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1. INTRODUCTION

In recent years there has heen a considerahble expansion in the
availability of longitudinal data files. Sociological theory has always

had the studyv nf social change as its core, yet the majority of'quanti—

“tative empirical researches have involved the analysis of cross-sectional

data. Longitudinal studies, in particular multi-wave panel studies, have
not been very common. In part, this is because of the considerable cost
involved in surveying a population éample at multiple points in time. It
is also due to the fact that severél years must usually elapse after the
first interview for the longitudinal aspecf of the data to become suffi-
ciently detailed so that patterns of chaﬁge can be detected and studied.
However, stimulated bv a recent concern with the development of social
indicators and by a related interest in social experimentation, a number
of large scale studies have been funded, and sufficient time has elapsed
for these inQestigations to have produced longitudinal files. Indeed, in
comparison with even a decade ago; we aﬁpear to be moving into an era
which will be comparatively rich in the‘existeﬁce of multi—waveApanel‘data_
on large population samples. Important examples of currently available
data sets of this sort are the Michigan Panel.Study on Income Dynamics
(Morgan and Smith, 1969), the National Longitudinal Study of Labor Force
Experience (Parnes Study, 1972), the Sewell;Hauser Panel on Wisconsiﬁ
Youth (1975), and files from several negative income tax studies (e.g.,_
A. Rees and H. Watts, 1976). |

The expansion in availability of these sorts of files raises ques-
tions about proper analytic methodology for exploiting the richness and
unique properties of panel data, especiall& in instances where more than .

two waves of interviews have occurred. Sociologists frequentlv ask
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questions about distributional change and are interested in forecasting

the evolution of a population among system states,as well as in under-
standing the structure of the dynamic process. The most common examples
of such studies concern occupational mobility (e.g., Lieberson and Fuguitt,
1967; Hodge, 1966) and geographic migration (e.g., Tarver and Gurley, 1965;
Rogers, 1966), Some economists (e.g., Smith and Cain, 1967; McCall, 1973)
have viewed income dynamics from the same perspective.

The mathematical framework that has been used in these investigations
is diéscrete-time Markov chains. We shall discuss a number of limitations of
this structure as a description of socilal processes; at this point, though, we
wish only to motivate our investigation by focusing on one discrepancy
between forecasts from a Markov model and observations on the empirical
process. In applications of Markov chains to industrial mobility, Blumen,
Kogan, and McCarthy (1955) (hereafter referred to as BKM) discovered an
empirical regularity which has subsequently been observed in many other
sociological investigations and which has motivated a rich and diverse
research effort, In particular, they noted the tendency for the main
diagonal entries of observed stochastic matrices to be underpredicted by
the main diagonal entries in powers of one-~step Markov transition matrices.
This has led to the formulation of a variety of alternative stochastic
process models which might plausibly account for the regularity. Futher-
more, there has been a critical reevaluation of the substantive and
statistical issues involved in estimation and comparison of several models
fitted to the rather fragmentary longitudinal data which is usually avail-
able on an empirical process,

The purpose of this paper is to review some of the methodological

developments which were an outgrowth of BKM's pioneering investigation.
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Particular. attention will be paid to parsimony of models relative to
multi-wave panel data, and to the testing and identification of multiplé
models which may be compatible with a given set of observations. In
Section 2 we review BKM's study and describe some conceptual difficulties
which can arise when discrete-time structures are applied to social
processes that evolve continuously in time. Section 3 contains an
overview of the alternative explanations which have been proposed

to account for the empirical regularity observed by BKM; namely, the

“underprediction of diagonal entries in observed transition matrices by

diagonal entries in powers of Markov transition matrices. Models of
heterogeneous populations which extend BKM's formulation to continuous

time,and which incorporate more diverse forms of heterogeneity}are des~

~cribed in Section 4. In Section 5 we illustrate the companion issues of

embeddability'and identification for continuous-time Markov chains. This

is the prototype of a set of methodological problems which are central

to the analysis of panel data, and which have received remarkably little

attention.

Generally speaking, embeddability tes;s’refer to the task of ascer-
taining whether or pot an empirical process'is compatible with the cén—
ceptual assumptions (mathematical structure) underlying a particular
class of models (e.g., general Markov, mixtures of Markov, semi-Markov).

Where the answer is affirmative, identification procedures refer to

techniques for recovering the specific set of structural parameters from

the model class which should be associated with the empirical process.

One indication of the difficulties involved with identification is the

fact that empirically determined stochastic matrices based on data collected

at evenly spaced time points may be embeddable in the class of continuous-

time Markov models, but a unique structure from that class ma: not be

identifiable.
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Finally, Section 6 illustrates a rudimentary strategy for discriﬁi—'
nating among four classes of stochastic process models using multi-wave
panel data. That discussion is intended to illustrate the flavor of the
kinds of strategies which are in serious need of development. Indeed
this is the place where the greatest methodological challenges lie, and
foremost among them is the specification of designs for panel studies

which will facilitate discrimination among multiple plausible models.

2. MOVERS AND STAYERS~-A REVIEW

2.1 Model specifications and an empirical regularity

In attempting to describe the propensity of persons in particular
age and sex cohorts to move between pairs of industrial categories, BKM
first fit a discrete-~time Markov chain with stationary transition prob-
abilities to quarterly data on the occupations of persons listed in the
Social Security Administration's Work History File (1972). By a dis-
crete-time Markov chain we mean a stochastic process {X(k), k = 0,1,2,...}
describing state transitions by an individual where the system states
might be geographic regions, occupations, industries, or income cate~
gorie;,depending on the particular substantive problem. Probability

statements about the process are governed by the analytical recipe

Prob{X(k+n)

il1X€0), X(1),...,X(n~1), X(n) = i}

Prob{X(k+n) = §|X(n) = i} = m§§) BRCEY

for k = 0,1,2,,.. n=0,1,2,,.. . Thus, the fundamental assumption of
a Markov process is that future system state is not a function of past

(k)

history, once current state is specified. The element mij is the (i, j)
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entry in‘the_stochastic matrix Mk (k=fold matrix multiplication of MS.
fhié specifies the k-step trahsitioﬁ matrix under a Markov chain, i.e.,
P(0, k) = Mk. M is itself a stochastic matrix whose enfry mij has the

interpretation,

m,, = probability that an individual in category i will
move to category j in one unit of time,

This mathematical structure describes the evolution of a homogeneous
population, because it is assumed that all individuals evolve according
to the same transition mechanism (namely, the matrix ™).

BM's estimation method was simply to identify aﬁ éverage of the
observed one—quarter (i.e., three-month interval) transition matripes
with the matrix oﬁ.one—étep Markov chain transition probabilities

With this estimate in hand, they tested the model by compar-

[ m 1]
1]

ing Mk with P(0, k), the empirically determined transition matrix

based on observations taken at the beginning of the\initial quarter and

’ th v .
at the end of the k™ quarter., BKM carried out this comparison for

k =4, 8, and 11 and found that

p,. (0, k) > mi?), k=4, 8,11;1 <i <r = number of states;
ii _

that is, the main diagonal elements in the.k-step matrix predicted by
a Markov process under-represent the main diagonal eléments in the |
observed k-step matrix. They also noted that the magnitude of the
inequality increased together with k., |

BKM suggested that oné plausible egplanation for the discrepancy

summarized in (2.2) was that a socially heterogeneous population was

being treated as though it was homogeneous., They proposed an alterna-

tive model to accommodate heterogeneity in which the population was

(2.2)
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viewed as consisting of two kinds of individuals, They assumed that a
non-directly observable fraction 8 of the individuals in industry cate-
gory i--called stayers--never moved, and that their evolution was
described by the degenerate Markov chain {Xl(k), k =0,1,2,...} with
one-step transition matrix given by the Identity I. In addition, the
evolution of a non-directly observable fraction, l-si, of the individualg--
called movers--who were in industry category i at the beginning of the
initial quarter was described by a discrete~time Markov chain {Xz(k),
k = 0,1,2,..,.} with one-step transition matrix M. The diagonal entries

m,, were not required to be zero, thereby allowing for within-industry

ii
job change. It was also assumed that the mover population evolved

independently of the stayers and that the same transition matrix M
governed the evolution of movers who started in each category at the

beginning of the initial quarter,

The observable process {Z(k), k = 0,1,2,...} describing the evolu~-

tion of individuals who start out in each industry category in the
initial quarter is thus a mixture of the components of the bivariate

process (Xl(k), Xz(k)). Its transition probabilities are given by

Prob{Z(k) = j|z(0) = i} = (l—si)miy) for 1 # j
(2.3)
sy + (1-si)m§§) for 1 = j

k=1,2,...; 1 <i, j < r = number of states,

In matrix notation, this may be written as -

P(k) = ST + (I-§)M5

o

where S = R .
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Tﬁe formulation (2.3) has come to be known as the "mover-stayer"
model, and a variety of simultaneous estimation methods for the struc~-
tural parameters (Sl’°°"sr) and M are given in a paper by L. Goodman
(1961), who improved considerably on BKM's initial procedures. BKM
found that this model of a heterogeneous population provided a better
description of job mobility, as measured by the qﬁarterly observations,
than the original Markov chainbmodel of a homogeneous population.
Furthermore, the mover-stayer model accounted for much of the empirical
regularity (2.2) and thus has motivated subseqﬁent attempts to develop

more refined models of heterogeneous populations.

2.2 A difficulty with discrete-time models

Despite the initial success of the mover-stayer formulation there
are conceptual difficulties with the basic strategy of fitting dis~
crete time models to mobility data. In particular, when structurél2
information about a population is the primary goal of an investigation,
then the substantive interpretation attached to estimates of the matrix

M--in either the pure Markov or mover-stayer model--is

m, probability that an individual in state i
1 will move to state j when a change occurs .

If you regard M as a matrix of structural change parameters and
fit discrete~time models to evenly spaced observations, then you are
tacitly assuming that the natural time unit between, say, industry or
occﬁpational changes coincides with the sampiing interval (3'monthé in.
the Social Security Administration's Work History File). Since there
is no substantive basié for such an identification, the parameters.esti—

mated by BKM cannot legitimately be interpreted as structural information




8
about the population of workers; alternate choices of the sampling
interval will yield different matrices M. Indeed, BKM were aware of
this difficulty and noted that during a given quarter some personé
will have moved twice, others will have moved three times, etc., For
these unidentifiable persons you are really estimating M2, M3, etc,
Nevertheless, even by dropping any attempt to identify M as a matrix
of structural parameters and just fitting a discrete-time model to
quarterly data, BKM found an empirical regularity of considerable impor-
tance, In fact, as we will indicate in Section 4, even when continuous-
time Markov models--whose parameters can lggitimately be interpreted
as structural coefficients3--are fit to a variety of longitudinal data
sets, the regularity observed by BKM still appears.

The ambiguity in specifying an appropriate time scale for intra-
generational mobility processes has also been pointed out by H., White
(1970, pp. 319-320) and Singer and Spilerman §1974, pp. 360-362).
However, a facet of this ambiguity which seems to have been overlooked
by BKM, as well as by subsequent users of the mover-stayer formulation
(e.g., McCall, 1973), is the fact that conclusions about compatibility
of data with a discrete~time model can depénd entirely on an ad-hoc
choice of unit-time interval., To see this‘in the simplest possible
setting, recall BKM's initial fitting of a discrete-time Markov chain
to quarterly observations.

Suppose, for illustrative purposes, that you agree ﬁhat a natural
time unit for job mobility in a particular population cohort -is six
weeks, Then an attempt to fit an observed one-quarter (l2-week) transi-

tion matrix P(0, 1) to a Markov chain consists of asking whether there
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exists a stochastic matrix M such that

PO, 1) = M° .

An affirmative answer would require that P(0, 1) have at least one
stochastic square root, ¥ P(0, 1). That this is by no means automatic
can be seen if you consider a two-state process with observed one~
quarter transition matrix

1/4 3/4

PO, 1) =
' 5/8 3/8

This matrix has no stochastic square roots, and it is therefore incom-

patible with a discrete~time Markov structure if the natural time unit
is believed to equal six weeks. However, if you use a four-week time

unit then you find that P(0, 1) does have a stochastic cube root given
by

.0611 .9839
3/p00, 1) =

. 7824 2176

More generally, ;(0, 1) has no stochastic roots of any even order, while
it does have a stochastic cube root, a stochastic fifth root, but_no odd
stochéstic root of order greater than five.
A consideratiqn oﬁ high ordef roots (say, greater than four) is not
really an issue with quarterly observations of job mobility; however, it
ceftainly could be for annual observations or more widely spaced data:
The essential point to be made here, however, is that for précesses such
as intfagenerational occupational mobility which are both intrinsically
nonsynchronous4 and lack any substantive basis for a choice of unit

time interval, a more natural strategy is to fit continuous-time models
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(in which the waiting times between moves are viewed as random variables)
to the data, and carry out systematic discrimination among alternative
models in that setting.5 This kind of extension‘of the mover-stayer
framework was first carried out by S. Spilerman (1972a) with further
generalizations indicated in Singer and Spilerman (1974). These devel-
opments will be reviewed together with a variety of other models in

Section 4.

. 3. OTHER EXPLANATIONS OF HIGH DIAGONALS

BKM's introduction of the mover-stayer model to explain "cluster-

ing on the main diagonal,” i.e., the empirical regularity6

~ k
pii(o’ k) > mi(.i) ’ i = l,-..,r; k = 2,3,.00 (3.1)

has led to the development of a variety of qualitaﬁively different kinds
of models, all capable of accounting for (3.1). The five principal
features of social processes which are not taken into account in uni-
variate time-stationary Markov models7 and which have motivated the con-
struction of alternative models are:

(i) population heterogeneity

(ii) time-varying propensities to change system states (e.g.,
income categories, occupations, industries)

(iii) non-exponential waiting times between changes of state
(iv) strong dependence on past history
(v) latent variables,
Features (i), (ii), and (iii) have received the most attention in attempts
to develop stochastic process models which can account for (3.1) and

which also mirror other widely observed empirical phenomena, such as
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the inereasing propensity with the passage of time for persons in a
particular.occupation to remain there. For a nice empirical study of
manpower flows in British‘labor markets where this behavior occurs,
see Kuhn, Poole, Sales, and Wynn (1973). Since our primary concern in
Sections 4-6 will be with specification, estimation, and identification
issues involving models based on (i)-(iii), a few remarks about (iv) |
and (v) are in order.

In a review of BKM's study, W. Feilef‘(1956) suggested that fer.
processes such as job mebility, dependence on ﬁast behaviqral'patterns
was probably so pronounced that it would be essential to develop detailed
models incorporating bast history in order to have a satisfaetoryv
description of.the observed empirical patterns. Indeed,Eeller suggested -
the use of higher order Markov: processes for this purpose. As a's;rategy
for understanding social ﬁhenomena such as mobility among occupa-
tion, industry, or income categories, this kiﬁd of program has never
‘been seriously followed up and has in fact been criticized on several
grounde. Coleman (1964a, pp. 9—11,, iﬂ particular, hes emphasized that
the intrinsically heterogeneous nature of most populations is lergely
ignored by'an introduction of higher order Markov models, and that such
an exercise is more akin to blind curve fitting of successively highe;
order:polynomials to irregular data.

One might argue that'mpdels'incorporating beth heterogeneity and
'loﬁg range dependence should be intrcduced; however, the fragmedtary
nature of the data which can be collected in most surveys——particularly
the small rumber of time points at wh£ch persons involved in panel studies
can be re-~interviewed--makes judgmente as to the relative importance of

phenomena which are to be incorporated in parsimonious models essential.
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In facﬁ, a primary reason for the emphasis on population heterogeneity
and the neglect of long range dependence is the greater importance for
the development of sociological theory attached to an understanding of
the components of heterogeneity. The strategies of introducing inde-
pendent variables into Markov chain models developed by Coleman (1964a),
McFarland (1970), and Spilerman (1972b) as well as the mixture models
introduced in Spilerman (1972a) and Singer and Spilerman (1974) are all
based on considerations of parsimony of models relative to the available
data and on the judged importance of population heterogeneity.

Concerning item (v), many of the observed attitudinal responses
in panel studies, such as opinions about political issues, career
aspirations, etec. are related to a variety of non-directly observable
(or latent) social and psychological variables. In addition, there are
often several competing theories about the relationships which may
exist between latent and manifest (i.e., observable) variables. An
important research objective with panel data is to discriminate among
dynamic models incorporating a variety of latent and manifest variable
relationships. Despite its importance, this aspect of the analysis of
longitudinal surveys is largely undeveloped. The major attempts to
consider both the substantive and methodological issues have been by
Coleman (1964a), Lazarsfeld and Henry (1968), and Wiggins (1973).‘ The
last of these contains a superb collection of examples and lucid state-
ments on the enormous range of unresolved mathematical, stétistical,
and social-theoretic problems. In the remainder of this paper we will
concentrate on models which incorporate population heterogeneity, time-
varying propensities to change state, and general classes of waiting

times between moves. However, it should be noted that the same
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méthodologicai issues arise in dealing with latent structure models

but with a considerable increase in complexity..

4. PARSIMONIOUS MODELS AND FRAGMENTARY DATA

In the context'qf panel studies, J. Coleman (1964b)'introduced
continuous-time MarkoQ cﬁains as an initial baseline class of moaels.
However, in fitting these models to observed data, he noted the same
kind of empirical regularity--under-prediction of diagonals of observe&
matrices--which BKM'and others had found using discrete-time models.

This finding has motivated the development.of a variety of formal models-
of heterogeneous-populations which are béth.moderately realistic ahd
simple enough so tﬁat parameters can be éstimated and the models ﬁalsi—
fied using ra;her fragmentary data. The strategiés for introducing
héterogeneity have basically been of two distinct types: individuals

(or sub=-populations) are.classifiedleither according to theAzigg at

which they move (Spilerman,’l9723; Singer and Spilerman, 1974) or accord-
ing to their propensity fo move between pairs of states when a transi-
vtion éccufs (McFarland, 1970; Spilerman, 1972b; Singer and Spilerman,
1974). These sub-populations are not always directly observable; and
mixtures of Markov and semi-Markov processes provide simple, readily
interpretable models of the observed population-level processes.

Explicit descriptions of models of these types, suited to intra-géherational

mobility studies, are given in sub-sections 4.1, a-d below.

4.1 Model specifications

1 In order to illustrate some explicit models of heterogeneous pbpu—

lations and clarify the substantive assumptions which accompany their
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use, welfirst recall the basic mathematical structure of continuous-time
Markov chains with stationary transition probabilities. 1In particular,
consider a stochastic process with a finite number of states whose
transition probabilities are governed by the system of ordinary differ-

ential equations

dp(t) _ _ |
T Qr(t), P(O0) = 1 (4.1)

where P(t) and Q are rxr matrices. It is well-known (Coleman (1964b),
pp. 127-130; Chung (1967), pp. 251-257) that if Q has the structure

r

£ q,, =
_p 43

qij_>_0fori¥j, =

< 0, 0, i=1,...,r (4.2)

91

then the functions P(t), t > 0 which are solutions of (4.1) comprise
the transition matrices of continuous-time stationary Markov chains,

A typical element

, pij(t)’ of P(t) has the interpretation,
pij(t) = probability that an individual starting in
state i at time O will be in state j at
time t.

"

The Q-arrays, which are known as "intensity matrices," represent

structural information about the population:
it
(i) - = probability that an individual in state i

ii will move to state j, given the occurrence
of a transition

(ii) = expected length of time for an individual
ii in state 1 to remain in that state

We will denote the class of intensity matrices (arrays of the form

(4.2)) by Q.
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Solutions of (4.1) are givén by the exponential formula
t ' N
p(r) = &%, £ 0 (4.3)

' " where the matrix exponential eA (A being an arbitrary rxr matrix} is

defined by

(a) A simple factored representatidn of Q:

The above general formulation of continuous~time Markov transition
matrices has been used in numerous sociological contexts (e.,g., Coleman
1964b, pp. 177-182; Bartholomew, 1973). 'However, the analysis of'
4so¢ial processes, particularly in a heterogeneous population, is greatly
fgcilitated by an alternative formulation which provides the basis for
a qlgssification of individuals (or sub-populations) according to their =
rates of movement, their propensities to move.to particular states| or -
both simultaneously., A starting point for this development was
- S. Spilerman's (1972a) extension of the mover-stayer formulation to
confinuous«time, with a more general classification of sub-populations
than the simple mover-stayer dichotomy. The basis for this extension
was simply the introduction of a factored representation for Q-matrices
of the special form Q = A(M-I), where A is a positive constant sigﬁify—
ing the expected rate of movement, and M is the transition matrix that
each individual in the population follows at a move.

Classification according to rate of movement means assigning a
number A to each individual (or sub-population), thereby designating

what we will call type-) individuals. The value %-can be interpreted
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as an individual's mean Qaiting time before moving (or before making a
decision to possibly move). Similarly, classification according to
propensity to transfer to particular states means assigning a stochastic
matrix M to an individual, thereby designating what we will call type-M
individuals, If persons are to be classified in both of the ahove ways
simultaneously, we would speak of type-(A, M) individuals.

Using this classification scheme, the random variables {Y(t), t > 0}
which describe a type-) individual's history may be constructed from
two separate processes: (1) a sequence of independent positive random
variables Tge Tysees describing waiting times between moves and satis-

fying

Prob('ri >t) = e_kt, i

]
o
-
[y
-
N
-
.
L]
T
v
o

and (2) a discrete~time Markov chain {X(k), k = 0,1,2,...} having one-step
transition matrix M which describes moves when they occur. You can
then think of an individual whose transition probabilities are governed

by etA(M-—I)

as evolving according to the following prescription:
(i) Starting in state i at time 0, the individual stays there
for an exponentially distributed length of time T, with

c-z'_)\t R t >0

Prob(r0 > t)

Thus, Y(t) = X(0)

i for 0 <t < To.

(ii) At the end of this time he makes a decision to move to
state j with probability mij' (In general, m,. # 0.) Thus,
¥(r) = X(1) = 3. '

(iii) Now he waits in state j for an exponentially distributed

length of time 7, which is independent of 7, X(0), and X(1);

1
especially,



17

Prob('rl > th(O), g X(1)) = Prob(Tl > t) = e->\t

and

Y(t) = X(1) for 1, <t <1, +

0 0 1

(iv) Then he makes another decision to move to state h with

probability m hence,

jb?

Y(r, + rl)‘= X(2) = h

0

(v) The above sequence is repeated. In general,

k-1 k
Y(t) = X(k) for ¥ 1, <t< I 1
| i=0 * ~q=0 1
with Tos Tpsees independent of {X(k), k = 0,1,2,...} and of'gach:
other. . .

S. Spilerman's (1972a) extension of the mover-stayer mo&ei waé a
mixtgre of Markov processes of the above sort in which individuéls
associated with the parameter )\ were assumed_go occur in the total
population with a frequency described by the Camma densityA

Ba Aa-l e—BX
g(A) = o) where o > 0, B > 0, A >0 .

Type-A individuals are considered to be non-diréctly observable, and all

types of individuals are treated as having the same propensity to move .

among the states, prescribed by the matrix M. The population-level process

{z(t), t > 0}, which is observable, then has transition probabilities given by '

P(t) =/

g oA (M-I)g()\)d)\.

B (o a0
(E;EQ [I - E;E'M] - '(4-4)
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The chéiée of a gamma density in this specification is based on
the ability of thét functional form to describe a variety of unimodal
curves, unimodality being a reasonable characterization of the fre-
quency of occurrence of different types of persons, with respect to
rate of movement, in heterogeneous populations (Palmer (1954), p. 50;
Taeuber, Chiazze, and Haenszel (1968), p. 46).

Two other mixtures of some iImportance for intra-generational
occupational mobility are processes with transition probabilities

governed by

tAo(M-I)
P(t) = sI + (1-s)e (4.5)
and
P(e) = sI + (1-s)s e U Dg0ar
= I + (1-8) (=2 (1 - L )™ (4.6)
R4t R+t :

Equation (4.5) is a continuous-time analog of the mover-stayer model

in which the fraction of stayers is the same for all states, and %—
0

is the expected waiting time between moves in the mover population.
Equation (4.6) combines the mover-stayer model with the more general

form of heterogeneity in the mover population which was specified in (4.4).
Because this mixture adds a concentration of stayers to the gamma density,

it is known as the spiked gamma (with vodka please).

(b) A more general factored representation of 0:

From a substantive point of view, a principal defect of the
individual-level description in (a) is the requirement that a person's

waiting time distribution be the same in every state, It is desirable
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'to eliﬁihéte this constraint and retain the flgxibility of the full
Ma;kov.model, since there are many instances in which rate of movement
is a funcﬁipn‘of system state: fgr example, if the system states afé -
industry catégories we know that industries differ in their rates of .
employee separation (Blauner ;964; pp. 198-203). |

We therefore classify a person according to the diagonal matrix

>
lo

A = . s Ai10,1—12“”¢

where %— has the interpretation, "average waiting time in state i.," A
' i

 type~A individual's history {Y(t), t > 0} is now governed by the transi-

tion matrices

p(t) = S > 0 (4.7)

and these individuals ére viewed aé occurring in the total population
w1th a proportion spec1fled by a joint probability density g(ll,...,kr). 
The previous construction of individual hlstorles {Y(t), t > 0} out of |
random waiting times Tgs Tpsees and a discrete-time Ma;kov chain {X(k),
k= 0,1,2,...} must now be modified by aliowing the distribution of 7, .
to depgnd.on the current state X(k). |

In particular, we define

Y(t) = X(k) Cif ¢oT, 2tx

1=0 1=0

T
l._l
MR

where Prob(rk>t|X(O); g X(), Tysses X(k-1), Tyl X(k) ='i)

= Prob(r, > t|x(k) =1) = e | BN >

1
[e]
-
o
N
:
.
-

for 1 <i<r; k=
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It should be pointed out that this formulation requires more compli-
cated estimation techniques than the simple factored representation
described in the previous section. However, a full discussion of
these issues in the context of panel studies lies outside the scope

of the present paper.

(c) More general waiting time distributions than exponential :

Despite the more diverse form of heterogeneity which is formalized
in (b), the increasing tendency of persons to remain in a particular
state (occupation, geographic region, etc.) the longer they have been
there is an empirical regularity which is not captured by any time-
stationary Markov model., R, McGinnis (1968)‘refers to this phenomeﬁon
as cunmulative inertia, and empirical evidence of its presence in intra-
generational mobility is provided, for example, by Land (1969); ‘lvers,
McGinnis, and Mesnick (1967)+ ari ¥uhr, P~~le, Sales, and Wynn (1973).
This phenomenon is also known in the demography literature as "durati .o~
dependence," and a nice review of formal models which incornorate it
is provided by Hoem (1972).

In order to formalize duration-dependence and simultaneously
classify individuals according to rate of movement and propensity to
transfer to particular states, it is convenient to retain the decom-
position of individual histories {Y(t), t > 0} discussed in the previous
sections, The only modification is the introduction of special non-
exponential distributions, Fi(t), 1 < i < 1, which describe duration-
dependent waiting times in state i, In particular, we decfine

k-1 k
Y(t) = X(k) for £ T, <t < I

i=0 T 1=0

T (4.9)
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where Tgs Tl,... are positive random variables satisfying"

'Prqb(rkl> CIX(O)f TO; X(l), Tl,...,X(k-l), rk_i,4XKk)_= i)

Prob.('rk > t|X(k) = i)

1-F (t) l<i<r ©(4.10)

To incorporate the notion of duration-dependence (or cumulative-
inertia) we restrict Fi<t) to be of the form

ot
—fo hi(u)du

F () =1-e l<ic<r C (4.11)
" where hi(u) is a positive decreasing function such that

foh,(u)du = e,

0 1

The assumption that hi be decreasing implies that the longer an ipdi—,
vidual stays iﬁ state i, the less likely he is to ﬁove in the>immediéte-
future. In particular, the probability that an indiviau;i known to,Be-_.
in state i at time t will exit from that state in the.next dt uﬁits of
time is given by

fi(t)dt

hi(t)dt I—T_F-l—(?)

where fi(t) is the probability density corresponding to Fi(t).
The process {Y(t), t > 0} defined above is a special form of semi-

Markov process8 whose transition probabilities

Prob(¥(e) = 3[Y(0) = 1) = p (). 1<i<r

are the unique solutions of the system of integral equations




22

: r t
LL(E) =0, - F, ,(8)m, . (t-s)ds
le( ) 513[1 Fm(t)] + kil I fl(q)mlkpkj(t s)ds
In this equation,
1 if i =3
= ‘ y)
Gij (4.12)
0 if 1 # ]
and |lmik|l =M is the one-step transitigon matrix governing the discreto-

time Markov chain X(k), k = 0,1,2,,,. used to specify Y(t) in (4.9).9
Now classification of an individual evolving according to a semi-Markov
process would mean to characterize him by the family of distributions
&?= {Fl(t),...,Fr(t)} describing the waitine times in any state and by
the stochastic matrix M describing his propensity to move to particular
states.

In specifying a population-level process {Z(t), t > 0} as a mixture
of éhis kind of semi-Markov process, parametric families of distributions
are usually used to define Fi(t) and then a suitable mixing distribu-

tion is defined on the parameters. For example,

—'Ylt
F(t) = 1 -e with Yy ” 0, 0 <y, <1

can be expressed in the form (4.11) with

Y,~1

h(u) u

Y1Y

and a reasonable initial choice of mixing distribution can be defined

by
Yy Y Y1 o a=1 -Bu Yo
r B u e
0

fO g(u, v)du dv = IO Ty du ¢ o dv

Thus Y1 and Y. are treated as indenendent parameters with Y] heine

2
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gamma distributed and Yy being uniformly distributed on [0, 1]. This
mixture specification is meant to be only a suggeétion of a reasonable
starting point for the fitting of semi-Markov mixtures to multi—ﬁave
panel data. A series of empirical investigations comparing a variety
of mixture models remains to be carried out.

A final point which should be mentioned concerning the semi-
Markov models (4.9) is the basically regenerative>nature of these
processes. In particular, individuals evolving according to (4.9)-(4.11)
have an increasing propensity to remain in each state the longer they
are there. However, once a change in state occurs, an individual may
be much more likely to move again in the_immediate future than he was
before the change‘occurred. Although the cumulative inertia behavior
occurs in each state separately, it need not, according to these
models, hold throughout a career involving changes of state
(i.e., there is no explicit notion of individual aging). ‘This'raises
the question of finding alternative models to'the above sémi—Mafkov
formulation in which the propensity to move in the immediate future
decreases throﬁghout an individual's history. This is the subject of

the next section,

(d) A non-time-stationary Markov model:

Consider a population in which an individual's history {¥(t), t > 0}

is defined by

Y(t) = X(k) for I T, <t < T C O (4.13)

i=0 , i

where {X(k), k = 0,1,2,...} is again a discrete-time Markov chain,

¢

governed by M and describing moves when they occur, TO’ Tl,... are
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waiting times between moves (or decisions to possibly move), and thcy

satisfy

Prob(Tk > t|X(0), TO,...,X(k-l), X(k))

Tk-1°

1t

0 Treet Tap)

Prob(Tk > tlr
t+(TO+...+ Tk-l)

1 - exp —-J” h(u)du (4.14)
(Tgtesat Tyt

where h(u) is positive, decreasing, and satisfies

P
fo h(u)du = 4= |

The specification (4.14) imnlies that after each successive move,
an individual's propensity to remain in his new state is not only
greater the longer he stays, but it is also greater than at anv time
prior to his last move, In particular, this formulation captures the
notion of cumulative inertia throughout a career, such as might result
from aging, and seems more appropriate than some of the previous semi-
Markov models for investigations of intra-generational occupational
mobility. See, in particular, Kuhn, Poole, Sales, and Wynn (1973) for
some empirical evidence supporting this position; also see Sdrenson
(1975) for additional details on this sort of formulation.

The stochastic process specified by (4.13) and (4.14) is a

. . . 10
special non-time-stationarv *arkov process where

p.,(0, t)

Prob(Y(L) = j|Y€0) = 1) i

(fgh(u)du)(W_I)
={e (4.15)
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In principle, heferogeneous population models could be constructe&
from mixtures of this kind of non-time-stationary model of indiVidual‘ 
behavior. However, the fragmentary nature of the data which is usgaily
available in multi-wave panel studies makes judgments about the rela-
tive importance of non-stationarity vs., heterogeneity essential if
parsimonious models are to be'fit to the data. In terms of fhe dis~-
cussion of high diagonals in Section 3, the difficult conceptual
point which such judgments raise is that -each of the following quaii-
tatively different interpretations is capable of accounting for t?at
empirical regularity,

(i) A homogeneous population describéd by the non-stationary

model (4.13) and (4.14).

(ii) A heterogeneous population described by mixtures of sta-

tionary Markov models such as the mover-stayer extensions
(4.4), (4,5), and (4.6).
(iii) A homogeneous population described by a semi-Markov model
.such as (4.9)-(4.11). |

(iv) A heterogeneous population described by mixtures of (i)

and (iii) above.

A strategy for discriminating among aiternative conceptual models,
such as these, in a panel study is outlined in Section 6. The di§—~
cussion there is designed to illustrate a general strategy of fit;iﬁg o
several models to the same data, each of which emphasizes a qualita-
tively different behavioral pattern., Highly structured residuals from E
such models usually represent the most suggestive information about
‘factors which have not been formally incorporated in a model. (The

empirical regularity found by BKM is a simple instance of residuals
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from a base~line model being suggestive about alternative descriptions
of an empirical process.) One of the princibal research directions
which this approach suggests is the intensive development of fitting
and identification procedures for a variety of realistic models using

limited longitudinal information,

4,2 Fragmentary Data

From the outset we have emphasized the limited number of time
points at which panel data are usually obtained. It is important for
a proper understanding of the estimation and identification strategies
discussed in Sections 5 and 6 that some explicit instances of longi-
tudinal data be described, together with an indication of precisely

what, in each instance, is meant by the phrase "fragmentary."

ExamEle 1:

Let {Y(i)(t), 0 <t < t*, t* = duration of the study} represent
the history of the ith individual in a panel study (e.g., occupational
career pattern, succession of brand preferences, etc,), and let
0= tO < tl <e..< t_ represent the times at which the waves of the

panel are scheduled (i.e., the re-interview times). Although chanses

of state can occur at any time t, the observed process is

{Y(l)(tk)’ k = Oylszg.oqan}’ 1 :,1 < Na (4“16)

where N = number of persons in the closed population under study. Thus,
the transitions between sampling instants as well as their times of
occurrence are not ohserved., It is because of this missing iuformation

that we refer to data of the form (4.16) as fragmentarv, 1t should
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be noted that this was precisely the samplingisituation in BKM's study

where ti+l -t = A = 3 months, i = 0,1,2,... .

Example 2:

In Taeuber, et al.'s (1968) residence history study, observations
are taken retrospectively on current residence, first and second prior
residence, and birth place of individuals in particular age cohorts.
This kind of data represents an instance of fragmentary information
about a migrétion process in that gaps are present in the residence

histories.

Example 3:

Let T(l)(t) = {number of transitions by the ith individual between

time 0 and time t}, and consider observations of the form (Y(l)(tk),

T(i)(tk), 0<k<n,1<icx N) . This kind of information was

obtained in the social mobility studies of Palmer (1954, Lipset and ‘

- Bendix (1963), and in the much larger study of Parnes (1972).: It is

fragmentary due to the fact that the times of occurrence of the tranéi—
tions are missing. ‘

From the perspective of estimation and identification with any éf
the mathematical models mentioned préviously, the ideal situation would
be to have completée histories of moves among states, as well as dura- -
tiéns in each state, for a long time interval. Howeyef, because of
cost considerations in conducting many re-interviews over a long time
span, and because of low response reliability when detailed retrospec~
tive questions'are asked, only fragmentary data have been obtained in
such major investigations as Blau and Duncan's OCGl Survey (1968),

Hauser and Featherman's OCG2 Survey (1973), Michigan's Income Dynamics
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Tanel, and the National Longitudinal Studv of Labor Force Experience
(Parnes Study 1972). This raises the question of what sorts of partial
information ro gather if the data are to be used to discriminate among
alternative theories using formal mathematical models. TFor example,
if the study concerns occupatiomnal mobility and the collection desien
is a retrospective survey, we might collect any of the following
kinds of data:

a) A complete history of all jobs held and durations in the
jobs.

b) First occupation and current occupation.

c¢) First occupation, current occupation, and number of
intervening occupations held.

d) First occupation, current occupation, and previous occupation
(possibly together with duration times in each occupational
state).

Clearly, the combinations can be elaborated. What is consequen-
tial about this decision is that once alternative (a)--complete
histories--is rejected as a research design, it becomes crucial as
to which pieces of data one decides to collect. Different estimation
procedures must be employed according to the kinds of information
gathered, and some procedures will vield more efficient estimates of
the parameters than will others. The choice of data collection
strategy must also reflect the classes of mathematical models that a
researcher intends to apply, since certain information which is not
required to fit one model type is crucial to the estimation of another.

The simplest setting in which to illustrate estimation and

identification with fragmentary data is the fitting of continuous-time
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Markov chains to data of the form described in Example 1; that is,
observations on individuals' locations at a few points in time. The

essential steps are described in Section 5.

5. EMBEDDABILITY AND IDENTIFICATION

Suppose observations on a closed population have been collected
at the evenly spaced time poi = 0 cen -t
y spaced time points ty s ;1, t2, ’tn where tk+1 tk
=A >0, for k= 0,1,...,n, and assume that the number of observations
on the population is small, say, n < 8. Furthermore, consider the
observations to include only information on current system states;

namely,v( Y(l)(t k = 0,1,2,...,r1) for 1 < 1 < N, N = number of

k)’

persons in the closed population under investigationm. This is a standard

data collection situation in multi-wave panel studies (for example, BKM
used this type of data), and it provides the simplest setting in which
to illustrate embeddability and identificatioﬁ issues,

Embeddability refers to the question of whether or not observa-

tions on an empirical process are compatible with the conceptual
assumptions (theoretical structure) underlying a particular class of
mathematical models (e.g., time-homogeneous Markov, mixture of Markov,

semi-Markov). Where the answer is affirmative, identification proce-

dures refer to techniques for recovering the particular set of struc-
tural parameters from the model class which should be associated with -
the empirical process., DBoth issues are central to the analys;s of
panel data, Identification, in particular, can be difficult to accom-
plish due to the fact that qualitatively different sets of structural

parameters may be consistent with data from evenly spaced observations.
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To fix the ideas in the simplest setting, consider fitting a
continuous~time Markov chain with stationary transition probabilities
to data of the sort described above. A procedure for carrving out
this task consists of two principal steps:

(i) Torm the stochastic matrices P(kA, %A) with entries

n(kA,lA) (rnmmer of persons in state 1 at time kA)
i - who are also in state j at time A
(kA") . . .

ni+ number of persons in state i at time kA)

and check that

Pk 8, ko) = Plkgh, ka) (5.1)
for kl < k2 < n; k3 < k4 <n
and that

P(ky8, kyd) = P(ka, 2AYP(18, k) (5.2)
where 0 i-kl < g < k2 <n .,

Equation (5.1) is a test of time stationarity; and (5.2) is a primi-
tive test of the Markov assumption (i.e., independence of future state
from past history, given current state). Formal tests of this kind
are described by Anderson and Goodman (1957) and Billingsley (1961).

(ii) Compute

1

T=0h log P(ka, 24), 0<k<2<n (5.3)

and observe that if the data are compatible with a time stationarv
Markov model, then at least one branch of the logarithm of anv given
matrix in the list (5.3) should be roughly equal to some branch of the

logarithm of any other matrix in the list, 1In addition, this common
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logarithm should be an intensity matrix (i.e., it should belong to the

r
class Q = {Q: 944 2 0, 9 5 >0 for i #j, I 1y = 0}).
j=1

The process of verifying that P can be represented in the form

eQ for at least one Q € Q is a test for embeddability of the data in a

continuous-time Markov model, Although this step is seemingly straight-

forward, it should be pointed out that some surprisingly subtle phenomena
are involved in the embeddability test. 1In particular, due to the
multiple valued nature of the logarithm function, it is not immediately
apparent that one can find an effective computation algorithm to check
for the existence of even one branch of log % which is an intensity
matrix. Indeed, it would appear that infinitely many branches of the

logarithm might have to be checked‘to decide on embeddability.

\

Q

Fortunately, however, any matrix which can be represented as e
with Q € Q muét have eigenvalues of a rather restrictive nature. In
fact it is the existence of sharp upper and lower bounds on the eigen-
values whicﬁ lead to a practical computation'strategy for deciding
embeddability. The explicit éigenvalue'restrictions and associated
computation scheme are outlined below. However, for a detailed dis-
cussion of this point and further indication of its role in the analysis
of panel data, the reader should consult Singer and Spilerman (1976).

Closely related to the problem of deciding embeddability with a
finite number of tesfs is the fact that in the course of such a compu-
tation, there may be several branches of the logarithm of a stochastic

matrix which are intensity matrices. Identification refers to the task

of deciding which of these intensity arrays should be associated with

the empirical process, In particular, it is possible to have
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P(ks, 24) = e

and (5.3
. (+-k)AQ,,
P(ka, 2A) = e © 0 <k <2 <mn

where Ql # 2, but Q, € Q and Q, € 2. (See Singer and Spilerman, 1975,

1976 for explicit examples of this behavior.) The phenomenon (5.3) is

an instance of aliasing for Markov transition matrices, and it is

entirely analogous to the aliasing of structural coefficient matrices

in continuous—time econometric models (see, in particular, P.C.B. Phillips,
1973). 1In this situation, the set of underlving structural parameters
(i.e., the unique intensity matrix which should be associated with an
empirical process) is not identifiable. A researcher confronted with

matrices such as Q, and Q2 would either have to adjudicate between them

1
on substantive grounds or collect additional data at a time which is
not a multiple of the sampling interval A, Then the underlying transi-
tion mechanism could be identified since only one of the matrices (Ql
or QZ) could be consistent with the non-evenly spaced observations.

The computation scheme outlined below recovers all branches of

o~

the logarithm of a stochastic matrix P which are intensity matrices,
provided P has distinct eigenvalues, This is clearly the situation in
most applications. However, it should be noted that repeated eigen-
value matrices do play an important role in sensitivity analyses, and
they can be associated with a continuum of intensity matrices (i.e., a
stochastic matrix P may be within error distance of the observed array
2 5 0 e

P and be representable as P = e for an uncountablv infinite set of

matrices in Q: see Singer and Spilerman (1976) and Cuthbert (1973)

for details on this point). This raises difficult questions of both
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interpfefation and reliability of estimates of structural parameters
based on evenly spaced data. Extensive re-analyses of data from a
variety of panel stﬁdies would be necessary in ordef to assess whethér
the possible instability described above is in fact a frequently

occurring empirical phenomenon.

A Computation Strategy to Decide Embeddability ,

Step 1:

~

Compute the eigenvalues of P and check whether or not they each

satisfy

ﬂ(—;-+%) < arg(log 1) _<_1r(3§ - -r]-'-) (5.4)

whére r = order of the matrix, and A is an eigenvalue of P, (The
inequalities (5.4) were established by J. Runnenberg, 1962.) 1In

particular, he used the inequalities of F, I. Karpelevitch (1951)
-1 1 3 1 '
n(;+ D) <arg(h-1) < 75 - ;? . (5.5)

--which restrict the eigenvalues, A, of an arbitrary rxr stochastic
matrix-~together with the representation P(t) = et for Markov transi-
tion matrices, to obtain (5.4) as a restfiction on the eigenvalues of
eQ. The shaded zone in Figure 1 depicts the region defined by the
inequalities (5.4) aﬁdvexhibits a typical set of logarithms of'the-v

eigenvalues associated with an embeddable matrix.

Step 2:

If all eigenvalues of P are real and positive, then their logarithms

are real and negative and they automatically satisfy (5.4). In this
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Figure 1. Eigenvalue Restrictions for Embeddable Matrices
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situation there can be at most one branch of log P in Q. To compute
it--and théreby check embeddability--reduce P to diagonal form (i.e.,
represent P as P = H A H ! where
A 0
A = * . '

, e

0 *a
- r

and H is a nonsingular similarity transformation), Then calculate

log P = H lbgvA H—l : . . .- (5.8)
where
logvkl ;Q
198 A = log Az.
0 . logAkr

If the matrix (5.6) is in Q, then P is embeddable in the unique
continuous~time Markov model with intensity matrix given by (5.6).
If (5.6) is not in Q, then P'isfsihply not embeddable in any continuous-

time Markov model,

Step 3:

If P has cqmplex.eigenvalues they must occur in conjugate pairs.
For each such pair (A = peie, A= pe-ie) determine all branches of

their logarithms which safiéfy (5.4); eSbecially,
1,1 3 1
g+ Lergllog M) L rG =)

where r = order of the matrix P,

-1 o2k s
arg(logk A) tan (IEET;)’ and k specifies
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a branch of 1ogkk according to

log, A = logp + i(6 + 2mk); k=10, + 1, +2,... (5.7)

0 <o <

Now select one of the branches for each complex conjugate pair, and
compute log ; using (5.6). Check the resulting matrix for membership
in Q. Then repeat this calculation for all branches satisfying (5.4).
The basic importance of Runnenberg's inequalities (5.4) is revealed at

this step, because they guarantee that only finitely many branches need

be checked. Furthermore, all intensity matrices compatible with the
data (the aliases mentioned in (5.3)) are recovered in these caicula—
tions. If multiple matrices Q ¢ Q have Eeen found, the researchef
should collect additional information to discriminate among them in the

manner described in conjunction with (5.3).

6. STRATEGIES FOR DISCRIMINATING AMONG COMPETING MODELS

Many of the issues involved in attempting to discriminate among
competing models can be illustrated in the relatively simple setting of
testing data for compatibility with one of the following four classes
of models:

(i) time-stationary Markov chains

(ii) a restricted class of mixtures of (i)

(iii) a restricted class of non-time-stationary Markov chains

(iv) a restricted class of semi~Markov processes.

To fix the ideas, assume that observations

(1P, ™), 121w 0cken .1
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have béén.collecﬁed atvthé eQen1y sp;ced time pointé 0 = t, < t <. <t
where tk+1 -t = A = (sﬁacing between sugdessi&erbservations) > 0;
k=0, cosy n=1; Y(i)(tk) denotes the state of the ith individual in-
the survey at time tk; and T(i)(tk) equalé the tétal number of transi;ﬁ
tions by the ith individual in the time interval (O, tk).. This is pre- -
cisely the data collection situation described in E#ample 3 of Section 4.2.

Now introduce models in which individual histories are repreéentédl

in the form

() = X(T()), - t >0 (6.2

‘where X(k) is a discrete~time Markov chain with stationary transition
probabiliiies having one-step transition matrix M, and T(t) is one of
the four kinds of stochastic processes listed below.

(A) a time-stationary Poisson pfocess with parameter y > 0
[special case of (i)]

(B) a mixture of (A) [Special case of (ii)]

(C)<'a non-time-stationary Poisson process with expected number
of jumps in the time interval (s, t) given by f:h(u)du
where h is a continuous, positive, decreasing function

"such that'f; h(u)du = 4+~ [special case of (iii)]

(D) a remewal process defined by
, . n=1 : \
T(t) = max {n: I T, < t} ifr, <t

T(t) = 0 if T, >t

Where'(Ti)i=0,l,... are independgnt identically distributeé
:positive random variables such that

| -fgh(u)du
Prob{‘ri >t} = 1 - e :

and h satisfies the same hypotheses as in (C) [special cage‘éf (iv)]. .
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In each of these models mobility between states is governed by
a single stochastic matrix M, The models differ only in the assump~
tions which are made about the waiting times between moves. It should
also be observed that the representation (6.2) provides an alternative
descriptioﬁ of some of the models presented in Sections 4.1 a, c, and d.

In particular, when T(t) is a time-stationary Poisson process
with parameter y > 0 (model A), then X(T(t)) is simply the time-
stationary Markov chain described in Section 4.la where the intensity
matrix Q has the factored representation Q = y(M-I). The advantage
of the representation (6.2) in the present context (i.e., with fragmen~
tary data of the special form (6.1)) is that it explicitly describes
the relationship between the observable quantities (Y<ti)’ T(ti))’
i=20,1,2,...,n and the non~directly observable process
{x(k), k = 0,1,2,...}. The latter process describes transitions when
they occur, and is géverned by the matrix of structural parameters M,

When T(t) is a mixture of time-stationary Poisson processes
(model B), then X(T(t)) can be any one of the mixtures (4.4)-(4.6)
depending on the choice of mixing distribution. Population hetero-
geneity is introduced only through a classification of persons accord-
ing to their rate of movement, and T(t) describes the number of moves
by a type~y individual. Such individuals are assumed to occur in the
total population with a probability specified by the mixing distribution.

When T(t) is a non-stationary Poisson process (model C), X(T(t))
is the non-stationary Markov chain constructed in Section (4.1d). The
following intuitive d;scription is intended to clarify the manner in

which this kind of process evolves,
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Consider a homogeneous population in which an individual start-
ing in state i at time zero stays there for a random length of time

Ty with
. t

-foh(u)du
Prob('cl >t) = e
The assumption that h be decreasing implies that the longer an indi-
vidual stays in state i, the less likely he is to move in the immediate
future, At the end of the initial waiting time, the individual moves

to state j with probability mij' Then he stays in his new state for

a random length of time T, whose distribution depends on T according

to
_ . s+t

' -/ h(u)du
.Prob(rz > tlrl =s) = e °
Since h is decreasing, the propensity of the individual to remain in
this new state is not only greater the longer he stays, But it is
also greater than at any time prior to his first move. At time
1 + Tos ﬁhe individual moves again according to M, and waits the;e

a length of time 71, governed by
3
s+t

-IS h(u)du
Prob('r3 > tlrl +1,=8) = e
This process is repeated, and with each change of state the individual
has less and less propensity to move than at any previous time.

Finally, we consider processes of the form X(T(t)) where T(t)

is a renewal process (model D). With this specification, X(T(t)) is

‘a special semi-Markov process as defined in Section 4,lc. In order to

clarify the manner by which these processes evolve, consider a homo-

geneous population in which an individual's initial move is regulated
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exactly as in the non-stationary Markov model described above. llowever,

his waiting time 7, is assumed to be independent of 1. and governed by

2 1

-fgh(u)du

Prob(t, > t) = e

2

After each successive move, the individual's new waiting time is

governed by the same probability law as t., and Tge The assumption

1
that h is decreasing still implies that the longer the individual
remains in a particular state the less likely he is to move in the
immediate future, However, in contrast to the non-stationary Markov
model, each time a move is made the propensity to move again starts
over at a high value and then decreases. In particular, the continual
decrease in propensity of the non-stationary Markov model no longer
holds for the present semi-Markov processes, Thus, while the former
process may be identified with "aging of an individual," the latter

' as described by

is akin to "cumulative inertia in an occupation,'
McGinnis (1968).

In attempting to identify which of the above four kinds of
models~-if any--is compatible with data of the form (6.1), the follow-
ing strategy may be utilized.

Plot cumulative number of moves vs. t and check whether this is
approximately linear (Figure 2) or concave downward (Figure 3). It
is the case that models (A) and (B) are consistent with the linear
picture where the principal trend is described by a regression line
through the origin., Model (D) is consistent with the linear picture
but with the main trend--(away from t = 0)==described by a straight

line having a possibly non-zero intercept. Only model (C) is consis-

tent with a pattern of the form described by Figure 3.
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‘line fitted to medians of
the empirical distributions;
consistent with models

(A), (B), and (D)

o8

line fitted to medians
of the empirical

distributions; consistent
only with model (D)

=
-
-

Figure 2. Cumulative Number of Moves Versus t for Data consistent

with Models (A), (B), and (D)*

* ' R
The cross above ti reports the median number of moves by all
persons in the pangl study during the time Iinterval (O,ti).
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line fitted to medians
of the empirical
‘—’—2————*"“"—" distributions; consistent

with model (C)

Figure 3. Cumulative Number of Moves Versus t for Data Consistent
with Model (C)*

The cross above t, reports the median number of moves by all
persons in the panel study during the time interval (O,ti).
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If the empirical picture corresponds to Figure 2, then the slope, b,

of_a straight line fitted to the linear pattern would have the follow-

ing alternative interpretations on the basis of the above data:

(1) b =y = time-homogeneous Poisson parameter

-]

(2) fo'ydu(y) = b for the mixture of Poisson modelé12

1 _ 1

- —fth(u)du (expect?d waiting t}me between
0 moves in a renewal process)
fo(e )dt : '

If this linear picture is observed, we would solve--using numer-
ical inversion formulas--the following equations for M:

t,y(M-1)

@) PO, t) = e

1
Call the solution M5 it corresponds to model (A).

® tlv(M-I)

(@) PO, t)) = [Spe du (y)
- B
" Call the solution Ml; it corresponds to model (B).
A _ . o« -— \ n

1 £

denotes the n-fold convolution of the waiting time distribution

Call the solution M.*; it corresponds to model (D). (Note: Fn(t)

S
' —foh(u)du :
F(t) =1 ~-¢e with itself,)
Now check whether the M-matrix obtained in each case is a bona=-
fidevstochastic matrix, This is really an embeddébility test for all

three model types. If any one of the above calculations yields a

matrix which is not stochastic then that model is inconsistent with
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the data P(0, tl). If one or more of these calculations yields a
stochastic matrix, then we test its ability to predict the observed
matrices P(O0, tz), P(0, t3) ... using the appropriate equation. In

particular, prepare tables of the form

- t,y(M,-1) - £,y (M,-1)
1" PO, t) -e’ L PO, t;) - e 3L
-~ © tZY(M'l_I) ~ % t3Y(M'l-I)
(2") P(0, t,) - Spe duy), P(0, t3) - Jqe du(y)yee.
(3") P, ty) - BIE, (6T, gy (£ 05", PO, t) = 3R (6T, (210067, ..

which represent residuals of observed matrices from predictions based on
models (A), (B), and (D), respectively. One instance of the informative
nature of such comparisons is the fact that many data sets reveal a dis-
crepancy in comparison (1') in that the diagonal entries in the observed
matrices %(O, tz), ﬁ(O, t3),..., etc., are substantially larger than
the time-homogeneous Markov predictions., Both of the model classes (B)
and (D) can account for this kind of discreﬁancy, despite the fact that
they have very different substantive interpretations, Further discrim-
ination requires a more detailed consideration--on both substantive
and numerical grounds--of the residual matrices.

Finally, if the concave picture, Figure 3, occurs, then prepare

the comparisons

t2 t3
(fo h(u)du)(M+-I) (fO h(u)du)(M+—I)

P(O, tz) - e P(O, t3) - e g e

where M+ is a solution of the equation
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1

- v (fo h(u)du) (M-T)
P(0, tl) = e
- Sharp discfepancies here might be revealing about alternative classes:
of models which should be added to the original list as-caﬁdidates tb
'»de5cribe the .empirical process. | | |

‘ We emphasize that the preceding discussion is by no means complete,
a#d is designéd only to communicate to the readér,‘in concisé‘form, thg

flavor of the sorts of considerations which seem appropridte for the

analysis of multi-wave panel data.

7. CONCLUSTIONS

We have described a number of issues which arise’ in fitting models
of distributional change to fragmentary data, and in #ttempting to dis-
criminate among altermative structures fitted to the same fragmentéry '
data. The univariate Mafkov framework has beén applied t§ adyéntage in
the‘bhysical sciences in situafions where the notion of pépulation hetero—
geneity is not especially pertinent, and where the number of observations
in time available to a researcher is reasohably large. However, both of
these factors are crucial comsideratioms in modeling social phe-
nomena, and we have therefore focused on some variants of the univariate
" Markov framework that were developed for the expressed purpose of incor-

porating assumptions about the nature of social processés into mathe-

matical models.

" There are additional important issues, closely related to the ones
we have discussed, which must be addressed if a routine methodology is

to be developéd regarding the application of these ‘model types to social
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procesées. These issues have not been considered in the present review
because they are largely undeveloped research areas.

(i) The introduction of substantive theories into Markov models
and their variants via restrictions on the structural parameters, such
as by prohibiting certain transitions (e.g., occupation or industry
shifts) from occurring directly. Some exploratory work on this issue
may be found in Coleman (1964a, 1964b).

(ii) Strategies for sensitivity analyses to assess the nature of
the dependence of parameter estimates on small perturbations in the
data. This topic is discussed within the context of time-stationary
Markov models in Singer and Spilerman (1976), but must be extended
to other model types,

(iii) Specification of formal error structures, and the devel-
opment of techniques for setting confidence limits on parameter esti-
mates which derive from fragmentary data.

(iv) The specification of data collection designs for panel
studies which will facilitate discrimination among several models
fitted to the same fragmentary data., This should include a detailed
consideration of the reliability of retrospective interrogation versus
the cost and time delays attendant upon reinterview in a panel study,
Furthermore, an investigation of the optimal frequency of reinterview
in a panel study is required in order to optimize the amount of use-

ful information about change collected per research dollar,
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Footnotes

lEmpirically determined stochastic matrices will be designated

by P(u, v) with entries

(u,v) number of individuals starting in state i)
1 2 t time u who are in state } at time v
.__..L.J—_b =
n(u,-) (number of individuals starting in state i)
i,+ at time u
11,
where u < v. BKM's estimate of M can thus be written as 157 L Pk, k+l)
k=0

where the unit of time is three months ( = 1 quarter).

2 , . . .
By "structural information'" we mean quantities which characterize
a population, irrespective of the observation interval used for data

collection.

3As the reader will see, these parameteré are independent of the -

sampling interval.

“4By "non-synchronous' we mean that persons do not all change

state simultaneously,

5In instances where a substantively meaningful unit time interwal
exists, a discrete-time model would indeed be appropriate (e.g.,

explaining presidential election outcomes).

6ﬁii(O, k) is a diagonal entry in the observed k-step matrix, and

mig) is the corresponding entry in the k-step matrix predicted by a

discrete~time Markov chain.
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7We have replaced the usual mathematical terminology ''time-
homogeneous Markov chain' by the phrase "time-stationary Markov

chain."

This change of terminology has been incorporated in
order to avoid confusion with our use of the word "homogeneous'
to describe a population of individuals possessing a common set
of transition probabilities. It should also be emphasized

that we do not assume that the initial distribution of indi-
viduals among system states is the equilibrium distribution for

a Markov process. Such an assumption would imply that the Markov

process is also a "stationary'" process in the usual mathematical

sense of the word.

8For a rigorous mathematical discussion of the special semi-
Markov construction defined by equations (4.9) and (4.10), see

Kurtz (1971).

9The specification of semi-Markov processes in equations (4.9),
(4.10), and (4.12) does not describe the most general process of this
kind as treated in the mathematics literature. In particular, the
original semi-Markov framework allowed for waiting time distributions
that could depend on the next future state as well as on the current
state of the process. In order to utilize models incorporating this
kind of detail, a more extensive data base would be required than is
currently available in most multi-wave panel studies., Hence, consid-
erations of parsimony have led us to restrict our attention to a sub-
class of semi-Markov processes which requires the estimation of fewer

parameters.
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chains, ‘see Goodman and Johansen (1973).

11Another reason why we might consider data to be fragmentary is

if the duration of the study is too brief for significant amounts of

movement to have occurred. We do not address this issue in the

present discussion.

lehen the density function u'(y) exists, this expression

reduces to the familiar formula for a weighted average, fOYu'(Y)dy.

‘By the text expression, however, we mean integration with respect

to a general probability measure.

For a nice mathematical treatment of non-time-stationary Markov
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