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- ABSTRACT

The relationship between the level of income and the population of
an urban area is a familiar concern in urban economics. In an equilbrium
model of urban location, households wiii migrate among urban areas until
real income levels are equalized across all areas. This equality of
real incomes implies differentials in money incomes across urban areas.
Money incomes will be higher in urban areas with larger populations
to compensate households for the higher housing prices and higher
transportation costs in those areas.

Existing models of the relationship between income levels énd
urban population assume that there is a homogeneous labor force and,
hence, a world in which there is no inequality in the size distribution
of income within an urban area. In this paper we model a world in
which there are two classes of workers and examine the relationship
between urban population and the distributioh of income between these
two classes. In particular, we determine what happens to the degree
of inequality in money incomes as urban population increases; if each
class of worker is compensated for the higher costs associated with
larger urban size.

The.analysis in this paper is based on a mathematical model of an
urban area which allows us to calculate how the income distribution--as
measured by a Gini coefficient--changes as urban population changes.
This model is solved numerically for a variety of assumptions about
the initial size of the urban population and its division between skill
classes, initial income distribution, commuting costs, and several other
parameters. The findings of the simulations using this model are then

tested using data for a sample of metropolitan areas.




AN EQUILIBRIUM MODEL OF URBAN POPULATION
AND THE DISTRIBUTION OF INCOME

The relationship between the level of income and the population

of an urban area is a fami

1972; Hoch 19723 Riehardson 1973). In an equilibrium model of

urban location in which the labor forece is both homogeneous and perfectly

mobile, households will migrate among urban areas until real income
levels are the same for all househoids in all areas. This equality
of real incomes implies.aifferentials in money incomes across urban
areas. Money incomes will be higher in urban areas with larger popu-
lations to compensate households fér the higher housing prices and

higher transportation costs in those areas

In the first section of this paper, a mathematical model of an urban
area with a homogeneous labor force is presented. Relationships are de-
rived between urban population and the level of income within an urban
area, and between areas of various sizes and the distribution of income
levels across areas. This one-skill-class model is simulated and tested
using data for a sample of metropolitan areas in an attempt to gauge the
magnitude of these relationships, In the second section, the model is
respecified under the assumption that there are two types of workers. As
population increases, each class of worker must be compensated for the
higher costs associated with the larger urban size., These costs are shown

to differ between the skill classes. Thus, the degree of inequality in

money incomes within an urban area differs across urban areas when the

iiar concern in urban economics (Mansfield 1949; Evans
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real income level of all workers of a given skill class is constant actross
areas. The relationship between this Intraurban degree of inequality and
urban size is shown to be a function of the initial population size and

its distribution between the skill classes, the initial income

distribution, commuting costs, and several other parameters. The

two~skill—class model is also simulated and tested with data for

a sample of urban areas.

1. One-Skill-Class, Open Urban Model

The Level of Income Within an Urban Area

By assuming that migration among urban areas is costless, an open
model of the urban area implies that, in equilibrium, members of a given
skill class who have the same tastes receive the same utility in all
cities. Our analysis is simplified by two additional assumptions:

(a) that members of a given skill class all have the same tastes,
and (b) that some members of every skill class live in every city.

In an open model with one skill class, money incomes increase
with the population of an urban area. As more people move into an
urban area, the prices of land and housing at all locatioms in thé
area are bid up, .and the boundaries of the city are extended. In
short, both the price of housing and the average commuting distance

in the city increases. Thus, workers will receive the same real




income-—-and hence the same utility--after the population inérease
as before, only if their money incomes rise to reflect the higher
cost of living. This model, like those of Alomso (1964), Mills
(1967, 1972a, 1972b), Muth (1969), and others, simultaneously determines
the prices and quantities in each of four urban markets: housing,
labor, 1and, and capital. .

The housing market is the central focus of the model. On the

demand side, households are assumed to: have a single earmer who

works in the central business district (CBD) and to face the following
maximization problem:
Maximize U(z,H)
(1)
Subject to Y = Z 4+ P(u)H + tu
. . . , . .2
where Z is a composite consumption good with a price of unity;.
H is units of housing services; Y is money income; u is miles from
the CBD that the household lives; P(u) is the price per unit of |
housing services at location uj; and t is the per mile cost of a
round trip to the CBD.

Two further assumptionS‘compléte the demand side of the housing

market: first, that the utility function is Cobb-Douglas, or

vEZE = %P, (2)

b

. o ,
and second, that t consists of operating costs (t ) and time costs

(tyY), or

t = 2+ Y = 500¢ + (.25wMPH)Y (3)




o . . , . ' .
— whetre ¢ 1s operating costs per mile, w is the value of travel time

3

as a fraction of Y, and MPH is the speed of commuting.
The central relationship in the model--the relationship between

location and the unit price of housing--can be derived from this

household maximization problem. The demand function for housing is

derived from the first-order conditions:
H = (/k)({ - tu)/P(u) (4)

where k = (0 + B)/8, The substitution of this demand function and the

analogous demand function for Z into (2) leads to the following indirect

utility function (see Solow 1972):

[/ (@ + 8))(Y - tw) ][/ (¥ - tw)/P@ 1.2 (5)

v

Household mobility insures that utility (=V) will be the same at all
locations within an urban area. Furthermore, if utility is constant

at all locations, (5) indicates that

k

Pw) = (v/0)Y B(-tu) (6)

where
ot
vy = o®%/1( + 8)*"Fy,

The price~distance function (6) is a market locational equilibrium
condition that defines the pattern of housing prices that makes

households indifferent among locations within a city.




Following Mills (1972), the supply of housing services is assumed

to be given by a Cobb~Douglas production function
1-a a
Hs(u) = AK(u)" “L(u) )

where K stands for capital and L stands for land. The equality of

the supply and demand for housing is guaranteed by the equation

HS(u) = N(u)H(u) (8)

where N(u) is. the number of households at location u--each of which
consumes H(u) units of housing services.

The production function (7) and the assumptions of perfect
competition lead to demand functions for land and capital which are

fourd in the usual way from (7):

aP(w)H_(u)/L(u) = R(u). (9)
where R(u) is the land rental rate, and

(1 ~ a)P(H_(W)/K(u) = r 10

where r is the capital rental rate.
It is also assumed that a fixed number of radians of land (¢) are

available for residential development. Thus the supply of land‘is
L(u) = ¢u. (11)

A final assumption about the land market is that residential uses must
outbid agricultural uses for land so that the urban area extends to the

point at which




R(i) = R 12)

where R is the agricultural rental rate and u is the outer edge of the

urban area.

On the aésumption that capital is supplied by a national market,

the supply functionm for capital is
r = comstant, (13)

In the labor market, an exogenous demand for N workers in the
CBD is assumed. Since the supply of workers from location u is equal
to N(u), the equality of supply and demand in the labor market is

insured by

~/;?N(u)du = N - (14)
Equation (14) completes the model. To prove that income must
rise as population rises so that household utility remains constant,
we determine how V and N are related to the other variables in the
model. From equations (7), (9), and (10), the price-distance

function can be expressed as
P(u) = CR{u) (15)

where

c = [a?a - ayl-ayl e

The relationship between the price~distance and rent-distance functions

defined by (15) is an important feature of the model, indicating that




statements about land rents can be easily translated into statements
about the unit price of housing and vice versa. For example, the
unit price of housing at the outer edge of a city, which equals P(u), is

defined as the opportunity cost of housing (or P). According to (15), this

opportunity cost is related to the agricultural rental rate:

P@ = ? = cr@? = c&% | (16)
Substituting (16) into (6), the opportunity cost of housing is

p@ = B o= /M Pa-enk an
or

Vo= v/ r-em) R, | (18)

Equation (18) indicates the relationship of utility, income, and

city size.

A price-distance function that does not depend on utility is

derived by substituting (18) into (6),
P = BL(Y - tw) /(¥ - eI~ (19)

Now using (15) and (16), a rent-distance function that alsc does

not depend on utility is,
R = R[(Y - tw)/(¥ - ta)]° (20)

where b = k/a.




The relationship between population size and the other variables

in our model is now apparent. Substituting (9) and (10) inte (7),

H (@) = DR(w) L) (21)
where

D = A(1 - a)/ar)l-a. -
Substituting (4), (8), (19), (20), and (21) into (14) yields

u_
L Ragu(Y - tw)?1/¢x - £3)P1du

=2
it

@/ e + D - £2)P - (¥ - tD) /€0 + 1) - ul. (22)

Equations (18) and (22) describe the relationship between urban
population and the level of income. Although they cannot be explicitly
solved for the income level, Y, the effect of changes in population .
on the income level can be determined by totally differentiating the
two eqpations with respect to V, Y, G, and N (remembering from (3)
that t depends on Y), and solving for dY/dN. Since this derivation
requires exogenous values for dV and aN, two alternative interpretations
of the results are available. First, the differentials can be
interpreted as changes in a given urban area over some time period.

In this case, dN is simply the change in the population of the area
and dV is the change in utility in the system of urban areas (as
measured, say, by the changes in median real income). Second, the
differentials can be interpreted as differences between areas at a

point in time. In this case, dN is the difference between population




in an urban area and population in the next largest area, and, since
an open model requires equal utilities across areas, dV is equal to
zero. We will simplify our presentation by assuming that 4V = 0,
but an expression‘fo? dY/dN can be obtained for any other value of

av.

Differentiating (18) yields
d¥ = [t/(1 - t'u)lau. (23)

This equation has strong intuitive appeal. For example, a household
at the outer edge of an urban area must receive the same utility as

a household at the outer edge of an area with a larger population.
Since the unit price of housing equals P at each boundary, regardless
of population, the difference in spending between two such households
consists entirely of commuting costs. Thus, as indicated in equation
(23), the income compensation that accompanies a population increase
is based on the commuting costs between the original city's edge anﬁ
the city's edge after a population increase (or tdu). However, since
a dollar increase in Y increases the time costs of commuting to G,
such a dollar of compensation is only worth (1°- t'w)

tdu must be divided by (1 = tyﬁ) to obtain the desired income compensation.

Differentiating (22) yields
= (R N - . b+l
dN = (Re/){(Q/E)Y/ (¥ =tu)] aYy - [b/t(d + DI[Y/(Y - tu)]

#[dY(1 - tTu) - tdu] - [d¥(@ - t7u) ‘- tdul/t(b + 1) - du}. (24)
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Setting dV = 0 and substituting (23) into (24) yields -
av/aN = 1A @/IED I/ - )P - A - D). (25)

Since Y > ¥ - tuand b > 1 and R and ¢ > 0, it follows that dY/dN > O;

when population increases, money incomes also increase.

The Distribution of Income Among Urban Areas

The distribution of income among urban areas can be determined

using equation (25). The data required to calculate the distribution
of income levels among M areas (as measured, for example, by a Gini
coefficient) are the pairs of numbers (Nl, Yl), e s e (Nm, Ym)’ where
the i subscript refers to area i. If the distriﬁution of urban
populations (that is, the Ni's) and one value of Y (say Yl) are

known, then dNi = Ni+l - Ni for 1 = 2 to M, and Yi = Yi—l + in-l, where

dy is given by (25).

i-1
By making use of the rank-size rule--that the population of area

i is equél to the population of the largest area in the system

divided by the populatidn rank of area fs~the distribution of income among

urban areas can be calculated when the income of only one area and

the population of only the largest area are known. In this case,

the distribution of urban populations is determined using the rank-

size rule and the distribution of income levels among areas is calcu-

lated as described above.
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Simulations and Empirical Results

Given values for Y, N, and the parameters in (25), the precise
relationship between income and population can be calculated. One
must first solve équation (22) for the—boundary of the urban area,

u (see the Appendix), and then determine dY/dN using equation (25).

By way of example, the values of (dY/dN) and ((dY/Y) /(8N/N)) calculated
in this way for four hypothetical urban areas are given in Table 1.
Accﬁrding to Table 1, an increase of 1000 people in area 1 leads to

an increase of $.0078 in daily income. Similarly, a 1 percent increase
in population leads to a .03 percent increase in income. As income
increases for a given population size (comparing areas 1 and 3, and
areas 2 and 4), this elasticity increases. Similarly, as population
increases for a given income level (comparing areas 1 and 2, and areas
3 and 4), the elasticity also increases.

These simulated values are similar to the values estimated for a
sampie of 89 large Standard Metropolitan Statistical Areas (SMSAs)
for 1960 and 1970. These areas have an average of about 250,000 male
workers, and a range from about 60,000 to 3 million workers in 1960.
Table 2 presents some simple regressions in which mean male wages
in 1960 and 1970 are the dependent variables and total male employment
and a set of regional dummies are the independent variables.4 In the
simulations of Table 1, the elasticity of income with respect to

population was between .031 and .053, while in both 1960 and 1970,

the elasticity of male wages was about .065.




Table 1

Simulation of Relationship Between Income Level and Urban Population

Description of Urban Kiga' o (3Y/5N) X 1000__“A“ _ nﬁay/j)/(gujnz N
1. N = 250,000 workers .0078 0306
Y = $64 per day
2. N =1 miilion workers .0025 .0392
Y = $64 per day
3. N = 250,000 workers .0101 .0312
Y = $81 per day
4. N = 1 million workers .0043 - .0531
Y = $81 per day

Note: All areas are assumed to be circular with 4 = 27. radians of land
available. The value of u is calculated using the first step of the
procedure described in' the Appendix, In computing transportation
costs, t, it was assumed that workers travel at 20 miles per hour,
value their travel time at one-half the wage rate, and spend 10 cents
per mile on pecunlary travel costs. Households are assumed to

spend one-quarter of their budget on housing (k = 4), and land

receives one-fifth of housing expenditures (a = .2). The agricultural
rental rate is set at $1500 per square mile per day. These assumptions
are discussed in more detail in the next section.-
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Table 2

Estimation of Relationship Between Wage Level and Urban Population

Mean Male Wage, 1960 ‘Mean Male Wage, 1970
Constant 7.898 8.242
Male Employment 0.0646 0.0663
G797 (6.72)
Northeast 0.0206 0.0506
(0.83) (2.36)
Northcentral 0.0754 0.0798
(3.09) (3.76)
West 0.0947 0.0711
(3.58) (3.08)
r? 402 461

Note: The sample contains 89 large SMSAs. The regressions are
estimated using the logarithms of the wage and employment levels;

t-statistics appear in parentheses below the regression coefficients.

The Southern Region is the omitted regional dummy.




2. Two-Skill-Class, Open Urban Model

The Level and Distribution of Income within an Urban Area

Statement of the Problem. Having demonstrated that in equilibrium

income levels increase with urban size, the model developed above can be
extended to consider the relationship between urban population and the
distribution of income within an urban area. For analytic manageability,
two simplifying assumptions are made: first, that there are only two
skill classes in an urban area; and second, that the distribution

of income can be accurately measured by a Gini coefficient.

In an urban area with only two skill classes, the Gini coefficient

is given by the formula -

G =N/, +N) - NlYl/ (N Y, +NY) (26)

Ny

where N, 1is the number of households in skill class i,'Yi is the

i
income of households in skill c?ass i, and the subscripts "1" and
"h" refer to the low and high skill classes, respectively..6

The relationship between urban population and the distribution
of income cah be de;ermined by exanmining how G changes as N1 andiNh
change. However, as shown in section 1, changes in population in
an open urban model lead to changes in income, so that the change in
G depends on changes in all four of the variables on the right-hand
side of (26). Differentiating (26) with respect to Nl’ Nh, Yl’ and

Yh‘and rearranging terms yields the precise statement of this rela-

tionship:




15.

dG = (N dN; - N 198 )[(Y -Y )(N Y, = 2Y1)/(N1 + Nh)2

(N Y + N Yh) )] Y )[N ‘N /(N Y + N Y ) ]

Equation (27) indicates that two elasticities are important in
determining how G changes with urban population.7 These elasticities

are -

ey = (aN;/N;) / (th/Nh)

and
ey = (@Y /¥))/ (@Y /T).

The first elasticity measures the rate of change of the low-skill
population relative to the rate of change in the high-skill population;
the second elasticity measures the rate of change in low-skill income
relative to the rate of change in high-skill inpome. TIf both of

these elasticities are equal to unity (so that (N le - Nlth) and

(YhdY th) are both equal to zero), equation (27) indicates that

1
the distribution of Income does not change as urban population changes.

But as long as N, > N., inequality will increase with urban population

h 1
if ey > 1. Furthermore, inequality will decrease with urban population

if ey > 1. If both ey and ey are greater than unity (or both less than

unity), the net effect of a change in urban population on G is ambiguous.

In the model there is a fundamental difference between ey and eys
the former reflects forces that are assumed to be exogenous to the
model whereas the latter is determined within the model. Indeed, the

changes in N, and N, that are reflected in e, cause Incomes to change.

1 h N

(27)

(28)

(29)°
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The precise relationship between urban population and the distributilon

of income can be derived by examining the determinants of ey in an open

urban model.
The only previous discussion of ey of which we are aware is found
in Evans (1972). Evans argues that
There is evidemce to justify the assumptions that, firstly,

the value of time spent travelling is a comstant fraction
of the wage rate and this fraction does not vary with

income, and secondly, the average income elasticity of demand

for housing is equal to one so that the amount spent on
housing is a constant fraction of total income. Therefore
the amount necessary to compensate houdeholds in each income

group for increased rents and increased time spent travelling’

[due to increased population] will increase proportionately
with income. On the other hand the amount necessary to :
compensate households for the increased direct financial
costs of travel will not increase with income. Hence we

would expect that the iIncrease Iin wages necessary to compensate
households for living in a larger city would be proportionately

smaller but absolutely larger, the higher the household's
income (p. 55).

In other words, as population increases the income of the poor will
increase proportionately more than the income of the rich.

Evan's argument that ey is greater than unit& can be formally
related to our model. Let u* be the border between the areas
inhabitéd by a low- and a high~skill class and note that competition
insures that the price-distance functions of the two skill classes
iﬁtersect at u*.9 Individuals in a given skill class are assumed
to be indifferent to their location within an urban arez or
across all areas. Thus, the value of ey can be.derived by.com~-"
paring the compensation received by a low-skill household that
moves from this skill-class boundary, u*, in one area, to the u* in
a more populous area, with the compensation received by a high-skill

household making the same move. Both these households will face an
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identical increase in both commuting distance (the difference between
the u*'s in the two areas) and #n the unit price of housing (the
difference between the two P(u*)'s). Since Evans assumes that total
commuting expenditure over a given distance increases less than
proportionately with income, it follows that the low-skill household
will receive & proportionately larger compensation for the move than
the high-skill househol& (that is, ey will exceed one).

Even if Evans' empirical assertions are true,lo however, there are

three errors in his argument. First, the high- and low-skill households
may commute at different speeds, so that the per-mile time eost of
commuting may be different for the two classes even if the valuation
of travel time {as a proportion of income) is the same (see equation
(3)). If high-skill households commute faster than low-skill households,
then Evans' argument understates the value of ey’ if high-skill
households commute more slowly, then Evans' argument overstates ey:
Indeed, in the latter case it is possible that ey will be less than one.
Second, because population density can change, the area inhabited
by low-skill households may decrease in size even if the low-skill
population increases. In this case, households living at u¥* face
lower commuting costs 1n cities with larger populations, so that the
compensation for commuting costs, which is less than proportiomal to
Income, 1is negative, and low-skill households end up with a smaller
compensation (as a proportion of their income) than the high-skill
households. This case occurs when ﬁhe high—skill population increases
much more rapidly than the low-skill population, so that the low-skill

population is outbid for housing inside the original u*.
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Third, Evans' argument that there is a unitary elasticity of
demand for housing with respect to total income has the implausible
implication that people with a given total income spend the same
amount on housing regardless of their commuting costs. A much more
plausible assumption is that there is a unitary elasticity of demand

for housing with respect to income net of commuting costs. This

alternative assumption is equivalent to the assumption of a Cobb-
Douglas utility function, as seen in equation (5) above. The
difference between total and net income is Important becasse Evans
argues that t increases less than proportionately with total income
so that Y ~ tu increases more than proportionately with total income,
Thus, the compensation associated with housing expenditures (which
depend on Y - tu) will increase more than proportionately with total
income.

In summary, when du* is positive, total compensation has one
component (commuting costs) that increases less than proportionately
with total income and another component (housing costs) that increases
more than proportionately with income, so that 1t cannot be determined
a priori whether ey is greater or less than one. If du* is
negative, this indeterminacy remains since the relationship between
the two components of compensation is reversed; commuting
costs decrease less than proportionately with income and housing costs
increase less than proportionately with income. Thus, thé relationship
between population and the distribution of income, which depends

on both ey and e, is also indeterminate a priori. We will

N
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therefore extend to a two-skill-class economy the open urban model
developed above and determine more precisely how the disttibution of

income is related to the many parameters of the model.

The Model Extended. The mathematical model discussed in section 1

can how be extended to consider two skill classes,.Clearly, each class
lives in that part of the city where it outbids the other class for
housing. In this model, the high-skill class will always live in the .
outer part of the city and the‘low—skill class will live in the city

11
center.

Three changes are required in order to extend the mathematics to the
two-skill—class case. First, the equations12 muet be-daepbled and-given
the subscripts "1" and "h" to refer to the low- and high~skill groups,
respectively. Second, the equation for the opportunity cost of housing
(16)--and the equivalent equation for land--must be revised so that
the high-skill class extends to the outer edge of the city, or

Ph(G) =P C(30)

and the price-distance function of the low-skill class meets the price-

distance function of the high-skill ctass at u¥*, or
= 31
Pl(u*) Ph(u*).. (31)

Substituting (30) and (31) into the price-distance function derived

earlier (equation (18) with subscripts added), we have
_ =\ 8. _ . ok B 39
v = (v, /F) H(Y, thu)kh h ) (32)

and
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B

- B - k k. B
v, = (Yl/l:’)slli (Yh - thu)/(Yh - thg*)] 1 SL.(Y1 - tl’-u*) 151,. (33)

The third change in the one-skill-class model is to add skill-
class segregation to the labor market by replacing equation- (14)

with

A .
[+ Nl (u)du 3 Nl (34)

and

|
=2

fu
:.j;*- ﬁh_(u)du = Ny. | (35)

Following the derivation of (22), these two equations lead to

= _ -, 2 -,
N = (Rdbh){--- (¥, - thu)/th bh(bh + 1) - u/thbh
bl , _ by
+ (Yh - t.hu*) /'t:h bh (bﬁ + 1) (’Yh - thu) -
~ Ph (36)
+ (u*/thbhx-gfh' - tHu*)/(Yh - thu)Jf }
and
_ b, b+l b,
N, = (ﬁétl){(Y'h - thu*)/:(Yh - thU)] {Yl /'tl(b1 + 1)‘(‘Yl'- tlu*)

- (Y, - tlu*)/tl(b + 1) - utl, (37)

1

The four equations, (32), (33), (36), and (37), can now be used to

determine the relationship between population and the distribution of
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income. By differentiating the four equations with respect to V

1’
Vh’ Yl’ Yh’ Nl’ Nh’ u*, and Gr(remembering from (3) that tl depends
on Y1 and th depends on Yh); by setting dVl = th = 07 and by treating le

and th as exogenous, a system of four linear equations in the four
unknowns , th, le,idu*, and da, is obtained. The solutions to .this

set of equations indicate the changes in Income for each class and

in the areas inhabited by each class that accompany any given changes

in the populations of the two classes. The solutions are too complicated
to yield qualitative results, so the four equations are relegated to the

Appendix and the system 1is analyzed numerically.

Simulation Results

Numerical analysis of the model was carried out in four steps. First,
values of the parameters were choéen. As described below, several
different sets of parameter values were used. Second, the values
for u* and { ‘that result from the parameters chosen in the first step
were calculated. The iterative method used for these calculations
is described in the Appendix. Third, the set of equations in the
1> d¥,, du*, and du, using a packaged

computer program. Fourth, the effect of changes in urban population

Appendix was solved for d4Y

on the relative incomes of the two skill classes was determined by

substituting dY.and th into the formula for ey, equation (29).'

1
Similarly, the value of dG, which summarizes the effect of a
population change on the distribution of income, was calculated using

2n.




For convenience, the parameters of the model are divided into two
types. The first type defines.-a particular city and the second type
describes the market conditions that hold in all cities. The first type
of parameter consisté of income and population levels for the two skill
classes, the rates of population growth for the two skill classes, and
the number of radians of land in the city. For _the initial simulations,
two different divisions of a population into skill classes were examinéd.

The first division considers the bottom 20 percent of the income distri-

bution to be in the low-skill class and assigns an income of $15 per
day to the low-skill class and an income of $64 per day to the high-skill

13 The second division considers the bottom half of the income

class,
distribution to belong to the low-skill class and assigns an income of

$28 per day to the low-skill class and $81 per day to the high-skill class.
Each of these divisions of a population into skill classes is then
simulated for an area with 250,000 workers and one with one million
workers. Note that the division of the population into skill classes is
implied by the assumption about the income distribution; for example,

50,000 workers make up the bottom 20 percent of the income distribution

in an urban area of 250,000 workers.

All four combinations of an income distribution and a total popula-
tion are then simulated for a circular area of 27 and a semi-circular area
of m radians of land., Finally, each of the eight areas is simulated for
three different assumptions about the growth rates of the two skill classes.
The first assumption is that both groups grow at a 10 percent rate, the
second is that the low-skill class- grows at & 5 percent rate and the high
skill class at a 15 percent rate, and the third is that the low-skill class

grows at a 15 percent rate and the high~skill class at a 5 percent rate.
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Parameters of the second type describe commuting costs and the
demand and supply conditions in the four markets. The values chosen
for these parameters are similar to the values chosen by Mills (1972a)
and Solow (1973) for similar simulatign models. The basic set of
parameters consists of '"best guesses'" about the actual values of
these parameters in a typical American metropolitan area. The basic
set of parameters is as follows: agricultural rental rate
(R) = 1500 per square mile per day; share of land in the production of
housing (a) = .20; inverse of the proportion of net income spent on
housing for both skill classes (kl and kh) = 4.0; per mile operating costs
(cz énd cﬁ ) = .10; commuting speed (MPHl and MPHh) = 20 miles per hour;
valuation of travel time (wl and wh) = .5 times the wage rate.

Given this basic set of parameters, four sets of simulations were

performed.

Basic S8imulations, This set of simulations examines the values
of e_ and dG generated by a basic set of parameters. Thus, this set
cons¥sts of simulations of eight basic urban areas (each with three
different patterns of population growth rates) using the basic set of
market parameters,

Sensitivity Simulations. This set calculates the effects
on éY and dG of changes in the values of the commuting and market
parameters, ‘

Asymmetrical Simulations. The asymmetfical simulations determine
the effects on e_ and dG of different assumptions for the two skill

classes about commuting costs and the proportion of net income spent
on housing.

Actual City Simulations. The final set of simulations calculates

the vaiues of ey and dG using values of the parameters Yl’ Yh’ Nl’ Nh,




dN., dN, and ¢ for actual urban areas, These simulated values are then
cofipared with the actual values of ey and dG in the urban areas.

Each set of simulations will be described in turn.

Basic Simulations. The relationship between urban population

and the distribution of income cannot be determined a priori. The vai;e

of ey can be greater or less than one depending on the sign of du* and
the relative sizes of the transportation cost and housing eost components
of compensation. The results in Table 3 show that, within the range of
parameters used for the basic simulation, the transportation cost

component dominates the housing cost component, and that this dominance

" increases with the asbsolute value of du*. If lelNl = th/Nh = ,10,

du* is positive and ey is slightly greater than one. If le/N1 = .05
and dN, /N, = .15, the low-skill class is outbid for housing indide u*
by the rapidly growing high-skill class, so that du* is negative and ey
is less than one. Finally, if le/Nl = .15 and th/Nh = .05, then du*
is large and positive, the transportation component of compensation
is much larger than the housing cémponent, and ey is considerably
gfeater than one.

Several other characteristics of the model are suggested by Table
3. First, by comparing areas of 250,000 workers with the corresponding
areas of 1,000,000 workers_(such as cases I.A.1 and I.B.1) it can be seen
that ey decreases slightly as total population increases. Furthermore,
Table 1 indicates that ey decreases somewhat as the number of radians
in an area decreases. Howe?er, both these effects are small and are
not always true in other simulations (not showm).

The simulations in panels I and II of Table 3 cannot separate the

effects on eY of Ylth and NllNh. Therefore, two additional simulations




Table 3

Basic Simulations

Popularfon Growth Rates

2 = =, =,05,dN /N =, N, /N =, N /N =,
dvl/nl le/Nh 10 le/N1 05 h/ 15 dhl/\l 1S,d‘h/\h 05
Description of Urban Area ey du* dc/G ey du* 1 dG/G ey du* dG/G
I. Low-Skill Class is Bottom 20 Percent of
Income Distribution (Yl=15, Yh-64)
A. 250,000 Total Workers
(N, =50,000; Nh~200.000)
1. Eadians: $=27 1.075 .025 .000 927 ~.025 -.066 1.468 .075 .069
2. Radilans: ¢=v 1.050 .021 .000 .906 ~.038 ~.066 1.433 .081 .069
E. 1,000,000 Total Workers
N,=2C0,000; N =800,000
i_ Radians: °=;n ! ) -1.029 017 .00 .889 -.051 -.066 1.403 084 .Géd
2. PRadians: é=v 1.014 .012 .000 .877 -.062 ~.066 1.381 .087 .069
II. Low-Skill Class is Bottom Half of
Income Distribution (Yl=28, Yh-81)
A. 250,000 Total Workers
(N1=Nh=125,000)
1.7 Radians: ¢=2n 1.109 071 .000 .927 ~.043 -.023 1.432 .186 .020
2. Radians: ¢=v 1.077 064" .000 .895 ~.076 -,023 1.406 .203 .020
B. 1,000,000 Total Workers
Nl-Kh=SG0.000)
1.” Padians: (=27 1.049 .052 .000 .867 -.111 -.023 1.381 .215 .020
2. Radians: g3==x 1.026 .039 .000 .845 -.144 -.023 1.360 .221 .020
IIX. Crange Income Distribution Hold
Population Distribution Constant
(Yl=28, Y, =81)
h
A. 250,000 Total Workers
(N1=50,000; N, =200,000)
1.” Radians: '¢=2r 1.041 .031 .000 948 ~.040 -.064 1.276 .103 .066
IV. Change Population Distribution, Told
Income Distribution Constant
(Y,=15, ¥, =64)
A. 250,000 Total Workers
(N1-125,OOO; N, =125,000) )
1.7 Radians: 2-2% 1.183 .053 GO .900 -.027 -.029 1.774 .132 .026

Y4
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are carried out usi;g the basic set of commuting and market parameters,
First, the simuiation in line I,A.1 is repeated, varying only the income
distribution-—~that is, the ratio Yl/Yh' The results of this simulation,
shown in Panel III, indicate that an increase in income equality,
holding the population distribution constant, moves ey closer «to'unity.
result has strong intuitive appeal, since a perfectly equal income
distribution (Yl = Yh) represents a one-skill-class model where, by
definitien, ey is equal to unity. Second, the simulation in ling I.A.1
ig repeated, varying only the population distribution--that is, the
ratiO'Nl/Nh. As shown in panel 1V, this simulation inddicates that an
increase in the proportion of the population that is low-skill, holding

income distribution constant, increases e This result.is also not

v
surprising; the increase in Nl/Nh is equivalent to an inorease in the
absolute change in low-skill workers and therefore should have the
same effect as an increase in lelNl, which (as seen earlier)
increases eye

The values of dG associated with this first set of simulations
are given in the last colummn of Tablg 3. Befiore examining these
results, it should he remembered that population changes have a
direct effect on dG, as Bhown in the first term in equation (27),
and an indirect effect through changes in incomes of the two skill
classes. Furthermore, the direct and the indirect effect typically

work in opposite directions. For example, a value of e, that is

N

greater than unity leads, in general, to a value of ey that is also

greater than one so that, according to equation (2%) the sign of dG

This
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is indeterminate. However, the results in the last column of Table 3

1
1
;

are unambiguous; the sign of dG is always determined by the direct

effect of the population elasticity. If is greater than one, dG is

°N
positive; if ex is less than one, dG is negative; and if ex is equal

to one, dG is essentially zero. The results are true for all simulations;

the direct effect of e_ in equation (27) always swamps the indirect

N

effect of ey that operates through incomes. Changes in relative

incomes in an open urban model are quite small and have virtually

H

i no impact on the Gini coefficient. This result does not depend on the

magnitudes of population changes. If Nl and Nh change by several
hundred percent, rather than by the 5, 10 or 15 percent shown fn Table
; 3, the direct effect of en still dominates the indirect effect that

; operates through changes in incomes. Since ey is very close to one

when ex equals one, the indirect effect 1s very small even when the

direct effect 1s zero.

Sensitivity Simulations. The second set of simulations is

i summarized in Table 4. These simulations take the first case in Table
3 (line I.A.1l) and vary the market and transportation parameters to
determine the sensitivity of the results to changes in the second type
of parameter. Table 4 indicates that in the range of parameters
examined, an increase in the agricultural rental rate (i), an
increase in the share of land in the production of housing éz), and
an increase in the proportion of income spent on housing (1/k), all
increase the value of ey- Simulations of the other cases from Table 3

lead to the same conclusions.




; Table 4
i
; Sensitivity Simulations
3
% Population Growth Rates
; =
- - = " -, -, N -
1 le/Nl th/Hh .10 dNI/NI .05, d'h/Nh 15 le/Nl 15, d h/Nh 05
Description of Urban Area ey du* dG/G ey t duk dG/G ey du* dc/c
t V. First Case (I.A.1 from Table 1)
T A, Basic Market Parameters
(R=1500, a=.2, ¥ ~k;=4,
to=t3=.10, W W =5, MPH -
i HPHI'ZO) 1.075 025 .000 .927 T =025 -.066 1.468 075 .069
’ B. Change Agricultural Rental
i Rate
‘ 1. R=1000 1.060 .023 .000 .94 -.032 -.066  1.447 .078 .069
2. R=2000 1.086 026 .000 .936 -.020 -.066 1.484 .072 .069
C. Chenge Share of Land in
Housing
1. a=.10 1.057 .011 .000 914 -.019 -.066 1.438 .041 .069
2. a=,30 1.085 .039 .000 .933 -.027 -.066 1.488 .104 .069
D. Change Proportion of Net Income
Spent on Housing
1, ‘Lh=kl=3.0 1.082 .034 .000 .932 -.026 -.060 1.482 .095 .069
2. ¥k =k;6.0 1,064 .016 .000 .919 -.022 -.066 1.450 .053 .069
E. Change Travel Costs
1, Low' Costs
(%005, W=k =.25
175" W= -
m‘Hl-MPP.hﬂO) 1.193 .064 .000 .992 .001 -.066 1.724 .127 .069
2. High Costs
(%= 20, W =u =.75
174 N T
MPH1=HPHh=10) 1,009 004 .000 .902 -.024 -.066 1,293 .033 069
! [y
.i VI. Other Cases
i A. Case II.A.l from Table 1
: with Low Travel Costs 1.247 162 .000 1.019 .024 -,023 1.642 .300 .020
B, Case 1.B.l from Table 1
with High Travel Costs 994 002 .000 .890 -.030 -.066 1.272 .034 .069

C. Case 1I.B.1 from Table 1
with High Travel Costa 996 006 000 856 -N7% - N23 1,251 086 20




Transportation costs effect ey in two ways. First, higher trans-
‘portation costs lead to a more compact city and to smaller values for
du*. Thus, the transportation component of compensation becomes
relatively less important and ey falls. Second, changes in the elements
of transportation costs change the ratio of total tramsportation costs

from u* to income and thereby affect e In the simulation, in rows

v
V.E.1 and V.E.2 of Table 4, it can be seen that the value of ey decreases

as transportation costs increase. Since the ratio of total transportation

costs from u* to income increases faster in the low-cost case than in

the high-cost case, ié follows that the first of the two effects
mentioned abowe 1s stronger in these simulatioms.

The transportation cost éimulations bring out several other
characteristics of the model. In case V.E.l, du* is positive even when
lelN1 is less than th/Nh. This result illustrates how low transportation
costs lead to areas that grow rapidly in area as population rises. The
same case also illustrates that the housing component .of compensation
can be larger than the transportation cost component., Case VI.B., with

le/NZL = th/N s.11llustrates the same result: ey > 1 even though du%

is positive,

The simutations in Table 4 tell the same story about dG as our
earlier simulations: dG is positive when ey is greater than one,
negative when &N is less than one, and essentially zero when eN is

equal to one.

Asymmetrical Simulations. The third set of simulations, which

is presented in Table 5, examines the effects of differences between

the two skill groups in the transportaion and housing parameters.




Table 5

Asymmetrical Simulations

Population Growth Rates

le/Nl=th/Nh=.10 le/N1=.05,th/Nh-.15 le/Nl=.15,th/Nh=.OS

Description of Urban Area ey du* dG/G ey du¥* dG/G ey du* dG/G

VIiI. First Case (I.A.1 from Table 1)
A. Same Parameters for Both
Skill Classes (tg=tg=.10,

W, =W,=.5, MPH, =MPH, =20,

kh=k1=4) 1.075 .025 .000 927 ~.066 -.010 . 1.468 .075 ,069

B. High-Skill Commute Faster : .
(MPHh=30, MPH1=1O) 1.205 .030 .000 .891 -.066 ~.010 2.054 .078 .069

C. High-Skill Pay Higher
Operating Costs and Value
Travel Time More
0] 0
(thw.ZO, tl=.10, Wh=.75, .
wl=.25) .991 .004 .000 1.024 -.066 -.010 .905 .038 .069

- D. Low~Skill Spend Higher Pro-
portion of Income on Housing

(k1=3, kh=6) 1.983 .023 -.001 1.958 -.067 -.010 2.041 .084 .069

E. High-Skill Spend Higher Pro-
portion of Income on Housing

(klm6, kh-3) .590 .023 .001 <451 -.065 -.010 .983 .061 .069

0¢
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If the high-skill class commutes faster than the low-skill class, then,
as shown in row VII.B, the effect of the transportation cost component
of compensation is magnified and the values of ey are farther from one
than in the symmetrical case. If, on the other hand, the high-skill
class has higher operating costs (because they drive luxury cars while
the low-skill class drives compacts) and if the high-skill class values
travel time more, then transportation costs may, as illustrated in
case VII.C, increase more than proportionately with income. In this
case, both components of compensation imply that ey will be less than
one whenever du* is positive, and greater than one whemever du#* is
negative.

Finally, the effects on ey of differences between the two skill
classes in the proportion of income spent on housing is determined.
These differences are similar in their effect to the assumption
that the #lasticity of demand for housing with respect to net income
is not equal to_unity. If the low-skill class spends a higher proportion
of its income on housing than the high-skill class (that is, kh > kl),
then, as shown in row VII.D, the value of ey is always much greater
than one--even when du* is negative. This result obtains because
housing expenditures now increase less than proporéionately-with income.
Conversely, if the high-skill class spends a higher proportion of its
income on housing than the low-skill class, then the valueé of ey are
significantly less than one. Even when th/Nl is greater than th/Nh,
the value of eY may be less than one, as shown in Table 5.

Despite the Tather dramatic effects on ey of the simulations in Table
5, conclusions about dG are not altered: the sign of dG is still

determined by ey "Even when ey is equal to one, so that there is-no
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direct effect of population changes on G, the large values of ey have
little effect on dG. For example, for both cases VII.D and VII.E

in Table 5 with le/N1 = th/Nh = .10, the value of dG is less than
0.1 percent of G, However,.if the changes in the area's population
were several hundred percent, the area's value of ey in these cases

would lead to a significant increase in G,

Simulations of Actual Cities. The fourth set of simulations takes

Y , dN., and dN, and 4 from 17 actual SMSAs using 1960 and

1* Tpe Npo Ny 9Ny h

1970 Census data. The values of ey for each urban area were then
calculated using the basic set of market parameters.15 The results

are presented in Table 6. The simulated values of ey in Table 6

can be compared with the actual values of eY——that is, with the values
obtained using dY¥, and dY, from the Census data. In nine of the urban
areas, th§ difference bgtween the simulated and the actual is less than .25.
However, the difference in some areas is enormous. in Des Moines,

for exgmple, the model estimates that ey = 2.116, whereas the actual

value 1is .963.

The divergence befween the simulated and the actual values of ey
suggests'some ex post hypotheses. In the sum belt cities (Phoenix, |
Atlanta, Oklahoma City, Houston, San Jose, Nashville, Richmond and
Fresno), the actual elastiéity is greater, and often much greater,
than the simulated elasticity. In midwestern cities (Milwaukee,
Minneapolis, Indianapolis, Omaha, Des Mdines, and Flint), the actual
elasticity is much less than the simulated elasticity. In fact,
~ in every Midwestern city except Flint, the actual elasticity is less
than one and the simulited elasticity is greater than one. This result

can be explained by two assumptions: (1) the high-skill class is




Table 6

Simulations for Actual Urban Areas

i

Urban Area

N

N

1 N 1 N AN, /N AN /N ¢ ey ey dux.!  dc/c eo* /G
Phoenix 10.8 27.1 33,000 129,688 .259 424 4.97 1.001 1.736 .013 -.085 -.224
Atlanta 10.6 27.4 35,615 216,168 .304 .423 5.59 .994 1.447 .006 -.068 ~.165
Denver 13.2 27.9 32,833 200,605 .396 .293 6.28 1.081 1.000 .093 .061 .062
Houston 12.3 27.8 48,841 275,323 .510 .601 6.28 1.023 1.262 .067 ~.045 -.108
Milwaukee . 16.2 27.3 37,507 284,239 .358 .075 3.49 1.260 .900 171 .201 260 @
Minn.-St. Paul 14.7 . 28.4 48,802 329,237 .364 .201 5.59 1.110 .955 .120 .104 .123
Baltimore 13.6 25.5 67,286 370,901 .195 143 5.32 1.069 1.160 .055 .034 -.034
Oklzhoma City 11.1 25.2 16,013 113,649 .368° .211 5.50 1.169 1.221 .093 .103 040
Bartford 14.2 28.6 17,033 126,501 .314 .197 5.59 1.116 1.114 .091 .078 .034
San Jose 14.7 33.5 22,092 139,371 .678 .666 6.28 1.057 1.296 144 .005 -.072
Nashkville 10.1 24.1 14,915 82,612 .328 .368 6.28 1.061 1.560 .047 -.023 -.148
Indianapolis 13.7 28.0 23,861 158,349 .576. .518. 6.28 1.056 .986 .116 .030 -.053
Richzond 1.1 26.2 14,244 89,613 .233 .243 4.97 1.071 1.740 044 -.007 -.166
Ozaha 13.8 26.7 16,722 97,621 .236 .078 6.28 1.295 .944 .090 .109 .139
Des Moines 13.7 27.6 8,986 60,386 .285 .013 6.28 2.116 .963 .093 .202 .218
Flint 14.9 24,2 10,048 86,850 .583 200 6.28 i.169 1.008 .168 .248 .243
Fresno 11.6 26.2 24,081 67,912 -.006 .036 4.89 .815 1.460 -.013 -.025 -.138
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much more mobile than the low-skill class, and (2) sunbelt cities are
strongly preferred to other cities, particularly to Midwestern cities.
These assumptions imply that high-skill households will move to
sunbelt cities without receiving the monetary compensation predicted
by our model, so that.our model will underestimate ey- Similarly,
high-skill households will only move to Midwestern cities if they
reéeive more compensation ﬁhan predicted by the model, so that the

model overestimates ey- This hypothesis receives some tentative

confirmation in our data. In every sumnbelt .city except San Jose
and Oklahoma City, the high-skill population grew at a faster rate than
the low-skill population; in every Midwestern city, the low-skill
population grew at a faster rate than the high-skill population.
As before, the wide variation in ey in these simu?ations does
not affect conclusions about dG. In every one of these simulations of
an actual city, the sign of dG is determined by the direct effect of ey
‘A clear conclusion emerges from these simulations: the
relationship between urban population and the distribution of income
1s a complex oneyeven in this simple two-skill-class model. Evans
was incorrect in arguing that the incomes of the low-skill class
would increase proportionately more than those of the high-skill
class as urban size increased. Nevertheless, this section has *
shown that several statements can be made about the relationship
between urban population and the distribution of income within an
urban area in the range of parameters examined here. In the next
section, an attempt 1s made to test these statements, using data

for a sample of metropolitan areas.
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Estimation Results

In the simulations presented above, the value of ey depends primar-

ily on the value of ey but is also influenced by the values of the many
parameters in the model. Two main dif%iculties prevent precise tests of
these simulation results: first, data are not available on most of the
parameters for individual urban areas, and second, the functional forms
relating the various parameters and ex to ey are not known.

It is possible, however, to perform a simple, but not very power-

ful, test of the main simulation result by performing the following

regression:
log(Ylth) =a + allog(Nl) + azlog(Nh). (38)

In this regression--which is a straightforward extension of the regressiomns
reported for the one-~skill class model--the coefficients can easily be

reilated to the values of ey and ey Differentiating (38) yilelds

dlog(YI/Y dlog(Nl) + a,dlog(N,)

B =2

or

(le/Yl) - (th/Yh) = al(le/Nl)~+ az(th/Nh) (39)

The left-hand side of this regression is clearly positive if ey is greater
than unity and negative if ey is less than unity, so that it conveys

the same qualitative information as ey: According to our simulatioms,

ey increases with (lelNl) and decreases with (th/Nh) so a; should’

be positive and a, should be negative. Furthermore, ey is almost al-

2
ways slightly greater than unity if (lelNl) is equal to (th/Nh) SO
that the coefficient of (le/Nl) should be slightly greater than the

coefficient of (th/Nh)'




Equation (30) was estimated for a sample of 89 SMSAs using the

skill class divigions described in footnote 15.16 Regional dummy var-
iables were included in the regressions to capture the amenity affects
discussed above. The results are presented in Table 7. In both the 1960 ~
and the 1970 regressions, a; and a, have the expected signs, a, is

slightly greater than a2, and the regional dummy variables are highly
significant. Furthermore, a; and a, are highly significant in the

1970 regression, although they are not quite significant at the 10

o

percent level in the 1960 regression. Thus these regression results
are consistent with thé simulation model.

A further test of the simulation model can be made by comparing
the simulated values of ((le/Yl) - (QYh/Yh)) with the values of that
quantity predicted by the regressions. A simulated value is obtained

using the values of Yl’ Y le, and dY, from a particular simulation

h’ h

and the comparable predicted value is obtained by substituting the
values of (le/Nl) and (th/Nhj from that simulation and the values of
ay and a, from the 1970 regression intc equation (39). Several such
comparisons are presented in Table 8. The striking result in Table

8 is that the regressions predict a much larger difference in

[(le/Yl) - (th/Yh)] due to cﬁanges in 1og(Nl) and log(Nh) than do the
simulations. In tﬁe first row of the table, the predicted difference
(.0533 percent) is about 2.5 times as large as the simulated difference
(.0222 percent); inothe second row,. the predicted difference is about 40
times the simulated difference. Even in the most extreme simulations—-
when kh and‘k differ——the simulated difference is, as shown in the last

1
two lines of Table 8, a fraction of the predicted response.
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- Table 7

Regression Estimates for Two-Skill—Class Model

log(Y /Yh) log(Y /Yﬁ)
1950 1970
Constant -.791 -.531
(4.87) (3.99)
log(Nl) = .058 .137
(1.11) (2.74)
1og(Nh) -.051 -.132
N (0.99) (2.67)
Northeast .223 .136
(7.65) (6.33)
Northcentral .200 .108
(6.83) (4.97)
West . .082 .014
(2.74) (0.59)
R? .492 .391

Note: Mumber of observations is 89; t-statistics appear in parentheses
below regression coefficients.
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— Table 8

Comparison of Simulation and Regression Results

Case le/N1 th/Nﬁ (aYI/Yi—th/Yh)xloo
Simulated Predicted

I.A.1 .10 .10 .0222 ,0533
-~ .05 .15 i -.0315 -1.2944
.15 .05 .0758 1.4010
I.B.1 .10 .10 .0113 .0533
.05 .15 -.0623 -1.2944
.15 .05 .0849 1.4010
VII.D = .15 .05 .1383 1.4010
VII. E .05 A5 -.2922 -  =1.2944

Note: The cases refer to the Simulations of Table 3 (I.A.,l-and I.B.l) and
Table 5 (VII.D and VII.E).
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Thus the simulations severely underestimate the variation in
((le/Yl) - (th/Yh)) and, therefore, underestimate the variation in
inequality across urban areas. It is hoped that future research on

this topic will increase understanding of this variation,




APPENDIX

Deriving the Equations

By totally differentiating equations (32), (33), (36), and (37)

with respect to V Vh’ Yis Yh’ N, Nh’ u*, and u (femembering from (3)

l’

that t depends on Y, and ty depends on Yh); by setting dV, = th = Q;

by treating le
ing system of equations is obtained:

a¥, - [t /@ - t]w)ldu = o,

ay, [k (1 = %)/ (Y, = tju®)] + dy,
U [ - B0/, - 8 - (- Hu®)

/(Yh - tyu*)]} + du*[khth/(Yh -t u¥)
- kp & /(Y = £uR)] + dul-k t /(Y - 0] = 0

. y=
th = Rdbé{th(l/th)}w- (1 - thu)/thbh(bh + 1)

- [ = gE) /e, by + DI, = tyu¥)

/1,

) y b, -
- * - * - ES
/(Yh thu) h] + us(1 thu )(Yh thu Y h

- .b
O IR+ A - Junrep 1L, - e

u*)
1 )

- — b .
thu)bh - k(1 - £70) (¥, - tput) b
b+

/¢,

/%, thﬁ) 1+ dﬁ'{-—llth(bh + 1) + [(Y, = tu¥)

! (Ey —_thﬁﬂbh+1/th(bh+l) +ouk(Y, - thu*)bh

-.b +1 b, -1 -.b
- - - * -
/(Y] t]u) h "} + du*[ U*(Y] tu ) h /(Yh t . u)

and th as exogenous; and by rearranging terms the follow-

(A1)

(a2)

(A3)

h]




dn, = dy, (§¢Zb /t ){(1 - tyu*)(Y - thu)bh'l/(Yh - thﬁ)bh (A4)

- (1 - tyu)(Y - t u*) h/(Y -t u)b +1}

+ le(B¢X/t1)f(Yl/(Y1 -t u*) 1 - [by( - t{u*)

/o) + DI, /(T - ¢, *)]b1+1 a - t{u*)

/Gy + 1)} + du*€R¢X/t PUp 4@1 + D][Y =t u*)]bl+1

-b /(b + l)} (R¢z/t ){b thu*) b -1
/(Y - thu) N! +‘dU(R¢Z/t1){bhth(Yh - thu*) h
/- o)

where Z= b +1/(Y - tlu*)bltlzbl(b1 +1) - (Y1 - tlu*)

/t1 bl(bl +1) - u*/tlbl, and

= [, - tuR)/(r - £ D1,

Solving for u* and u

After the parameters are chosen, the next step in solving the model
is to determine u* and u. The values of u* and u are found using equa-
tions (36) and (37) and the following iterative procedure:

1. Define N = Nl + Nh’ set u* = 0, and solve (36) numerically for

u by increasing the value of u by small increments from zero until

u
L* Nh(u)du > N,

Note that the value of u calculated in this step will always exceed the
final value of U since the high-skill class lives in less densely
settled areas than the low=-skill class.

2. Solve (37) numerically for u* using the u calculated in step 1.

3. Solve (36) numerically for U using the u* calculated in step 2.
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4. Solve (37) numerically for u* using the u calculated in step 3.
5. Repeat steps 3 and 4 until the change in both u* and u from
one calculation to the next is less than some specified value (.001).
Although it has not been proven that this iterative procedure has any desirable

mathematical properties, it converged rapidly in all simulations.
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NOTES

lThe assumption that some: members of every skill class live in
every city ds an assumption about the demand for labor. Although
the demand for labor is not considered in much detail in this
paper, it should be pointed out that our model is based on the
implicit assumptién that economies of scale and external economies
allow employers to pay higher wages in larger cities and still

competeswith firms in smaller cities that pay lower wages. In addition,

we assume that all income is received as wages,

2The assumption that Pz is the same in all cities is important. If,

for example, large cities have amenities (such as theatres or parks)
that are not present in smaller cities, then Pz will be lower in large
cities and our model will overestimate the compensation required to
induce people to live in large cities. This problem can, in principle,
be included in a model like ours, but for simplicity is not considered
here,

3Two comments should be made on equation (3). First, it may vary

across cities due to different public transportation systems or

different fuel costs. This complication, i1ike that of amenities,

is not considered here, Second, the expression for operating costs

is equal to ¢, times working days per year (250) times two (because

.we are considering round-trip commuting costs). The expression for time
costs is equal to working days per year. times minutes per mile of com-
muting times the dollar value of a minute spent commuting times two. The
dollar value of a minute spent commuting is w times Y divided by minutes

worked per year (for 250 eight-hour days).
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Since the model assumes that all income is derived from labor
supplied at the CBD by a single worker per household, male wages

are the appropriate variable for the estimation.

The Gini coefficient was chosen as the measure of income in-
equality because of its widespread use in the literature. Any
other summary statistic could have been chosen, but as is shown

below, the Gini can be conveniently decomposed when there are

only two income classes,

6Bhattacharya and Mahalanobis (1967) present a decomposition of

the Gini coefficient into a between-group variance, a within-group
variance and an fnteraction term. In the one-skill-class case, in

which all individuals in a given skill class have identical incomes,

these last two components are zero, so the @ini coefficient reduces to:

G = zPin]ui - uj|/2u
1#3
where Pi is the proportion of the population in each group, di the
group mean income, and u the mean income for the entire population.
In the two-skill-class case,

G = 20, = YN/ + N)IIN /W + )]

20N Yy + N ¥/ (N FN)]

[N/ €@ + NOTIN Y /(N Y + N Y]

- /oy + Nﬁ)][NlYl/_(NlYl SN Y]

v/, + N HIN Y F (N Yy # 8, V) ]

-{1- [N 1/(N1 + Nh)]}.x[N-lY-l/(Nth + Nth)]
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[Ny /Ny + N ) [Nth/ (N,Y, + N YD+ [NlYl/(NlYl + Nth)]}
= + -

[Ny /(N + N )T - [N, /(N Y + N YT
7These elasticities do not actually appear in equation (27).

However, eN conveys the same qualitative information as

1
(Yhle - Ylth)}. Thus eN.is equal to one when (Nﬁle - NidNﬁ) is equal

(thN - Nlth) and ey conveys the same qualitative information:as

to zero, greater than one when (thN1 - N th) is positive, and less

1
than one when (thNl - Nlth) is negative, -For-=easé- of exposition,

the discussion will focus on the elasticities instead of the more

cumbersome formulas in equation (27).

8Assuming that Nh > N1 (Yh is greater than Yl by definition), then
the change in Gini. is related to the elasticities as follows:

e <1 e_=1 eN>l

N N
e, <1 2 + +
eg =1 - 0 +
ey > 1 - - ?
9

At this point it is appropriate to assume that the two skill classes
are completely segregated so that there is a border between them.
However, this result can be derived from the model instead of assumed,.

(See also Solow 1972).

10It should be pointed out that Evans' empirical assertions are
open to some question. For example, Beesley (1965) found that
high-income commuters value their travel time more highly than

low-income commuters, and many studies (some of which are reviewed
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in Deleeuw (1971) have found dan income elasticity of demand for housing

that is not equal to one. However, these assumptions are con-
venient and not unreasonable simplifications, and will be used
throughout this paper.

11This result obtains because the price-distance function for the

high-skill class is flatter than the price-distance function for
the low-skill class sovthat high=-skill households outbid low-
ski1ll households for housing far from the CBD. TFor proofs of
this income-~sorting result in similar models, see Mills (1972b)

or Muth (1969),

12The equations are (4) and (6) through (14).

13The mean daily income for families in the bottom 20 percent of the

.income distribution in American cities in 1971 was about $15 and
the mean daily income for families in the top 80 percent of the
income distribution was about $64. Similarly, the mean daily
income for families in the bottom half of the income distribution
was about $28 and for families in the top half of the income dis-

tribution was about $81 (U.S. Bureau of the Census 1973). -

141t should be pointed out that the focus on the elasticity ey is

somewhat misleading here. As pointed out in note 7, the precise
measure of the impact of changes in relative incomes on G depends
(unlike eY) on the absolute changes in Y1 and Yh. Since, as

shown in section 1, these absolute changes are fairly small (on

the order of 0.03 - 0,06 percent), changes in relative income do not

affect the Gini even when e_ is considerably greater than one.

Y
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In order to computeweY for the sample of SMSAs it was necessary
to divide the employed population into two skill classes. Labor-
ers, farm laborers, and service workers were assumed to be in the
low-skill class, while all other occupations were é;sumed to be
in the high-skill class. Since the model assumes only one |
worker per household, employed males were the units chosen for
analysis. First, the mean incomes of the two groups and the

number employed in each group were calculated for each SMSA for

"1960 and 1970 (U.S. Bureau of the Census 1960, Table 124; VU.S.

Bureau of the Census 1970, Table 175). The low-skill group is

about 20. percent of the size of the high-skill group, and has. average
wages about one-half thé level of the high-skill group*s average.
Once these levels were computed, eY, eN! and dG were known from
equations (27), (20) and (29). An estimate of radians of available
land was, then, derived by using the urbanized area maps

provided by the Census. Finally, these actual values of Y]3 Yh’

N Nh, and ¢, and the basic market parameters (assumed constant

l’
= o .o

for all areas), R, a, Kl’Kh’ tys th’ W Wi MPHh, and MPHl,

were used in the computer simulation. The simulation produced the

estimated elasticity, eys change in skill~class boundary, u¥*, and

change in Gini coefficient, dG/G, shown in Table 6,

16The division of workers into skill classes is arbitrary and

these results could be replicated with other divisions.
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