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ABSTRACT

In this paper we present examples illustrating five important issues

involved in the identification of structural information about social

processes using the fragmentary data which is usually available for this

purpose. These issues are listed below.

(i) It is of considerable importance to use continuous-time models

to desi;ribe processes for which there is no substant~ve basis for a choice

of basi.c unit time interval between state changes. Failure to observe

this point can, result in conclusions about compatibility of data ,with a

discrete-time model which are dependent simply on an ad-hoc choice of

unit time interval.

(11.) The trade-off between parsimony and realism in the selection

of base-line models is closely linked to a consideration of the currently

as well as potentially available data bases which can be used for the

purpose of identifying structural mechanisms. Examples of some major

sociological data bases are described in order to explicitly illustrate

the fragmentary nature of the observations. In addition, special mix­

tures of Markov and semi-,Markov processes are presented as 'examples of

models which are both moderately realistic and simple enough to allow for

identification of structural parameters using rather limited data.

(iii) Very little attention has been paid to the development of

strategies for discriminating between several apriori plausible models

all fitted to the same data. We present an example of testing data for

compatibility with the class of continuous-time Markov chains (null

hypothesis)vs. a restricted class of mixtures of Markov chains as art

alternative.

(iv) The evenly-spaced sampling of Markov semi-groups can lead to

the aliasing of intensity matrices. This phenomenon is analogous to the

familiar aliasing of frequencies in the evenly-spaced sampling of sta­

tionary time series.

(v) Two strategies are presented for assessing the sensitivity of

conclusions about structural parameters compatible with a given data set

to noise and other uncontrollable sources of variability.
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(iii) specification of strategies for discriminating among several apriori plau-

sible models, all fitted to the same data. Section 4 treats an example of

testing data for compatibility with time homogeneous Markov chains (the null

hypothesis) vs. a restricted class of mixtures of Markov chains as an alter-

native.
I

(tv) the possible presence of non-uniqueness in the identification of intensity

matrices for Markov chains with stationary transition probabilities. Sec-

tion 5 illust rates this phenomenon, vrhich is analogous to the familiar

aliasing of frequencies in the evenly-spaced sampling of stationary time

series ..

(v) assessment of the sensitivity of conclusions about structural parameters

compatible with a given data set to "noise" and other uncontrollable sources

of variability. Two strategies for this kind of investigation are illus-

trated in Section 6.

2. DISCRETE VS. CONTINUOUS TIME

Even though most empirical processes in sociology and economics evolve con-

tinuously, it is not uncommon for the dynamic models which are fitted to data to

be of the difference equation type. . It is thereby presumed that the process under

investigation can be described adequately by a discrete-time structure defined on

integer multiples of a basic unit time interval, call it ~, which may be a week,

month, quarter, year, several years, etc. However, in many situations where these

models have been used (e.g., studies of occupational mobility, geographic migration)

there is no substantive basis for establishing a particular time interval as a l1atu-

ral unit for the empirical process. If we denote by to = O. t
l

, 2t
l

, 3t
l

, .... etc.

the evenly spaced time points at which observations usually are taken (e.g., quart-

erly or yearly), a common practice is to associate these observation times with the

natural spacing unit for the process under study. This practice can lead to ser1-

ous difficulties in attempting to identify underlying structural mechanisms which

could have generated the data at hand.
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Example 1:

Suppose, for simplicityp that you have observations collected yearly (i.e .•

t ::: one year) on a population ,,'hich simply svJitches back B.nd forth bet~,,7een two
1

distinct states. Suppose, further, that you entertain discrete-time Markov chains

with stationary transition pro'bab:1.J3.ti.es a.s an initia.l base-line class of models

to be compared with your data. (Non tim.e-homogeneous chai.ns, or models incorporating

longer range dependence, ct.1n be viewed as alternatives to the null hypothesis of

Markov chains ~vith stationa.r.J transition probabiliti.es.) Nov.r assume that you have

three empirically determined stoc.hastic matrices given by1

.... '" ( l/l.f 3/ If .)
P(O~tl) P(t1p 2t

1
) -

\5/8 3/8)

( 17/32 1"" J':!'l \
P(O.2t1) "" ;;~~: )25/6t.~

(2.1)

"
where P(kt

1
,R. t .l1 ), 0 ~k < ~~ has entries p .. (ktl"Q,t,) ... {proportion of indivi.duals

1J "-

in state i at time kt
1

who are in state j\at time ~tl}'

If you identify t~ with the natural time unit ~ for the evolution of the popu­
.J.

lation. then a. test of compatibility of 'the data (2.1) with a discr.ete-·time Harkov

chain structure (statio!J.a,ry transition probabilities) consists of asking whether

there exists at least one stochastic matrix M such that

A

1P(O,tJ.) U (t ':It' 1-1•. '1''<' 'I)

and P(O,2t1) "'" M2 J...--

(2.2)

The entries mi" in 1'1 represent structural information about th~ population and have
.•.1

the interpretat1on~ "propensi.ty of an individual in sta.te i to move to state J :in

one unit of time." Clearly, (2.2) is satisfied with the obvious choice

M
(

1/4

5/8

3/4 )

3/8 J

and you might tentatively settle for the disc.rete-time Markov chain model
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(2.3)

10

as a description of the data.

Now suppose that you consider the basic time interval ~ in the evolution of

the population under study to be six months. Then your ~l data remains the

same, while a test for model compatibility reduces to asking whether there is a

stochastic matrix M such that

and

Since the matrix

(
1/4

5/8
3/4)
3/8

2 hhas no stochastic square roots, t ..ere is no discrete-"time Markov cha:!.n with sta-
....

tionary transition probabilities which can describe the data in (2.1).~ The

essential point to be noted is that a substantively ba.sed judgment simply on the

natural time unit for the underlying process can make a considerable difference in

the conclusions which are reached about model compatibility.

Some still more striking features of the present example are:
A

1. P(O,t
l

) has no even stochastic roots of any order.

2. P(O,t
l

) has a stochastic cube root, a stochastic fifth root g but no odd

stochastic roots of order greater than 5.

This means that by choosing a natural time unit for the underlying process equal to

four months or 2.4 months, the data ~'Jou1d be compatible with a Markov chain having

one--step transition probabilities given by

3
( .0611 .9389 ).;~

P(0,t
1

) .7824 .2176

5
( .0063 .9937 )I~

and P(0,t1 ) -- .8281 .1719

(for /::,

(for /::,

4 month interval)

2.4 months)



Any other time unit of the

model incompatibility.

form.

5

t .
1 Shorter than one year leads to a conclusion of

n

This phenomena h, cha.racteristic of any appli.cation of discrete--time models

that lacks a solid substantive ba.s:.ts for IJ. eho:i.ee of un.it-·time interval. A more

natural strategy would be to test the data for compatibility with one or more

continuous,··tj.me models in 'Hhich the Haiting times betHe.en transitions by individuals

are viewed as random variables having distributions belonging to special para-

metrized families, We notes tn this connection, that the data (2.1) would not be

compati.ble vii,th .§;~ continuous-time Markov chain having stHtionary transition prob-

abilities. This :.I.s a consequence of the fact that

t..Q
1 A ,

written as e ,and P(O,2t 1 ) cannot be l'11,"ttten as
.l..

"
P (0 t) 1) I' ~ ') t ) t b

• '" J. ,L1.. '-:l canTlO e. 1. '
?<. Q_.c. 1

e 9 where QS~D 9. ~ {Q~qii < 0,

A necessary a.D.d r-3ufficient condition for 2 x 2

-,"~. ~_.", • . . ,'" ~'" ~ Q ( )matrices to have th(~ ;:.t,.:pr.€Seu::CI..i,_on e l>7ith. Q8fJ :1.:'3 that trace .p > 1 (see e. g w ,

Kingman. [196Z] and Singer and Spilerman [1975]). The point to be made here D however,

is that this conclusion a.bout compatibility of the data lr.7ith a continuous-time model

requires no ad-·hoe decision about unit tiUle intervals i and is also invariant under

a change in the Bpad.ng hetlJe.en observations 0

3. HIXTURES Ai.\i1) FRAGHEN'l'ARY DATA

A fa.mily of hase-lj_ne models which hm7e been infor.mative about underlying

structural mechanisms in social mobility studies are mixtureH of independent Markov

and semi-Markov proce8ses. The role Hhich' these mathematical structures play in

empirical sociolog:1.eal :tnvest:J.gatfons is to provide a simple, yet m.oderately real-

istic frametvor.k, against which data may be compared. T.he most useful substanti.ve

information obtained in these comparisons has artsen from. pronounced an.d highly

structured sets of residuals (or violations) from the models. These violations

often serve to suggest alternative conceptualizations of the directly observable

data, as well as special forms of mGre realist:tc models" A well knl.}'\,m instance of
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the revealing nature of resid1,Jals :from discrete-time Markov models was the large

discrepancy (first observed by B1umen~-Kogan~ and McCarthy [1955]) between diagonal

entries in empirically determined stochastic matriGes, which were based on observa­

tions taken at widely spaced time points, and predictions based on the powers of a

one-step transition matrix fitted to observations taken at closely spaced time

points.

Among the multiple explanations which could plausibly account for this kind of

discrepancy, the treatment of a socially heterogeneous population as though it was

homogeneous has been singled out as not only an important explanation, but also

revealing ofla basic weakness in many mobility studies. These observations have

led to the investigation of meaningful bases for the classification of a hetero­

geneous population into homogeneous sub-populations (e.g., classification according

to rate of movement or classification according to propensity to move in a particu­

lar pattern (Spilerman [1972a], [1972b]; McFarland [1970]; Singer and Spilerman

[1974])) .. In addition, when detailed individual histories cannot be obtained for

persons in the sub-populations (a typica+ situation in empirical sociology), mix­

tures of Markov and semi-Markov models provide a parsimonious representation of

the observed population-level data in terms of the non-directly observable movement

which occurs in the individual sub--populations.

We illustrate these ideas with a class of concise models which are well

adapted to the classification of sub-populations according to the rate at which

transitions occur.

Example 2:

Consider a homogeneous sub-population whose evolution is described by two

independent processes: (i) a discrete-time Markov chain with stationary transition

probabilities which characterizes movements between states at their times of

occurrence, and (ii) a sequence of independent, identically distributed positive

random variables which describe the waiting times between transitions.
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A con.venien.t constructioIl. of thesarnple paths for these processes is based on

(y) (y)
first introduriing the sequence T

l
., T2 , ... of

buted random variables such that Prob(T
l

(y) ~ u) =

independent identically distri-

F (u), [.r.
.r.

'"

vector of real parameters], where F (u) is a parametrized family of continuous dis-
y

tribution functions which represent moderately realistic waiting time distributions.

The sequence T
l

(y), T
Z

(r) , ... denotes the waiting times between transitions for \Vhat

we will call type-.r. individuals. Now, introduce the discrete-time Markov chain

{X(k)}k=O,l, ... having one-step transition matrix M, and define the continuous-time

process

Y (t) = X(T (t»
.r. Y

(3.1)

where T (t)
.r.

max {n:
11.

E
i=l

T (1.)
i

< t} == {total number of transitions by a

type-.r. individual up to time t}.

which the kernals

Y (t) is a special type of semi-Markov process in
Y

= Prob(X (n) = k, Tn (.r.) .::. ul X(O); X(l) ,T
1

(Y); ... ;X(n"""l) =

have the ·form (see Pyke [1961])

= (3.2)

';;.>

Mixtures of stochastic pro,cesses having the structure (3.1) can now be defined

by introducing a random vector ~ == (2
1

, ••• 2
a

) taking values y in the parameter set

associated with a specific class of distributions F (u) and independent of the
:r.

Markov chain {X(k) }k=O,l,.... Then define the mixture proces.s as

= (3.3)

where Prob (21 < Yl"" ,Z < y ) is specified by a mixing measure ~ defined on the
- a - a

parameter space.

Important examples of mixing measures ~ and waiting time distributions F (u)
y

adapted to social mobility studies are:

I
I
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(i) F (u) = 1 - -Yu
Y > 0, u > °y

e ,

11{0} Frob (z = {O}) = s

l1{YO} = Frob (z = {YO}) = 1 - s

Yz(t) is then a continuous-time analog of the classical mover-stayer model

where s represents the proportion of stayers in the total population.

s > 0, a > °
Then Yz(t) is a mixture of continuous-time Markov chains where type-y i.ndi­

1
viduals have an expected waiting time until a t'ransition given by y' and they

occur in the total population with a frequency governed by the Gamma distri-

bution (3.4) with parameters (a,S).

"(2
-y u

1 - e 1=

=

F (u)
1..

J.1 ( [ 0,y) x[°,w) )

(iii)

=

ye!O,oo), weLO,l]

Yz(t) is a mixture of semi-Markov processes where type-x = (Yl'Y2) individuals

have duration-dependent waiting times such that the longer an individual stays

in a particular state the less likely he is to move in the immediate future.

This is a formalization of R. McGinnis' [1968] idea of cumulative inertia (see

also Ginsberg [1971] and Singer and Spilerman [1974]). Then the type~L indi-

viduals are distributed in the total population with Yl having a Gamma density,

and Y2 following a uniform density on [0,1].
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The trade-offs between parsimony and realism in the selection of base-line

models is closely linked to a consideration of the currently, as well as potentially,

available data bases which can be used for the purpose of identifying structural

mechanisms. The most desirable form of observations for this purpo8e is a collec-

tion of continuous individual histories. These records would be identified with

.finite sections of sample paths in the stochastic process models, and would provide

the ideal basis for testing and discriminating among apriori plausible models as well

as for parameter estimation. The vast majority of literature on statistical infer-

ence for Markov and semi-Harkov processes concerns itself with records of this type

(Anderson and Goodman [1957]; Billingsley [1961]; Albert [1962]) and emphasizes

large sample properties of testing and est.imation procedures. The issues involved

in model identification and comparison (on both substantive and numerical grounds)

6f several models fitted to the same data has received considerably less attention,

even for sample-path data. For a notable exception, however, see Bush and Mosteller

[1961] .

Even though accurate continuous ind:!.vidual histories would be desirable, they

are with rare exception (e,g., J. Coleman [1975]; A. S~rensen [1972]) not presently

available; and even current plans for large-scale demographic and social accounting

systems (see R. Stone [1972]) do not envision the collection of sample-path data,

or involve extensive consideration of sampling schemes which would facilitate effi-

dent comparison and discrimination among multipl~ plausible models. We therefore

focus on strategies for model estimation and model discrimination which require only

the more limited sorts of data that census bureaus and allied agencies normally

produce.

In the following discussion we will refer to any collection of observations

which contains less information than long finite sections of sample paths as Lr_~&-

mentary. Three of the most common data gathering situations which are currently

i
encountered in empirical sociology are exhibited in examples 3--5.
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Example 3:

Let y(i)(t) represent the state of the i th individual (person, sub-population,

size of organization~ etc.) at time t. Then, given a spacing ~ > 0 and times to = 0,

t l = ~,tz Z~, ... , we observe {y(i)(k~)} where 1 < i ~ N~ N = {number of indi-

viduals in a closed population under study}; and 0 < k ~ n, n

points after to at which observati~ns are obtained}.

{total numher of time

This is precisely the sampling situation in Biumen, Kogan, and McCarthy [1955]

with ~ = 3 months. Here the states are industrial categories, and y(i) (k~) is the

category of the i
th

individual at time k~ as recorded in the Social Security Admin-

istration's Work History File [197Z].

Example 4:

Consider the same kind of observations as in example 3 but augmented by

T(i)(Olk~) = {number of transitions by the i th individual between time 0 and time

kfl}. This kind of information was obtained. in the socia.l mobility studies of Palmer

[1954], Lipset and Bendix [1963], and in the much larger study by Parnes [197Z]. It

is ~ragmentary relative to sample path data in that the full set of transition time~

as well as a complete list of states which are visited between the sampling time~ is

missing.

Example 5:

Observations are taken retrospectively on current residence, first and second

prior residence, and birthplace of individuals in particular age cohorts. This kind

of data was collected in Taeuber's Residence History Study (Taeuber, et. a1. [1968]),

and represents an instance of fragmentary information about a migration process in

that gaps are present in the residence histories.

The basic problem which confronts a researcher who desires structural informAtion

about a population, and who must settle for data such as in the above examples, is the

need for numerical strategies which allow matrices such as M in example 2 to be "I
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recovered using the data at hand. An illustration of such a model identification

strategy forms the content of section 4.

4. TESTING OF MODELS AND IDENTIFICATION OF STRUCTURAL PARAMETERS

Many of the issues involved in attempting to discriminate among competing models

can be illustrated in the relatively simple setting of testing data for compatibi.lity

with time-homogeneous Markov chains (the null hypothesis) vs. a restricted class of

mixtures of Markov chains. To fix the ideas, assume that observations

1 < i < N, ° < k < n (4.1)

have been collected at the evenly spaced time points 0 = to < t 1 < ..• < tn' where

t
k
+

1
- t

k
= ~ > 0, k = 0, ... ,n-l; y(i)(t

k
) denotes the state of the i

th
individual

in the survey at time t
k

; and T(i)(O,t
k

) equals the total number of transitions by

the i th individual in the time interval (O,t
k

). Also, consider n < 10 to be a typi-

cal situation for empirical sociology.

Now introduce the Harkov models with sample path representations of the form

(3.1) and F (u) = 1 - e-Yu , Y > 0, U > 0. This class of models is to be tested on
. Y

data of the form (4.1) in competition with mixture models having sample path repre-

sentations of the form:

(4.2)

where F (u) = 1 ­
Y

-yu
e , Y > 0, U > °

and Prob (Z .::.- y)
y a a-I -l3y

13 y e
for (a) dy

Identification of structural information in this setting means:

(a) deciding which of the models, if any, provides a good description of the datA,

(b) calculating the transition matrix (or possibly several matrices) M whose clltrics

represent propensities of individuals to move between any pair of states,

Diagonal entries of M represent within-state mobility, such as within-industry

job change.



A strategy for fitting data of the form (4.1) to a Markov model, and

simultaneously testing it for compatibility with this structure)consists

of the following steps:

(1) Calculate the separate exponential parameter ,estimates

12

(k)
y for k = 1, ... , n.

These values should be roughly equal if the data are compatible with

the proposed model. A final summary estimate of y, call it y, can

then be produced by averaging {y(k)} _ possibly with weights.
. k-l, ... ,n

(2) Form the matrices P(i~,j~), 0 2 i < j 2 n, with entries

n (i,j)
k.Q,

~+ (i ,j)

Then calculate

(
number of i.ndividuals starting in state k)
at time i~' who are in state Q, at time ~_

(number of individuals in state k at time )
H.

A--~l~- log P(i~,j~)
y (j-i)~

for 0 < i < j < n (4.3)

and check whether or not there is at least one branch of the log-

arithm which can be written as M-I, where M is a stochastic matrix.

(See Singer and Spilerman [1975J for details on these calculations).

If. the data are compa::ible with a Markov model [i. e., represent-

-_ ey(j-i)~(M--I)J,able as P(i~,j~) then at least one branch of

the logarithm of any given matrix in the list (4.3) should be

roughly equal to some branch of th~ logarithm of any other matrix

in the list. In addition, this common logarithm should be repre-

sentable as M-I, with M stochastic. A final summary estimate of M

can be calculated by averaging the separate estimates

I + 1 '"-,,--- log P (i~ ,j~) ,
y (j -i) ~

a < i < j < n (4.4)



In m6bility data for which estimates of the form (4.3) are appropri-

ate (e.g., Blumen, Kogan, and McCarthy [1955]), it has sometimes been

found that

13

I +
1-
/\ log P(i6,[i+l]6), i 0, 1, ... ,n-l (4.5)

is roughly constant, but that the common value of these matrices differs

substantially from the terms in (4.4) for (j-i) large (Le" widely spaced

time points). An average of the matrices based on closely spaced data for

a few time points can then be vievred as a reasonable estimate of M, but

with the proviso that the Markov model only provides an adequate descrip-

tion of the data for relatively short time stretches, In this situation,

a useful procedure for detecting possible compatibility of the full data

set with a mixture of the form (4.2) is to compare P(O,k6) for k = n, n-l

and n-2 (i.e" matrices at widely spaced time points) with forecasts of

. k6y (M-I) --
these matrices bye' ,'-There y and M are estimates based on closely

spaced observations. Biumen, Kogan, and McCarthy [1955] found that ·this

kind of comparison yielded a pronounced discrepancy of the form

p .. (0,k6) >
11 (

k6Y(M-I»)
e i1 for k = n, n-l, n-2 (4.6)

and observed that one possible explanation for this inequality was th~t a

socially heterogeneous population was being treated as though it was

homogeneous.

The mixture (4.2) incorporates a form of heterogeneity in which the

observed population is viewed as being comprised of type-y individuals

with frequency given by the 2-parameter family of distributions (3.4).

In order to assess whether data which deviates from a Markov model accord-

ing to (4.6)·is actually compatible with a mixture of the form (4.2), the

following strategy can be utilized:

.~---~.~----~----.
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(i) Under the hypothesis that (4.2) is the correct model, TZ(t) has a

negative binomial distribution

Prob (T
Z

(t)=k) ( ) ( )
k ( ) aa+k-l . t S

k S+t S+t

(ii)

We estimate the parameters (a,S) using the observations

{T(i)(O,j6)}1<i<N and call any such estimates (aj,Sj)' If the

data are compatible with the mixture model, then we should find

"
(al,Sl) ~ (aZ'SZ) ~ ... :z. (an,Sn)'

With the estimates (a.,S.) at hand, observe that P(O,j6)
J J

00

foej6Y(M-I)d~(Y) can be written as

Now solve the equations

.6 J-a
~M , j = l,2, ... ,n

P(O,jtl)
.....}_6__ MJ-aj

S. + j6
J

for M and check whether each calculation yields roughly the same

matrix and that it is, in fact, a stochastic matrix. If the empir-

A

ically determined matrices P(O,ktl), 1 .:::. k .:::. n, satisfy this

requirement, then the n stochastic matrices computed above may be

averaged to produce a final summary estimate of M. In addition,

passage of these tests supports the contention that the full set

of data is compatible with the mixture model (3.3). Detailed

technical recommendations concerning the estimat:l.on and computa-

tion procedures used in this model identification strategy are

currently in preparation.

5. NON-UNIQUENESS AND ALIASING

An unavoidable consequence of estimating models involving some form

of stationarity from data collected at evenly spaced time points is the

----_.-... ------~- -- -------- ----- -------------------------
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presence of alias patterns. Aliasing is a widely recognized phenomenon

arising in the evenly spaced sampling of stationary time series, and it

leads to difficult que~tions in the interpretation of power spectral esti­

mates (see Blackman and Tukey [1958] pp. 30-35), The essence of aliasing

in that context is simply that several distinct frequencies may all be

compatible with a given set of evenly spaced data. This places a researcher

in the position of having to provide external substantive arguments in

order to rule out some of those frequences as being physically meaningless,

and thereby identifying the structural information supported by the data.

These judgments are often difficult to render and represent a form of non­

uniqueness in the identification of structural parameters (i.e., the pri­

mary frequencies) which is entirely analogous to the aliasing of inten-

sity matrices in mobility investigations.

We illustrate this phenomenon in the simple context of evenly spaced

sampling from Markov chains with stationary transition probabilities.

For a detailed discussion of the computational issues as well as interpre­

tation problems in empirical sociology, the reader should consult Singer

and Spilerman [1975]. In the present discussion, however, we simply wish

to emphasize the possible presence of aliasing in model identification

situations where Markov chains, as well as their mixtures, are utilized.

Example 6:

Suppose observations are taken at times to = 0 < t 1 < t 2 < •••• with

t k+l - t k = 1:1 > 0, and consist of matrices P(il:1,jl:1) having the representa-

tion e(j-i)I:1Qo where Q
O

' the intensity matrix of a 3-state Markov chain,

has the special form

-(ql+q2) q1 q2

QO
= q2 - (ql+q2) q1

ql q2 -(q1+q2)

(5.1)

._.. _----~-----_._---_._.~------_ ..~-------~-----------------
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where ql > 0, q2 > 0 (i. e., Q
O

is a 3 x 3 circulant mat rix) .

The question we wish to address is whether the matrix (5.1) eould be.

uniquely identified from a knowledge of the matrices {P(i~,j6)}, 0 < i < j < n.

Since the extent of possible non-uniqueness increases with the spacing

between observation times (see e.g., Cuthbert [1973]), it is sufficient

to check whether or not

1
- log P(i~,[i+l]~)
~

(5.2)

has a unique logarithm, namely QO' in the class of intensity matrices

~ = {Q: q .. ~ 0; q .. ~ 0, i~j; r q .. = OJ. Assume, for illustrative pur-
J.J. J.J • J.J

J

poses, that ql > Q2' Then (5.2) would uniquely identify QO if and only if

the spacing between observation times satisfied

< (5.3)

271'For all spacings ~ > , the calculations (5.2) would yield not only
-13 ql

QO as in (5.i), but also additional intensity matrices which play the role

of aliases. Figure 1 shows the relation between L(~) = (number of
~QO

branches of loge which are intensity matric~s) and 4 = (spacing of

the observation times).

Figure 1 about here

The critical spacings 4 ~ and ~+ at which L(~) increases are given by

:I

All aliases except those occurring at ~ = k~· are of the form

0 1 -1

QO + 271' t
-1 0 1

u'3 1 -l 0

where t can assume all integer values such that
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Figure 1. Number of Branches of the Logarithm which are Intensity Matrices,
as a Function of the Spacing Interval
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A researcher confronted with this list could only choose among the candi-

dates on external substantive grounds. For an indication of the variety

of critical spacings (~-,~+) in L(~) which can occur just within the class

of 3 x 3 circulant intensity matrices Q
O

(wHh ql > Q2)' observe that

and the only constraint on this ratio is

1 <

The isolated spacings, k~o
27Tk

k 1,2, ... , at which

k~Oo
'0

L(k~·) = ~, correspond to a situation in which e has repeated eigen-

values with non-distinct elementary divisors. This, in turn, leads to a

k~·Qocontinuum of -branches ,of log e which are intensity matrices. For a

detailed discussion of this phenomenon, first explicitly displayed by

J. Cuthbert [1973]" see Singer and Spilerman [1975].

The non-uniqueness illustrated in this example is typical of what

can happen in evenly spaced sampling of a Markov semi-group whose inten-

sity matrix has at least one pair of complex conjugate eigenvalues. How-

ever, a detailed understanding of the behavior of the function L(~) for a

variety of special semi-groups arising in sociology, demography, and

economics lies in the future.

6. ERROR STRUCTURES AND SENSITIVITY

Our previous discussion of testing and

I
"

\ '
identification strategies has

treated observations as though they were error-free. However, in any of



these data collection situations, the observations are contaminated by a

variety of errors and other uncontrollable sources of variability. Among

the most common influences of this sort are: misclassification of indi-

viduals, non-response to a survey, persons dropping out of a study before

its completion, and variation in background profile of individuals. S

Realistic models of these sources of variability and formal specification

of their relationships to the structural mechanisms discussed earlier are

currently in the preliminary development stage, Nevertheless, some use-

ful perturbation strategies can be recommended as a means of assessing the

sensitivity of identified structural parameters to noise in the data.

The importance of such sensitivity analyses is heightened, for

example, by the fact that a given set of empirically determined matrices

{
(j-i)l\QO)-

may be representable in the form e ) 0 ~ i < j < n, while

matrices within "error distance" of the data may be expressed in the form

{
(j-i)liQI)

e ,0 ~ i < j ~ n, where QO and Q
I

represent very different

structural mechanisms. Furthermore, matrices P(ili,jli) may not be embed-

6 'V •
dable in any Markov semi~group, while small perturbations P(ili,Jli)

19

P(ili,jli)e(small perturbation)

e(j-i)liQ for some Q s g.

Strategy 1:

'V
may well be representable as P(ili,jli)

Suppose observations are collected at evenly spaced time points

to = 0 < t l < t z < ••• t
n

, with t
i
+1 - t

i
= li > 0, and'that they yield

(j-i)liQO
matrices-. P (ili ,j li) representable in the form e , a < i < j < n, for- -
Qosg. Futhermore, assume that there is only one QOsg which generates

liQ
of the matrices P (ili., j li) . In particular, this means that e 0 has a

all

unique logarithm in Q even though more widely spaced observations (those
-> -

taken at intervals such as kli = 2li, 3li, . •• , etc.) may yield matrices

---------------------'---------- ------------- ------



I'

kllQOe whose logarithms have several branches in g.
I I

(lI+h)QO
Now compute e
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1for a suitably chosen small h. These calculations generate the matrix

lIQO hQO ,hQO
~ = e lie , where e is viewed as a perturbation array. i?' may now

have two branches of its logar~thm in g.

To make the discussion more specific, recall the circulant example

in section 5 and let 1I be a spacing such that the function L(lI) = 1 (see

figure l),-but L(lI+h) = 2.
"u (lI+h) QOThen P may be written as e

with QO f Ql' Futhermore, setting h = 0 in the semi-group generated by

lIQ
lQ

l
would yield e

lIQowhich could be viewed as a small perturbation of e

The point to be made here is that unique identifiability of structural

parameters (i.e., Q
O

) need not persist ~nder small perturbations of the

data .. In addition, Q
l

may represent a qualitatively very different mobi­

lity mechanism from QO' The virtue of the perturbation strategy is that

it gives a researcher some insight into the structure of a neighborhood

of his data, and thereby can act as a caution on the strength of conclu-

sions which may be reached about QO'.

Strategy 2:

Suppose that observations are again.'c.01lected at evenly spaced time

points and that they yield matrices {P(ill,jll)}, °< i < j ~ n, such that

1
(j-i)lI log P(ill,jll) E g (6.1)

for most pairs (i,j). However, assume that sev~ral matrices, say P(O,lI),

P(311,411), and P(O,3l1), do not satisfy (6.1). These violations may be

attributable simply to sampling variability and other sources of error,

and we are interested in knowing whether small perturbations in P(O,lI),

P(311,411), and P(O,311) would be consistent with (6.1) and coincide with



the logarithms of those matrices which already satisfy (6.1). To this
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end, compute the matrices Ql' Q2' and Q3 which are solutions of the respec-

tive variational problems

(i) min II 1. log P(O,li) - Q II
QE:g li

(ii) min II 1 log P Oli. Lfli) - Q II
QE:g li

(iii) min II 1 log P (0, 3li) - Q II
QE:g 3li

for a suitable choice of nona II· II. Then check whether or not

"R = P(3li,4li)
2

3liQ3'
and R

3
= P(0,3li) - e may

each be regarded as matrices with small enough entries to be classified

as "noise." If the answer, based on context dependent judgments of small-

ness, is affirmative and Ql ~ Q;Z ~ Q3' then we woul? still regard the full

set of data as compatible with a continuous-time Markov model. If the

answer is negative, then the structure of the residual matrices R
i

,

i = 1, 2, 3) can often suggest other models and conceptualizations of the

data.

Strategies 1 and 2 represent only the most rudimentary kinds of

sensitivity investigations suited to mobility studies. Much remains to

be done in this direction, including consideration 6f formal error models

and intensive examination of residuals such as the matrices {R.} in the
1.

above illustration, using some of the data sets mentioned in examples

3, 4, and 5 of section 3.

7. CONCLUSIONS

We have presented simple examples of five issues which are central

to the effective analysis of sociological data. However, each of these

topics is only in a preliminary stage of development, and extensive

investigation of a variety of data sets will be necessary before testing



and model identification strategies, suited to empirical sociology, can

be placed on a firm foundation. Among the more important open problems

related to the issues raised in this paper are:

(i) testing and identification of models incorporating continuous­

state spaces (which would be applicable, for example, to the analysis of

income dynamics), using rather granular data.

(ii) development of an effective methodology to test observations

for compatibility with models such as those in section 3, but which pro~

hibit transitions between particular pairs of states, as specified by a

substantive theory.

(iii) testing and identification of models of open heterogeneous

social systems, using fragmentary data from several sources and of

differing quality.

(iv) specification of designs for observational studies which will

facilitate comparisons among several models. This should include a

detailed assessment of the appropriateness of retrospective data collec­

tion versus a panel study for particular sorts of problems, and a con­

sideration of the optimal frequency of reinterviewing when the panel

format is used.

22
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NOTES

lThe symbol "",," over a quantity means that it is estimated from data.

2
See F. R. Gantmacher [1960J for a lucid discussion of roots of

matrices.

3In this instance, the empirical process might follow'a non time-

homogeneous Markov chain (e.g., P(O,t
l

) = M
I

• M
2

where M
l

and M2 are

distinct stochastic matrices regulating successive annual transitions).

4 - +The symbol ~ (respectively, ~ ) corresponds to the minimal spacing

for which a negative (respectively, positive) multiple of 2TIi can be added

to the complex conjugate eigenvalues of Q
O

and thereby define eigenvalues

~-Q ~-Q
of a different intensity matrix, call it QI' such that e a = e 1.

5 .
Considerations of parsimony may lead to only a few of the major

sources of variability in a population being explicitly introduced in a

mathematical model. The remaining variables can be informative with

respect to residuals from this base-line structure.

6The symbol "." can mean either matrix addition or matrix multipli-:'

cation depending on the application.

7 ~
By "suitably chosen" we mean small enough so that P may be con-

sidered as being within error distance of the original matrix P.
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