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ABSTRACT

This paper has two purposes: first, to review and extend the

basic theory on housing prices and location; and second, to pr~sent

some precise empirical tests of that theory--that is, tests that make

use of theoretically determined functional forms. This paper is

organized around six models of the relationship between housing prices

and location. These models are defined in section II. The theory of

location and the price of hou~ing is incorporated into these models

in section III, and procedures for estimating several of the models

using ordinary least squares (OLS) are described in section IV. The

results of an application of these procedures to data for single-family,

owner-occupied housing in St. Louis in 1967 are presented in section

V. A summary and some conclusions about testing the relationship

between location and the price of housing are given in section VI.



LOCATION AND THE PRICE OF HOUSING

I. Introduction

The proposition that the price of housing varies with location is

central to the economics of urban residential structure. Theoretical

statements about land rents, population density gradients, the spatial

distribution of income classes, and other aspects of urban residential

structure are based on the relationship between housing prices and

location. In addition, this relationship has several important practical

applications. For example, for policy purposes it is important to

determine how much of the observed black-white price differential in

housing is due to discrimination against blacks and how much to

the fact that blacks are concentrated in the center of the city where

the equilibrium price of housing is higher than in other locations.

A large theoretical literature exists on the relationship

between housing. prices and location. But despite the theoretical and

practical importance of the topic, the conclusions in that literature

have not been subjected to detailed empirical testing. The empirical

studies that do exist are of two types. The first type simply includes

distance from the central business district (CBD) as an independent

variable in a regression of house values (or rentals) on housing

. 1
characteristics. The second type provides an indirect test of the

relationship between housing prices and location by estimating equations,

such as land rent and population density gradients, that are related

theoretically to that relationship.2
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This paper has two purposes: first, to review and extend the

basic theory on housing prices and location; and second, to present

some precise empirical tests of that theory--that is, tests that make

use of theoretically determined functional forms. This paper is

organized around six models of the relationship between housing prices

and location. These models are defined in section II. The theory of

location and the price of housing is incorporated into these models

in sectmon III, and procedures for estimating several of the models

using ordinary least sq~ares (OLS) are described in section IV. The

results of an application of these procedures to data for single-family,

owner-occupied housing in St. Louis in 1967 are presented in section

V. A summary and some conclusions about testing the relationship

between location and the price of housing are given in section VI.

II. Si!,Models of Location and the Price of Housing

Location is one aspect. of the relationship between the price of

housing and housing characteristics. This relationship has two different

interpretations. First, the market value (a price or rental) of a

dwelling unit can be thought of as the product of a price per unit of

housing services and a quantity of housing services. This interpreta

3tion is derived from some of the recent literature on housing, and is

implicit in the mathematics of urban models. Briefly stated,

this view is that there exists a commodity called housing services

and that every dwelling unit yields some quantity of this commodity

per unit of time. In addition, this commodity is assumed to
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measure everything about housing that is valued by consumers and to

sell for a constant unit price. Second, the relationship between housing

characteristics and the market value of housing can be viewed as

an implicit (or hedonic) price relationship. According to this

interpretation, which is derived from the literature on hedonic

4prices, the interaction of supply and demand in the market determines

a market value for a commodity with any given set of characteristics

and thereby implicitly reveals the contribution of each characteristic

to market value.

I
Both of these interpretations of the market value of housing (V)

can be stated algebraically as

(1)

Following the first interpretation, P is a unit price and H is the

number of units of housing services (a function of the housing character-

is tics Xl to Xn). The second interpretation assumes that P is a

hedonic price index and H is an implicit price function relating housing

characteristics to the market value of housing.

In general, there is no way to determine the precise form of the

H-function in the relationship between housing characteristics and

the market value of housing. According to both of the interpretations

given above, this form is determined by the interaction of supply and

demand in the housing market; however, the theory of housing is not

well enough developed to derive this market relationship from assumptions

about production and utility. As a result, we will simply choose a

functional form that has several desirable properties. In particular,
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we will use a multiplicative form, since it implies that the

implicit price of a housing characteristic depends on the quantity of

other characteristics and that the marginal valuation of each housing

characteristic is a declining function of its quantity.

Each of the interpretations of the market value relationship

leads to a linear form in a different special case. When the market

value of housing is viewed as the product of a unit price times a

quantity of housing services, and when the marginal valuation of each

characteristic is constant, then the H-function is linear. This case

is less plausible than the multiplicative case (is the second kitchen

really worth as much as the first?), but it is considered here

because marginal valuations may be constant in the range of characteristics

observed in most houses (how many houses have a second kitchen?).

Furthermore, the implicit price function determined in the market may

be linear. In this case, the market value of a dwelling unit is simply

the sum of all housing characteristics in that unit times their

implicit prices. Consumers can force the implicit price function to

be linear if there are no barriers to the combining of different

packages of housing characteristics into dwelling units (Rosen, 1974,

p. 38). To take a simple example, if consumers can purchase rooms

separately and combine them to form dwelling units, then the market

value of a dwelling unit will be a linear function of the number of

rooms it contains. As before, this special case is less plausible than

the multiplicative form.

There are also two ways to look at the relationship between

location and the market value of housing. Location can be considered
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a neighborhood characterisic of housing, like the quality of local

public schools or the level of air pollution, or it can be considered

one of the variables that determine the price of housing, that is,

the unit price of housing services or the implicit prices of housing

characteristics. The former view is based on the belief that there

may be some intrinsic value in particular locations that is not measured

by other neighborhood characteristics of housing. The latter view,

which we will discuss in some detail in the next section, is based on

the belief that people must be compensated for higher commuting costs

in certain locations by lower prices for housing in those locations.

The preceding discussion leads to six models of the relationship

between house value and location,as illustrated in Table 1. These

six models can be expressed algebraically as follows, where u denotes

location and In denotes a natural logarithm.

Model I: (2)

ot

In(V) = In(P) + a In(u) + l: ailn(Xi )
0 i

Model II: V = P(a u + l: aiXi )
a i

or

V = P u + l: P.X.
o i 1. 1.

(3)

(4)

(5)

Model III: V (6)

or

In(V) = In(P(u)) + l: ailn.(X.)
i 1.

(7)

Model IV: l:a.P(u)X.
1. 1.

(8)



Table 1

Six Models of Location and the Price of Housing

Role of LocationType of Relationship Between
the Market Value of Housing
and Housing Ch~racteris~ics Housing Characteristic

Unit
Price Variable

Implicit
Price Variable

Multiplicative

Additive

Model I

Model II

Model III

Model IV

Model V

Model VI

C'



Model V:

or

P (u)
n

7

(9)

"

In(V) = ~ Pi(u)ln(X.)
i .].

Model VI: V = ~Pi(u)Xi .
]. .

(10)

(11)

Given a set of data containing observations for V, u, and Xis, Models

I and II can be estimated exactly as they are written in equations (3)

and (5). Models III and IV, on the other hand, cannot be estimated until

a form is provided for the p(u) function, and Models V and VI require

a fbrm for the Pi(u) function. The derivation of these price functions

is the subject of the next section.

III. Locational Equilibrium

The basic theoretical notion that links location to the price of

housing is that of locational equilibrium, a state that exists on the demand

side when no household has an incentive to change its location. The

variable that establishes locational equilibrium for households is the

price of housing; thus the problem is to find the price of housing,

expressed as a function of location, that gives no household an incentive

to move.

Deriving a Price-Distance Function

The standard derivation of a price-distance function begins with the

assumption that a household maximizes its utility over a composite consumption

good and housing subject to a budget constraint that includes commuting

costs to the CBD. This household maximization problem, which is the
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5demand side of a simple long-run urban model, leads to a form for the

p(u) function in Models III and IV. A household attempts to

Maximize

Subject to

where

U(Z,H)

Y = P Z + P(u)H + T(Y,u)z

(12)

Z = the composite consumption good (with price P );z

H =units of housing services;

Y = income;

u = miles from the CBD;

P(u) = the price of a unit of housing services at location u; and

T(Y,u) = round-trip commuting costs from location u to the CBD.

The first-order condition for this problem with respect to u is the

locational equilibrium condition for a single household; that is, it

determines the location from wh!ch the household will not have an

incentive to move. This condition is

P'(u)H + aT/au = 0 • (13)

At the market level, the problem is to choose a F(u) function that

will lead to locational equilibrium for all households. The desired

P(u) function is the one that guarantees that equation (13) holds at

every u, so that a household will not have an incentive to move no matter

where it locates. Thus the market problem is to solve the differential

equation (13) for P(u).

An important case of this household maximization problem occurs

when households have a Cobb-Douglas utility function and face constant

. per-mile commuting costs.. This case can be written



Maximize

9

U = blln(Z) + b2ln(H)

Subject to Y = P Z + P(u)H + tu •
z

(14)

The first-order conditions for this problem lead to the following demand

function for H

H = (b2/(bl +b2»(Y-tu)/P(u) = k(Y-tu)/p(u) .

Substituting this demand function into the household locational

(15)

equilibrium condition and integrating the result, we find the price-

distance function

P(u) = K(Y_tu)l/k (16)

where K is a constant of integration. Now by assuming that

P(u) = P (17)

where u is the outer edge of the city and P is the opportunity cost of

6a unit of housing services, we find that

- - 11kP(u) = P [(Y-tu) I (Y-tu)] (18)

Equation (18) can be substituted into the third model of housing

prices and location. The result is

_ _ 11k al an
V = PI(Y-tu)/(Y-tu)] Xl ••• Xn

(19)

*Given an exogenous estimate of t (=t ), equation (19) can be estimated

using ordinary least squares and the equation

·In(v) = C + aln(Y-t*u) + 6ln(Y-t*u)·+ E ailn(Xi )
i

where

C =In(i?)

a = -6 = 11k

(20)
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Alternatively, some nonlinear procedure can be used to estimate t as

well as the other parameters of equation (20).

It is possible to derive market equilibrium conditions for other
\

assumptions about utility functions or demand functions. However,

other assumptions do not result in price-distance functions that can

7be estimated with linear regression techniques. Furthermore, the

substitution of equation (18)--or any similar price-distance function--

into Mo6el IV (equation (8» results in a complicated nonlinear

equation, which we will make no attempt to estimate.

Price-Distance Functions with More than One Income Class

The preceding derivation can easily be extended to the case of

more than one income class. Every income class j has a price-distance

function given by

. * 11k.
pJ (u) = p~ [(Yj-t.u)/(y.-tju.)] J

J J J J

Pj is the price at the outer edge of the area inhabited by income

j (·u~). Since housing at a given location will be sold to the
J

highest bidder, this form implies that each income class will inhab~t

a ring around the CBD. Equation (21) also implies that higher income

classes will live farther from the CBD. 8

To estimate Model III with m income classes, we divide a city into

m rings and define a dummy variable, D., for each ring, j. The estimating
J

equation is

(21)

In (V)
m

= C +j:2 YjDj + alln(Yj-tju) + f3l 1n (Yj -tjuj)

(22)
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where

*C = PI

* *a. = P. - P
J J 1

a l = -s = llkl1

a. = -So = 11k. - 11k
J J J 1

Equation (22) can also be used to estimate the price-distance

function in a monocentric city in which there are rings of employment

around the CBD. In such a city, u is reinterpreted to be distance to

place of employment, and the subscript j refers to members of a given

income class who work in a given employment ring.

Amenities

These simple models do not recognize that certain neighborhood

characteristics of housing, such as the quality of the public schools

and the level of .air pollution, vary with location. Such character-

istics, often referred to in the literature as amenities, change the

.mathematical statement of the household's maximization problem and

complicate the derivation of a price-distance function.

Let US return to the case of a Cobb-Douglas utility function and

constant per~ile commuting costs. In our presentation it will prove

useful to distinguish between total housing services received by a

household (=H) and the housing services not associated with amenities.

(=X). Thus if amenities are labeled A(u), total housing services are

some function of amenities and nonamenities or

H= H[X, A(u)] • (23)
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The household's maximization problem is now (14) with equation (23) sub-

I

stituted into the utility function and X, instead of H, in the bUdget constraint.

It is important to note that X replaces H in the budget

constraint of this problem. It is well known that in the long run the
I

marginal valuation of a housing characteristic is equal to its cost

of production. This conclusion applies both to the physical

characteristics of housing and to the amenities associated with a

given house. Furthermore, if neighborhoods with a certain amenity can

be reproduced in the long run, then for houses built in such neighborhoods,

no marginal cost will be associated with that amenity.9 Note

that this argument only applies to long-run models such as the ones in

this p~per; amenities do affect the budget constraint in the short run.

In order to find the effect of amenities on the price-distance

10function, let us assume that the H-function is multiplicative, so

that

H = Xf[A(u)]

In this case the household's utility function is

(24)

A procedure that is mathematically equivalent to the above is to simply

include A(u) as a third argument in a Cobb-Douglas utility function.

This procedure is used by Polinsky and Rubinfe1d (1975). However, if

A(u) is a measured level of some amenity, such as air pollution, then

the use of an f-function allows more flexibility in specifying how the

measured level of the amenity affects the quantity of housing services.
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When equatio~ (25) is substituted into problem (14), the household

locational equilibri~ is

{b2/f[A01)]}[3f/3A(u)]A'(u) - A[P'(u)X +t] = a (26)

where A is a Lagrangian multiplier. The other first-order conditions

of the problem lead to equations for X and A. Substituting these

i i (26) d i i · ld 11equat ons nto an ntegrat ng y~e s

P(u) = K(Y-tu)l/kf[A(u)] •

Using the initial conqitiQn (17), equation (27) becomes

P(u) = P[ (Y-tu)J (Y-tu)] l/k{ f [A(u)] /fLA(u) J}

(27)

(28)

The theory leading to equation (28) does not change the procedure

used to estimate Model III; the market value of housing is still a

function of the variables in equation (21) and of housing characteristics,

including amenities. But this theory may provide some assistance in

choosing a functional form for the relationship between amenities and

the market value of housing,12 and it does change the interpretation

of the amenity variables: They are now part of the price-distance

function instead of part of the H-function.

Implicit-Price-Distance Functions in Model V

Model V combines a multiplicative relationship between housing

characteristics and the price of housing with the assumption that the

impmicit prices of housing characteristics vary with location. In
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this model, households

Maximize

Subject to

U(Z, Xl' ••• ,Xn) (29)

Y = P Z + V + tuz
P (u)

= PzZ + IT Xi i + tu
i

The household locational equilibrium condition associated with this

problem is

E[ln(X.) P~(u) V] + t = 0 •
i ~ ~

Now given a Cobb-Douglas utility function of the form

the first-order conditions of problem (29) can be used to show that13

= c.P*(u)
~

(30)

(31)

(32)

~d

P*(u)
_ _ co/Eciln(Xi )

= [P + (l/c )][(Y-tu)/(Y-tu)] - (lIe) .o 0
(33)

Unfortunately, the substitution of (32) and (33) into equation (10)

results in a complicated nonlinear equation, which we will make no

attempt to estimate. As an alternative, we will simply assume two

simple forms, linear and quadratic, for the Pi(u) functions in

equation (10) and estimate the model using OLS. Such estimations

should be regarded not as tests of implicit-price-distance functions

but as preliminary attempts to determine the usefulness of Model v.
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Implicit-Price-Distance Functions in MOdel VI

According to Model VI, the market value of housing is the sum of

housing characteristics times their implicit prices, which are functions

of location. 'Thus households

Maximize

Subject to

U(2, Xl' ••• ,Xn)

y = P 2 + V + tu
z

= P 2 + E Pi(u)X. + tu •
z i ~

(34)

The first-order condition of problem (34) with respect to u is

[E P~(u)Xi] + t = 0
i

(35)

This equation cannot be solved for the individual Pi(u) functions;

therefore, it is not possible to derive implicit-price-distance functions

from this household maximization problem.

Since theory does not provide a form for the Pi(u) functions, it

seems reasonable to perform, as we did for Model V, OL8 estimation

of this model using linear and quadratic Pi(u) functions.

Once a form is assumed for the P.(u) functions, the household
1.

maximization problem (34) with the Cobb-Douglas utility function (31)

can be used to incorporate the notion of locational equilibrium into

Model IV. The first-order conditions for this problem lead to the

following demand function for Xi:

(36)

where
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Plugging this demand function into the locational equilibrium condition,

and noting that

we can derive

or

(37)

(38)

Given a form for the Pi(u) functions, one can estimate this market

value equation using nonlinear methods. For example, if the price

functions are exponentia~or

and commuting costs are the sum of operating costs (t ) and time costso

t=t +tY,o y

then equation (39) becomes

where

The significance of the coefficients of Y, u, and (Yu) in an eatimate

of equation (42) ean be interpreted as a test of the locational

equilibrium concept.

(40)

(41)

(42)
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. IV. Estimating Procedure

In sections II and III we defined six models of location and the

price of housing and derived equations for estimating five of those

models. In this section we will describe the data and the procedure

used to estimate these equations.

The Data

The data cover 266 single-family, owner-ocQupied houses in

St. Louis in 1967. For a detailed description of these data, see

Kain and Quigley (1970). For each house, information is available on

owner-estimated market value, an extensive list of structural and

neighborhood characteristics, and several characteristics of the

household. In addition, the census tract of each house is identified,

so the original data can be supplemented with data from the 1970 Census.

Table 2 lists the variables considered in this study.

Estimating the H-Function

The H-function in equation (1) was defined to be either a multi

plicative or an additive function of housing characteristics. Two

alterations in these simple functional forms were used in the esti

mations.

First, the housing characteristics that enter into the market

value equations may be transformations of measured housing characteris

tics. For example,the logarithm of the'number of rooms, instead

of the actual number of rooms, may enter into the market value

equations. Therefore, Xi in the estimating equations should be
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Table Z

List of Variables

Type

Dependent

Struetura1

Neighborhood
(=Amenities)

Location

Household

Name

VALUE

ROOMS
BATHS
FIRST
PARCEL
MAQUAL

AGE
WATER
HEAT
FACZa

FAC1

FAC3

FAC4
FAC5

MATH

EDUC

FINCOM
PSAME

POLD

POVFAM

PBLACK

CBDDIS

RACE

De'scription

Owner-estimated market value of house

Number of rooms
Number of bathrooms plus one
First floor area (hundreds of square feet)
Parcel area (hundreds of square feet)
Material quality (assessor's data; l=best,
4= worst)
Age of house (in years)
Dummy variable for hot water
Dummy variable for central heat
Dwelling unit quality (Kain and Quigley's
second factor)

Basic residential quality (Kain and Quigley's
first factor)
Quality of proximate properties (K & Q's
third factor)
Nonresidential usage (K & QJs fourth factor)
Average structure quality (K & Q's fifth
factor)
Average eighth-grade math achievement score
in local public school
Median years of schooling of adult popula
tion (1970 Census)
Median income of families (1970 Census)
Percent of families in the same house in
1965 (1970 Census)
Percent of population over 65 years old
(1970 Census)
Percent of families below the poverty line
(1970 Census)
Percent of population that is black (1970
Census)

Distance to CBD (in miles)

Dummy variable for race of household (1=
nonwhite)

aThe variables FAC1-FAC5 are factors determined by factor analysis
from a set of 39 structural and neighborhood characteristics, none of
which are included separately in this list of variables. For details
see Kain and Quigley (1970).
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interpreted as

(43)

*where Xi is the measured value of the ith housing characteristic.

Second~ in the multiplicative specification a zero value for any

housing characteristic in a given house has the unacceptable implication

that there are B£ housing services in that house. To avoid this impli

*cation~ we will assume that any housing characteristic~ Xi~ whose

range includes zero affects the quantity of housing services exponentially~

or, in symbols, that

(44)

Estimating the Price-Distance Function

Five complications arise in estimating the price-distance function.

1. In the multi-income-class model in section III, each income

class lives in a ring around the CBD. This model is operationalized

by dividing a city into rings and considering every observation in a given

ring to be in· the same income class. Although this procedure

results--as the theory predicts--in rings with average incomes that

increase with distance from the CBD (see Table 3), there is considerable

variation in income within each ring. Because of this variation, the

median income of the tract in which an observation is located is used

for the income term (Y) in the estimating equations. The use of census

tract income does not depart significantly from the view that there

is a single in~Qme class in each ring; the results reported below

are virtually identical to results obtained using the average



Table 3

Description of Rings

5137 2.86 14

6980 4.51 32

7887 5.86 41

8443 6.21 60

8961 6.18 69

10534 6.04 50 N
0

Ring Oute~ Edge of Ring
(~j) (=u~, in miles)

J

1 2

2 3

3 4

4 5

5 6

6 7

Average Income in Ring
a

Percent of Workers b Number of Observations
Who Work in the CBD in Ring

aAverage income is defined to be the population-weighted mean of the median incomes of tracts
in the ring. Tracts not largely in one ring are assumed to have their populations divided evenly
between the two rings.

bMean of census tract percentages for the observations in the ring.
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14income in the ring instead of census tract income.

2. Among the parameters to be estimated in Model III are the price

in equation (22),

. * *P and that pJ(u
j

) = P
j

. According to the specification

the price constant· for the outer ring (.p) is the sum

These constants are derived from the "anchoring" assump-

tions that

*constants, . Pj .

P(u) =

of the constant term and the coefficient of the dummy variable for that

ring. Similarly, the constant term can be interpreted as the unit price

of housing at the outer edge of the inner ring--a number that has no

particular significance. An alternative specification is to anchor the

price-distance function at the inner edge of each ring instead of at the

outer edge,so that the constant term can be interpreted as the price

at the innermost part of the residential area

tiona1ize this alternative, we simply need to

of the city. To opera
'Ie

replace u
j

with uj --the

inner edge of ring j.

3. As indicated in. section III, yearly round-trip communting costs

per mile (t) must be either determined exogenously or estimated using a

nonlinear technique. The estimate of t in this paper is the value that

minimizes the sum of squared errors (SSE) from an OLS regression of

equation (22). If the error terms are normally distributed, this is a

maximum likelihood procedure (Go1dfeld and Quandt, 1972, p. 58). In

practice, the SSE-minimizing value of t was found by making various

assumptions about its components, operating costs and time costs (see

equation (41)). Thus if c is per-mi1e operating costs, MPH is average
o

commuting speed, and w is the fraction of the wage rate at which

travel time. is valued, then t
j

(the value of t for income class j) is

equal to the sum df
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t = (2)x(working days per year)x(c )o 0

and

= (2)x(250)x(c ) = 500co 0

t Y. = (2)x(working days per year)x(minutes per mile of
y J

commuting) x(dollar value of a minute spent commuting)

(45)

= (2)x(250)x(60/MPH)x(wY./minutes worked per year)
J

= (30000/MPH)(wYj /(60x8x250» = (.25w/MPH)Yj (46)

The values of c , MPH, and w that result in a minimum SSE for all of theo

Model III regressions reported below are

c = .25
o

MPH = 4

w = I

These estimates are considerably higher than other estimates of commuting

costs ;15 for reasons to be discussed in the next section, they should

not be regarded as precise. Furthermore, note that for any given

income class there are infinitely many combinations of the three parameters

that lead to the same value of t .• The combination given above is, in
J

this author's judgment, the most plausible of the combinations that

lead to the SSE-minimizing values of t .•
J

4. One of the terms in the price-distance functions derived in

*section III is A(uj)--the level of amenities at the edge of ring jo

*This term equals the term A(u) when u = u
j

' SO that, as shown by equation

j * *(28)~ P (uj)=PjO In practice, however, the level of any given amenity

varies greatly at a ring boundary. For example, the racial composition

of census tracts at a given distance from the CBD can--and often does--

vary from 0 to almost 100 pe~cent black. Thus the average value
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- *of A for all neighborhoods along the edge of ring j--that is, A(u.)--
J

*will not necessarily equal A(u) when u = u .• As a result, our
J

j * *estimating procedure does not guarantee that P (u
j

) = Pj • Furthermore,

* .even if meaningful measures of A(u
j

) could be obtained, they would be

perfectly collinear with the ring dummy variables and therefore could

not be estimated separately.

*This inability to measure A(u.) is somewhat troublesome for our
J

estimating procedure, .because the coefficient of the jth ring dummy

variable will be an estimate of

* *Pj • Since A(u
j

) varies a great

* *P./A(u.) instead of an estimate of
J J

deal within a given ring, we should

'r~

expect some imprecision in our estimates of these coefficients.

5. Finally, it should be recognized that the "amenity" effect

of racial composition is not the only aspect of the relationship

between housing prices and race. Because blacks are restricted to

certain areas of a city, the unit price of housing services may be

higher in black and integrated areas than in white areas. In addition,

price discrimination may result in higher prices for black households

than for white households in neighborhoods with a given racial compo-

sition. Therefore, we will include in our regressions a dummy variable

for nonwhite households and dummy variables for integrated and largely

black.neighborhoods. 16 The complete set of racial variables is

given in Table 4. These variables are defined so that the PBL variables

capture the amenity effect of racial composition in each type of

neighborhood and the BL variables indicate the percentage by which unit

housing prices in each type of neighborhood shift above the price in

largely white neighborhoods.



Variable

BLACK
BL4080

BL8099

PBL0040

PBL4080

PBL8099
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Table 4

Racial Variables

Definition

Dummy variable for race of household (1 = nonwhite)
Dummy variable for integrated neighborhoods (=1 in
census tracts with populations that are 40 to 80
percent black)
Dummy variable for largely black neighborhoods (=1
in census tracts with populations that are 80 to
100 percent black)
Racial composition in largely white neighborhoods =
PBLACK x (1 - BL4080 - BL8099)
Racial composition in integrated neighborhoods =
(PBLACK - 40) x BL4080
Racial composition in largely black neighborhoods =
(PBLACK - 80) x BL8099
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Integrated and largely black neighborhoods are defined by their

racial compositions. The levels of racial composition chosen as

boundaries between the two types of neighborhoods are the levels that

minimize the sum of squared errors in Models I and II. These levels

(40 percent black for the boundary between largely white and integrated

neighborhoods and 80 percent black for the boundary between integrated

and largely black neighborhoods) are then used in the other models.

In principle, thts iterative procedure should be perfo~med simultaneously
,

with the iterative procedure used to determine the value of t in Model

III. However, in practice there appears to be no interaction between

the two iterations: The estimate of t is the same regardless of the

racial compositions used as neighborhood boundaries, and the estimated

boundary percentages are the same regardless of the value used for t.

Hypotheses About Price-Distance Functions

The conformity of the coefficients of a price-distance function

estimated using equation (22) with the predictions of our theory can

be tested using the hypotheses in Table 5. Our theory indicates that

aj = -Sj = 11k where k is the proportion of income (net of commuting

costs) that is spent on housing (about .2). Hence, our theory predicts

that the first two null hypotheses in Table 5 will be rejected and the

second two null hypotheses will be accepted. Tests of these hypotheses

are presented in the next section.

The third null hypothesis can also be included as a restriction in

the estimating equation (22) by replacing the two independent variables

. *In(Y.-t.u) and In(Y.-t.u.) with the single independent variable
J J J J J
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Table 5

Hypotheses About Price-Distance Functions

Number Null Hypothesis Alternative Hypothesis

I H : a. < 0 HI: a. > 0
0 J J

Z H: I3j > 0 HZ: I3j
< 0

0

3 H: a. + I3j = 0 H3: a. + S. 1= 0
0 J J J

4 H : CI.. = -13. = 5 H4 : a. , I3j 1= 5
0 J J J

. * pi+1 (U;) . * :/: pj+l(U;)5 H: pJ (u
j

) = HS: pJ (u.)
0 J

~: a j and I3
j

refer to the coefficients in equation (22).



27

*(In(Y.-tju)-ln(y.-t.uj )). The significance of the set of such
J J J

restrictions for all rings can be determined using an F-test. (See

Johnston, 1972, pp. 192 ff.) This set of restrictions has the advantage

of helping to make sense of the coefficients of the ring dummy

variables. If the coefficient of In(Yj-tju) is not equal to the absolute

*value of the coefficient of In(y.-tj u.), then the coefficient of the
J J

jth ring dummy will not represent the unit price of housing at

*u.--indeed, the coefficient will have no obvious interpretation.
J '

The assumption of competition in our models also implies that

the price-distance functions of bordering rings will meet at the boundary

between the two rings. This implication is expressed as null hypothesis

5. Although it is not possible to set up a t-test for this

hypothesis, we can include the hypothesis as a restriction on the

price constants in the estimating equation for model III. From null

hypothesis 5 and equation (21) it follows that

(47)

Equation (47) can now be solved for the price constant in ring two:

(48)

2 * 3 *Similarly, the restriction that P (u
Z

) = P (u3) can be used to solve

*for P3 ' and it can be shown that in general

(49)
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Substituting equations (21) and (49) into equation (6) yields

* l/kj a1 an
[(Y.-t.u)/(Y.-t.u.)] [Xl ••• X ] (50)

J J J J J n

In order to estimate equation (50), define, for i = 2 to m,

o. = 1 if i < j, (51)
~ -

= 0 otherwise,

where j is the ring in which an observation is located. Now the estimating

i . 17equat on ~s

(52)

where

*C = 1n(P1)

(Xl = 1/k1

(X =
i

The significance of this set of restrictions can be determined using an

F-test.
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As discussed earlier, it is possible to anchor the price-distance

functions at the inner edge of each ring instead of at the outer edge.

In this case the fifth null hypothesis is written

j, pj+l(,)
p (uj +l ) = uj +1

(53)

where u~ is the inner edge of ring j. Equation (53) can be used to
. J

derive an inner-anchor estimating equation analogous to equation (52).

V. Empirical Results

In this section we will present estimates of our models

obtained using data from St. Louis.

Choosing the Housing Characteristics

The first problem in estimating any of our models is to choose

a set of housing characteristics. The following procedure was used:

Each of the structural ·and neighborhood characteristics in Table 2

was included in Models I and II unless both (a) its coefficient had a

t-value less than one either as measured or in logarithmic form, and

(b) there was no strong theoretical reason for including !t. All of

the variables chosen by this method for Model I were then included

in Models III and V, and the variables chosen for Model II were

included in Models IV and VI. This procedure resulted in the elimina-

tion of HOTWAT, GENHEAT, FAG3, and FAG5 from all of the models and of

POVFAM from the multiplicative models (I, III, and V).
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The insignificance of the excluded variables might be due to their

collinearity with one or more of the other variables. To test for this

possibility, the simple correlation coefficients between each of the

excluded variables and each of the included variables were examined;

none was found to be particularly high. 18 There did appear to be

collinearity between EDUC and FINCOM, however. The simple correlation

between the two variables is fairly high (.58), and neither of the

variables'is significant at the 10 percent level in either Model I or

Model II when they are both included. Since the two variables perform

about equally when included separately (FINCOM is somewhat more signifi

cant in Model I, and EDUC is slightly more significant in Model II), and

since the exclusion of either one had little impact OIl the performance

of the other variables in the regressions, FINCOM was dropped from the

final set of housing characteristics.

Models I and II

The estimates of Models I and II are presented in the first two

columns of Table 6. Almost all of the housing characteristics are highly

significant with the predicted sign. The set of housing characteristics

explains about 80 percent of the variation in the dependent variable in both

models, and the two models have similar implications about the effect

of individual housing characteristics on house values. Since the

coefficients of any housing characteristic, Xi' in the Model I re

gression can be interpreted as the percentage increase in house value

associated with a unit increase in x
i

,19 the similarity between the two

models can be seen by translating the Model II coefficients into

percentages--that is, by dividing them by the mean house value ($14,596).



Table 6

Estimates of the H-Function

Model III
Model I Model II Inner Anchor Outer Anchor

Variable Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic Coeffic~ent t-statist~c

* 13.141 288.184 7.1684CONSTANT 6.6565 .057 12.604 6~7651 12.893

*CBDDIS .00479 .324 202.024 .856
j .
i FAC1 .0850· 3.333 1112.668 2.606 .0619 2.183 .0605 2.123

FAC2 .0483 2.682 726.586 2.532 .0447 2.306 .0443 2.273

FAC4· .0476 2.409 502.458 1.591 .0443 2.198 .0425 2.102

LROOMS .1591 3.209 1479.381 1.994 .1399 2.783 .1390 2.764

LBATHS .0998 1.460 1343.122 1.231 .0862 1.236 .0869 1.244

LFIRSTa .2879 4.887 4.473 4.648 .2726 4.540 .2676 4.449 w.....
LPARCEL

a
.1911 . 4.691 80.668 10.285 .2038 4.953 .2057 4.984

AGE -.00776 -8.215 -110.792 -7.555 -.00827 -8.415 -.00833 -8.459

. LMAQUALa -.2825 -3.167 -1494.456 -3.319 -.3034 -3.298 -.3063 -3.326

PSAME -.00324 -1.441 -60.658 -1. 74l~ -.00375 -1. 622 -.00369 -1. 573

EDUC .0196 .. 719 482.482 1.918 .0118 .781 .0109 .715

* 134.269 .00833POLD .00748 2.695 3.090 2.901 .00822 2.845

*POVFAM - - 91.258 1.829

.. MATH .0501 1.686 844.098 1. 821 .0297 .9483 .0318 1.020

RACE .1515 1. 941 2608.403 2.141 .1651 2.007 .1603 1. 940 .

\ BL4080 .2586 1.528 8342.902 3.051 .2351 1.372 .2437 1.423
I .

BL8099 .2739 2.173 3537.416 1. 704 .3090 2.277 .299 2.189

PBL0040 -.00617 -2.680 -86.994 -2.323 -.00642 -2.678 -.00620 -2.589
*PBL4080 -.00880 -1.501 -287.111 -3.014 -.00900 -1.523 -.00899 -1.522
*PBL8099 -.0184 -2.465 -313.390 -2.690 -.0211 -2.447 -.0200 -2.291

R2 .7754___. •816~__ .7882 .7881
---_. ---_._-~--- -"

!}
I

Estimating _.- -
-(22)b,c (22)bl I Equation (3) (5)

fi-

~~. --~---~--
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Notes to Table 6

A first letter "L" indicates that a variable is expressed as a
natural logarithm.

The one-tailed 10 percent (1 percent) significance level is 1.282
(2.326). The two-tailed 10 percent (1 percent) significance level is
1.645 (2.576). Variables for which a two-tailed test is appropriate
are marked with an asterisk (*).

aExpressed in logarithmic form only in Model I.

bEstimated with the restriction that a. = Sj.
. J

c *The estimating equation is (22) with u. redefined to be the inner
edge of ring j. J

,
!
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For most characteristi~s, the percentages obtained for Model II by

this method are close to the coefficients for Model I.

Several aspects of these estimates are worth emphasizing. First,

the coefficient of CBDDIS is not significant, indicating that if

location does have an effect on housing prices, the specification used

for Models I and II does not capture that effect. Second, the

coefficients of the racial variables are very significant. The racial

variables for which signs are predicted (RACE, BL4080, BL8099, and

PBL0040) all have the predicted signs and are significant at the 10

percent level or above. The coefficients of these variables indicate

that both white aversion to blacks and discrimination against blacks

are reflected in house values. For example, the coefficient of

PBL0040 in Model I indicates that house values will be 6 percent lower

in neighborhoods with populations that are 10 percent black than in

neighborhoods that are all white. The coefficient of BL4080, on the

other hand, indicates that house values are 25.9 percent higher in

integrated neighborhoods than in white neighborhoods. Finally, the

coefficient of RACE indicates that, in any given neighborhood, house

values are 15 percent higher for blacks than for whites.

Model III

Model III estimates the parameters of a price-distance function as

well as the contributions of housing characteristics to housing services.

The coefficients of the price-distance function variables are presented

in the first column of Tables 7 and 8. Regardless of whether an inner

anchor (Table 7) or an outer anchor (Table 8) is used,' the ring dummy

,!",



Table 7

Estimates of the Price-Distance Function Using An Inner Anchor

(1) (2) (3) (4)
Variable Coefficient t-statistic Coefficient t-statistic Coefficient t~statistic Coefficient t-statistic

CONSTANT 5.9077 1.594 7.1684 12.604 6.6688 12.129 7.4099 12.200

RING l a - - - - - - -3.459 -2.72

RING 2 .4330 .113 -.1366 -.747

RING 3 -2.0911 -.523 -.2316 -1. 242

RING 4 3.7894 .953 -.1803 -.999

RING 5 2.1133 .515 -.1917 -1. 061

RING 6 1.3399 .262 -.0989 -.526

NETINCb 4 •.9216 1.902 4.7127 1.836 -2.148 -.116 4.4914 1. 746

NETINC2 -5.4353 -1. 854 -5.6052 -1. 962 -.2759 -.113 -3.7763 -1. 381 w
~

NETINC3 -4.1619 -1. 444 -5.0829 -1. 785 .8261 .425 -4.1824 -1.571

NETINC4 -5.4484 -1. 965 -5.1484 -1. 884 -.0482 -.024 -4.7132 -1.778

NETINC5 -5.5511 -2.029 -5.3049 -1. 966 -.0691 -.035 -4.8575 -1.848

NETINC6 -4.2901 -1.532 -4.1490 -1. 521 .5006 .243 -4.1896 -1.569

NIEDGEc -4.7665 -1.837

NIEDGE2 5.3674 1.845

NIEDGE3 4.3771 1.517

NIEDGE4 4.9858 1. 777

NIEDGE5 5.2785 1.903

NIEDGE6 4.1169 1.407 - - - ---

R2 .7949 .7882 .7768 .7834

Estimating (22) (22)d (52)e (52)e
Equation
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Notes to Table 7

A two-tailed test is appropriate for all variables. The 10 percent
(1 percent) significance level is 1.645 (2.576).

aRINGj is the dummy variable for ring j (= P. in equation (19».
J

bThe definitions for NETINC in the various regressions are as follows.

, d

i (1) :

(2) :

NETINC = 1n(Y.-t.u)
J J

NETINC = 1n(Y.-t.u)
J J

*In(Y.-t~u.)
J J J

[Note that in regressions (1) and (2)

NETINCj = (NETINC)x(RINGj)].

(3).and (4):

*NETINC = In(Y.-t.u)-ln(Y.-t.u.)
J J J J J

and

NETINCj *= D.[ln(Y.-t.u)-ln(Y.-t.u.)]
J J J J J J

. * *+ 8.[ln(Y.-t.u.)-ln(Y.-t.u. I)}
J J J J J J J-

and

cThe definition.of NIEDGE is

*NIEDGE = In(y.-tju.)
. J J

NIEDGEj = (NIEDGE)x(RINGj)

dThe estimating equation is (22) with the restriction that a j = Sj'

. eThe estimating equation is the one for an inner anchor analogous
to ~quation (52), which is based on an outer anchor.



Table 8

Estimates of the Price-Distance Function Using an Outer Anchor

(1) (2)
- --------

(3) (4)
Variable Coefficient t-statistic Coefficient t.,.statistic Coefficient t-statistic Coefficient t-statistic

CONSTANT 4.5591 1.245 6.7651 12.893 6.6671 12.709 6.9734 13.133

RING 1a - - - - - - -.329 -2.64

RING 2 1. 9474 .502 .3710 3.002

RING 3 -.839 -.201 .2515 1.953

RING 4 5.2214 1.339 .2853 2.214

RING 5 3.659 .911 .3022 2.264

RING 6 2.443 .506 .2497 1. 737

NETINCb 4.9988 1.926 4.4996 1. 775 -.00794 -.004 4.2630 1.677
w

NETINC2 -5.4989 -1. 874 -5.3353 -1. 921 -.4966 -.203 -3.5701 -1. 332 0\

NETINC3 -4.2684 -1.477 -5.2420 -1.876 .4973 .248 -4.0751 -1. 549

NETINC4 -5.5305 -1. 990 -4.7891 -1.778 -.1858 -.089 -4.3989 -1. 683

NETINC5 -5.6081 -2.044 -5.0154 -1.881 -.2653 -.130 -4.6177 -1. 775

NETINC6 -4.3636 -1.556 -3.9208 -1. 450 .2275 .108 -4.0270 -1. 529

NIEDGEc -4.7361 -1. 862

NIEDGE2 5.3107 1.866

NIEDGE3 4.3828 1.551

NIEDGE4 4.9535 1.803

NIEDGE5 5.2121 1.918

NIEDGE6 4.1012 1.434

R2 .7949 .7881 .7764 .7828

Estimating (22) (22)d (52) (52)e
Equation

See notes to Table 7.
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20variables are not significant, and the two net income variables, NETINe

and NIEDGE, are significant. In four of the six rings, the two net

income variables are significant at the 10 percent level, and. the

t-statistic is greater than 1.4 for the coefficients of these variables
I

in the other two rings.

The addition of a price-distance function has little impact on the

magnitudes or significance levels of the coefficients of the housing

characteristics. This result is true whether an inner or an outer

anchor is used and whether or not restrictions are included in the

estimating procedure. The coefficients of the housing characteristics

estimated using the restriction that a. = S. (see pages 25-26) are listed
J J

in the last columns of Table 6. These estimates are extremely

close to the estimates obtained from other versions of Model III.

It should be pointed out that the amenity variables in Table 6 (that

is, the last 11 variables) are interpreted as price variables

in Model III•. One of the important implications of the finding that

Model III does not change the coefficients of the housing characteristics

is that the black-white price differential in St. Louis is not the

result of blacks living in the city center where the equilibrium price

of housing is higher than elsewhere.

As indicated on page 11, the coefficients from our Model III

regression must be tra~sformed to determine the estimated parameters

of the price-distance function. The results of such transformations

are presen.ted in Table 9. For example, using an inner anchor for regression

*(1), the estimated price constant in ring 5 (=P5) is the exponential

of the sum of the coefficients of the constant term and RINGS, or



Table 9

Estimated Parameters of the Price-Distance Function

Regression (1) Regression (2) Regression (4)

* a b c * a b * d b
Ring p. 11k. 11k. p. 11k. P. 11k.

J J J J J J J

Inner Anchor

1 267.86 4.9216 4.7665 1297.77 4.7127 1169.11 4.4914

2 567.19 -.5137 -.6009 1132.07 -.8925 1085.55 .7151

3 45.45 .7597 .3894 1029.47 -.3702 1014.13 .3090

4 16,270.36 -.5268 -.2193 1083.66 -.4357 982.63 -.2218

5 3044.22 -.6295 -.5120 1071.38 -.5922 1007.31 -.3661

6 1404.73 .6315 .6496 1175.56 .5637 1050.18 .3018 \..oJ
co

Outer Anchor

1 95.50 4.9988 4.7361 867.05 4.4996 768.47 4.2630

2 669.48 -.5001 -.5746 1256.52 -.8357 999.71 .6929

3 41.27 .7304 .3533 1114.99 -.7424 980.71 .1879

4 17685.49 -.5317 -.2174 1153.32 -.2895 995.73 -.1359

5 3707.45 -.6093 -.4760 1172.98 -.5158 1040.50 -.3547

6 1098.94 .6352 .6349 1112.98 .5788 1007.74 .2360
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Notes to Table 9

In the following notes, "exp" stands for an exponential function
. and "coef" stands for "coefficient".

a *PI = exp (coef of the constant);

*Pj ,= exp (coef of the constartt plus coef of RIN9j).

b
llkl = coef of NETINC;

11k. = coef of NETINC plus coef of NETINCj.
J

c
11k. = coef of NIEDGE;

J

11k. = coef of NIEDGE plus coef of NIEDGE ..
J J

d *For the outer anchor, P
j

is calculated us;ng equation (49)--with

the inclusion of the coefficient of RINGI for Pl. For the inner
. *anchor, P

j
is calculated using an analogous formula.

iiI

I
!

I
I

i
I
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Table 10

Tests of Null Hypotheses About Price-Distance Functions (Test Scatistics in Parentheses)

Hypothesis
4a Sb1 2 3 S

Theoretical REJECT REJECT ACCEPT ACCEPT ACCEPT ACCEPTprediction

Results for
inner anchor
in ring

1 REJECT REJECT ACCEPT ACCEPT
(t=l. 902) (t=-l. 837) (t=.362) (c=.030)

2 ACCEPT ACCEPT ACCEPT REJECT
(t--.370) (t=.4S7) (t=.43S) (t"-3.967)

3 ACCEPT ACCEPT REJECT REJECT
(t=.S83) (t=-.31S) (t=l. 703) (t"-3.2S3)

4 ACCEPT ACCEPT ACCEPT REJECT
(t=-.60S) (t.... 237) (t=-l.1l8) (t=-6.3S1)

S ACCEPT ACCEPT ACCEPT REJECT
(t=-.799) (t=.60S) (t=-.4S4) (t=-7.149)

6 ACCEPT ACCEPT ACCEPT REJECT
(t=.672) (t=-.S49) (t=-.040) (t=-4.648)

All ril1~s ACCEPT REJECT ACCEPT
(F=1. 236) (F..l.S39) (F=l.277)

Results for
outer anchor
in ring

1 REJECT REJECT ACCEPT ACCEPT
(t-l. 926) (t=-l. 862) (t=.616) (t=.OO04)

2 ACCEPT ACCEPT ACCEPT REJECT
(t"-.362) (t-.4S1) (t-.352) (t--3.988)

3 ACCEPT ACCEPT REJECT REJECT
(c-.559) (t=-.292) (t=1.671) (t=-3.268)

4 ACCEPT ACCEPT ACCEPT REJECT
(t=-.611) (t=.241) (t"l.l72) (t=-6.355)

5 ACCEPT ACCEPT ACCEPT REJECT
(t=-.772) (c-.578) (t=-.S30) (t"-7.110)

6 ACCEPT ACCEPT ACCEPT REJECT
(c=.677) (c=-.SS6) (C=.OO09) (t=-4.6S4)

All rings ACCEPT REJECT REJECT
(F=l. 269) (F"1.876) (F..1. 356)
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Note? to Table 10

The t-tests in this table are of the form

where c'S = r is the hypothesis being tested, b is the vector of esti
mated coefficients, s is the standard error of the regression, and

-1(X'X)is the variance-covariance matrix. (See Jonnston, 1972, p. 155).
All these tests have 229 degrees of freedom (=D), and are evaluated
at the two-tailed 10 percent level (a1. 645).

The F-tests are of the form

F(R,D) = (~SSE/R)/(SSE/D)

where SSE is the sum of squared errors from the unrestricted regression,
~SSE is the change in SSE that occurs when the restriction is added,
R is the number of restrictions, and D is the degrees of freedom in the
unrestricted regression (=229). (See Johnston, p. 198.) The relevant
numbers of restrictions and 10 percent significance levels for the
F-tests are

Hypothesis

3
5
5*

R

6
11
10

10% level

1.77
1.57
1.60

aThe tests of hypothesis 4 presented here are based on the
coefficients of NETINCj; the results are the same for tests based on
the coefficients of NIEDGEj.

bThis hypothesis is the same as hypothesis 5, without the restriction
that the price-distance functions in the first two rings meet at the
boundary between the two rings.
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exp(5.9077 + 2.1133) = 3044.22. Similarly, the first estimate of IlkS

is the sum of the coefficients of NETINC and NETINCS, or 4.9216-5.511 =

-.6295. The second estimate of IlkS is determined like the first using

the negative of NIEDGE instead of using NETINC.

Tests of our hypotheses about price-distance functions are

&ummarized in Table 10. Support for our first four hypotheses comes

from two findings: All of our predictions are upheld in ring 1, and

null hypothesis 3 cannot be rejected at the 10 percent level in any

ring except the third, where it cannot be rejected at the 5 percent

level. Except for these two findings, however, our hypotheses are not

supported. The signs of the coefficients of the net income terms in

rings 2, 4, and 5 are the opposite of the predicted signs, and the magnitudes

of these coefficients in rings 2 to 6 are much smaller than expected.

These findings imply that, except in the first ring, the price-distance

function is much flatter than expected and is actually upward sloping

in some rings.

The most likely explanation of these results is that, as shown in

the last column of Table 3, few people actually commute to the CBD.

Paradoxically, the first ring, where our hypotheses are upheld, is also

the ring with the smallest percentage of workers commuting to the CBD.

However, many of the workers in the first ring probably work near the

CBD. In any case, more accurate estimates of price-distance functions

clearly require a better measure of commuting distance than CBDDIS. If we

had data on actual miles commuted (as well as on miles to the CBD),

then, as suggested on page 11, our estimating procedure would still be
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valid if we assumed that people worked in rings around the CBD. In this

case, we would still divide the city up into rings around the CBD, but

we would redefine the variable "u" to be "distance to place of employment."

Note that the scarcity of commuting to the CBD casts some doubt on our

estimates of t; if people do not work in the CBD then (t)· (u) is not a

measure of their commuting costs.

The restriction that a
j

= Sj (hypothesis 3) is included in

regression (2) in Tables 7 and 8. The coefficients of the net income

varia~aes in this restricted regression are very similar in magnitude

and significance to the net income variables in the unrestricted regression.

Using either an inner or an outer anchor, five of the six rings have

income variables that are significant at the 10 percent level. But as

predicted on page 27, this restriction adds precision to the estimates

of the price constants, which are determined from the ring dummy variables.

This increase in precision is particularly striking using an outer

anchor; in that case all of the ring dummy variables are significant

at the 10 percent level. In addition, the appropriate F-test (given

in the "all rings" rows in Table 10) does not allow us to reject the.

hypothesis that the restriction is met.

The price-distance function parameters implied by restricted

*regression (2) are given in Table 9. Since P
j

is the unit price of

housing at the edge of ring j, the estimated price constants can be

used to plot an estimated price-distance function. To be specific, the

estimated price at the inner edge of ring j is shown in the first

panel of 'Table 9 and the estimated price at the outer edge of that ring
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is shown in the second panel. These estimated unit prices are

plotted in Figure 1.
21

This figure clearly illustrates our main

conclusion from Model III: The estimated price-distance function, as

predicted, is sharply declining in ring 1, but, contrary to prediction,

is essentially flat beyond two miles from the CBD. In addition,

Figure 1 shows that the price-distance function shifts upward at the

outer edge of the first ring.

The restriction that the price-distance functions meet at ring

boundaries is included in regression (3) in Tables 7 and 8. This

restriction eliminates the significance of the net income variables,

but it has little effect on the coefficients of the housing character

istics. As indicated in Table 10, we can reject at the 10 percent level

the hypothesis that this restriction is met, regardless of whether an

inner or an outer anchor is used. Since there appears to be a large

difference between the heights of the price-distance function in the

first ring and elsewhere, a dummy variable for the first ring was

added to this restricted regression. This dummy variable lifts the

restriction that the price-distance functions must meet at the boundary

between the first and second rings. As shown under regression (4) in

Tables 7 and 8, the inclusion of this dummy variable greatly improves

the performance of this restricted regression. Using either an inner

or an outer anchor, the dummy variable is stgnificant at the 1 percent

level and the net income variable is significant in three of the six

rings. Furthermore, the F-tests for the two anchoring methods do not

allow us to reject (at the 10 percent level) the hypothesis that the
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Table 11

Estimates of Imp1icit-Price-Distance Functions

Model V Model VI
Linear Quadratic Linear Quadratic

Variable a. bi a. b. ci a. b. a. b. ciJ. J. J. J. J. J. J.

**CONSTANT 5.3213 .2554 4.0992 -.0351 .1037 8010.41 -1009.44 -93156.92 42839.93 -4424.71

** * * * ** ** **FAC1 .2201 -.0357 .4329 -.1800 .0196 1885.59 -231. 60 10496.73 -5376.06 662.57

FAC2 .0407 -.00066 .1181 -.0553 .00750 -242.68 180.95 3342.19 -1869.02 257.70
* * * * * * * *FAC4 .1443 -.0246 .3269 -.1472 .0166 1401.10 -209.07 5018.79 -2409.11 282.39

* * *LROOMS -.1299 .0627 -1. 2342 .6270 -.0662 -2061. 67 801.56 -10032.48 4851.77 -479.16

* * *LBATHS .4596 -.0879 1.4984 -.6200 .0627 5951.30 -1185.33 13355.51 -4996.77 450.50

LFIRSTa * *.1729 .0267 -.4766 .4391 -.0539 1.567 .754 -2.160 3.988 -.483

LPARCELa * * * *.2806 -.0164 .8972 -.3499 .0399 59.09 3.848 86.00 -16.89 2.924

* * * * +:-
AGE -.00208 -.00128 .00567 -.00553 .00051 6.592 -23.57 205.61 -135.15 13.47 0'

LMAQUALa * *.3655 -.1335 .6251 -.1895 -.00038 1387.62 -634.11 413.07 61.63 -95.28

PSAME -.00199 -.00006 -.00292 .00264 -.00046 -31.46 -.022 -76.51 32.63 -4.998

EDUC -.0161 -.00528 .3072 -.1380 .0150 832.08 228.97 4182.06 -2036.54 242.11

POLD .0142 -.00084 .0338 -.00939 .00082 76.46 14.91 96.31 31.64 -4.786

POVFAM *- - - - - -211.78 56.09 338.06 -247.31 36.52

MATH .1653 -.0247 .2281 -.0487 .00213 572.24 16.76 6946.68 -2757.70 283.44

*RACE .1273 - .1161 - - 1907.12 - 2645.73

** ** ** **BL4080 .4704 - .6360 - - 10534.20 - 2685.39
** ** ** **BL8099 .8919 - 1.1321 - - 18926.07 - 23222.16

PBL0040 -.00399 - -.00273 - - -33.98 - -22.78

** * ** **PBL4099 -.0152 - .0198 - - -335.83 - -418.22

R2 .7947 .8137 .8415 .8558

Estimating (10)b (10)c (l1)b (l1)C
Equation
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Notes to Table 11

The symbol "*" indicates significance at the 10 percent level,
and "**" indicates' significance at the 1 percent level. All tests
are two-tailed.

aLogged only in MOdel V.

bThis equation was estimated by assuming that

cThis equation was estimated by assuming that

2
Pi (u) = ai + bi u + ci u .
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restriction is met. Following the procedure given above for regression

(2), the price-distance function implied by regression (4) is plotted

in Figure 2.

Models V and VI

The OL8 estimates of our approximation to Models V and VI are

presented in Table 11. These estimates are obtained by assuming that

the Pi(u) functions in equations (10) and (11) are either linear or

quadratic. For example, Model V with quadratic Pi(u) functions is

estimated by adding to Model I interaction terms between CBDDI8 and

all of the housing characteristics as well as interaction terms between

2(CBDDI8) and those characteristics. Two simplifications are made in

this procedure. (1) the PBL4080 and PBL8099 variables are combined,

and (2) the coefficients of the racial variables are assumed not to vary

with location. The first simplification reflects the finding that in

Models I and II we cannot reject the hypothesis that the coefficients

of PBL4080 and PBL8099 are the same. The second simplification is

included because the racial variables are already defined with an im-

plicit spatial component that is highly correlated with distance from

the CBD. Inferences made about the P.(u) functions for nonracial housing
1

characteristics are not affected by these simplifications.

Although the linear and quadratic Pi(u) functions are not derived

from the theory of locational equilibrium, that theory does help us to

interpret the coefficients of those functions. To be specific, the

theory predicts that the price of land--which is closely related to

the price of housing (see note 6)--will decline with distance from
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the CBD, so that land will be substituted for capital at locations far

from the CBD. Accordingly, the implicit prices of housing characteristics

produced mainly with land (such as PARCEL!) and the implicit prices of

neighborhood characterist1cs--which represent economic rent to land

with certain characteristics--will decline with distance from the

CBD. With a constant price of capital throughout the urban area, the

implicit prices of characteristics produced largely with capital (such

as ROOMS) will also decline, but to a lesser degree.

The coefficients of the housing characteristics (ai in Table

11) represent implicit prices in the CBD; therefore, we expect these

coefficients to have the same signs as the coefficients of the same

housing characteristics in Models I and II. We also expect that each

bi in Table 11, reflecting the declining price of land, will have

the opposite sign from the corresponding a
i

• Finally, due to the

existence of suburban employment centers, the price of land is likely

to rise near the outer edge of the city, so that each ci in the

quadraticPi(u) functions will have the opposite sign from the

corresponding b .•
~

The pattern of signs in Table 11 indicates that Model V and the

quadratic Pi(u) functions conform more closely to our expectations

than Model VI and the linear Pi(u) functions. In the quadratic version

of Model V, 10 of the 14 estimated Pi(u) functions have the expected

sign pattern, and in 4 of these 10 cases (FACl, FAC4, BATHS, and PARCEL)

at least two of the three coefficients are significant at the 10 percent

level. In addition, 33 of the 42 coefficients of the P.(u) functions
1
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!
have the expected signs and 10 of these coefficients are significant

at the 10 percent level. The quadratic version of model VI conforms

somewhat less well to our expected sign pattern. Using linear Pi(u)

functions, 7 of the 14 estimated Pi(u) functions in Model V and only

4 of the 15 functions in Model VI have the expected signs.

Although these results are intriguing--at least in the quadratic

case--they clearly do not provide a satisfactory explanation of the

variation in implicit prices with location. In the best regression

(the quadratic Model V) fewer than 40 percent of the price coefficients

are significant at the 10 percent level and several of these signifi-

cant coefficients do not have the expected sign. In part, the pervasive

insignificance of the coefficients is due to severe multicollinearity

in the data. For example, the simple correlation between the CBDDIS

interaction term and the (CBDDIS)2 interaction term is about .95 for

most characteristics, and the correlation between the characteristic

and the CBDDIS interaction term is, in many cases, almost as high.

Unfortunately, there is no way to eliminate this problem. Another

reason for the imprecision of our results is that the simple forms for

the Pi(u) functions do not accurately reflect the t~ade-off between

housing costs and commuting costs. It may therefore prove useful

to estimate the more precise, but nonlinear, versions of these models

derived in section III.
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VI. Summary and Conclusions

The empirical results in the previous section suggest that if one

is interested simply in explaining the variation in the price of

housing, then Models I and II, which treat location as a housing

characteristic, are satisfactory; each explains about 80 percent of

the variation in house values--only slightly less than our more

complicated models. If, on the other hand, one is interested in

explaining the relationship between location and the price of housing,

then Models I and II are not sufficient; the location variable in

these models is not statistically significant, and the significance of

the location variables in our other models suggests that there are

better alternatives available.

Our estimates of Model III, which make use of a price-distance

function from a simple urban model, are particularly promising. The

coefficients of the price-distance function variables are usually

. statistically significant, all of our hypotheses about these variables

are upheld in the first ring, and two of our hypotheses (that a j = Sj

and that the price-distance functions meet at ring boundaries) are

strongly supported by the data. However', p:t'obably because of the

inadequacy of our measure of commuting distance, our hypotheses about

the signs and magnitudes of the coefficients of the net income

variables in the price-distance function are not upheld at locations

more than two miles from the CBD.
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Fina1~y, the consistent sign pattern of the coefficients in the

quadratic versions of Models V and VI suggests that it may be fruitful

to estimate models that allow for different imp1icit-price-distance

functions for each housing characteristic. For the following three

reasons, however, this suggestion is very tentative: (1) The theory

behind Model V indicates that different imp1icit-price-distance

functions may not represent an equilibrium; (2) severe multicollinearity

precludes precise estimation of the coefftcients; and (3) linear and

quadratic approximations do not accurately reflect the trade-off

between housing costs and commuting costs.

The results in this paper indicate that the theory of 10cationa1

equilibrium can be useful in determining the relationship between

location and the price of housing. However, two factors have prevented

Us from obtaining completely satisfactory estimates of that relationship.

First, many of the equations derived in this paper cannot be estimated

using linear regression techniques. In principle, of course, this

obstacle can be overcome by using nonlinear techniques, but only with

a considerable increase in cost. Second, the use of CBDDIS as a measure

of commuting distance is clearly inadequate. As we have said, it is

possible to incorporate a measure of actual commuting distance into

the estimating procedure in this paper; in the opinion of this author,

our results are sufficiently interesting to warrant such an extension.

It may turn out, however, that in some cities commuting to places of

employment other than the CBD eliminates the usefulness of the

monocentric assumptions on which the models used here are based. If

so, a more general treatment of the theory of 10cational equilibrium
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will be required to determine the appropriate estimating equations

for the relationship between location and the price of housing.
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NOTES

1Examples of this type of study include Grether and Mieszkowski
(1974), Kain and Quigley (1970), King and Mieszkowski (1973), Muth
(1969), and Ridker and Henning (1967). Siegel (1975) estimates rents
and driving time to the CBD simultaneously, but does not have many
housing characteristics in his data. Strnszheim (1973) deals with
the theoretical presumption that house values vary with location by
dividing his sample into several locations and estimating separate
house value equations for each location.

2Mills (1969) estimates land rent gradients using a theoretically
determined functional form that is closely related to our equation
(18). For estimates of population density gradients, see Mills (1972a)
and Harrison and Kain (1974) and the references cited therein.

3see especially Muth (1960) and Olsen (1969).

4See Rosen (1974) and the references cited therein.

5These models were developed by Alonso (1964)~ Mills (1967), and
Muth (1969). For a clear exposition of the type of model considered
here, see Mills (1972b, ch. 5).

6When the supply of housing is added to a model such as this one~ the
price of housing is functionally related to the price of land. In
this case, the city will extend to the point where land rent is equal
to the opportunity cost of land (= the agricultural rental rate), and
the price of housing at that point (= u) will then be determined by
the function relating the price of housing to the price of land. See
Mills (1972b, ch. 5). Note that P(u) is a price per unit of housing
services per year. Thus if V is the market value of a house, V = P(u)H/r
where r is the interest rate. In this case, P needs to be reinterpreted
as a yearly price constant divided by the interest rate.

7see , for example, the market equilibrium conditions derived in
Mills (1972, ch. 5) and Yinger (1975). Some of the conditions derived
by Yinger cannot even be solved for the price~distance function.

8It can easily be seen that the slope of equation (18) decreases
in absolute value as income increases. This finding impLies that
higher-income classes will have flatter price-distance functions and
will therefore live farther from the CBD. For a more general treatment
of this point, see Muth (1969) or Mills (1972b).
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9For more on this point, see Hamilton (1972) and Yinger (1974).

l°Market locational equilibrum conditions can also be derived for
other forms of the H-function. For example, Yinger (1975) derives
such conditions for an additive form; however, the additive form cannot
be solved explicitly for a price-distance function, so it is not
considered here.

11Equation (27) has been independently derived by Polinsky and
Rubinfeld (1975, equation 3.6) using an indirect utility function. In
their model, the price-distance function is anchored using a level of
utility.

12For a discussion of the appropriate form for the f-function for
the amenity "racial composition," see Yinger (1974; 1975).

13Equation (32) requires some comment. The first-order condition
of problem (29) with respect to Xi (when the utility function is
Cobb-Douglas) can be written

A = ci/Pi(u)V

Thus a solution to the problem requires that ci!Pi(u) = cj/Pj(u) for all

Xi and Xj in the utility function. Equation (32) is an expression of

this result.

l4Census tract income is used instead of ring income because
ring income leads to perfect collinearity between the ring dummies
and the In(Y.-t.u~) terms in equation (2V, so that the latter terms

J J J
cannot be estimated separately. However, the coefficients of the
1n(Yj -tj U) terms and of the housing characteristics are virtually the

same regardless of which definition of income is used.

15For example, estimates by Meyer, Kain and Wbhl (1965) of the
sveed of commuting on public transportation range from 6 to 16 MPH.
Commuting speeds by car are probably somewhat faster. In addition,
Beesley (1965) estimates that commuters value their commuting time at
from one-third to one-half the wage rate. Per-mile operating costs
vary greatly depending on the mode of transport; one estimate of such
costs is suggested by the fact that business trips by car can be
deducted at a rate of 15 cents per mile on federal income tax returns.

16For a more detailed discussion of this racial specification,
see Yinger, (1974).
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17One problem that comes up in estimating equation (52) is that
the terms in the braekets that are multiplied by 0i and 0i only make
sense if ring income (as opposed to census tract income) ~s used.
Therefore, the income terms in the brackets are defined to be ring
income and the other income terms are defined to be tract income. The
results are essentially the same if all income terms are defined to be
ring income.

18It is possible that collinearity would not show up in simple
correlation coefficients (Johnston, 1972, p. 163). Since the exclusion
of these variables did not have much impact on the coefficients of
the other variables, no attempt was made to find more complicated
collineartties.

19coefficients of double log regressions are usually interpreted
as elasticities, not percentages. But a coefficient that is an
elasticity with respect to X is a percentage with respect to In(X).
Thus the comparison between the two regressions applies only to
variables that are either logged or not logged in both models.

20Actually, the insignificance of the price constants is expected.
See the arguments on pages 23 and 27.

21Price-distance functions can also be calculated by plugging
the estimated parameters and the ring incomes in Table 3 into equation
(18). However, this procedure leads to essentially the same conclusions
as the simpler one described in the text.
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