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1. INTRODUCTION

In recent years there has heen a considerable expansion in the

availability of longitudinal data files. SQc:j.ological theory has always

had the studv ryf social change as it.s cote. yet the majority of quanti

tative empirical researches have involved the analysis of cross-sectional

data. Longit\ldinal studies, in particular multi-\vave panel studies. hAve

not been very cornman. In part, this is because of the considerable CO[.;t

involved in surveying a population sample at multiple points in time. It

is also due to the fac t that several years must usually elapse af ter the

first interview for the longitudinal aspect of the data to become suffi

ciently detailed so that patterns of change can be detected and studied.

However, stimulated by a recent concern with the development of social

indicators and by a related interest in social experimentation, a number

of large scale studies have been funded. and sufficient time has elapsed

for these investigations to have produced longitudinal files • Indeed, in

comparison with even a decade ago, we appear to be moving into an era

which \vi11 be comparatively rich in the existence of multi-wave panel data

on large population samples. Important examples of currently available

data sets of this sort are the Hichi-gan Panel Study on Income Dynamics

(Morgan and Smith, 1969), the National Longitudinal Study of Labor Force

Experience (Parnes Study, 1972), the Sewell-Hauser Panel on Hisconsin

Youth (1975), and files from several negative income tax studies (e.g.,

A. Rees and H. Watts, 1976).

The expansion in availability of these sorts of files raises ques

tions about proper analytic methodology for exploiting the richness and

unique proper;ties of panel data, especially in instances where more than

two waves of intervie\vs have occurred. Sociologists frequently ask
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questions about distributional change and are interested in forecasting

the evolution of a population among system state~as well as in under

standing the structure of the dynamic process. The most common examples

of such studies concern occupational mobility (e.g., Lieberson and Fuguitt,

1967; Hodge, 1966) and geographic migration (e.g., Tarver and Gurley, 1965;

Rogers, 1966). Some economists (e.g., Smith and Cain, 1967; McCall, 1973)

have viewed income dynamics from the same perspective.

The mathematical framework that has "been used in these investigations

is discrete-time Markov chains. We shall discuss a 'number of limitations of

this structure as a description of social proces~es; at this point, though, we

wish only to moti~ate our investigation by focusing on one discrepancy

between forecasts from a Markov model and observations on the empirical

process. In applications of Markov chains to industrial mobility, B1umen,

Kogan, and McCarthy (1955) (hereafter referred to as BKM) discovered an

empirical regularity which has subsequently been observed in many other

sociological investigations and which has motivated a rich and diverse

research effort. In particular, they noted the tendency for the main

diagonal entries of observed stochastic matrices to be underpredicted by

the main diagonal entries in powers of one-step Markov transition matrices.

This has led to the formulation of a variety of alternative stochastic

process models which might plausibly account for the regularity. Futher

more, there has been a critical reevaluation of the substantive and

statistical issues involved in estimation and comparison of several models

fitted to the rather fragmentary longitudinal data which is usually avail

able on an empirical process.

The purpose of this paper is to review some of the methodological

developments which were an outgrowth of BKM's pioneering investigation.
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Particular. attention will be paid to parsimony of models relative to

multi-wave panel data, and to the testing and identification of multiple

models which may be compatible with a given set of observations. In

Section 2 we review BKM's study and describe some conceptual difficulties

which can arise when discrete-time structures are applied to social

processes that evolve continuously in time. Section 3 contains an

overview of the alternative explanations which have been proposed

to account for the empirical regularity observed by BKM; namely, the

, underprediction of diagonal entries in observed transition matrices by

diagonal entries in powers of Markov transition matrices. ~odels of

heterogeneous populations which extend BIOi's formulation to continuous

timejand which incorporate more diverse forms of heterogeneit~aredes

cribed in Section 4. In Section 5 we illustrate the companion issues of

embeddability and identification for continuous-time Markov chains. This

is the prototype of a set of methodological problems which are central

to the analysis of panel data, and which have received remarkably little

attention.

Generally speaking, .embeddability tests refer to the task of ascer

taining whether or not an empirical process is compatible with the con

ceptual assumptions (mathematical structure) underlying a particular.

class of models (e.g., general ~arkov, mixtures of ~arkov, se~i-Markov).

~~ere the answer is affirmative, identification procedures refer to

techniques for recovering the specific set of structural parameters from

the model class which should be associated with the empiricaL process.

One indication of the difficulties involved with identification is the

fact that empirically determined stochastic matrices based on data collected

at evenly spaced time points may be embeddable in the class of continuous

ti.me Harkov models, but a unique structure from that class ma:: not bp

identifiable.
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Finally, Section 6 illustrates a rudimentary strategy for discrimi-

nating among four classes of stochastic process models using multi-wave

panel data. That discussion is intended to illustrate the flavor of the

kinds of strategies which are in serious need of development. Indeed

this is the place where the greatest methodological challenges lie, and

foremost among them is the specification of designs for panel studies

which will facilitate discrimination among multiple plausible models.

, 2. MOVERS AND STAYERS..-A REVIEW

2.1 Model specifications and an empirical regularity

In attempting to describe the propensity of persons in particular

age and sex cohorts to move between pairs of industrial categories, BKM

first fit a discrete-time Markov chain with stationary transition prob-

abilities to quarterly data on the occupations of persons listed in the

Social Security Administration's Work History File (1972). By a dis-

crete-time Markov chain we mean a stochastic process {X(k), k = 0,1,2, ••• }

describing state transitions by an individual where the system states

might be geographic regions, occupations, industries, or income cate-

gories) depending on the particular substantive problem. Probability

statements about the process are governed by the analytical recipe

Prob{X(k+n) = jIX(O), X(1), ••• ,X(n-1), X(n) = i}

= Prob{X(k+n) = jIX(n) = i} = m~~) (2.1)

for k = 0,1,2, ••• n = 0,1,2, •••• Thus, the fundamental assumption of

a Markov process is that future system state is not a function of past

history, once current state is specified. The element mi~) is the (i, j)
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entry in the stochastic matrix Hk
(k....fold matrix multiplication of M).

This specifies the k-step transition matrix under a Markov chain, Le.,

kpea, k) = N • M is itself a stochastic matrix whose entry m.. has the
lJ

interpretation,

m ••
lJ

= probability that an individual in category i will
move to category j in one llni t of time.

This mathematical structure describes the evolution of a homogeneous

population, because it is assumed that all individuals evolve according

to the same transition mechanism (namely, the matrix H).

Bl01' s estimation method was simply to identify an average of the

observed one-quarter (i.e., three-month interval) transition matrices

with the matrix of one-step Markov chain transition probabilities

Ilm .. 1 I. With this estimate in hand, they tested the model by compar
lJ

ing Mk with pea, k), the empirically determined transition matrix
l

based on observations taken at the beginning of the initial quarter and

th
at the end of the k quarter. BKM carried out this comparison for

k =4, 8, and 11 and found that

P ii (0, k) >
(k)

mii ' k = 4, 8, 11; 1 ~ i < r = number Of states.; (2.2)

that is, the main diagonal elements in the k-step matrix predicted by

a Markov process under-represent the m~in diagonal elements in the

observed k-stepmatrix. They also noted that the magnitude of the

inequality increased together with k.

BKM suggested that one plausible explanation for the discrepancy

summarized in (2.2) was that a socially heterogeneous population was

being 'treated as though it was homogeneous. They proposed an alterna-

tive model to accommodate heterogeneity in which the population was
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viewed as consisting of two kinds of individuals. They assumed that a

non-directly observable fraction s. of the individuals in industry cate
~

gory i--called stayers--never moved, and that their evolution was

described by the degenerate Markov'chain {Xl(k), k = O,1,2, .•• } with

one-step transition matrix given by the identity I. In addition, the

evolution of a non-directly observable fraction, l-si' of the individuals-

called movers--who were in industry category i at the beginning of the

initial quarter was described by a discrete-time Markov chain {X2(k),

k = O,1,2, ••• } with one-step transition matrix M. The diagonal entries

mii were not required to be zero, thereby allowing for within-industry

job change. It was also assumed that the mover population evolved

independently of the stayer~and that the same transition matrix M

governed the evolution of movers who started in each category at the

beginning of, the initial quarter.

The observable process {Z(k), k = O,1,2, ••• } describing the evolu-

tion of individuals who start out in each industry category in the

initial quarter is thus a mixture of the components of the bivariate

process (Xl(k), X
2
(k». Its transition probabilities are given by

Prob{Z(k) = jIZ(O) = i} = {(l-s.)m~~) for i ~ j
~ ~J

(k) (2.3)
si + (l-si)mii for i = j

k = 1,2, ••• ; 1 ~ i, j ~ r = number of states.

In matrix notation, this may be written as

P(k) = 51 + (I_5)Mk

where S· (><J
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The formulation (2.3) has come to be known as the "mover-stayer"

model, and a variety of simultaneous estimation methods for the struc~

tura1 parameters (sl, ••• ,sr) and M are given in a paper by L. Goodma~

(1961), who improved considerably on BKM's initial procedures. BKM

found that this model of a heterogeneous population provided a better

description of job mobility, as measured by the quarterly observations,

than the original Markov chain model of a homogeneous population.

Furthermore, the mover-stayer model accounted for much of the empirical

regularity (2.2) and thus has motivated subsequent attempts to develop

more refined models of heterogeneous populations.

2.2 A difficu1tv with discrete-time models
r

Despite the initial success of the mover-stayer formulation there

are conceptual difficulties with the basic strategy of fitting dis~

. 2
crete time models to mobility data. In particular, when structural

information about a population is the primary goal of an investigation,

then the substantive interpretation attached to estimates of the matrix

M--in either the pure Markov or mover-stayer model--is

= probability that an individual in state i
will move to state j when a change occurs •

If you regard M as a matrix of structural change parameters and

fit discrete-time models to evenly spaced observations, then you are

tacitly assuming that the natural time unit between, say, industry or

occupational changes coincides with the sampling interval (3-months in

the Social Security Administration's 1'lork History File). Since there

is no substantive basis for such an identification, the parameters esti-

mated by BKM c·annot legitimately be interpreted as structural information
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about the population of workers; alternate choices of the sampling

interval will yield different matrices M. Indeed, BKM were aware of

this difficulty and noted that during a given quarter some persons

will have moved twice, others will have moved three times, etc. For

these unidentifiable persons you are really estimating M2, M3, etc.

Nevertheless, even by dropping any attempt to identify M as a matrix

of structural parameters and just fitting a discrete-time model to

quarterly data, BKM found an empirical regularity of considerable impor-

tance. In fact, as we will indicate in Section 4, even when continuous-

time Markov models--whose parameters can legitimately be interpreted

as structural coefficients3--are fit to a variety of longitudinal data

sets, the ~egularity observed by BKM still appears.

The ambiguity in specifying an appropriate time scale for intra-

generational mobility processes has also been pointed out by H. White

(1970, pp. 319-320) and Singer and Spilerman (1974, pp. 360-362).

However, a facet of this ambiguity which seems to have been overlooked

by BKM, as well as by subsequent users of the mover-stayer formulation

(e.g., McCall, 1973), is the fact that conclusions about compatibility

of data with a discrete-time model can depend entirely on an ad-hoc

choice of unit-time interval. To see this in the simplest possible

setting, recall BKM's initial fitting of a discrete-time Markov chain

to quarterly observations.

Suppose, for illustrative purposes, that you agree that a natural

time unit for job mobility in a particular population cohort -is six

weeks. Then an attempt to fit an observed one-quarter (l2-week) transi-
A

tion matrix P(O, 1) to a Markov chain consists of asking whether there
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exists a stochastic matrix M such that

P(O, 1) =H
2

•

'"
An affirmative answer would require that P(O, 1) have at least one

stochastic square root, /P(O, 1). That thi.s is by no means automatic

can be seen if you consider a two-state process with observed one-

quarter transition matrix

= ,( 1/4
P(O, 1)

5/8

3/4) ,
3/8

This matrix has no stochastic square roots, and it is therefore incom-

patib1e with a discrete-time Markov structure if the natural time unit

is believed to equal six weeks. However, if you use a four-week time

unit then you find that P(O, 1) does have a stochastic cube root given

by

=
.0611

.7824

'9839,')
.2176

More generally, P(O, 1) has no stochastic roots of any even order, while

it does have a stochastic cube root, a stochastic fifth root, but no odd

stochastic root of order greater than five.

A consideration of high order roots (say, greater than four) is not

really an issue with quarterly observations of job mobility; however, it

certainly could ,be for annual observations or more widely spaced data~

The essential point to be made here, however, is that for processes such

as intragenerationa1 occupational mobility which are both intrinsically

4
nonsynchronous and lack any substantive basis for a choice of unit

time interval, a more natural strategy is to fit continuous-time models
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(in which the waiting times between moves are viewed as random variables)

to the data. and carry out systematic discrimination among alternative

models
, 5

in that setting. This kind of extension of the mover-stayer

framework was first carried out by S. Spilerman (1972a) with further

generalizations indicated in Singer and Spilerman (1974). These deve1-

opments will be reviewed together with a variety of other models in

Section 4.

,3. OTHER EXPLANATIONS OF HIGH DIAGONALS

BKM's introduction of the mover-stayer model to explain "c1uster-

6ing on the main diagonal." Le •• the empirical regularity

0.1)

has led to the development of a variety of qualitatively different kinds

of models. all capable of accounting for (3.1). The five principal

features of social processes which are not taken into account in uni

variate time-stationary Markov mode1s7 and which have motivated the con-

struction of alternative models are:

(i) population heterogeneity

(ii) time-varying propensities to change system states (e.g ••
income categories. occupations. industries)

(iii) non-exponential waiting times between changes of state

(iv) strong dependence on past history

(v) latent variables.

Features (i). (ii). and (iii) have received the most attention in attempts

to develop stochastic process models which can account for (3.1) and

which also mirror other widely observed empirical phenomena. such, as
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the increasing propensity with the passage of time for persons in a

particular occupation to remain there. For a nice empirical study of

manpovler f10\.,s in British labor mar"kets where this behavior occurs,

see Kuhn, Poole, Sales, and Wynn (1973). Since our primary concern in

Sections 4-6 will be with specification, estimation, and identification

issues involving models based on (i)-(iii), a few remarks about (iv)

and (v) are in order.

In a review of BK}1's study, W. Feller (1956) suggested that for

processes such as job mobility, dependence on past behavioral patterns

was probably so pronounced that it would be essential to develop detailed

:nod els incorporating past history in order to have a satisfactory

description of the observed empirical patterns. IndeedJ~e11er suggested

the use of higher order Markov, processes .for this purpose. As a strategy

for understanding social phenomena such as mobility among occupa-

tion, industry, or income categories, this kind of program has never

been seriously followed up and has in fact been criticized on several

grounds. Coleman (1964a, pp. 9-11), in particular, has emphasized that

the intrinsically heterogeneous nature of most populations is largely

ignored b'yan introduction of higher order 'Harkov models, and that such

an exercise is more akin to blind curve fitting of successively higher

order polynomials to irregular data.

One might argue that models incorporating both heterogeneity and

long range dependence should be introduced; however, the fragmentary

nature of the data which can be collected in most surveys--particular1y

the small number of time points at which persons involved in panel studies

can be re-interviewed--makes judgments as to the relative importance of

phenomena which are to be incorporated in parsimonious models essential.
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In fact, a primary reason for the emphasis on population heterogeneity

and the neglect of long range dependence is the greater importance for

the development of sociological theory attached to an understanding of

the components of heterogeneity. The strategies of introducing inde

pendent variables into Markov chain models developed by Coleman (1964a),

McFarland (1970), and Spilerman (1972b) as well as the mixture models

introduced in Spilerman (1972a) and Singer and Spilerman (1974) are all

based on considerations of parsimony of models relative to the available

data and on the judged importance of population heterogeneity.

Concerning item (v), many of the observed attitudinal responses

in panel studies, such as opinions about political issues, career

aspirations, etc. are related to a variety of non-directly observable

(or latent) social and psychological variables. In addition, there are

often several competing theories about the relationships which may

exist between latent and manifest (i.e., observable) variables. An

important research objective with panel data is to discriminate among

dynamic models incorporating a variety of latent and manifest variable

relationships. Despite its importance, this aspect of the analysis of

longitudinal surveys is largely undeveloped. The major attempts to

consider both the substantive and methodological issues have been by

Coleman (1964a), Lazarsfeld and Henry (1968), and Wiggins (1973). The

last of these contains a superb collection of examples and lucid state

ments on the enormous range of unresolved mathematical, statistical,

and social-theoretic problems. In the remainder of this paper we will

concentrate on models which incorporate population heterogeneity, time

varying propensities to change state, and general classes of waiting

times between moves. However, it should be noted that the same
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methodological issues arise in dealing with latent structure models

but with a considerable increase in complexity.

4. PARSIMONIOUS MODELS AND FRAGMENTARY DATA

In the context' of panel studies, J. Coleman (1964b) introd~ced

continuous-time Harkov chains as an initial baseline class of mod'els.

However, in fitting these models to obse~ved data, he noted the same

kind of empirical regularity--under-prediction of diagonals of observed

matrices--which B~f and others had found using discrete-time models.

This finding has motivated the development of a variety of formal models

of heterogeneous populations which are both moderately realistic and

simple enough so that parameters can be estimated and the models falsi

fied using rather fragmentary data. The strategies for introducing

heterogeneity have basically been of two distinct types: individuals

(or sub-populations) are classified either according to the rate at

which they move (Spilerman, 1972a; Singer and Spilerman, 1974) or accord

ing to their propensity to move between pairs of states when a transi

tion occurs (McFarland, 1970; Spi1erman, 1972b; Singer and Spilerman,

1974). These sub-populations are not always directly observable, and

mixtures of Markov and semi-Markov proces~es provide simple, readily

interpretable models of the observed population-level processes.

Explicit descriptions of models of these types, suited to intra-generational

mobility studies, are given in sub-sections 4.1, a-d below.

4.1 Model specifications

In order to illustrate some explicit models of heterogeneous popu

lations and clarify the substantive assumptions which accompany th~ir
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use, we first recall the basic mathematical structure of continuous-time

Markov chains with stationary transition probabilities. In particular,

consider a stochastic process with a finite number of states whose

transition probabilities are governed by the system of ordinary differ-

ential equations

dP(t)
dt = QP(t), p(O) = I (4.1)

where pet) and Q are rxr matrices. It is well-known (Coleman (1964b),

pp. 127-130; Chung (1967), pp. 251-257) that if Q has the structure

q > 0 for i .J. j,ij T qii ~ 0,
r
E q_j = 0,

j=l ~
i = l, ... ,r (4.2)

then the functions pet), t > 0 which are solutions of (4.1) comprise

the transition matrices of continuous-time stationary Markov chains.

A typical element, Pij(t), of pet) has the interpretation,

Pij (t) = probability that an individual starting in
state i at time 0 will be in state j at
time t.

The Q-arrays, which are known as "intensity matrices," represent

structural information about the population:

(i) probability that an individual in state i
will move to state j, given the occurrence
of a transition

(ii) = expected length of time for an individual
in state i to remain in that state

We will denote the class of intensity matrices (arrays of the form

(4.2») by ~.
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Solutions of (4.1) are given by the exponential formula

P(t) = Qt
e , t > 0 (4.3)

. where the matrix exponential e
A

(A being an arbitrary rxr matrix) is

defined by

A
e =

00

L
k=O

(a) A simple factored representation of Q:

The above general formulation of continuous-time Markqv transition

matrices has been used in numerous sociological contexts (e.g., Coleman

1964b, pp. 177-182; Bartholomew, 1973). However, the analysis of

social processes, particularly in a heterogeneous population, is greatly

facilitated by an alternative formulation which provides the basis for

a classification of individuals (or sub-populations) according to ~heir.'
rates of movement, their propensities to move to particular states~ or

both simultaneously. A starting point for this development was

S. Spilerman's (1972a) extension of the mover-stayer formulation to

continuous-time, with a more general classification of sub-populations

than the simple mover-stayer dichotomy. The basis for this extension

was simply the introduction of a factor~d representation for Q-matrices

of the special form Q = A(M-I), where A is a positive constant signify-

ing the expected rate of movement, and :1 is the transition matrix that

each individual in the population follows at a move.

Classification according to~ of movement means assigning a

number A to each individual (or sub-population),

what we will call type-A individuals. The value

thereby designating

1 .r can be interpreted
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as an individual's mean waiting time before moving (or before making a

decision to possibly move). Similarly, classification according to

propensity to transfer to particular states means assigning a stochastic

matrix M to an individual, thereby designating what we will call typ~-M

individuals. If persons are to be classified in both of the above ways

simultaneously, we would speak of type-(A, M) individuals.

Using this classification scheme, the random variables {Y(t), t > O}

which describe a type-A individual's history may be constructed from

two separate processes: (1) a sequence of independent positive random

variables TO' T
1

, ••• describing waiting times between moves and satis-

fying

Prob(T. > t)
1

-At= e i=0,1,2, ••• t > 0

and (2) a discrete-time Markov chain {X(k), k = 0,1,2, ••• } having one-step

transition matrix M which describes moves when they occur. You can

then think of an individual whose transition probabilities are governed

b tA(M-I) 1 . d' t th f 11 i i tiyeas evo v1ng accor 1ng 0 e 0 ow ng prescr p on:

(i) Starting in state i at time 0, the individual stays there

t > 0,Prob(TO > t)

for an exponentially distributed length of time TO with

-At= e

Thus, Y(t) = X(O) = i for 0 ~ t < TO.

(ii) At the end of this time he makes a decision to move to

state j with probability m..• (In general, m.. # 0.) Thus,1J 11

Y(T O) = X(l) = j.

(iii) Now he waits in state j for an exponentially distributed

length of time T1 which is independent of TO' X(O), and X(l);

especially,
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Prob('l > tIX(O), '0' X(l)) = -A t= e

yet) = X(l) for '0 ~ t < TO + '1

(iv) Then he makes another decision to move to state h wi th

probability mjh ; hence,

(v) The above sequence is repeated. In general,

yet) X(k)
k-l

for i:
i=O

'.~ ,< t <
k

i: 'i
i=O

with '0' '1' ••• independent of {X(k), k = 0,1,2, ••• } and of each

other.

s. Spil~rman's (1972a) extension of the mover-stayer model was a

mixture of Markov processes of the above sort in which individua~s

associated with the parameter A were assumed ,to occur in the total

populatio~ with a frequency described by the Gamma density

g (A) where ex > 0, S > 0, A > 0

Type-:-A individuals are considered to'be non-directly observable, and all

types of individuals are treated as having the same propensity to move

among the states, prescribed by the matrix M. The population-level process

{Z(t), t > a}, which is observable, then has transition probabilities given by

= (_S_) ex [I _ -L H]-<X
S+t S+t

(4.4)
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The choice of a gamma density in this specification is based on

the ability of that functional form to describe a variety of unimodal

curves, unimodality being a reasonable characterization of the fre-

quency of occurrence of different types of persons) with respect to

rate of movement) in heterogeneous populations (Palmer (1954), p. 50;

Taeuber, Chiazze, and Haenszel (1968), p. 46).

Two other mixtures of some importance for intra-generational

occupational mobility are processes with transition probabilities

governed by

pet) sI + (l-s) e
tAo(M-I)

=

and

pet) = sI + (l-s) f ~ e t). (M-I) gO, )d)'

= sI + (l-s) (8~t)CI. (I - 8~t ~1)-ex

(4.5)

(4.6)

Equation (4.5) is a continuous-time analog of the mover-stayer model

1in which the fraction of stayers is the same for all states, and r-
o

is the expected waiting time between moves in the mover population.

Equation (4.6) combines the mover-stayer model with the more general

form of heterogeneity in the mover population which was specified in (4.4).

Because this mixture adds a concentration of stayers to the gamma density,

it is known as the spiked gamma (with vodka please).

(b) A more general factored representation of Q:

From a substantive point of view, a principal defect of the

individual-level description in (a) is the requirement that a person's

waiting time distribution be the same in every state. It is desirable
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to eliminate this constraint and retain the flexibility of the full

Markov.model, since there are many instanc~s' in which rate of movement

is a function of system state: for example, if the system states are

industry categories we know that industries differ in their rates of.

employee separation (Blauner 1964 ~ pp. 198-20.3).'

We therefore classify a person according to the diagonal matrix

_(AI. Q)
A-. ,• •° A .- r

A. .::. 0, i = 1,2, ••• ,r
1.

where ~. has the interpretation, "average 'tvaiting time in state i. '.' A.
1.

type-A individual's history {yet), t > o} is now governed by the transi-

tion matrices

pet) tA(M-I)= e , t > ° (4.7)

and these individuals are viewed as occurring in the total population

with a proportion specified by a joint probability density g(Al, ••• ,Ar ).

The pr~vious construction of individual histories {yet), t > O} out of

random waiting times '0' '1"" and a discrete-time Markov chain {X(k),

k = 0,1,2, ••• } must now be modified by allowing the distribution of 'k

to depend on the current state X(k).

In particular, we define

yet) = X(k)
k-1

if E
i=O

'.1.
< t <

k
E

i=O
T.

1.

(4.8)= e= Prob(Tk >.tIX(k) - i)

where prob(Tk>tlx(O), TO' X(l), 1'1' ... ·.. X(k-l), Tk_l , X(k) = i)

-A.t
1.

for 1 < i ~ r; k = 0,1,2, •••
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It should be pointed out that this formulation requires more comnli-

cated estimation techniques than the simple factored representation

described in the previous section. Hml1ever, a full discussion of

these issues in the context of panel studies lies outside the scope

of the present paper.

(c) More general waiting time distributions than exponential:

Despite the more diverse form of heterogeneity which is formalized

in (b), the increasing tendency of persons to remain in a particular

state (occupation, geographic region, etc.) the longer they have been

there is an empirical regularity which is not captured by any time-

stationary '.farkov model. R. 'kGinnis (1968) refers to this phenomenon

as cumulative inertia, and empirical evidence of its presence in intra-

generational mobility is provided, for example, by Land (1969). \fyers.

'1cGinnis, and Mesnick (1967)' RT"1 Jrnhn .. P~~1,,",. Sales. and Hynn (1973).

This phenomenon is also known. in the demography literature as "durati):,-

dependence," and a nice review of formal models which incornorate it

is provided by Haem (1.972).

In order to formalize duration-dependence and simultaneously

classify individuals according to rate of movement and propensity to

transfer to particular states, it is convenient to retain the decom-

position of individual histories {yet), t > 01 discussed in the previous

sections. The only modification is the introduction of snecial non-

exponential distributions, p.(t). 1 < i.::. r, which desrrihe dur<Jtion
~

dependent waitin~ times in stNte i. In particular. we dofine

yet) X(k) for
k-1

'\'
4

i=O
T.
~

k
< t < '" T •L.

i=O
~

(4. <))
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where '0' '1"" are positive random variables satisfying

,Prob('k> tlx(O), '0' X(l), 'l,· •• ,X(k-l), 't'k_l' X(k) = ,i)

= prob(T k > tIX(k) = i)

=l-F.(t)
1

1 < i < r (4.10)

To incorporate the notion of duration-dependence (or cumulative'

inertia) we restrict F.(t) to be of the form
1

F. (t) =
1

1 -
-f~ hi(u)du

e 1 < i < r (4.11)

where h. (1..1) is a positive decreasing function such that
1

00

fa hi(u)du = +m

The assumption that hi be decreasing implies that the longer an indi- ,

vidual stays in state i, the less likely he is to move in the immediate'

future. In particular, the probability that 4n individual known to, be

in state i at time t will exit from that state in the next dt units of

time is given by

h.(t)dt
1

=
f. (t)dt

1

l-F.(t)
1

where f.(t) is the probability density corresponding to F.(t).
1 1

The process {Y(t), t > a} defined ab ave :i.s a special form of semi,

8Markov process whose transition probabilities

Prob(Y(t) =jIY(O) = i) = P .. (t) •
1J

l' .( i < r...,.. ,

are the unique solutions of the system of ~ntegral equat~ons

--- -------- ----- ----~~~~~-

I
I
I

I
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p .. (t) = 6 .. [1
lJ lJ

In this equation,

if i = j

(4.12)

if i '" j

and Ilm
ik

II = >1 is the one-step transitiqn matrix governing tl1e d iscretn

time Harkov chain X(k), k = 0,1,2, ••• used to specify yet) in (4.9).9

Nmv classification of an individual evolv:i.ng; according to a sem~ ..~lark(lv

process lvould mean to characterize him hy the fa,mily of distributions

r= {F
1
(t), ••• ,Fr(t)} describing the l,1aitjng times in any state)and hv

the stochastic matrix ~ describing his propensity to move to particular

states.

In specifying a pop\llation-J,eve1 proc~ss {Z(t), t > O} as a mi~ture

of this kind of semi-Markov process, parametric families of distrihutions

are usually used to define F. (t) and then a suitable mi.xing dis trihu
l

tion is defined on the

F(t) = I ..

parameters. ~or example,

Y2
-"(It

e with Y1 > 0, 0 < Y2 < 1

=h(u)

can be expressed i.n the fnrrn (4.11) with

"(2-1

Y1Y2 u

"and a reasonal11e initial choice of mixing distribution can be defined

by

Y2
fa g(u, v)du elv =

Y1 a a-I -Gll
Bll e

for (cd clu

v
" ')

i.

r dv
,I 0

Thus Y1. andY 2 are treated as independf~nt parameters \Vi t.:h y 1 hein>'
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gamma distributed and Y2 being uniformly distributed on [0, 1]. This

mixture specification is meant to be only a suggestion of a reasonable

starting point for the fitting of semi-Markov mixtures to multi-wave

panel data. A series of empirical investigations comparing a variety

of mixture models remains to be carried out.

A final point which should be mentioned concerning the semi-

Markov models (4.9) is the basically regenerative nature of these

processes. In particular, individuals evolving according to (4.9)-(4.11)

have an increasing propensity to remain in each state the longer they

are there. However, once a change in state occurs, an individual may

be much more likely to move again in the immediate future than he was

before the change occurred. Although the cumulative inertia behavior

occurs in each state separately, it need not, according to these

models, hold .throughout a career involving changes of state

(1. e., there is no explicit notion of individual aging). This raises

the question of finding alternative models to the above semi-Markov

formulation in which the propensity to move in the immediate future

decreases throughout an individual's history. This is the subject of

the next section.

(d) A non-time-stationary Markov model:

Consider a population in which an individual's history {yet), t > O}

is defined by

yet) = X(k)
k-l k

for ~ 'i < t < ~

i=O i=O
'.~ (4.13)

where {X(k), k= 0,1,2, ••• } is again a discrete-time Harkov chain,

governed by 1'1 and describing moves when they occur. '0"1"" are
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~..raiting times bet~"een moves (or deci.sions to possihly move), and thC'y

satisfy

::;:

::;: 1 - exp

where h(u) is positive, decreasing, and satisfies

co

f O h(u)du ::;:

The specification (4.14) imnlies that after each succe8sive move,

an individual's propensity to remain in his new state is not only

greater the longer he stays, but it is also greater than at anv time

prior to his last move. In particular, this formu.lation captures .the

notion of cumulative inertia throughout a career, such as might resul t

from aging, and seems more aprropria te than some of the prelJiouH semi-

Markov models for investigations of intra-generational occupational

mobility. See, in particular, Kuhn, Poole, Sales, and Ilynn (1973) for

some empirical evidence supporting this position; also see Srbrenson

(1975) for additional details on this sort of formulation.

The stochastic process soecified by (4.11) and (/+.1 /+) is i1

10
special non-time-stationarv :-Iarkov proce.ss ,,,here

Pr ()b (Y ( l) ::;: .i IY( 0 ) P .. (0, t)
1.J

tU~h(U)dU) ('I-I)) .,
~J

(4.15 )
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In pririe:t.ple, heterogeneous population models could be constructed

from mixtures of this kind of non-time-stationary model of indiv~du~l·

behavior. However, the fragmentary nature of the data which is usually

available in multi-~.;rave panel studies makes judgments about the rela-

tive importance of non-stationarity vs. heterogeneity essential if

parsimonious models are to be fit to the data. In terms of the dis~

cussion of high diagonals in Section 3, the difficult conceptual

point which such judgments raise is that·each of the following quali-

tatively different interpretations is capable of accounting for that

empirical regularity.

(i) A homogeneous population described by the non-stationary

model (4.13) and (4.14).

(ii) A heterogeneous population described by mixtures of sta-

tionary Harkov models such as the mover-stayer extensions.

(4 •4), (4. 5), and (4 •6) •

(iii) A homogeneous population described .by a semi~Markovmodel

such as (4.9)-(4.11).

(iv) A heterogeneous population described by mixtures of (i)

and (iii) above.

A strategy for discriminating among alternative conceptual models,.,

such as these, in a panel study is outlined in Section 6. The dis-

cussion there is designed to illustrate a general strategy of fitting

several models to the same data, each of which emphasizes a qualit~-

tively different behavioral pattern. Highly structured resiquals from

such models usually represent the most suggestive information about

factors which have not been formally incorporated in a model. (The

empirical regularity found by BKM is a simple instance of residuals

I

.__ _~~ __ __ _.. ._~.__.__._ __ ___._.__..__..~_ __~_~ ~~~ __~~ J
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from a base-line model being suggestive about alterna tiv~ descriptions

of an empirical process.) One of the principal research directions

\V'hich this approach suggests is the intensive deve10pment of fitting

and identification procedures for a variety of realistic models using

limited longitudinal information.

4.2 Fragmentary Data

From the outset we huve emphasized the limited number of time

points at ,..rhich panel dq.ta are usually obtained. It is important for

a proper understanding of the estimation and identification strategies

discussed in Sections 5 and 6 that some explicit instance!? of longi-

tudinal data be described, together with ~n indication of precisely

\'lhat, in each instance, is meant by the phrase "fragmentary."

Example 1:

Let {y(i)(t), 0 < t ~ t*, t* = duration of the study} represent

the history of the i th individual in a panel study (e.g., occupational

career pattern, succession of brand preferences, etc.), and let

o = to < t
l

< ••• < t
n

represent the times at which t~e \'laves of the

panel are scheduled (Le., the re-intervie"J times). Although chanr;es

of state can occur at any time t, the observed process is

<: i .::.. N.

''lhere N = number of persons in the closer! population under study. Tll1ls,

the transitions bet\'leen sampling instants liS \..rell as theJr times of

occurrence are not ohserved. It is her..ause of this missinfi iuformation

( )
1.1

that \... e refer to clata of the form!+.16 as fragmentarv. 11' shouLd
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,-

be noted that this was precisely the sampling situation in BKM's study

Example 2:

In Taeuber, et al.' s (1968) residence history study, observations

are taken retrospectively on current residence, first and second prior

residence, and birth place of individuals in particular age cohorts.

This kind of data represents an instance of fragmentary information

about a migration process in that gaps are present in the residence

histories.

Example 3:

Let T(i)(t) = {number of transitions by the i th individual between

time 0 and 'time t}, and consider observations of the form (y(i)(t
k
),

T(i) (t
k
), 0 < k ~ n, '1 ~ i .::. N). This kind of information was

obtained in the social mobility studies of Palmer (1954), Lipset and

Bendix (1963), and in the much larger study of Parnes (1972)'.' It is

fragmentary due to the fact that the times of occurrence of the transi-

tions are missing.

From the perspective of estimation and identification with any of

the mathematical models mentioned previously, the ideal situation would

'be to have complete histories of moves among states, as ~le1l as dura-'

tions in each state, for a long time interval. Howe~er, because of

cost considerations in conducting many re-interviews over a long time

span, and because of low response reliability when detailed retrospec~

tive questions are asked, only fragmentary data have been obtained in

such major investigations as Blau and Duncan's OCGl Survey (1968),

Hauser and Featherman's OCG2 Survey (1973), Michigan's Income Dynamics
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ranel, and the ;\!ational Longitudinal Studv of Labor f'orce Exner ienc('

(Parnes Study 1972). This raises the question of what sorts of partial.

in;·ormat.ion t.o gather if the clata are to be used to discriminiite a,1<-"'~'

alternative theories using formal mathematical moclels. r.nr example,

1f the study concerns occupational mobility and the collection desi0n

is a retrospective survey, ,,,e might collect any of the follm"in~

kinds of data:

a) A complete history of all jobs held and durations in the

jobs.

b) First occupation and current oC~lpation.

c) First occupation, current occupation, and number of

intervening occupations held.

d) First occupation, current occupation, and previous occupation

(possibly together with duration times in each occupational

state).

Clearly, the combinations can be elaborated. Hhat is consequen

tial abou t this decision is that once alternative (a)--complete

histories--is rejected as a research design, it becomes crucial as

to which pieces of data one decides to collect. Different estimation

procedures must be employed according to the kinds of inforMation

gathered, and some procedures ~.,ill yield more efficient estim3 tes of

the parameters than will others. The choice of data collection

strategy must also reflect the classes of mathematical models that a

researcher intends to apply, since certain information Hhich is not

required to fit one model type is crucial to the estimation of ;-mother.

The simplest setting in which to illustrate estimation and

identification '''''ith fragmentary data is the fitting of continuolls-t ime
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Markov chains to data of the form described in Example 1; that is,

observations on individuals' locations at a few points in time. The

essential steps are described in Section 5.

5. EMBEDDABILITY AND IDENTIFICATION

Suppose observations on a closed population have been collected

at the evenly spaced time points to = 0, t l , t 2, ••• ,tn where t k+
l
-t

k

= ~ > 0, for k = O,l, ••• ,n, and assume that the number of observations

on the population is small, say, n ~ 8. Furthermore, consider the

observations to include only information on current system states;

0,1,2, ••• ,n) for 1 ~ i 2. N, N = number of

persons in the closed population under investigatiori. This is a standard

data collection situation in multi-wave panel studies (for example, B~1

used this type of data), and it provides the simplest setting in which

to illustrate embeddability and identification issues.

Embeddability refers to .the question of whether or not observa

tions on an empirical process are compatible with the conceptual

assumptions (theoretical structure) underlying a particular class of

mathematical models (e.g., time-homogeneous Markov, mixture of Markov,

semi-Markov). Where the answer is affirmative, identification proce-

dures refer to techniques for recovering the particular set of struc-

tural parameters from the model class which should be associated with

the empirical process. Both issues are central to the analysis of

panel data. Identification, in particular, can be difficult to accom

plish due to the fact that qualitatively different sets of structural

parameters may be consistent with data from evenly spaced observations.



30

To fix the ideas in the simplest setting, consider fitting a

continuous-time ~arkov chain with stationary transition probabilitips

to data of the sort described ahove. A procedure for carrying nut

this task consists of two principal steps:

(1) Form the stochastic matrices P(k6, ~A) with entries

(J<.Ll , M) {number of persons in 8ta tc i. at time k/\ )n .. who are also in state j at time QJ:l~J =(k6,.)
{ number of in state i at time kA)ni + persons

and check that

P(klLi, k
2

Li) = P(k
3

Li, k
4

l\)

for k
l

< k
2

< n' k
3

< k
4

< n- ,

and that

P(klLi, k
2

Li) = P(kl!:l, iLi)P(9.,l.i, k')l\),.

(5.1)

(5.2)

where

Equation (5.1) is a test of time stationarity; and (5.2) is a primi-

tive test of the ;·[arkov assumption (i.e., independence of future state

from past history, given current state). Formal tests of this kind

are described by Anderson and Goodman (1957) and Billingsley (1961).

(ii) Compute

O<k<Q,<n (5.3)

and observe that if the data are compatible with a time stationarv

Markov model, then at least one branch of the logarithm of anv r,iven

matrix in the list (5.3) should be roughly equal to some branch of the

logarithm of any other matrix in the list. In addition, this common
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logarithm should be an intensity matrix (i.e., it should belong to the

class ~ = {Q: qii'::' 0, qiJ"'::' ° for i 1: j, ~ qij = ot).
j=l j

The process of verifying that P can be represented in the form

eQ for at least one Q E ~ is a test for embeddability of the data in a

continuous-time Markov model. Although this step is seemingly straight-

forward, it should be pointed out that some surprisingly subtle phenomena

are involved in the embeddability test.. In particular, due to the

multiple valued nature of the logarithm function, it is not immediately

apparent that one can find an effective computation algorithm to check

for the existence of even one branch of log P which is an intensity

matrix. Indeed, it would appear that infinitely many branches of the

logarithm might have to be checked to decide on embeddability.

Fortunately, however, any matrix which can be represented as eQ

with Q E Qmust have eigenvalues of a rather restrictive nature. In

fact it is the existence of sharp upper and lbwer bounds on the eigen-

values which lead to a practical computation strategy for deciding

embeddability. The explicit eigenvalue restrictions and associated

computation scheme are outlined below. However, for a detailed dis-

cussion of this point and further indication of its role in the analysis

of panel data, the reader should consult Singer and Spilerman (1976).

Closely related to the problem of deciding embeddability with a

finite number of tests is the fact that in the course of such a compu-

tation, there may be several branches of the logarithm of a stochastic

matrix which are intensity matrices. Identification refers to the task

of deciding which of these intensity arrays should be associated with

the empirical process~ In particular, it is possible to have
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P (kL; , 9.-f::..)
(Q,-k)L\Ql

= e

and (5. J)

U-k)liQ'j
P(ki'l, 9,[J.)

<.. a < k < 9.- -: ne

\vhere Q1 oF Q2 but Q
1

E: ~ and Q
2
s~. (See Singer and Spilerman, 1Q75,

1976 for explicit examples of this behavior.) The phenomenon (5.3) is

an instance of aliasing for ~arkov transition matrices, Bnd it is

entirely analogous to the aliasing of structural copfficient matrices

in continuous-time econometric models (see, in particular, P.C.13. Phillips,

1973). In this situation, the set of underlying structural parameters

(i.e., the unique intensity matrix which should be associated ~·Tith an

empirical process) is not identifiable. A researcher confronted with

matrices such as Q
l

and Q
2

would either have to adjudicate bet\veen them

on substantive grounds or collect additional data at a time Hhich is

not a multiple of the sampling interval A. Then the underlyinr, transi-

tion mechanism could be identified since only one of the matrices (Ql

or Q2) could be consistent with the non-evenly spaced observations.

The computation scheme outlined below recovers all branches of

the logarithm of a stochastic matrix P which are intensity matrices,

provided P has distinct eigenvalues. This is clearly the situation in

most applications. HO\vever, it should be noted that repeated eigen-

value matrices do play an important role in sensitivity analyses, and

they can be associated with a continuum of intensity matrices (i.e., a

stochastic matrix P may be within error distance of the observed array

- 0P and be representable as P = e" for an uncountablv infinite set of

matrices in~: see Singer and Spilerman (1976) and Cuthbert (1973)

for details on thi.s point). This raises difficult questions of hoth
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interpretation and reliability of estimates of structural parameters

based on evenly spaced data. Extensivere-analyses of data from a

variety of panel studies would be necessary in order to assess whether

the possible instability described above is in fact a frequently

occurring empirical phenomenon.

A Computation Strategy to Decide Embeddability •

Step 1:

,.
Compute the eigenvalues of P and check whether or not they each

satisfy

(5.4)

,.
where r = order of the matrix, and A is an eigenvalue of P. (The

inequalities '(5.4) were established by J. Runnenberg, 1962.) In

part"icular, he used the inequalities' of F.!., Karpelevitch (1951)

(5.5)

--which restrict the eigenvalues, A, of an arbitrary rxr stochastic

tQ .
matrix--together with the representation p(t) = e for Markov transi-

tion matrices, to obtain (5.4) as a restriction on the eigenvalues of

eQ• The shaded zone in Figure 1 depicts the region defined by the

inequalities (5.4) and exhibits a typical set of logarithms of the·

eigenvalues associated with an embeddable matrix.

Step 2:

,.
If all eigenvalues of P are real and positive, then their logarithms

are real and negative and they automatically satisfy (5.4). In this
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(The logarithm of / / / / ~ / /
each eigenvalue of an,
embeddable matrix must;! / /
lie inside or on the
boundary of the shade /
zone in the complex
plane.) / !

1m log A

ORe log A

Figure 1. Eigenvalue Restrictions for Embeddable Matrices
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"situation there can be at most one branch of log Pin~. To compute

it--and thereby check embeddability--reduce P to diagonal form (Le.,

" ·-1represent P as P = H A H . where

A • (>":r)
and H is a nonsingular similarity transformation). Then calculate

(5.6)

where

log Al 0

log A = log 1.. 2 • •0 -log Ar

If the matrix (5.6) is in ~, then P is embeddable in the unique

continuous-time Markov model with intensity m~trix given by (5.6).

If (5.6) .is not in~, then Pis simply not embeddable in any continuous-

time Markov model.

Step 3:

"If P has complex eigenvalues they must occur in conjugate pai~s.

For each such pair (A • peie , I = pe-i6) determine all branches of

their logarithms which satisfy (5.4); especially,

"where r = order of the matrix P,

arg(logk A) = -1 (6+27Tk)tan 1. ,og p
and k specifies
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a branch of 10gkA according to

= log p + i(8 + 2~k); k O,+1,±2, •••

0<8 < ~

(5.7)

Now select one of the branches for each complex conjugate pair, and

compute log P using (5.6). Check the resulting matrix for membership

in~. Then repeat this calculation for all branches satisfying (5.4).

The basic importance of Runnenberg's inequalities (5.4) is revealed at

this step, because they guarantee that only finitely many branches need

be checked. Furthermore, all intensity matrices compatible with the

data (the aliases mentioned in (5.3» are recovered in these calcula

tions. If multiple matrices Q E: ~ have been found, the researcher

should collect additional information to discriminate among them in the

manner described in conjunction with (5.3).

6. STRATEGIES FOR DISCRIMINATING AMONG COMPETING MODELS

Many of the issues involved in attempting to discriminate among

competing models can be illustrated in the relatively simple setting of

testing data for compatibility with one of the following four classes

of models:

(i) time-stationary Markov chains

(ii) a restricted class of mixtures of (i)

(iii) a restricted class of non-time-stationary Markov chains

(iv) a restricted class of semi-Markov processes.

To fix the ideas, assume that observations

(6.1)



.-_.' .r-: - -

37 '

have b'een collected at the evenly spaced time points 0 • to < t
1

< ... < t
n

where t k+1 - t k = I::. = (spacing between successive observations) > 0;

k = 0, ••• , n - 1; y(i)(t
k

) denotes the state of the i th individual in

the survey at time t
k

; and T(i) (t
k

) equals the total number of transi-.

tions by the i
th

individual in the time interval (0, t
k
). This is pre

cisely the data collection situation described in Example 3 of Section 4.2.

Now introduce models in which individual histories are representel!

in the form

yet) . - X(T(t», t > 0 (6.2)

where X(k) is a discrete-time Markov chain with stationary transition.
, ,

probabiliiies'having one-step transition matrix M, and T(t) is one of

the four kinds of stochastic processes listed below.

(A) a time-stationary Poisson process with parameter y > 0
[special case of (i)]

(B) a mixture of (A) [special case of (ii)]

(C), a non-time-stationary Poisson process with expected number

of jumps in the time interval (s, t) given by /th(u)du
s .

where h is a continuous, positive, decreasing function

such thatf~ h(u)du = +m [special case of (iii)]

(D) a renewal process defined by

max (~,
n-1

T(t) • i: T q) if T < t
i-O

i- 0

T(t) = 0 if l' > t
0

1 -=Prob{T. > t}
1.

where {T i )i=O,l, ••• are independent identically distributed

positive random variables such that

t
-fOh(u)du

e

and h satisfies the same hypotheses as in (C) [special case of (iv)].
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In each of these models mobility between states is governed by

a single stochastic matrix M. The models differ only in the assump

tions which are made about the waiting times between moves. It should

also be observed that the representation (6.2) provides an alternative

description of some of the models presented in Sections 4.1 a, c, and d.

In particular, when T(t) is a time-stationary Poisson process

with parameter y > 0 (model A), then X(T(t» is simply the time

stationary Markov chain described in Section 4.1a where the intensity

matrix Q has the factored representation Q = y(M-I). The advantage

of the representation (6.2) in the present context (i.e., with fragmen

tary data of the special form (6.1» is that it explicitly describes

the relationship between the observable quantities (Y(ti ), T(ti »,
i = O,1,2, •.. ,n and the non-directly observable process

{X(k), k = O,1,2, ••• }. The latter process describes transitions when

they occur, and is governed by the matrix of structural parameters M.

Hhen T(t) is a mixture of time-stationary Poisson processes

(model B), then X(r(t» can be anyone of the mixtures (4.4)-(4.6)

depending on the choice of mixing distribution. Population hetero

geneity is introduced only through a classification of persons accord

ing to their rate of movement, and T(t) describes the number of moves

by a type-y individual. Such individuals are assumed to occur in the

total population with a probability specified by the mixing distribution.

When T(t) is a non-stationary Poisson process (model C), X(T(t»

is the non-stationary Markov chain constructed in Section (4 •.1d). The

following intuitive description is intended to clarify the manner in

which this kind of process evolves.



39

Consider a homogeneous population in which an individual start-

ing in state i at time zero stays there for a random length of time

The assumption that h be decreasing implies that the longer an indi-

vidual stays in state i, the less likely he is to move in the immediate

future. At the end of the initial waitirig time, the individual moves

to state j with probability m..• Then he stays in his new state for
~J

a random length of time T
Z

whose distribution depends on T
l

according

to

= e

s+t
-I h(u)du

s

= e

s+t
-I h(u)du

s

Since h is decreasing, the propensity of the individual to rem~in in

this new state is not only greater the longer he stays, but it is

also greater than at any time prior to his first move. At time

T
l

+ TZ' the individual moves again according to M, and waits there

a length of time T
3

governed by

Th~s process is repeated, and with each change of state the individual

has less and less propensity to move than at any previous time.

Finally, we consider processes of the form X(T(t» where T(t)

is a renewal process (model D). With this specification, X(T(t» is.

a special semi-Markov process as defined in Section 4 .le. In order to

clarify the manner by which these processes evolve, consider a homo-

geneous population in which an individual's initial move is reg~lated
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exactly as in the non-stationary Markov model described above. lIm.ever,

his waiting time T 2 is assumed to be independent of T 1 and governed by

t
-JOh(u)du

e

After each successive move, the individual's new waiting time is

governed by the same probability law as T 1 and T 2. The assumption

that h is decreasing still implies that the longer the individual

remains in a particular state the less likely he is to move in the

immediate future. However, in contrast to the non-stationary Markov

model, each time a move is made the propensity to move again starts

over at a high value and then decreases. In particular, the continual

decrease in propensity of the non-stationary Markov model no longer

holds for the present semi-Markov processes. Thus, while the former

process may be identified with "aging of an individual," the latter

is akin to "cumulative inertia in an occupation," as described by

McGinnis (1968).

In attempting to identify which of the above four kinds of

mode1s--if any--is compatible with data of the form (6.1), the fo11ow-

ing strategy may be utilized.

Plot cumulative number of moves vs. t and check whether this is

approximately linear (Figure 2) or concave downward (Figure 3). It

is the case that models (A) and (B) are consistent with the linear

picture where the principal trend is described by a regression line

through the origin. Model (D) is consistent with the linear ~icture

but with the main trend--(away from t = O)·-described by a straight

line having a possibly non-zero intercept. Only model (C) is consis-

tent with a pattern of the form described by Figure 3.
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line fitted to medians of
the empirical distributions;
consistent with models
(A), (B), and (D) line fitted to medians'

of the empirical
distributions; consistent
only with model (D)

t

Figure 2. Cumulative Number of Moves Versus t for Data consistent
with Models (A), (B), and (D)*

*The cross above t. reports the median number of moves by all
persons in the pan~l study during the time interval (O,t i ).

I
"

I
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line fitted to medians
of the emp,irical
distributions; consistent
with model (C)

t

Figure 3. Cumulative Number of Moves Versus t for Data Consistent
with Model (C)*

*The cross above t i reports the median number of moves by all
persons in the panel study during the time interval (O,t

i
).
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If the empirical picture corresponds to Figure 2, then the slope, b,

of a straight line fitted to the linear pattern wOl,1ld have the follm..r-

ing alternative interpretations on the basis of the above data:

(1) b = y = time-homogeneous Poisson parameter

(2)
12= b for the mixture of Poisson models

(3) b
1

= (expected waiting time between
moves in a renewal,' process)

If this linear picture is observed, we would solve--using numer-

ical inversion formulas--the following equations for M:

t
l
y(M-I)

= e

=(2)

Call the solution Ml ; it corresponds to model (A).

00 tly(M-I)
fOe dll(y)

,
Call the'eolution M

I
; it corresponds to mod~l (B).

00

(3) =

Call the solution M
l
*; it corresponds to model (D). (Note: F (t)

n

denotes the ,n-fold convolution of the waiting time distribution

t

-fOh(u)du
F(t) = 1 - e with itself.)

Now check whether the M-matrix obtained in each case is a bona-

fide stochastic matrix. This is really an embeddability test for all

three model types. If anyone of the above calculations yields a

matrix which is not stochastic then that model is inconsistent with
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the data P(O, t 1). If one or more of these calculations yields a

stochastic matrix, then we test its ability to predict the observed

'" '"matrices P(O, t
2
), P(0,t3) ••• using the appropriate equa.tibll. In

particular, prepare tables of the form

(1' )

. (2')

(3')

'"P(O, t
2

)

'" 00 t Zy(M'l-I )
P(O, t 2) - fOe . d~(y),

which represent residuals of observed matrices from predictions based on

models (A), (B), and (D), respectively. One instance of the informative

nature of such comparisons is the fact that many data sets reveal a dis-

crepancy in comparison (1') in that the diagonal entries in the observed

'" '"matrices P(O, t Z)' P(O, t 3), ••• , etc., are substantially larger than

the time-homogeneous Markov predictions. Both of the model classes (B)

and (D) can account for this kind of discrepancy, despite the fact that

they have very different substantive interpretations. Further discrim-

ination requires a more detailed consideration--on both substantive

and numerical grounds--of the residual matrices.

Finally, if the concave picture, Figure 3, occurs, then prepare

the comparisons

t
3

(fO h(u)du) (M+-I)
e , ...

where M+ is a solution of the equation
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t
l

(J 0 h (u)du) (H-I)
= e

Sharp discrepancies here might be revealing about alternative classes'

of models which should be added to the original list as candidates to

describe the empirical process.

·We emphasize that the preceding discussion is by no means complete,

and is designed only to communicate to the reader, in concise form, the

flavor of the sorts of considerations which seem appropriate for the

analysis ofm~lti-wave panel data.

7. CONCLUSIONS

We have described a number of issues which arise in fitting models

of distributional change to fragmentary data, and in attempting to dis-

crimi.nate among alternative structures fitted to the same fragmentary,

data. The univariate Markov framework has be~n applied ~o advantage in

the physical sciences in situations where the notion of population hetero-

geneity is not especially pertinent, and where the number of observ'ations

in time available to a researcher is reason~bly large. However, both of
. '

these factors are crucial considerations in modeling social phe-

n~mena, and we have therefore focused on some variants of the univariate

Markov framework that were developed for the expressed purpose of incor-

porating assumptions about the nature of social processes into mathe-

matical models.

There are additional important issues, closely related to the ones

we have discussed ,\vhich must be addressed if a routine methodology is

to be developed regarding the application of these'model types to social
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processes. These issues have not been considered in the present review

because they are largely undeveloped research areas.

(i) The introduction of substantive theories into ~arkov models

and their variants via restrictions on the structural parameters, such

as by prohibiting certain transitions (e.g., occupation or industry

shifts) from occurring directly. Some exploratory work on this issue

may be found in Coleman (1964a, 1964b).

(ii) Strategies for sensitivity analyses to assess the nature of

the dependence of parameter estimates on small perturbations in the

data. This topic is discussed within the context of time-stationary

Markov models in Singer and Spilerman (1976), but must be extended

to other model types.

(iii) Specification of formal error structures, and the devel

opment of techniques for setting confidence limits on parameter esti

mates which derive from fragmentary data.

(iv) The specification of data collection designs for panel

studies which will facilitate discrimination among several models

fitted to the same fragmentary data. This should include a detailed

consideration of the reliability of retrospective interrogation versus

the cost and time delays attendant upon reinterview in a panel study.

Furthermore, an investigation of the optimal frequency of reinterview

in a panel study is required in order to optimize the amount of use

ful information about change collected per research dollar.
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Footnotes

lEmpirically determined stochastic matrices will be designated
,.

by P(u, v) with entries

eu,· )
n i +,

(number of individuals starting in state i)
\at time u who are in state j at time v

=

(
number of individuals starting in state i)
at time u

where u < v.
1 11...

BKM's estimate of M can thus be written as 12 E P(k, k+l)
k=O

where the unit of time is three months ( =1 quarter).

2By "structural information'l we mean quantities which characterize

a population, irrespective of the observation interval used for data

collection.

3As the reader will see, these ?arameters are independent of the

sampling interval •

•4By "non-synchronous" we mean that persons do not all change

state simultaneously.

SIn instances where a substantively meaningful unit time interval

exists, a discrete-time model would indeed be appropriate (e.g.,

explaining presidential election outcomes).

6p.. (O, k) is a diagonal entry in the observed k-step matrix, and
1.1.

m~~) is the corresponding entry in the k-step matrix predicted by &

discrete-time Markov chain.
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7We have replaced the usual mathematical terminology "time-

homogeneous Markov chain" by the phrase "time-stationary Markov

chain." This change of terminology has been incorporated in

order to avoid confusion with our use of the word "homogeneous"

to describe a population of individuals possessing a common set

of transition probabilities. It should also be emphasized

that we do not assume that the initial distribution of indi-

viduals among system states is the equilibrium distribution for

a Markov process. Such an assumption would imply that the Markov

process is also a "stationary" process in the usual mathematical

sense of the word.

8For a rigorous mathematical discussion of the special semi-

Markov construction defined by equations (4.9) and (4.10), see

Kurtz (1971).

9The specification of semi-Markov processes in equations (4.9),

(4.10), and (4.12) does not describe the most general process of this

kind as treated in the mathematics literature. In particular, the

original semi-Markov framework allowed for waiting time distributions

that could depend on the next future state as well as on the current

state of the process. In order to utilize models incorporating this

kind of detail, a more extensive data base would be required than is

currently available in most multi-wave panel studies. Hence, consid-

erations of parsimony have led us to restrict our attention to a sub-

class of semi-Markov processes which requires the estimation of fewer

parameters.
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10For a nice mathematical treatment of non-time-stationary Markov

chains, 'see Goodman and Johansen (1973).

11Another reason why we might consider data to be fragmentary is

if the duration of the study is too brief for significant amounts of

movement to have occurred. We do not address this issue in the

present discussion.

12When the density function '~'(y) exists, this expression

reduces to the familiar formula for a weighted average, ! aYJ.I ' (y) dy •

By the text expression, however, we mean integration with respect

to a general probability measure.
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