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ABSTRACT

This paper reviews and develops summary measures of associations

between multiple sets of variables through the application of canonical

correlation analysis. These measures are subsequently applied to a

specific research problem. Some of the data analysis situations for

which canonical correlation .is appropriate are also discussed.
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CANONICAL CORRELATION AND THE RELATIONS BETWEEN SETS

OF VARIABLE S

I. Introduction

Sociologists are becoming increasingly sophisticated in their

use of multivariate statistical models, and a number of excellent

sources are now available in the literature. (See Van de Geer, 1971;

Blalock, 1971; Goldberger and Duncan, 1973.) We wish to direct

sociologists' attention to a multivariate statistical technique, whose

usefulness as a data analysis tool has a great deal of appeal when

interest centers around the joint distribution of two or more sets of

variables. The technique, canonical correlation, was developed by

Rotelling (1935, 1936)' more than three decades ago, and is used rather

extensively in biometrics and psychometrics. In sociological

literature, KlatzkyandHodge (1971) used the technique to analyze

intergenerational occupational mobility, Van de Geer (1971) used the

technique to estimate the parameters of unobservable variable models,

and Hauser and Goldberger (1972) noted the similarities between

canonical correlation and confirmatory factor analysis in the esti

mation of unobservable variable models. However, these applications

do not begin to exhaust the potential usefulness of canonical cor

relation analysis. Some of the data analysis situations for which

canonical correlation is appropriate are discussed in this paper.

Consider a situation in which a researcher is in a position

to separate the variables of interest to him into sets, and he is in
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a position to postulate "flows" of influences among the variable sets

based upon information obtained from a theoretic~l model. The

researcher's primary objective is in determining to what extent and

at what point the distributions of these variable sets intersect. All

multivariate statistical techniques are designed to provide answers to

these types of questions, though perhaps from different data analytic

points of view. Moreover, the researcher is interested in answering

the following questions as a means of evaluating the plausibility of

some specific hypotheses implied in his theoretical model: (1) What

is the total relationship between the dependent and the independent

variable sets? (2) In instances in which the independent set consists

of several theoretically distinct sub~ets, one may ask what is the

relative contribution of each subset to the total amount of variation

explained in the dependent set? (3) Which variables in the dependent

and independent set(s) respectively contributed most to the total

amount of v.ari,a1t'fon shared between the sets? Those familiar with uni

variate correlation and regression analysis will immediately recognize

that questions one and two are practically identical to those that one

would ask if the relations between individual variables are pursued.

Indeed, it has been shown that certain aspects of canonical correlation

analysis are simple extensions of univariate correlation theory

(Rozeboom, 1965, 1968).

This paper presents a pedagogically oriented review o~ much

of the technical literature that has been presented on canonical cor

relation (see Bartlett, 1941, 1947; Anderson, 1957; Morrison, 1967;

Cooley and Lohnes, 1971; Van de Geer, 1971). We think that the
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specific problems explored here, by way of an example, should stimu

late a greater interest in the general usefulness of this multivariate

statistical technique. Within this context, the current discussion

focuses on two specific objectives.

First, as is known by most practicing methodologists, it is

suggested that canonical correlation analysis offers a parsimonious

way to reduce the complexities involved in relating several dependent

variables to several independent variables, particularly when it is

appropriate to conceptualize dependent and independent variables

respectively as indicators of theoretical constructs. However, it

should be noted that the approach employed here has neither the

statistical precision nor the theoretical parsimony of simultaneous

statistical models, particularly when the research problem calls for

their use, and their assumptions can be met (see Hauser and Goldberger,

1972; Burt, 1973; Duncan and Goldberger, 1973). On the other hand, it

can be argued that deficiencies in the data ~nd/or in the theoretical

model should not deter researchers from examining, at least in an

exploratory manner, the fruitfulness of a theoretical approach to a

subject that is defined as problematic. In this respect, canonical

correlation, as it is applied in this paper, c~n p;l;oVide the

researcher with an alternative whose requirements are less stringent

than those characteristic of si~ultaneous estimation procedures.

The second objective involves an attempt to resolve some of

the problems frequently encountered in trying to interpret canonical

solutions. It is probably the case that one of the main reasons why

canonical correlation is so infrequently used by researchers has to do
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with the difficulty associated with interpreting canonical roots and

vectors. It is suspected that this problem of interpretation arises

partly from a lack of appreciation of exactly what is being done when

the relationship between sets of variables are subjected to a canonical

correlation analysis. We take the position that the interpretation

problem can be practically eliminated if it can be shown that canonical

correlation is a parsimonious way of decomposing a set of multipie

correlation coefficients. Thus, it will be shown that both the canoni-

cal coefficients and vectors can be given interpretations that are as

meaningful as computing multiple and multiple-partial correlation

coefficients.

II. Applications

In this section the particular approach taken toward canonical

correlation is applied to a specific research problem addressed by

Wilson's (1973) study of the determinants of housing status. The

interest is in analyzing the determinants of the quality of housing

occupied by primary families who owned their dwelling unit in 1960.

The dependent set y, housing quality, is composed of measures of

whether the dwelling unit is in standard condition (YI ), the age of

the unit (YZ)' and a measure of the quality attributes of the unit

(Y
3
). The independent set Z

duration (WI)' the total number of children present in the family

(Wz), age of the youngest child (W
3
), education (Xl)' occupational

prestige (XZ), and total family income (X3). The first three 7
J_

variables are defined as measures of family status ( W), and the latter
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three are defined as measures of socioeconomic status eX 2. 2 The

observed correlation among these measures is exhibited in Table 1.

Figure I summarizes the expected direction of the relationships

among the variable sets. It should be noted that the model as dia-

grammed postulates relationships among theoretical constructs repre-

sented by the variable sets (cf. Sullivan, 1972). The reason-for this

relates to the fact that evaluating the full implication of the model

may require the use of more than one canonical solution. Thus, for

example, the correlation between Yand its indicators may require

two different sets of estimates in order to determine the total effects

of Wand X.
In any event 9 the model hypothesizes that the effect of family

status on"housing quality is expected to be negative, largely because

of the influence exerted by family size and age of the youngest child.
\

Large families are least likely to be in a position to spend a great

deal on housing consumption." Socioeconomic status should have a nega-

tive effect on family status, because size of family is inversely

related to all three measures of socioeconomic status. Finally, socio-

economic status should have a positive effect on housing quality,

beca~se the quality of the housing environment should reflect social

status considerations.

With respect to the research questions posed earlier, a full

evaluation of the impl~cations"of the model diagrammed" in Figure I



Table 1. Correlations between Measures of Housing Quality, Family
Status, and Socioeconomic Status for Whites Who Owned Their

Home in 1960 (N = 8700)

Variables Symbol Y1 Y2 Y3 WI W2 W3 Xl X2 X3

Housing quality
Condition of unit Y1 1.000 .158 .016 .031 -.049 -.010 .112 .105 .116

Age of unit Y2 .158 1. 000 .181 .355 .146 .069 .220 .098 .106

Quality attributes Y3 .016 .181 1. 000 -.020 -.057 -.009 .266 .300 .278
of unit

Family status
Marital duration WI .031 .355 -.020 1.000 .479 .228 .357 .. 059 .096

Number of children W2 -.049 .146 -.057 .479 1.000 .661 .212 .041 .145

Age of youngest child W3 -.010 .069 -.009 .228 .661 1.000 .101 .016 .223

Socioeconomic status
Education Xl .112 .220 .266 .357 .212 .101 1:000 .534 .296

Occupational prestige X2 .105 .098 .300 .059 .041 .016 .534 1. 000 .310

Family income X3 .116 .106 .278 .096 .145 .223 .296 .310 1.000

Source: 1960 Census 1/1000 Public Use Sample Tapes.

Ci\
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. Fi~ure 1. The Determinants of Housing Quality.
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require (1) a measure, analogous to a multiple R2 , which can be used

to summarize the overall predictive ability of the model; (2) measures,

analogous to multiple-partial correlation coefficients, which can be

used to determine the relative contribution made by the independent

subsets Wand X to the total variation explained in the dependent

set y; (3) measures that can be used to interpret the direction

(positive versus negative) of the relationships between the variable

sets; and (4) measures, when used in conjunction with those in (3),

that can aid in determining which measured indicator variab1e(s) of

the respective sets played significant ro1e(s) in determining the

overall relationships between the variable sets.

Matrix notation is employed throughout this exposition in order

to clarify and enhance the derivations of specific measures. For

illustrative purposes, let y represent a P
1

x N matrix (P1 3) ,

W a P x N matrix (P = 3) , X a P x N matrix (P = 3), and
w w x x

Z a P2 x N matrix (P2 = P + P = 6) • Note further that N
w x

refers to sample size, and p.
J

refers to the number of variables in

each set, respectively. Assuming all variables are expressed in

standard form, the relationship between sets Y and Z can be

expressed in terms of the following equations:

U = AI Y

V = BI Z
(1)
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where

U and V are

Nand B' are

K ~ N matrices of canonical variates, and

K x P matrices of canonical weight~.
j

The rows of U and V are linear combinations of the variables in

sets V and Z respectively. The relationship bet~eenthe jth

linear combination in U and V can be expressed in terms of a

canonical correlation coefficient. There are K such canonical

coefficients possible. The problem addressed by canonical correlation.

reduces to finding: (1) the matrices A and B of canonical weights,

and (2) a K x 1 co.1umn vector C, ·wi th elements c .(j .= 1, .... ,k) ,
J

which are the correlations. between linear combinations of th~ variables

in set V with those in set Z· In order to find the vector 9 and

A B, we form
3

the matrices and the products

[ YJ Z' G'Y Y'~JIV =Z' !
I Z'V Z'Z

multiplying by liN,

u'y Y'~l ~~~~liN =
Z'V Z'Z RZy Rzz

and solve the following set of homogeneous . 4
equat~ons :-

G~yrl ~ (Rz )~l R - <lJ AJ =0 (2)
Z Z Zy .

~Rzz)-l Rzy (~)-l ~Z ~jJ BJ =0 (3),
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and ]JJ are characteristic roots (J = 1, ... ,K) ,

I is the identity matrix,

are P. x 1 column vectors of canonical weights
J

(J = 1, ... ,K) (These vectors are the transpose

of the row vectors in A' and B' .1

and where the following constraints are imposed:

(1) R is of full rank, e.g., CR yy)-l and

(R )-1 exist.ZZ

(2) Y isa P1 x N matrix.

Z is a (P + P ) x N = P
2

x N matrix.w x

(3) The first k 2 min (P1 ,P2) characteristic roots of

(R yy)-l RYZ (R zz)-l RZy are distinct.

(If P2 > Pl' then all of the roots extracted,

(R zz)-l RZy CR yy)-l RYZ' will not be distinct.

The number of nondistinct roots will be equal to P2 - Pl')

(4) A' R A = 1 and B' R B = 1
J YY J J zz J ,

in order that the canonical variates in U and V are

in standard form.
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Applying equations (2) and (3) to the observed correlation matrix

displayed in Table 1, we have

c - ~::~
La5~

.022 .912 .527

-.352 .018 -1.312

B
.053 -.020 .486

=
.448 .050 -.047

.388 -.094 -.339

.526 -.070 .125

It can be observed that the characteristic roots of equations

(2) and (3) are identical and are the squared canonical correlation

coefficients. Since all of the canonical coefficients are significant

beyond the (.01) level of rej ection using Wilk' s lambda (Barlett, 1941,

5 .
1974) , we are confronted with the problem of interpreting the sub-

stantive significance of at least the first two canonical coefficients.

A. .Multiple Coeff:tcients

The key to' interpreting canonical coefficients is recognition

of the fact that they are defined as the correlations between linear

combinations of the original variables in sets Y and Z, and·hot the

J-------------------------------------------------
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correlations between the original variables themselves. Thus, each

squared canonical coefficient is a measure of a certain amount of the

total variation shared between two sets of variables. A measure of

the total amount of variation shared between two sets of variables can

also be obtained, which is analogous to but not identical with the

squared product moment correlation coefficient, or with the squared

multiple correlation coefficient (when the independent set is composed

of two or more independent variable subsets). This coefficient has

been termed the Squared Vector Multiple Correlation Coefficient (here-

after referred to as SVMC) (Srikantan, 1970). The coefficient SVMC is

defined (Rozeboom, 1965, 1968; Srikantan, 1970) as

SVMC = =
k 2

1 - IT (1 - c.)
j==l J

(4)

where II indicates sequential multiplication.

Now,

VCA
k 2II (1 - c.)

j=l J

is the Vector Coefficient of Alienation, or the vector correlation
A A

between y and the residual of y - y, where y is the least squares

estimates of the variables in y. Thus, the correlation between y
A

and y - y is also a canonical relationship that conforms to equations

(2) and (3). Therefore,

SVMC = 1 - VCA •
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If the researcher is interested in estimating the total amount

of variation shared between two sets of variables, SVMC·is the

appropriate measure. With respect to the first .research question.

posed earlier,

SVMC = 1 - .709 = .291,

which suggests that 29 percent of the variation of the variates in

set U can be explained by the variates in set V. Note particularly

that the interpretation is applied to the variates and not the original

set of variables.

Srikantan (1970) presents two other multiple canonical coeffi-

cients that may be appropriate for some research problems. However,

we .favor SVMC because it .is a direct extension of the squared product

moment correlation coefficient. The major disadvantage of all of these

measures is that their interpretations are not necessarily equivalent

to the proportion of variation in the variables of set' Y that can be

explained by the variables in set Z. Measures that permit this type

of interpretation are available, and are our next topic of discussion.

(See Stewart and Love, 1968; Miller and Farr, 1971; Alpert and

Peterson, 1972; Wood, 1972.)

It was noted previously that the number of nonzero and

positive 2c. values derived from equation (2) is determined by the
J

rank of the variance-covariance matrix (the correlation matrix in the

example) associated with the smallest variable set. For example, if

the Y matrix contains three variables and the Z matrix six, the
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maximum of nonzero and pos~t~ve c~ values ~s. limited to three

(although one, and perhaps all three, may not be statistically signi-

ficant). Consequently, it is statistically possible to explain all

the variation in the variables in set Y and only 50 percent of the

variation in the variables of set Z (see Alpert and Peterson,

1972) .6 One aspect of the interpretation problem alluded to earlier

with respect to canonical correlation is the sYmmetric character of

the squared canonical correlation coefficients and its multiples.

Thus, our immediate objective is to develop an asymmetric measure of

explained variation, which is analogous to the squared multiple cor-

relation coefficient. It will be recalled that the squared multiple

correlation coefficient is a measure of the amount of variation in a

given variable that can be explained by a linear combination of pre-

dicting variables. Stewart and Love (1968); and Miller and Farr CL97l)

have developed a measure for canonical analysis that is analogous

to the squared multiple correlation coefficient and can be inter-

preted as the proportion of the variation in set y which can be

the emphasis is on explaining the variation in set

We will denote these measures asexplained by set Z· R when
d y.z

y, and R
d z·y

when the emphasis is on explaining the variation in set Z. In

general,

R
d y·z R

d z·y

It is this asymmetric quality of this measure (hereafter referred to

as total redundancy) that makes it a more useful measure than either

2c. or its multiples. As a measure of association, it has the
J
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following desirable qualities: (1) dRy.z will be zero if and only

if R - Q. and (2) it w·ill achieve a value ofYZ - , . 1 if and only if

the variation in each of the Yi variables can be completely explained

by the variations in Z, e.g., R = 1·YZ

can be obtained in a similar manner.

For illustrative purposes,we shall focus mainly on the deri-

vat ion of R since Rd y'2' .d z·y

It can be shown that dRy.z is an arithmetic average of the squared

multiple correlation coefficients obtained from predicting each Y.
1.

variable from all of the variables in Z. First, we define the

P. x K matrices
J

2R and
YU

.387 .044 .921

= .347 .938 -.020

'.919 -.155 -.362

and

.150 .002 .• 848

R2 . = .121 .879 .000-
YU

.845 .024 .131

---'-------------- ---~-------,._----

I

I

I

I
I
I



2 2 R2 R2The r. . and r. . elements in y and respectively,
Yl,UJ Zl,VJ U ZV

are defined as the proportion o~ the variation in the i th variable in

Y or Z that can be explained by the

or V, respectively. Postmultiplying

jth canonical variate in U
222RYU and RZV by the C

K x 1 column vector (the yectQ~ of $~u~red canonical cor~e1ation

coefficients), we have

Qy =

.150

.121

.845

.002

.879

-.024

.8~8

.000

.131 L·.~7~.135

.003

and

= .03~..•140

.154
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.008 .985 .000

R2 . C2
.013 .225 .563

.178
ZV .000 .040 .058= .135

.524 .109. .056
.003

.565 .001 .-121

.514 .000 .000

.135

.050

QZ
.007

=
.108

.101

.093

yields a P x 1 column vector of squared multiple correlation coeffi-

cients. Postmultiplying Qy further by a P x 1 unity vector. t

yields

=

Inasmuch as R
2 is simply the sum of the
y'Z

each variable in Y given the variables in

R2 . values predicting
Yi' z

Z, it is possible that

the former can achieve a vaiue greater than one·. The maximum value .of .

R~.z is equal to . Tr(R yy), or the number of variables in y.
Ideally ,one would want to employ a measure to explain variation that

conforms to the limits of (0,1), which makes R
2 less attractive.
y'z

as a measure of association. The asymmetric measure R corrects
dy·z

for th±sundesirable quality by dividing R2 by the number of
y z

variables in y. Total redundancy can thus be defined as
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k
2"

PI k
2

R = L: c. E E r . ,!Pld y.z
j=l J i=l j=l yl.,UJ

=

PI
2

E R. Z
i=l Yl.·

=

t.030,+ .140 + .154)/3

.108,

where the r .. 's
Yl.,UJ

are elements of and, the RJS are the

PIx 1 column vectors of R
yU

•

The size of the multiple redundancy measure indicates that

socioeconomic status and family status combined explain 11 percent of

the variation in the measures of housing quality. However, inasmuch as

the theoretical model postulates asymmetric relationships among the

variable sets, this measure is of little use in this respect. The

measures most relevant for this task are the multiple-partial measures

of redundancy, which are developed below.

B. Hultiple-Part;ta.l Coef'ficients

In instances in which the independent variable set can be

decomposed into subsets~ we can define a set of ~ult~le~partial

coefficients. These coefficients can be used to determine the rela-

tive contribution made by each subset of Z to the total amount of
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variation explained in set y. In the example, the independent set Z
is composed of two sets of independent variables, i. e., the ·subse.t W

of family status variables, and the subset X of socioeconomic status

variables. The first step in the computation of the multiple-partial

coefficients involves computing the redundancy measures R and
d y'w

d
R ,which indicate the amount of variation in set y that can be
y'x

explained by sets Wand X separately. Once this is accomplished,

R can be decomposed into the following components:
d y·z

= (.108 - .070)/(1 - .070)

= .041,

which indicates that the relative contribution of family status to the

total amount of variation explained in housing quality is (.041) or

38 percent [(.041/.108) 100J.

(2) R
d y'x

= (.108- .047)/(1

= .064~

.047)

by sets 'vl and· X might represent the combined effect of these

the "unique" contribution of sets VI and X. It is statistically

possible that some portion of the total variation explained in set y

which indicates that the relative contribution of socioeconomic status

to the total amount of variation explained in housing quality is (.064)

or 59 percent [(.064/.108) 100J.

(3) Finally, we should point out that com~onents (1) and (2) define

I

I

I
I

·1
- --~ - -~ -~ _._.._~-----'

--------------------~------~..~_ •.._--------
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independent subsets. This can occur when the independent subsets are

highly interrelated and therefore may exert common influence. (See

Duncan, 1970; Coleman, 1970, for examples.) The third component can be

derived as a residual,

R = Rd y'wx(wx) d y·z (dR + dR )/1y.x y'W (R + R )
d y·x d y.w

=

=

.108 - (.064 + .041)

.003,

which in our case is very small. The reader should note, however, that

while the application of the above decomposition to situations in which

there are more than two independent subsets might appear straightforward,

it may be more difficult to interpret component (3), because this

component would then be equal to the sum of all possible nonredundant

combinations of covariations existing between the subsets.

the multiple-partial measures of redundancy provide the answer

to the second question posed earlier. Clearly, the relationships between

socioeconomic and family status with housing quality, though small, are

nonzero. But the theoretical model postulates not only that the

observed relationships are nonzero but also that they should be in a

specific direction. With the multiple-partials, we can only say that

the relationships are of a certain size; we cannot say whether they

imply positive or negative relationships. This applies as well to the

other canonical coefficients discussed earlier and largely results from

the way in which these coefficients are computed. The direction of the
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variable-set relationships and the issue of which specific variables

within the dependent and independent sets, respectively, are responsible

for the total relations between variable sets can be determined by

further manipulating the

R , respectively.z:v

r. .
y1., UJ

and r. .
Z1., VJ

elements of Rvu and

C. Canonical Variate-Observed Variable Relations

If we used all of the information obtained from the matrices

R and\YU Rzv and the vector C, a more precise description of the

relationships between socioeconomic and family status and housing

quality would be.as depicted in Figure 2, where the relations between

the variates (a.) are determined by applying constraints (4) and (5),
J

and the relations between variates and indicators are defined as

= r. .
y1., UJ

or r ..
1.J

= r. ..
Z1., VJ

A useful indicator of between-set relationships. is the sign and

size of the r. . and r. . values. If we wanted to relate a
Y1.,uJ Z1.,VJ

variable in set Y with a variable in set Z, the sign of the r ij

values are important, because they indicate the direction of the

association between.the two variables as measured by the product moment

correlation coefficient.- Indeed, the product moment· correlation

coefficient has simply been subjected to decomposition and can be

estimated from the following equation:

r. iy1.,Z = r i . c. r. .y,UJ J Z1.,VJ. (5)

Applying this equation to the relations between Y2 and 21 (21 WI)·'

we have

---------~--

-~~--~.--_.._,_._._--_.__._~._--_._----~_._'--_._------, ..-~_ ..-.
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-----------~Yl

~--------~ Y3
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r .347 (.422) .093 + .938 (.368) :992 + (-.020) (.055) .014y2,zl

= .013 + .342 + .000

+ .356.

More generally, the matrix R12 can be reproduced by applying the

following equation:

= (6)

where R
yU

and R
ZV

are PI X K -and P2 x K matrices respectively,

and S is a diagonal matrix with the Jth canonical correlation in the--

K x 1 column vector C as elements.

Thus, the signs of the r. . . (!a~d
J~,uJ

values caIJ. p~ !1S~9J

to determine the general direction of the relationships between the

variable sets. On the other hand, the sizes of these values are poor

indicators of between-set relationships by themselves because they only

indicate the contribution made by the i th variable in sets Y or Z

to the total amount of variation extracted by the .th
J -canonical variate

from all the variables in each set,_~espectiyely. If they are weighted

by the squared canonical correlation coefficients, they provide some

indication of the-amount of variation explained in the .th variable~

of one set given all the variables in the other set via the k
th

canonical relationship. The sum of these values for each variable

across the .th
J canonical relationship is equal to the squared multiple

correlation coefficient for that variable given the variables in the

other set. The reader will recall that the P x 1 column vector Q

of squared multiple correlation coefficients was defined as

-------- -~-- - ----- --------------- -- -- - ----------- -- ----- ------- ------------- - -- ------------------ --- --- -------------- ----. ------'
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02 2
I'YU C = Q •

Now we wish to decompose each of the squared multiple correlation coeffi-

cients into an additive set of values that can be associated with each

= 1. .
Y1,UJ ,

2 value in R2 byryi,uj YU
2 2

r yi,uj c.
J

canonical variate extracted from set y. Thus, if we multiply each

2the c. value it is associated with, we have
J

which is a measure of the amount of variation explained in the .th
1

variable of set Y by the variables in set Z via the jth canonical

i th variable on thesquare of the loading of the

is simply thevariate. (In the language of factor analysis, 1..1J
.th
J factor.) It

should be obvious that, by definition,

k 2
L: r. . c. =

j=l Y1,UJ J

k
2: I. .

. I Y1,UJJ=

=

and

Pl k 2
PI k

2: 2: r c. = 2: 2: 1
i=l j=l yi,uj J i=l j=l yi,uj

Pl
R2= 2:

i=l yi·Z

=
2

RY·Z .

canonical relationship, but it also indicates what

The l. ... (or l. .) values, then, not only provide us with
Y1,UJ Zl,VJ

a means of determining which variable in each set made the largest contri

.th
Jbution to the
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proporti?n of the total variation explained _in a given variable

can be associated with the .th
J canonical relationship. Thus, the

can be used to estimate the totaltotal redundancy measure

amount of variation in Y
Rd y·z

that can be explained by Z; and its decom-

position into an additive set of values permit the determination of-

which variable in Y is actually being explained.

Table 2 reports the empirical estimates derived from most of

the measures we have discussed in this chapter. The last column in th~

table reports the multiple and multiple-partial redundancy measures,

whose relative sizes suggest that both socioeconomic and family status

are related to the quality of the housing environment inhabited by

owner households. As was noted earlier, our objectives are to deter-

mine not only whether socioeconomic status and family status are related

to housing quality, but we want to determine whether the hypothesized-

directions of these relationships are confirmed by the data. We noted

that the overall direction of the relationships between sets can only

be determined by analyzing the signs and relative sizes of the relation-

ships between the observed measures and the canonical variates. For

each canonical solution extracted from equation (2), Table 2 reports

r.. and 1.. values for each of the measured variables. As- a further
lJ lJ

aid to interpretation, the third column under each canonical solution

reports the 1..
lJ

values as proportions of the total variation explained

in each of the variables (as represented by multiple R
2

coefficients).

From Table 2 it can be observed that socioeconomic status appears

to be related to housing quality because of the positive relationships

between measures of the Iormer and condition and quality attributes of

dwellings. This observation is supported by the values reported under

- -- ----------------------



Table 2. Canonical Relationships between Hous~ng Quality, and Family Status and
Socioeconomic Status for Whites Who Owned Their Home in 1960 (N = 8700)

tv
0\

1st Canonical 2nd Canonical 3rd Canonical
1.. 1.. 1 ..

1J 1J 1J

Variable Sets r .. 1 .. R'Z r .. 1.. R2 r .. 1 .. R2 R2
dRJ.K(L)~1 1J J .• K _lJ 1) J. ·K 11 1J J .• K J. ·K

1 1 ·1 1-

Housing quality .108a
Condition of unit .387 .027 .90 .044 .000 .00 .921 .003 .10 .030

Age of unit .347 .021 .15 .938 .119 .85 -.020 .000 ., .00 .140

Quality attributes .919 .150 .97 .155 .003 .03 - . 362 .00 0 ~ .00 .154
of unit

Family status ~0412b
Marital duration .093 .002 .01 .992 .133 .99 -.014 .000' -.00 .135

Number of children -.115 .002 .04 .472 .030 .60 -.750 .180' ."33 .050

Age of youngest ~hild . -.005 .000 . .00 .201 .001 1. 00 -.241 .000 .00 .001

Socioeconomic status .064c

Education .724 .093 .86 .331 .015 .14 -.237 .000 .00 .108

Occupational prestige ! .752 .100 1. 00 .035 .000 .00 -.348 .000 .00 .101

Family income I . 717 .091 1.00 .003 .000 .00 -.017 .000 .00 .091

aThe amount of variation in set Y which can be explained by sets Wand X.
bproportion of the total variation explained in set y, which can be attributed to the effect
of family status.

cProportion of the variation explained in set y, which can be attributed to the effect of
socioeconomic status.
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the first canonical solution in which ,the signs of the coefficients are

2
all positive and the 1 .. /R

J
K values are at least (.86). The first

~J i'

canonical solution captures practically all of the covariation that

exists between socioeconomic status and housing quality. Thus, with

respect to this relationship, our expectations are confirmed.

The relationship between family status and housing quality

2
emerges in the second canonical solution. Again, using the l .. /R J K

~J i'

values as the basis for evaluation, it is evident that age of dwelling

is being explained by marital duration and number of children. Clearly,

the basis of the relationships that housing quality have with socio-

economic status and family status are not the same. Moreover, it should

be equally clear that our expectations in regards to the underlying

reasons for the relationship between housing quality and family status

are not confirmed. We postulated a negative relationship because it was

suggested that large families are more likely to live in poorer quality

housing. We find, on the other hand, that the relationship is positive

and it is marital duration, ~ot age and number of children', that is the

basis for this relationship. These results are consistent with the

argument that families age with their units.

It was predicted that socioeconomic status would be negatively

related to family status because of the inverse relationship between

size of family and the three measures of socioeconomic status. These

relationships are reported in Table 3. Socioeconomic,status explained,

an average of 9 percent of the variation in family status. Moreover,

it is clearly evident that the positive relationship between marital

duration and education is responsible for the overall relationship



Table 3. Canonical Relationship between Family Status and Socioeconomic
Status for Whites Who Owned Their Home in 1960 (N = 8700)

N
00

1st :Canonica1 2nd Canonical
Variab Ie Sets 1.. ,2 1..

2 .
R2r .. 1. . /RJ K r .. 1. ./RJ K dRJ.K1J 1J 1J .• 1J 1J 1J .• J. K

1 1 1

ily status
rital status -.989 .151 1. 00 -.090 .000 .00 .152 .091

mber of ehiluren .604" .057 .90 -.371 .007 .10 .063

e of youngest child .335 .017 .29 .928 .041 • 71 .058

ioeconomic status
ucation .913 .129 1. 00 - .097 .000 .00 .130

cupational prestige .153 .004 1.00 -.027 .000 .00 .004

nily income .294 .013 .25 .910 .039 . 75 .053

-

10nical .393
~orrelations

a .217

N

Oc

A

Fa

Ca

Fa
Ma

So
Ed

aAll canonical coefficients are significant beyond the .01 level of rejection.
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between these variable sets. The relationship between education and

number of children, though small, is positive, while income and occu-

pational prestige seem to bear no relationship to this variable.

Finally, family income appears to be positively related to age of

youngest child with respect to both the first and second canonical

solution, a relationship which our theoretical model did not predict.

III. Discussion

One of the main reasons why these particular sets of variables

were chosen in order to demonstrate the utility of canonical correlation

analysis relates to the structure of the observed correlation matrix.

First, the within-set and between-set correlations a~e rather small,

. which is due in part to the particular manner in which these variables

(particularly the measures of housing quality) were operationalized via

the census. Even given these low values and the exploratory nature ·of

the theoretical model under review, it would still be of some interest

to determine the reasonableness of the model in terms of whether it

warrants further investigation. The conceptualization of the observed

variables asindic~tors of specific theoretical constructs would appear

to this writer to be a reasonable approach to take toward these ·data.

This is the primary reason why the model as depicted in Figure I is

defined in terms of the relationships between sets of variables,

although.we were also interested in the issue of which variables within

each set were responsible for the between-set relationships. Moreover,

it should be apparent that a canonical solution is derived mainly from

the between-set correlation matrix R and the correlation between
YZ
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variates and indicator variables are largely a function of the structure

of this matrix. Thus, the attempt here was not to find the optimal cor

relation between a theoreti6al construct and its indicators, but rather

to simply summarize the relationships between variable sets without

implying that an optimal set of relations were obtained. Admittedly,

this goal is less ambitious and less parsimonious than what would be

obtained using a simultaneous estimation procedure.

However, viewed from another angle, the technique employed

presents a clear picture of the complexity of the relationships between

the dependent set and each of the independent sets. We were able to

detect the fact that measures of socioeconomic status and family status

are differentially related to measures of housing quality. What this

means essentially is that if housing quality were related separately

to socioeconomic and family status, different variables in the former

set would have emerged as being largely responsible for the total rela

tionship between the variable sets. In other words, the correlations

between indicator variables and canonical variates would vary depending

on the nature of the variables in each set. This is an undesirable

state of affairs, because unless we can assume that the effects of

indicator variables within each independent set are the same with res

pect to each indicator in the dependent set, there is no single "best"

estimate of the unobserved-unobserved correlations and the

unobserved-indicator correlations. For example, if the first canonical

solution is taken as the best overall estimate of the relationship of

housing quality with socioeconomic status and family status, then we

would have virtually eliminated the relationship between housing quality

and family status, since that relationship emerged in the second canonical

solution~ not the first.
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The problem of differential association between dependent and

independent sets is likely to increase in complexity as the number of

independent sets are increased which, in some instances, necessitates

the application of less restrictive and les.s precise statistical

models in order to evaluate the implications of the researcher's

theoretical model. Thus,.our main argument is simply that the measures

we have proposed here can be used to partially overcome this problem

when more sophisticated and restrictive statistical models should not

be applied.
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FOOTNOTES

1. The measure "quality attributes of the dwelling unit" is defined as that

proportion of value of property which remains after eliminating from it

the effects of its measured determinants. ($ee Wilson, 1973.)

2. Age of dwelling unit, age of youngest child, total number of persons in

the family, education and occupational prestige (Duncan scale) are.

expressed in logarithms. The generalized least ~quares estimate of units

in standard condition is employed. This estimate takes the form:

where

y. is the observed (0, 1) value of the variable.
i

P is the OLS estimate of the probability of living in a standard

unit.

The data for this 'ana1ysis are derived from the 1960 Census 1/1,000

Public Use Sample tapes.

3. The interested reader can find an extensive discussion of d~iyatiqn$. in

the technical literature cited earlier.

4. If one solves equation (2), then the vector B
J

can be obtained as follows:

.B
J

=
(ZtZ)-1 lty A

J OR BJ
=

(Rzz)-l &r' AJ

l~
1

A. [ A ]~
J

5. Wilk's lambda conforms approximately to the chi square distribution with

\ (Pl)(PZ) degrees of freedom .
. \

6. The latter is true if and only.if the matrix is of full rank, otherwise

more variation can be explained. This is the primary reason why it is
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frequently suggested that the number of variables in the dependent set

should be equal to or less than the number of variafules in the independent

set.
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