1972; Hoch 1972; Rfehardson 1973). In an equilibrium model of

urban location in which the labor force is both homogeneous and perfectly

mobile, households will migrate among urban areas until real income

levels are the same for all households in all areas. This equality

of real incomes implies differentials in money incomes across urban

areas. Money incomes will be higher in urban areas with larger popu-

lations to compensate households for the higher housing prices and

higher transportation costs in those areas

In the first section of this paper, a mathematical model of an urban

area with a homogeneous labor force is presented. Relationships are de-

rived between urban population and the level of income within an urban

area, and between areas of various sizes and the distribution of income

levels across areas. This one-skill-class model is simulated and tested

using data for a sample of metropolitan areas in an attempt to gauge the

magnitude of these relationships. In the second section, the model is

respecified under the assumption that there are two types of workers. As

population increases, each class of worker must be compensated for the

higher costs associated with the larger urban size. These costs are shown

to differ between the skill classes. Thus, the degree of inequality in

money incomes within an urban area differs across urban areas when the

. ---------_ ...._-_.- -------_ .. ---
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real income level of all workers of a given skill class is constant across

areas. The ~elationship between this intraurban degree of inequality and

urban size is shown to be a function of the initial population size and

its distribution between the skill classes, the initial income

distribution, commuting costs, and several other parameters. The

two-skill-class model is also simulated and tested with data for

a sample of urban areas.

1. One-Skil1-C1ass, Open Urban Model

The Level of Income Within an Urban Area

By assuming that migration among urban areas is costless, an open

model of the urb~n area implies that, in equilibrium, members of a given

skill class who have the same tastes receive the same utility in all

cities. Our analysis is simplified by two additional assumptions:

(a) that members of a given skill class all have the same tastes,

and (b) that some members of every skill class live in every city.l

In an open model with one skill class, money incomes increase

with the population of an urban area. As more people move into an

urban area, the prices of land and housing at all locations in the

area are bid up,and the boundaries of the city are extended. In

short, both the price of housing and the average commuting distance

in the city increases. Thus, workers will receive the same real
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income--and hence the same utility--after the population increase

as before, only if their money incomes rise to reflect the. higher

cost of living. This model, like those of Alonso (1964), Mills

(1967, 1972a, 1972b), Muth (1969), and others, simultaneously determines

the prices and quantities in each of four urban markets: housing,

labor, land, and capital.

The housing market is the central focus of the model. On the

demand side, households are assumed to: have a single earner who

works in the central business district (CBD) and to face the following

maximization problem:

Maximize

Subject to

U (Z,H)

y Z + P(u)H + tu
(1)

2
where Z is a composite consumption good with a price of unity;

R is units of housing services; Y is money income; u is miles from

the CBD that the household lives; P(u) is the price per unit of

housing services at location u; and t is the per mile cost of a

round trip to the CBD.

Two further assumptions'complete the demand side of the housing

market: first, that the utility function is Cobb-Douglas, or

U (Z,R) (2)

and second, that t consists of operating costs (to) and time costs

t = =
o

SOOc + (.25w/MPH}Y (3)

--------
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- where cO is operating costs per mile, w is the value of travel time

as a fraction of Y, and MPH is the speed of commuting.3

The central relationship in the model--the relationship between

location and the unit price of housing--can be derived from this

household maximization problem. The demand function for housing is

derived from the first-order conditions:

H = (l!k)(Y - tu)/P(u) (4)

where k = (a + 6)/8. The substitution of this demand function and the

analogous demand function for Z into (2) leads to the following indirect

utility function (see Solow 1972):

v = [(a/(a + S»(Y - tu)]a[(l!k)(Y - tu)/p(u)].B (5)

Household mobility insures that utility (=V) will be the same at all

locations within an urban area. Furthermore, if utility is constant

at all locations, (5) indicates that

where

PCu) = Cy IV) 11 s(Y-tu) k (6)

y

The price-distance function (6) is a market locationa1 equilibrium

condition that defines the pattern of housing prices that 'makes

households indifferent among locations within a city.
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Following Mills (1972), the supply of housing services is assumed

to be given by a Cobb-Douglas production function

(7)

where K stands for capital and L stands for land. The equality of

the supply and demand for housing is guaranteed by the equation

H (u) = N(u)H(u)
s

(8)

where N(u) is. the number of households at location u--each of which

consumes H(u) units of housing services.

The production function (7) and the assumptions of perfect

competition lead to demand functions for land and capital which are

found in the usual way from (7):

aP(u)H (u)!L(u) = R(u).
s

where R(u) is the land rental rate, and

(1 - a)P(u)H (u)!K(u) = rs

where r is the capital rental rate.

(9)

(10)

It is also assumed that a fixed number of radians of land (~) are

available for residential development. Thus the supply of land is

L(u) = ~u. (11)

A final assumption about the land market is that residential uses must

outbid agricultural uses for land so that the urban area extends to the

point at which



R(u) == R

6

(12)

where ~ is the agricultural rental rate and u is the outer edge of the

urban area.

On the assumption that capital is supplied by a national market,

the supply function for capital is

r == cons tant. (13)

(14)

In the labor market, an exogenous demand for N workers in the

CBD is assumed. Since the supply of workers from location u is equal

to N(u), the equality of supply and demand in the labor market is

insured by

~OUN(U)dU == N.

Equation (14) completes the model. To prove that income must

rise as population rises so that household utility remains constant,

we determine how V and N ate related to the other variables in the

model. From equations (7), (9), and (10), the price-distance

function can be expressed as

where

P(u)
a

= CR(u) (15)

The relationship between the price-distance and rent-distance functions

defined by (15) is an important feature of the model, indicating that
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statements about land rents can be easily translated into statements

about the unit price of housing and vice versa. For example, the

unit price of housing at the outer edge of a city, which equals P(u), is

defined as the opportunity cost of housing (or P). According to (15), this

opportunity cost is related to the agricultural rental rate:

P(u) = P (16)

Substituting (16) into (6), the opportunity cost of housing is

or

(17)

v = (18)

Equation (18) indicates the relationship of utility, income, and

city size.

A price-distance function that does not depend on utility is

derived by substituting (18) into (6),

P(u) = prey - tu)/(Y - t~)]k. (19)

Now using (15) and (16), a rent-distance function that also does

not depend on utility is,

R(u) = R[(Y - tu)/(Y - t~)]b

where b = k/a.

(20)
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The relationship between population size and the other variables

in our model is now apparent. Substituting (9) and (10) into (7),

where

H (u)
s

I-aDR(u) L(u) (21)

D = A«l--
I-aa)/ar) •

N =

Substituting (4), (8), (19), (20), and (21) into (14) yields

~l\R.a<f!u (Y _ tu)b-l/ (Y _ tu) b] du

= (22)

Equations (18) and (22) describe the relationship between urban

population and the level of income. Although they cannot be explicitly

solved for the income level, Y, the effect of changes in population.

on the income level can be determined by totally differentiating the

two equations with respect to V, Y, u, and N (remembering from (3)

that t depends on Y), and solving for dY/dN. Since this derivation

requires exogenous values for dV and dN, two alternative interpretations

of the results are available. First, the differentials can be

interpreted as changes in a given urban area over some time period.

In this case, dN is simply the change in the population of the area

and dV is the change in utility in the system of urban areas (as

measured, say, by the changes in median real income). Second, the

differentials can be interpreted as differences between areas at a

point in time. In this case, dN is the difference between population

-- _._-------_ ..._--~--------------
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in an urban area and population in the next largest area, and, since

an open model requires equal utilities across areas, dV is equal to

zero. We will simplify our presentation by assuming that dV = 0,

but an expression-for dY/dN can be obtained for any other value of

dV.

Differentiating (18) yields

dY = [t/(l - tY~)]du. (23)

This equation has strong intuitive appeal. For example, a household

at the outer edge of an urban area must receive the same utility as

a household at the outer edge of an area with a larger population.

Since the unit price of housing equals P at each boundary, regardless

of population, the diff~rence in spending between two such households

consists entirely of commuting costs. Thus, as indicated in equation

(23), the income compensation that accompanies a population increase

is based on the commuting costs between the original city's edge and

the city's edge after a population increase (or tdu). However, since

a dollar increase in Y increases the time costs of commuting to u,

y­
such a dollar of compensation is only worth (1-- t u)

td; must be divided by (1 ~ tY~) to obtain the desired income compensation.

Differentiating (22) yields

dN = (R$/t){(l/t)[Y/(Y _:tu)]bdy [b/t(b + l)][Y/(Y - tu)]b+l

·,,[dY(l ..- tYu) - td~] - [dY(l - tY~) :- tdu]/t(b + 1) - du}. (24)



Setting dV = 0 and substituting (23) into (24) yields

Since Y > Y - tu and b > land R and ~ > 0, it follows that dY!dN > 0;

when population increases, money incomes also increase.

The Distribution of Income Among Urban Areas

The distribution of income among urban areas can be determined

using equation (25). The data-required to calculate the distribution

of income levels among M areas (as measured, for example, by a Gini

coefficient) are the pairs of numbers (Nl , Yl ), • • • t (Nmt Ym)t where

the i subscript refers to area i. If the distribution of urban

populations (that is, the Ni's) and one value of Y (say Y1) are

known t then dNi = Ni +l - Ni for i = 2 to M, and Yi = Yi - l + dYi _1 , where

dYi _l is given by (25).

By making use of the rank-size rule--that the population of area

i is equal to the population of the largest area in the system

divided by the population rank of area ~~the distribution of income among

urban areas can be calculated when the income of only one area and

the population of only the largest area are known. In this case,

the distribution of urban populations is determined using the rank-

size rule and the distribution of income levels among areas is calcu-

1ated as described above •

.~---------------------_.
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Simula~ions and Empirical Results

Given values for Y, N, and the parameters in (25), the precise

relationship between income and population can be calculated. One

must first solve equation (22) for the boundary of the urban area,

u (see the Appendix), and then determine dY!dN using equation (25).

By way of example, the values of (dY!dN) and «dY!Y) !(dN!N)) calculated

in this way for four hypothetical urban areas are given in Table 1.

According to Table 1, an increase of 1000 people in area 1 leads to

an increase of $.0078 in daily income. Similarly, a 1 percent increase

in population leads to a .03 percent increase in income. As income

increases for a given population size (comparing areas 1 a~d 3, and

areas 2 and 4), this elasticity increases. Similarly, as population

increases for a given income level (comparing areas 1 and 2, and areas

3 and 4), the elasticity also increases.

These simulated values are similar to the values estimated for a

sample of 89 large Standard Metropolitan Statistical Areas .(SMSAs)

for 1960 and 1970. These areas have an average of about 250,000 male

workers, and a range from about 60,000 to 3 million workers in 1960.

Table 2 presents some simple regressions in which mean -male wages

in 1960 and 1970 are the dependent variables and total male employment

and a set of regional dummies are the independent variab1es. 4 In the

simulations of Table 1, the elasticity of income with respect to

population was between .031 and .053, while in both 1960 and 1970,

the elasticity 9f male wages was about .065.
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Table 1

Simulation of Relationship Between Income Level and Urban Population

Description of Urban 'Area ('dY/'dN) x 1000 J dYIt) I (~NlN)

1- N = 250,000 workers .0078 .m306
Y = $64 per day

2. N = 1 million workers .0025 .0392
Y = $64 per day

3. N = 250,000 workers .0101 .0312
Y = $81 per day

4. N = 1 million workers .0043 .0531
Y = $81 per day

Note: All areas are assumed to be circular with ~. 2TI radians of land
avail~ble. The value of uis calculated using the first step of the
procedure described in'the Appendix. In computing transportation
costs, t, it was assumed that workers travel at 20 miles per hour,
value their travel time at one-half the wage rate, and spend 10 cents
per mile on pecuniary travel costs. Households are assumed to
spend one~quarter of their budget on housing (k = 4), and land
receives one-fifth of housing expenditures (a = .2): The agricultural
rental rate is set at $1600 per square mile per day. These assumptions
are discussed in more detail in the next section."
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Table 2

Estimation of Relationship Between Wage Level and Urban Population

• Mean Male Wage, 1960 Mean Male Wage, _1970I
~

j
I Constant 7.898 8.242
!
"

t Male Employment 0.0646 0.0663
I (5.77) (6.72)
I
I! Northeast 0.0206 0.0506

!I (0.83) (2.36)
I,.

I Northcentral 0.0754 0.0798I (3.09) (3.76)
1
l West 0.0947 0.0711I (3.58) (3.08)
1

R
2l .402 .461~

Note: Th~ sample contains 89 large SMSAs. The regressions are
estimated using the logarithms of the wage and employment levels;
t-statistics appear in parentheses be~owthe regression coefficients.
The Southern aegion is the omitted regional dummy.
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2. Two-Skill-Class, Open Urban Model

The Level and Distribution of Income within an Urban Area

Statement of the Problem. Having demonstrated that in equilibrium

income levels increase with urban size~ the model developed above can be

extended to consider the relationship between urban population and the

distribution of income within an urban area. For' analyti'c manageability't

~two simplifying assumptions are made: first t that there are (july' two.

skill classes in an urban area; and second, that the distribut'ion

of income can be accurately measured" by a Gini coefficient. 5

In an urban area with only two skill classes, the Gini coefficient

is given by the formula·

(26)

where Ni is the number of households in skill class i, Yi is the

income of household's in skill class i, and the subscripts "1" and

6
"h" refer to the low and high skill classes, respectively •.

The relationship between urban population and the distribution

of income cah be determined by examining how G changes as Nl and. Nh

change. However, as shown in section 1, changes in population in

an open urban model lead to changes in income, so that the change in

G depends on changes in all four of the variables on the right-hand

side of (26). Differentiating (26) with respect to Nl , Nh , Yl , and

Yh\and rearranging terms yields the precise statement of this rela-

tionship:
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Equation (27) indicates that two elasticities are important in

determining how G changes with urban popu1ation. 7 These elasticities

are

and

The first elasticity measures the rate of change of the low-skill .

population relative to the rate of change in the high-skill population;

the second elasticity measures the rate of change in low-skill income

relative to the rate of change in high-skill income. If both of

these elasticities are equal to unity (so that (NhdNl - NldN
h

) and

(YhdYl - YldYh) are both equal to zero), equation (27) indicates that

the distribution of income does not change as urban population changes.

But as long as Nh > Nl , inequality will increase with urban population

if ~ > 1. Furthermore, inequality will decrease with urban population

if ey > 1. If both eN and ey are greater than unity (or both less than

8
unity), the net effect of a change in urban population on G is ambiguous.

In the model there is a fundamental difference between eN and ey;

the former reflects forces that are assumed to be exogenous to the

model whereas the latter is determined within the model. Indeed, the

changes in Nl and N
h

that are reflected in eN cause incomes to change.

(28)

(29)'
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~e precise relationship between urban population and the distribution

of income can be derived by examining the determinants of ey in an open

urban model.

The only previous discussion of ey of which we are aware is found

in Evans (1972). Evans argues that

There is evidence to justify the assumptions that, firstly,
the value of time spent travelling is a constant fraction
of the wage rate and this fraction does not vary with
income, and secondly, the average income elasticity of demand
for housing is equal to one so that the amount spent on
housing is a constant fraction of total income. Therefore
the amount necessary to compensate households in each income
group for increased rents and increased time spent trave1lin~r

[due to increased populatd:on J will increase proportionately
with income. On the other hand the amount necessary to '
compensate households for the increased direct financial
costs of travel will not increase with income. Hence we
would expect that the increase in wages necessary to compensate
households for living in a larger city would be proportionately
smaller but absolutely larger, the higher the household's
income (p. 55).

In other words, as population increases the income of the poor will

increase proportionately more than the income of the rich.

Evan's argument that ey is greater than unity can be formally

related to our model. Let u* be the border between the areas

inhabited by a low- and a high-skill class and note that competition

insures that the price-distance functions of the two skill classes

9intersect at u*. Individuals in a given skill class are assumed

to be indifferent to their location within an urban area or

across all areas. Thus, the value of ey can be -derived by. com-' :.

paring the compensation received by a low-skill household that

moves from this skill-class boundary, u*, in one area, to the u* in

a more populous area, with the compensation received by a high-skill

household making the same move. Both these households will face an
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identical increase in both commuting distance (the difference between

the u*'s in the two areas) and in the unit price of housing (the

difference between the two P(u*)'s). Since Evans assumes that total

commuting expenditure over a given distance increases less than

proportionately with income, it follows that the low-skill household

will receive a proportionately larger compensation for the move than

the high-skill household (that is, ey will exceed one).

10Even if Evans' empirical assertions are true, however, there are

three errors in his argument. First, the high- and low-skill households

may commute at different speeds, so that the per-mile time eost of

commuting may be different for the two classes even if the valuation

of travel time (as a proportion of income) is the same (see equation

(3)). If high-skill households commute faster than low-skill households,

then Evans' argument understates the value of ey; if high-skill

households commute more slowly, then Evans' argument overstates ey:

Indeed, in the latter case it is possible that ey will be less than one.

Second, because population density can change, the area inhabited

by low-skill households may decrease in size even if the low-skill

population increases. In this case, households living at u* face

lower commuting costs in cities with larger populations, so that the

compensation for commuting costs, which is less than proportional to

income, is negative, and low-skill households end up with a smaller

compensation (as a proportion of their income) than the high-skill

households. This case occurs when the high-skill population increases

much more rapidly than the low-skill population, so that the low-skill

population is outbid for housing inside the original u*.
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Third, Evans' argument that there is a unitary elasticity of

demand for housing with respect to total income has the implausible

implication that people with a given total income spend the same

amount on-housing regardless of their commuting costs. A much more

plausible assumption is that there is a unitary elasticity of demand

for housing with respect to income net of commuting costs. This

alternative assumption is equivalent to the assumption of a Cobb-

Douglas utility function, as seen in equation (5) above. The

difference between total and net income is important becaese Evans

argues that t increases less than proportionately with total income

so that Y - tu increases~ than proportionately with total income.

Thus, the compensation associated with housing expenditures (which

depend on Y - tu) will increase more than proportionately with total

income.

In summary, when du* is positive, total compensation has one

component (commuting costs) that increases less than proportionately

with total income and another component (housing costs) that increases

more than proportionately with income,so that it cannot be determined

a priori whether ey is greater or less than one. If du* is

negative, this indeterminacy remains since the relationship between

the two components of compensation is reversed; commuting

costs decrease less than proportionately with income and housing costs

increase less than proportionately with income. Thus, the relationship

between population and the distribution of income, which depends

on both ey and eN' is also indeterniinate a priori. We will

-----~---~----------
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therefore extend to a two-skill-class economy the open urban model

developed above and determine more precisely how the distribution of

income is related to the many parameters of the model.

The Model Extended o The mathematical model discussed in section 1

can how be extended to consider two skill c1asses.,C1early, each class

lives in that part of the city where it outbids the other class for

housing. In this model, the high-skill class will always live in the

outer part of the city and the low-skill class will live in the city

11center.

Three changes are required in order to extend the mathematics to the

12
two-skill-class case. First, the equations "mu8t be-dGJib.~~..giv~n

the subscripts "1" and lIh" to refer to the low- and high-skill groups,

respectively. Second, the e~uation for the opportunity cost of housing

(16)--and the equivalent equation for land--must be revised so that

the high-skill ~lass extends to the outer edge of the city, or

(30)

and the price-distance function of the low-skill class meets the price-

distance function of the high-skill cllss at u*, or

(31)

Substituting (30) and (31) into the price-distance function deriVed

earlier (equation (18) with subscripts added), we have

(32)

and

.~~~-----~-~-"_._---~-~----
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The third change in the one-ski1:l-class model is to add ski1l-

class segregation to the labor market by replacing equaticin-:,(14')'

with

determine the relationship between population and the distribution of

The four equations, (32),. (33), (36), and (37), can now be used' to

and

(u
:Ju* 'Nh(u)du = Nh."

Following the derivation of (22), these two equations lead to

and

(.34)

(35)

(36)

(37)·
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income. By differentiating the four equations with respect to VI'

Vh , Y1 , Yh , Nl , Nh , u*, and u (remembering from (3) that t
1

depends

on Y1 and t h depends on Yh); by setting dVl = dVh = 0'; and by treating dNl

and dNh as exogenous, a synt("\m of four linear equations in the four

uninowns, dYh , dYl' ..du*, and d~, is obtained. The solutions to .this

set of equations indicate the changes in income for each class and

in the areas inhabited by each class that accompany any given changes

in the populations of the two classes. The solutions are too complicated

to yield qualitative results, so t.he fo~r equatipnsare relegated to the

Appendix and the system is analyzed numerically.

Simulation Results

Numerical analysis of the model was carried out in four steps. First,

values of the parameters were chosen. As described below, several

different sets of parameter values were used. Second, the values

for u* and if ·that result from the parameters chosen in the first step

were calculated. The iterative method used for these calculations

is described in the Appendix. Third, the set of equations in the

Appendix was solved for dYl , dYh , du*, and du, using a packaged

computer program. Fourth, the effect of changes in urban population

on the relative incomes of the two skill classes was determined by

substituting dYland dYh into the formula for e ,
y

equation (29).

Similarly, the value of dG, which summarizes the effect of a

population change on the distribution of income, was calculated using

(27) •

------_._----_.._-_. --------------._---
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For convenience, the parameters of the model are divided into two

types. The first type defines· a particular city and the second type

describes the market conditions that hold in all cities. The first type

of parameter consists of income and population levels for the two skill

classes, the rates of population growth for the two skill classes, and

the number of radians of land in the city. For_the initial simulations,

two different divisions of a population into skill classes were examined.

The first division considers the bottom 20 percent of the income distri-

bution to be in the low-skill class and assigns an income of $15 per

day to the low-skill class and an income of $64 per day to the high-skill

class.
13

The second division. considers the bottom half of the income

distribution to belong to the low-skill class and assigns an income of

$28 per day to the low-skill class and $81 per day to the high-skill class.

Each of these divisions of a population into skill classes 'is then

simulated for an area with 250,000 workers. and one with one million

workers. Note that the division of the population into skill classes is

implied by the assumption about the income distribution; for ~y.a~ple)

50,000 workers make up the bottom 20 percent of the income distribution

in an urban area of 250,000 werkers.

All four combinations of an income distribution and a total popula-

tion are then simulated for a circular area of 2~ and a semi-circular area

of ~ radians of land. Finally, each of the eight areas is simulated for

three different assumptions about the growth rates of the two skill classes.

The first assumption is that both groups grow at a 10 percent rate, the

second is that the low-skill class· grows at a 5 percent rate and the high

skill class at a 15 percent rate, and the third is that the low-skill class

grows ata 15 percent rate and the high-skill class at a 5 percent rate.

---_._-~_._-----------
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Parameters of the second. type describe commuting costs and the

demand and supply conditions in the four markets. The values chosen

for these parameters are similar to the values chosen by Mills (1972a)

and Solow (1973) for similar simulation models. The basic set of

parameters consists of "best guesses" about the actual values of

these parameters in a typical American metropolitan area. The basic

set of parameters is as follows: agricultural rental rate

(R) = 1500 per square mile per day; share of land in the production of

housing (a) = .20; in~erse of the proportion of net income spent on

housing

o(c
l

and

for both skill classes (k
l

and ~) = 4.0; per mile operating costs

oc
h

) = .10; commuting speed OMPH
I

and MP~) = 20 miles per honr;

valuation of travel time (WI and wh ) = .5 times the wage rate.

Given this basic set of parameters, four sets of simulations were

performed.

Basic Simulations: This set of simulations examines the values
of e and dG generated by a basic set of parameters. Thus, this set
consIsts of simulations of eight basic urban areas (each with three
different patterns of population growth rates) using the basic set of
market parameters.

Sensitivity Simulations. This set calculates the effects
on ey and dG of changes in the values' of the commuting and market
parameters.

Asymmetrical Simulations. The asymmetrical simulations determine
the effects on ey and dG of different assumptions for the two skill
classes about commuting costs and the proportion of net income spent
on housing.

Actual City Simulations. The final set of simulations calculates
the values of ey and dG using values of the parameters Yl' Yh' Nl , Nh ,

~~~~~_.~----_._~~~~~~-



dNl , dNh and ~ for actual urban areas. These simulated values are then
comparea with the actual values of ey ind dG in the urban areas.

Each set of simulations will be described in turn.

Basic Simulations. The relationship between urban population

and the distribution of income cannot be determined a priori. The value

of ey can be greater or less than one depending on the sign of du* and

the relative sizes of the ~ransportation cost and housing cost components

of compensation. The results in Table 3 show that, within the range of

parameters used for~;he basic simulation, the transportation cost

component dominates the housing cost component, and that this dominance

increases with the absolute value of du*. If dNl/Nl = dNh/Nh = .10,

du* is positive and ey is slightly greater than one. If dNl /N1 = .05

and d~/Nh = .15, the low-skill class is outbid for housing inside u*

by the rapidly growing high-skill class, so that du* is negative and ey

is less than one. Finally, if dN1/N1 = .15 and dNh/Nh = .05, then du*

is large and positive, the transportation component of compensation

is much larger than the housing component, and ey is considerably

greater than one.

Several other characteristics of the model are suggested by Table

3. First, by comparing areas of 250,000 workers with the corresponding

areas of 1,000,000 workers (such as cases I.A.1 and I.B.l) it can be seen

that ey decreases slightly as total population increases. Furthermore,

Table 1 indicates that ey decreases somewhat as the number of radians

in an area decreases. However, both these effects are small and are

not always true in other simulations (not shown).

The simulations in panels I and II of Table 3 cannot separate the

effects on ey of Y1/Yh and N1/Nh• Therefore, two additional simulations

-----_.---. -- --_._--
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Table 3
Banic Simul~tfons

Popularion Growth Rates

d~l/NlEdNl/NhE.lO dN/N1"·05,dNh/Nh"·15 dNl/~1-·15,d~h/~h-·05

D~scription of Urban Area ey du* dclc ey du* 1 dcle e.y du* dcle

I. Lo~-Skill Class is Bottom 20 Percent of
Income Distribution (11.15, Yh~64)

A. 250,000 Total korkers
(Kl-~O,OOO; Nh~200.000)

1.075 .025 .000 .927 -.025 -.066 1.468 .0751. R~dians: 9-2a .069
2. Radians: ¢=10 1.050 .021 .000 .906 -.038 -.066 1.433 .081 .069

1. 1,000,000 Total ~orkers

(K 1-2CO,OOO; Nb-oOO,OOO)
1.029 .017 .COO .889 -.051 -.066 1.403 .084 .069 \1. Radians:' y=<2TT
1.014 .012 .000 .877 -.06?- -.066 1.381 .087 .0692. Radians: ?-r.

II. Lo~-S~ill Class is Bottom Half of
Income Distribution ('1'

1a 28 , Yh-81)

A. 250,000 Total ~orkers N

(K1E!\,/"125 ,000) VI

1. R;l<.Jinns: ~·2" 1.109 .071 .000 .927 -.043 -.023 1.432 .186 .020
2. Radinns: ¢=" 1.077 .064' .000 .895 -.076 -,023 1.406 .203 .020

B. 1,000,000 Total Workers
(Ii1-:\- 500, (l00)

.000 .867 -.111 -.0231. Padiar.s: ~·2'1l 1.049 .052 1.381 .215 .020
2. R<ldians: ~-=r. 1.026 .039 .000 .845 -.144 -.023 1.360 .221 .020

III. Change IncC'me Dis tdbu tion Hold
Population Distribution Constant
(11-28, YI:,,81)

A. 250,000 Total ~orkers

(N E50 000' N -200 000)1 ' , I- ,
1.041 .031 .000 .948 -.040 -.064 1.276 .103 .0661. Radians: '¢=2r.

IV. Cha~~c Population Distribution, nold
Income Distribution Constant
('1'1-15 , '1'h a64)

A. 250,000 Total ~orker6

(N
1
-l25,000; N -125,000)

.0261. Radians: ~-2TT 1.183 .053 .00il .900 -.027 -.029 1.774 .132



are carried out usiag the basic set of commuting and market parameter~!

First, the simulation in line LA.l is repeated, varying only thei~~ome

distribution--that is, the ratio Yl!Yh • The results of this simulation,

shown in Panel III, indicate that an increase in income equality,

holding the population distribution constant ,. moves e.y closer .to··utdty. This

result has strong intuitive appeal, since a perfectly equal income

distribution (Yl = Yh) represents a one-skill-class model where, by

definition, ey is equal to un~ty. Second, the simulation in line I.A.l

is repeated, v,arying o~~y the popuJ.ation distribution-.-that is, J:h.e

ratio N/Nh • As shown in panel IV, this simulation ind.fcates that an

increase in the proportion of the population that is low-skill, holding

income dis.tribution constaat, increases ey • This resu1t.is also not

surprising; the increase in N1/Nh is equivalent to an increase in the

absolute change in 10w~ki1l workers and therefore should have the

same effect as an increase in dN1!N1 , which (as seen earlier)

increases eye

The values of dG associated with this first set of simulationo

are given in the last column of Table 3. BeDore examining these

results, it should be remembered that population changes have a

direct effect on dG, as shown in the first term in equation (27),

and an indirect effect through changes in incomes of the two skill

classes. Furthermore, the direct and the indirect effect typically

work in opposite directions. For example, a value of eN ~hat is

greater ~han unity leads, in gene~a1, to a value of ~ th~t~s ~lsp

greater than one so that, according to equation (2i) the sign of dG

-----------_. ----
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is indeterminate. However, the results in the Last column of Table 3

are unambiguous; the sign of dG is always determined by the direct

effect of the population elasticity. If eN is greater than one, dG is

positive; if eN is less than one, dG is negative; and if eN is equal

to one, dG is essentially zero. The results are true for all simulations;

the direct effect of eN in equation (27) always swamps the indirect

effect of eN that operates through incomes. 'Changes in relative

incomes in an open urban model are quite small and have virtually

no impact on the Gini coefficient. This result does not depend on the

magnitudes of population changes. If Nl and Nh change by several

hundred percent, rather than by the 5, 10 or 15 percent shown in Table

3, the direct effect of eN still dominates the indirect effect that

operates through changes in incomes. Since ey is very close to one

when ~ equals one, the indirect effect is very small even when the

14
direct effect is zero.

Sensitivity Simulations. The second set of simulations is

summarized in Table 4. These simulations take the first case in Table

3 (line I.A.l) and vary the market and transportation parameters to

determine the sensitivity of the results to changes in the second type

of parameter. Table 4 indicates that in the range of parameters

examined, an increase in the agricultural rental rate (R), an

increase in the share of land in the production of housing (a), and

an increase in the propoFtion of income spent on housing (11k), all

increase the value of eye Simulations of the. other cases from Table 3

lead to the same conclusions.

--- ------_..--~
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Table 4
Sensitivity Simulations

Population Growth Rates

dN1/N1-dNhIUh-·10 dN1/N1-·0S, d\/Nh- .15 dN/N1-·1S, dNh/Nh-.os

Description of Urban Area
~ du* dG/G ey du* dG/G ey du* dG/G

V. First Case (I.A.1 froc Table 1)

A. Basic Market Parameters

(R-1S00, a-.2, ~-kl-4,

o 0
Wh-W1-.S, MP~-~=t1-·10,

MPHl -20) 1.075 .025 .000 .927 -.025 -.066 1.468 .075 .069

B. Change Agricultural Rental
Rate

?
a-lOOO .078 .069I 1. 1.060 .023 .000 .914 -.032 -.066 1.447

I 2. a-2000 1.086 .026 .000 .936 -.020 -.066 ' 1.484 .072 .069

1 C. Change Share of Land in

l Housing

!~ 1. a-.10 1.057 .011 .000 .914 -.019 -.066 1.438 .041 .069;~

! 2. a-.30 1.085 .039 .000 .933 -.027 -.066 1.488 .104 .069

i
" n. Change Proportion of Net Income;

Speno on Housing

1. "'I,=k1=:i·0 1.082 .034 .000 .932 -.026 -.060 1.482 .095 .069

2. khakl-6•0 1.064 .016 .000 .919 -.022 -.066 1.450 .053 .069

E. Change Travel Costs

1. Low Costs
o 0

(t1=~-·05, W1-Wh-.25.

MFH1-MPPn=30) 1.193 .064 .000 .992 .001 -;066 1. i24 .127 .069

2. Hifh Costs
o 0

(t1=~=·20, Wl=Wha.75,

~lPIi1=!ii'11tlO) 1.009 .00/, .000 .902 -.024 -.066 1.293 .033 .069

VI. Other Cases

A. Case II.A.l froD Table 1
with Low Travel Costa 1.247 .162 .000 1.019 .024 -.023 1.542 .300 .020

B. Case I.B.l from Table 1
with High Travel Costa .994 .002 .000 .890 -.030 -.066 1.272 .034 .069

C. Case lI.B.l from Table 1
with H1~h Travel Coata .996 .006 .000 ,~56 -,°74 -.1'123 1.251 ,086 .(21)
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Transportation costs effect ~ in two ways. First, higher trans­

portation costs lead to a more compact city and to smaller values for

du*. Thus, the transportation comppnent of compensation becomes

relatively less important and ~ falls. Second, changes in the elements

of transportation costs change the ratio' of total transportation costs

from,u* to income and thereby affect ey • In the simula~ion, in rows

V.E.I and V.E.2 of Table 4, it can be seen that the value of ~ decreases

as transportation costs increase. Since the ratio of total transportation

costs from u* to 1ncome increases faster in the low-cost case than in

the htgh-cost case, it follows that the first of the two effects

mentioned above is stronger in these simulations.

The transportation cost iimulations bring out several other

characteristics of the model. In case V.E.I, du* is_positive even when

dNI/NI is less than dNh/Nh • This result illustrates how low transportation

costs lead to areas that grow rapidly in area as population rises. The

same case also illustrates that the housing component .of compensation

can be larger than the transportation cost component. Case VI.B., with

dNI/Nt = dNh/Nh,.illustrates the same result: ey > I even though du*

is positive.

The simulations in Table 4 tell the same story about dG as our

earlier simulations: dG is positive when eN is greater than one,

negative when ~ is less than one, and essentially zero when eN is

equal to one.

Asymmetrical Simulations. The third set of simulations, which

is presented in Table 5, examines the effects of differences between

the two skill groups in the transportaion and housing parameters.



Table 5
Asy~etrical Si.mulations

... Population Growth Rates

dNI/N1=dNh/Nh=·lO dN1/N1=·OS,dNh/Nh-·1S dN1/N1=·lS,dNh/Nh=·OS

Description of Urban Area e.y ciu* dG/G ey du* dGle e.y du* dGIG

VII. First Case (I.A.l from Table 1)

A. Same Parameters for Both
Skill Classes (t~=tg=.lO.

Wh=Wl =.5. MPH1=MPHb=20.

k =k =4) 1.075 .025 .000 .927 -.066 -.010 1.468 .075 .069h 1

B. High-Skill Commute Faster
(NP~=30. NPH1=10) 1.205 .030 .000 .891 -.066 -.010 2.054 .078 .069.

C. High-Skill Pay Higher
Operating Costs and Value
Travel Time More

o 0 w(th-·20. tl-·10. Wh=·75, 0

W1-·25) .991 .004 .000 1.024 -.066 -.010 .905 .038 .069 'I'

D. Low-Skill Spend Higher Pro-
portion of Income on Housing

(k
l
"'3, kh=6) 1.983 .023 -.001 1.958 -.067 -.010 2.041 .084 .069 I

I' I

E. High-Skill Spend Higher Pro-
portion of Income on Housing

(k1"'6. ~h-3) .590 .023 .001 .451 -.065 -.010 .983 .061 .069
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If the high-skill class commutes faster than the low-skill class, then,

as shown in row VII.B, the effect of the transportation cost component

of compensation is magnified and the values of ey are farther from one

than in the symmetrical case. If, on the other hand, the high-skill

class has higher operating costs (because they drive luxury cars while

the low-skill class drives compacts) and if the high-skill class values

I
1,
I '
1
I

travel time more, then transportation costs may, as illustrated in

case VII.C, increase more than proportionately with income. In this

case, both components of compensation imply that ey will be less than

one whenever du* is positive, and greater than one whenever du* is

negative.

Finally, the effects on ey of differences between the two skill

classes in the proportion of income spent on housing is determined.

These differences are similar in their effect to the assumption

that the elasticity of demand for housing with respect to net income

is not equal to. unity. If the low-skill class spends a higher proportion

of its income on housing than the high-skill class (that is, ~n > kl ),

Conversely, if the high-skill class spends a higher proportion of its

income on housing than the low-skill class, then the values of ey are

significantly less than one. Even when dNh/NI is greater than dNh/Nh ,

then, as shown in row VII.D, the value of ey is always much greater

than one--even when du* is negative. This result obtains because

housing expenditures now increase less than proporiionately-with income.

the value of e may be less than one, 'as shown in Table 5.
y

Despite the 'rather dramatic effects on ey of the simulations in Table

5, conclusions about dG are not altered: the sign of dG is still

determined by ~. :Even when eN is equal to one, so that there is-no

I

I

I

I

I

I

I
i

I

I-----_..-----_._--_.
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direct effect of population changes on G, the large values of ~ have

little effect on dG. For example, for both cases VII.D and V!I.E

in Table ~with dNl/Nl = dNh/~ = .10, the value of dG is less than

0.1 percent of G. However,. if the changes in the area's population

were several hundred percent, the area's value of ey in these cases

would lead to a significant increase in G.

Simulations of Actual Cities. The fourth set of simulations takes

Yl , Yh ' Nl,Nh , dN1 , and dNh and /J from 17 aGtual BMSAs using 1960 and

1970 Census data. The values of ey for each urban area were then

15
calculated using the basic set of market param~ters. The results

are presented in Table 6. The simulated values of ey in Table 6

can be compared with the actual values of ey--that is, with the values

obtained using dYI and dYh :from the Census data. In nine of the urban

areas, the difference between the simulated and the actual is less than .25.

However, the difference in some areas is enormous. In Des Moines,

for example, the model estimates that ey = 2.116, whereas the actual

value is .963.

The divergence between the simulated and the actual values of ey

suggests some ex post hypotheses. In the sun belt cities (Phoenix,

Atlanta, Oklahoma City, Houston, San Jose, Nashville, Richmond and

can be explained by two assumptions: (1) the high-skill class is

elasticity is much less than the simulated elasticity. In fact,

than the simulated elasticity. In midwestern cities (Milwaukee,

Minneapolis, Indianapolis, Omaha, Des Moines, and Flint), the actual
I

I

I

I

I
I

----__~~- ~__ I

than one and the simulated elasticity is greater than one. This result

in every Midwestern city except Flint, the actual elasticity is less

Fresno), the actual elasticity is greater, and often much greater,



Table 6
Simulations for Actual Urban Areas

I

dN IN dN/Nh
'* du* ,IUrban Area Yl

Y
h

N1 N ct> e y e y dGIG cG*/G
h 1 1

Phoenix 10.8 27.1 33,000 129,688 .259 .424 4.97 1.001 1. 736 .013 -.085 -.224

Atlanta 10.6 27.4 35,615 216,168 .304 .423 5.59 .994 1.447 .006 -.068 -.165

Denver 13.2 27.9 32,833 200,603 .396 .293 6.28 l.081 1.000 .093 .061 .062

Houston 12.3 27.8 48,8/11 275,323 ,510 .601 6.28 1.023 1.262 .067 -.045 -.108

Mil....aukee" 16.2 27.3 37.507 284.23!1 .358 .075 3.49 1.260 .900 .171 .201 .260 Co.)

w

Minn.-St. Paul 14.7 28.4 48.802 329,237 .364 .201 5.59 1.110 .955 .120 .104 .123

Ba1tiI!Jore 13.6 25.5 67,286 370,901 .195 .143 5.32 1.069 1.160 .055 .034 -.034

Oklc:hot:la City 1l.1 25.2 16,013 113,649 .368' .211 5.50 1.169 1.221 .093 .103 .040

Hartford 14.2 28.6 17,033 126,501 .314 .197 5.59 1.116 1.114 .091 .078 .034

San Jose 14.7 33.5 22,092 139,371 .678 .666 6.28 l.057 l.296 .144 .005 -.073

l\asr.ville 10.1 24.1 14,915 82,612 .328 .368 6.28 1.061 1.560 .047 -.023 -.148

Indianapolis 13.7 28.0 23,861 158,349 .576 .518 6.28 1.056 .986 .116 .030 -.053
,{

Rich:nond 1l.1 26.2 14,244 89.613 .233 .243 4.97 1.071 1. 740 .044 -.007 -.166

O:::aha 13.8 26.7 16,722 97,621 .236 .078 6.28 1.295 .944 .090 .109 .139
,

Des ~oines 13.7 27.6 8,986 60,386 .285 .013 6.28 2.116 .963 .093 .202 .218 \' I

Flint 14.9 24.2 10.048 86,850 .583 .200 6.28 1.169 1.008 .168 .248 .243

Fresno 11.6 26.2 24,081 67,912 -.006 .036 4.89 .815 1.460 -.013 -.025 -.138"
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much more mobile than the low-skill class, and (2) sunbelt cities are

strongly preferred to other cities, particularly to ~dwestern cities.

These assumptions imply that high-skill households will move to

sunbelt cities without receiving the monetary compensation predicted

by our model, so that ,our model will underestimate eye Similarly,

high-skill households will only move to Midwestern cities if they

receive more compensation than predicted by the model, so that the

model overestimates eye This hypothesis receives some tentative

confirmation in our data. In every sunbelt ,city except San Jose

and Oklahoma City, the high-skill population grew at a faster rate than

the low-skill population; in every Midwestern city, the low-skill

population grew at a faster rate than the high-skill population.

As before, the wid~ variation in ey in these simulations does

not affect conclusions about dG. In everyone of these simulations of

an actual city, the sign of dG is determined by the direct effect of eN.

A clear conclusion emerges from these simulations: the

relationship between urban population and the distribution of income

is a complex one/even in this simple two-skill-class model. Evans

was incorrect in arguing that the incomes of the low-skLll class

would increase proportionately more than those of the high-skill

class as urban size increased. Nevertheless, this section has ~.

shown that several statements can be made about the relationship

between urban -population and the distribution of income within an

urban area in the range of parameters examined here. In the next

section, an attempt is made to test these statements, using data

for a sample of metropolitan areas.
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Estima~ion Results

In the simulations presented above, the value of ey depends primar-

ily on the value of eN' but is also influenced by the values of the many

parameters in the model. Two main difficulties prevent precise tests of

these simulation results: first, data are not available on most of the

parameters for individual urban areas, and second, the functional forms

relating the various parameters and ~ to ey are not known.

It is possible, however, to perform a simple, but not very power­

ful, test of the main simulation result by performing the following

regression:

(38)

In this regression--which is a straightforward extension of the regressions

reported for the one-skill class model--the coefficients can easily be

related to the values of ~ and~. Differentiating (38) yields

or

(39)

The left-hand side of this regression is clearly positive if ~ is greater

than unity and negative if ~ is less than unity, so that it conveys

the same qualitative information as~. According to our simulations,

ey increases with (dNl/Nl ) and decreases with (dNh/Nh) so a l should·

be positive and a
2

should be negative. Furthermore, ey is almost al-

ways slightly greater than unity if (dNl/Nl ) is equal to (dNh/Nh ) so

that the coefficient of (dN1/N
l

) should be slightly greater than the

coefficient of (dNh/Nh).

-_._-_....-~_.. _.__.-. ~-~_.-----~-~
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Equation (30) was estimated for a sample of 89 SMSAs using the

skill class divisions described in footnote 15. 16 Regional dummy var-

iables were included in the regressions to capture the amenity affects

discussed above. The results are presented in Table 7. In both the 1960

and the 1970 regressions, a
1

and a2 have the expected signs, a
1

is

slightly greater than a
2

, and th~_regiona1 dummy variables are highly

significant. Furthermore, a
1

and a
2

are highly significant in the

1970 regression, although they are not quite significant at the 10

percent level in the 1960 regression. Thus these regression results

are consistent with the simulation model.

A further test of the simulation model can be made by comparing

the simulated values of «dYl/Yl ) - (dYh/Yh» with the values of that

quantity predicted by the regressions. A simulated value is obtained

using the values of Y1~ Yh , dYl , and dYh from a particular simulation

and the comparable predicted value is obtained by substituting the

values of (dN
l

/N1) and (dNh/N
h

) from that simulation and the values of

a1 and a 2 from the 1970 regression into equation (39). Several s~ct

comparisons are presented in Table 8. The striking result in Table

8 is that the regressions predict a much larger difference in

[(dY1/Yl) - (dYh/Y
h
)] due to changes in log(N1) and log(~) than do the

simulations. In the first row of the table, the predicted difference

(.0533 percent) is about 2.5 times as large as the simulated difference

(.0222 percent); in.lthe second row,. the predicted difference is about 40

times the simulated difference. Even in the most extreme simu1ations--

when ~ and k
1

differ--the simulated difference is, as shown in the last

two lines of Table 8, a fraction of the predicted response.
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Table 7

Regression Estimates for Two-Ski1l-Class Model

Constant

Northeast

Northcentral

West

109(Y~/Yh) log (Yt/Yh)
19 0 ~9 0

-.791 -.531
(4.87) (3.99)

.058 .137
(1.11) (2.74)

-.051 .-.132
(0.99) (2.67)

.223 .136
(7.65) (6.33)

.200 .108
(6.83) (4.97)

.082 .014
(2.74) (0.59)

.492 .391

Note: NUmber of observations is 89; t-statistics appear in parentheses
below regression coefficients.
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Table 8

Comparison of Simulation and Regression Results

Case dN/Ni dNh/Nli (aY1/Yi-dYh/Yh)xlOO

Simulated Predicted

I.A.1 .10 .10 .0222 ,0533
.05 .15 -.0315 -1. 2944
.15 .05 .0758 1.4010

~
I.B.1 .10 .10 .6113 .0533

.05 .15 -.0623 -1.2944

.15 .05 .0849 1.4010
VII. D .15 .05 .1383 1.4010
VII. E .05 .15 -.2922 -1. 2944

Note: The cases refer to the Simulations of Table 3 (I.A.I- and I.B.I) and
Table 5 (VII.D and VII.E).
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Thus the simulations severely underestimate the variation in

((dYl/Y1) - (dYh/Y
h
)) and, therefore, underestimate the variation in

inequality across urban areas. It is hoped that future research on

this topic will increase understanding of this variation.
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APPENDIX

Deriving the Equations

By totally differentiating equations (32), (33), (36), and (37)

with respect to Vl , Vh' Y1, Yh, N , Nh , u*, and u (remembering from (3)

that t
1

depends on Y1 and t h depends on Yh); by setting dV1 = dVh = 0;

by treating dN
l

and dNh as exogenous; and by rearranging te-ims the follow­

ing system of equations is obtained:

dY1 [k1 (1 - tiu*)/(Yl - t 1u*)] + dYh

• {k [(1 - tYu)/(Y - t u) - (1 - tYu*)
-11 h h h h

/(Yh - thu*)]} + du*[~th!(Yh - thu*)

- k
1

t
1
! (Y1 - t 1u*)] + du[-~t

h
/ (Yh - t hu)] = 0

(Al)

(A2)

dN
h

= Rl6b~{dYh (l/th) }.. - (1 - t~u) /thbh (bh + 1) (A3)

- [(1 - t~u)/th(bh + 1)][(Yh - thu*)

- b +1 Y
!(~ - thu)] h + [(1 - ~u*)/thbh][(Yh - thu*)

/(Y
h

- thu)bh] + u*(1 - t~u*)(Yh - t hu*)bh-1

!(Yh - thu)bh - u*(l - t~u) (Yh - thu*)bh .'

- b +1. _.
!(Yh - thu) h } + du {-l/th (bh + 1) + [(Yh - thu*)

/(Yh - th~bh+1/th(bh+1) + u*(Yh - ~u*)bh
- b +1 b -1 - b/(Yh ~ thu) h } + du*[-u*(Yh - thu*) h /(Yh - thu) h]



42

- . y b -1 - b
dNl = dYh(R~Zbh/tl){(l - thu*)(Yh - thu) h I(Yh - thu) h (A4)

y- b I - b +l}- (1 - thu)(Yh - thu*) h (Yh - thu) h

+ dYl (~~X/ti){'(Y/(Yl - tlu*)bl - [bl ( - tiu*)

I(b
l

+ l)][Y I(Y - t u*)]bi+1 '_ (1 - tYu*)
1 III

I(b~ + I)} + dtl*.{Rcj>X/tl){[D/~l +<I)][y
L

-..;.lt
l

U*)]b l +l

~bl/(bl' + I)} - (Rcj>Z/t~){b~t~(Yh - th~~)bh-l,

/(Yh - thU)bh} +, dU(R~Z/tl){bh~(Yh - ~u*)bh

I (Y
h
, - .~U)bh+l}

where t u*)
1

-Solving for u* and u

After the parameters are chosen, the next step in solving the model

is to determine u* and u. The values of u* and U are found using equa-

tions (36) and (37) and the following iterative procedure:

1. Define N = Nl + Nh, set u* = 0, and solve (36) numerically for

Uby increasing the value of uby small increments from zero until

-Note that the value of u calculated in this step will always exceed the

final value of u since the high-skill class lives in less densely

settled areas than the low-skill class.

2. Solve (37) numerically for u* using the ucalculated in step 1.

3. Solve (36) numerically for u using the u* calculated in 'step 2.
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4. Solve (37) numerically for u* usi.ng the u calculated in step 3.

5. Repeat steps 3 and 4 until the change in both u* and ufrom

one calculation to the next is less than some specified value (.001).

~~though it has not been proven that this iterative procedure has any desirable

tl'.athematica1 properties, it converged ra.pidly in. all simulations.

----_._-- ----_.-._----
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NOTES

1 .
The assumption that som~members of every skill class live in

every city is an a~sumption about the demand for la~or. plthough

the demand for labor is not considered in much detail in this

paper, it should be pointed out that our model is based on the

implicit assumption that economies of scale and external economies

allow employers to pay higher wages in larger cities and still

compete~ith firms in smaller cities that pay lower wages. In addition,

we assume that all income is received as wages.

2The assumption that Pz is the same in all cities is important. If,

for example, large cities have amenities (such as theatres or parks)

that are not present in smaller cities, then Pz will be lower in large

cities and our model will overestimate the compensation required to

induce people to live in large cities. This problem can, in principle,

be included in a model like ours, but for simplicity is not considered

here.

3rwo comments should be made on equation (3). First, it may vary

across citie.s due to different public transportation systems or

different fuel costs. This complication, li~e that of amenities,

is not considered here. Second, the expression for operating costs

is equal to Co times working days per year (250) times two (~ecause

.we are considering round-trip commuting costs). The expression for time

costs is equal to working days per year. times minutes per mile of com-

muting times the dollar value of a minute spent commuting times two. The

dollar value of a minute spent commuting is w times Y divided by minutes

worked per year (for 250 eight-hour days).

--------------------
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4Since the model assumes that all income is derived from labor

supplied at the CBD by a single worker per household, male wages

are the appropriate variable for the estimation.

5The Gini coefficient was chosen as the measure of income in-

equality because of its widespread use in the literature. Any

other summary statistic could have been chosen, but as is shown

below, the Gini can be conveniently decomposed when there are

only two income classes.

6Bhattacharya and Mahalanobis (1967) present a decomposition of

the Gini coefficient into a between-group variance, a within-group

variance and an interaction term. In the one-skill-class case, in

which all individuals in a given skill class have identical incomes,

these last two components are zero, so the ~fni coefficient reduces to:

G = EPiPj1ui - uj l/2u

i,,&j

where P is the p~oportion of the pop 1 ti· h . thei u a on ~n eac group, u
i

group mean income, and u the mean income for the entire population.

In the two-skill-class case,

G = 2 (Yh - _Yl)[~l/ (N1 +~) ][~/ (N1· + Nh )]

2[(N1
YJ: + NhYh)/(Nl +' N

h
)]

[Nl/(Nl + Nh)][NhYh/(NlYl_+ NhYh)]

- [NJ'N1 + NJ:i»)WlYl/(NlYl~.+·NhYh)]

= [N:i/. (Nl + ~)] ]NhYh(N1Yr .j.: NhYh)]

- {l - [N / (Nl + Nh) ]}.~NlY.l/ (Nl Yh + ~Yh )]

------------------ ----------------- --------------- --------------



47

= [N1/(Nl + Nh)]{[NhYh/(NlYl + NhYh)] + [NlYl/(NlYl + NhYh)]}

= [Nl/(Nl + Nh)] - [NlYl/(NlYl + NhYh)]·

7These elasticities do not actual~y appear in equation (27).

However, eN conveys the same qualitative information as

(NhdNl ' - Nl dNh) and ey" conveys the same qualitative information"as

(YhdY1 - YldYh)}. Thus ~"is equal to one when (NhdNl - N~dNh) is equal

to zero, greater than one when (NhdNl - NldNh) is positive, and less

than one when (NhdNl - NldNh) is negative." "FoF.:.:ease~of exposition,

the discussion will focus on the elasticities instead of the more

cumbersome formulas in equation (27).

8Assuming that N
h

> N
l

(Y
h

is greater than Yl by definition), then

the change in Gini, is related to the elasticities as follows:

eN < 1 e = 1 eN > 1N

ey < 1 fI. + +

ey'= 1 0 ,+

ey
> 1 ?

9At this point it is appropriate to assume that the two skill c]asses

are completely segregated so that there is a border between them.

However, this result can be derived from the model instead of assumed.

(See also Solow 1972).

IOn should be pointed out that Evans' empirical assertions are

open to some question. For example, Beesley (1~5) found that

high-income commuters value their travel time more highly than

low-income commuters, and many studies (some of which are reviewed
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in DeLeeuw '(1971) have found an income elasticity of demand for housing

that is not equal to one. However, these assumptions are con-

venient and not unreasonable simplifications, and will be used

throughout this paper.

11This result obtains because the price-distance function for the

high-skill class is flatter than the price-distance function for

the low-skill class so that high-skill households outbid 10w-

skill households for housing far from the CBD. For proofs of

this income-sorting result in similar models, see Mills (1972b)

or Muth (1969).

12The equations are (4) and (6) through (14).

13The mean daily income for families in the bottom 20 percent of the

.income distribution in American cities in 1971 was about $15 and

the mean daily income for families in the top 80 percent of the

income distribution was about $64. Similarly, the mean daily

inc.ome for families in the bottom half of the income distribution

was about $28 and for families in the top half of the income dis-

tribution was about $81 (U.S. Bureau of the Ceuus 1973) •.

14It should be pointed out that the focus on the elasticity ey is

soinewhat misleading here. As pointed out in note 7, the precise

measure of the impact of changes in relative incomes on G depends

(unlike ey) on the absolute changes in Yl and Yh. Since, as

shown in section 1, these absolute changes are fairly small (on

the order of 0.03 - 0.06 percent), changes in relative income do not

affect the Gini even when ey is considerably greater than one.
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l5In order to compute-ey for the sample of SMSAs it was necessary

to divide the employed population into two skill classes. Labor-

ers, farm laborers, and service workers were assumed to be in the

low-skill class, while all other occupations were assumed to be

in the high-skill class. Since the model assumes only one

worker per household, employed males were the units chosen for

analysis. First, the mean incomes of the two groups and the

n~ber employed in each group were calculated for each SM-SA for

'1960 and 1970 (U.S. Bureau of the Census 1960, Table 124; U.S.

Bureau of the Census 1970, Table 175). The low-skill group is

about 20. percent of the size of the high-skill group, and has. average

wages about one-half the level of the high-skill group~s average.

Once these levels were computed, ey , eN! and dG were known from

equations (27), (20) and (29). An estimate' of radians of avai1able

land was, then, derived by using the urbanized area maps

provided by the Census. Finally, these actual values of Yl' Yh ,

Nl' N
h

, and $, and the basic market parameters (assumed constant

- 0 0
for all areas), R, a, Kl'~' t l , t h , wh ' WI' MP~, and MPHI ,

were used in the computer simulation. The simulation produced the

estimated elasticity~ ey , change in skill-class boundary, u*, and

change in Gini coefficient, dG/G, shown in Table 9"

16
The division of workers into skill classes is arbitrary and

these results could be replicated with other divisions.

_ .._-._-~----- ---~ --- ------------- --_.---_._-- --_.._------_.
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