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ABSTRACT

This paper examines the possibilities of carrying out unbiased

evaluations for compensatory education programs when group selection

is not random and/or when pretests are unavailable. Four models are

presented which demonstrate that bias can be avoided if particular

selection procedures are used. The models are then considered for

their usefulness in evaluating Head Start by using the data collected

for the Westinghouse Learning Corporation-Ohio University study of that

program. Suggestions are made on how the appropriate model could be

selected and how the presence of bias could be determined. In the final

section of the paper the importance of correct specification of the model

and knowledge of the selection procedures are shown to be crucial for

unbiased evaluation of nonrandom experiments and ex post facto analyses.

;'



1. Introduction

In recent years economists have become in~reasing1y interested in

evaluating compensatory education programs such as Head Start. Fortunately,

psychologists and sociologists have already done extensive work in this

area enabling economists to build upon an excellent foundation .. In

this paper we shall examine the possibilities of carrying out an unbiased

evaluation of compensatory programs by using regression analysis. In particular

we will examine quasi-experimental situations where random assignment was not

used and/or where an ex post facto analysis must be used because there is no

pre-treatment information available. This does not imply that

quasi-experimental analyses are more desirable than true experiments,

but that when a quasi-experimental analysis is the only feasible means

of carrying out an evaluation, the analysis may not lead to bias in

the estimates of treatment effect. Thus, we shall demonstrate that

the following statement by Campbell and Er1ebacher (1970; p. 185) is

not as general as they assert:

Evaluations of compensatory educational efforts such as Head
Start are commonly quasi-experimental or ~ post facto. The
compensatory program is made available to the most needy, and
the "control" groups then sought from among the untreated
children in the same community. Often this untreated population
is on the average more able than the "experimental" group. In
this situation, the ususa1 procedures of selection, adjustment,
and analysis produce systematic biases in the direction of
making the compensatory program look deleterious. Not only
does matching produce regression artifacts in this direction,
but so also do analysis of covariance and partial correlation.
These biases of analyses occur both where pretest scores are
available and in ~ post facto studies.

To prove our points we shall present several models with various

relationships between the appropriate variables for an evaluation of a

compensatory education program. We shall then present an algebraic
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analysis to determine whether or not regression analysis; will lead to

an unbiased evaluation. Although regression analysis is used throughout

the paper, it should be noted that regression analysis is mathematically

equivalent to analysis of covariance so that our results could be

expressed equally well in terms of analysis of covariance. In addition

to analytical proofs, we have also run Monte Carlo computer simulations

of several of the models. These simulations may be helpful to those

who prefer a more graphic, empirical demonstration of the points to

be made, although we cannot really prove a point by this technique.

Several simplifying assumptions will be made throughout the paper.

Relaxation of some of these assumptions can lead to important changes in

the models and make the analysis presented inappropriate. Thus, it is

dangerous to extrapolate the results found below to models where the

basic assumptions are violated. The,assumptions common to all 'of the

models presented are~

1. Linearity and additivity of all relationships. We shall not

consider models where a compensatory program produces more (or

less) gain for more able children.

2. Zero growth rate of ability over time. This assumption assures

us that ,ceteris paribus a 'child who has received no treatment will

have the same expected score on a test given at various times over

an interval.

3. The treatment has no effect. This assumption is only used to

make the computer simulation plots easier to interpret.

4. The treatment is :discrete rather than continuous. We assume

that there is only one level of treatment and that a child either

receives the treatment or does not receive it. (This assumption

is made only for convenience.)
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We shall now present four possible models for an evaluation of

Head Start. The models presented below represent only a few

of the many conceivable ones, and are given only as possibilities.

To make comparison of the models presented easy, we shall use the same

notation throughout the paper. The variables which are included in

the models are:

Y posttest score

*Xl true ability at the time of the pretest

Xl pretest score

X2 socia-economic status

Z dummy variable for treatment defined as

Z = j) .if received tr.eatment (i.e., in experimental group)
\.. 0 if did not receive treatment (i. e., in control group)

u disturbance term associated with the pretest

v disturbance term associated with the posttest

2. The Campbell-Erlebacher Two Populations Model

Campbell and Erlebacher (1970) have developed a model to demonstrate that

if subjects in the experimental and control groups are selected from

two different populations with the control population having a higher

mean, regression analysis can produce a spurious negative treatment

effect. Although a computer simulation rather than a formal model was

used in their paper, it is not difficult to construct the general model

that Campbell-Erlbacher deal with implicitly:
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Experimental Group

~~

(IE) XI=XI+u

*(2E) Y = Xl + v

(3E) * - 2Xl N(llE' CJ*)

(4E)
2

u - N (0, (5 )

(SE) v _ N(o, (52)

* *( 6E) c(u, Xl) = c(v, Xl ) = c(u, v) 0

Control Group

(IC)

*(2C) Y = Xl + v

(3C) * , 2
Xl - N(llc'CJ*)

(4C) u - N(O, (52)

(SC) v ~ N(o, (52)

* *(6C) c(u, Xl) - c(v, Xl) .. c(u,v)=O

and where II >].l.
C E

Since many of the features presented in this model are common to

the subsequent models presented, it may be helpful to describe some

of the implications of the model. Note that since the disturbance terms

have zero means, the pretest and posttest scores will be unbiased but

fallible measures of true ability. The assumption that u and v are

uncorrelated implies that if a child scores higher than his true ability

on the pretest we have no a priori knowledge concerning whether he will

score higher or lower than his true ability on the posttest. The model

excludes the possibility of growth in true ability between the taking

of the pretest and the taking of the posttest. (Proportional growth

could be introduced into the model by replacing (2E) and (2C) with an

*equation of the form Y = aX
l

+ v, and constant growth could be introduced

*by making Y = b + Xl + v.)

We may now solve for E(Y/XI ), the conditional expectation of

posttest given pretest, for the experimental group:



(BE)

(9E)

where P

*V(Xl )
liE - --*7---­

V(X
l

) + V(u)

= (1 - P)~ + PXl

· ]JE
+ V(u)

5

Since 0 ..:: P ..:: 1, the slope of the conditional expectation is less than

unity, so that we have regression towards the mean. Since the only

difference between the two pop~lations is in their means, the conditional

expectation for the control group is:

(9C)

Now define the treatment variable Z as follows:

(10)
Z = [1 if a subject had the treatment

~O if a subject did not have the treatment

In the Campbell-Erlebacher example Z corresponds exactly with group

membership:

(11)
Z = (I if a subject was in "Lower" population

,--0 if a subj ect was in "Higher" population

(9C) and (9E) can be rewritten as:

(12) E(Ylxl,z = 0) = (l-P)]Jc + PXl

E(Ylxl,z = 1) = (l-P)]JE + PXl
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Since Z takes on only the values of 1 and 0, (12) and (13) can be combined

to get:

(14)

Clearly, the coefficient of Z does not measure the effect of the

treatment; rather it just reflects the difference in population means.

Group membership is serving as a proxy for true ability.

The model presented above corresponds exactly to the model

developed by Campbell and Erlebacher. We have also prepared computer

Simulations of the model with 500 and 2000 observations. The values for

*Xl in the experimental group were selected at random from a normal

*population with a mean of 4. a and variance of l.0. The values of Xl

for the control group were selected at random from a normal population

with a mean of 6.0 and a variance of 1.0. For both populations the

values for u and v were selected at random from a normal population with

a mean of 0.0 and a variance of 1.0. The values for Xl and Y were

*computed as specified in the model; i.e. Xl = Xl + u. A summary of the

statistics for the simulation with 2000 observations is presented in

Table I. The results corroborate the analysis of the model--if selection

for treatment is based on population membership we will underestimate

the effects of the treatm~nt. (In this case a null treatment is

estimated to lower posttest scores by .9955 points.)

The simulation with 500 observations was run so that the results

could be graphically displayed by a plotter. The pretest-posttest

pair for each observation was plotted with a vertical tally used to

indicate the points for the experimental group and a horizontal tally

used to indicate the points for the control group. The regression

equation fitted to the sampie of 500 observations is:
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; = 3.167 + .4694X - 1.104Z, >R2 = .5123
(13.718) (12.713) (-8.751)

where the numbers in parentheses are the t ratios. The theoretical

values for the regression equatipn, that is the values we would obtain

from an infinite sample, can be calculated by substituting the

population parameters chosen for the simulation into the model. The

theoretical ~quation is:

Y = 3.00 + .500 Xl - 1.00Z

The regression equation for the simulation with 500 observations has

been drawn in. The vertical distance between the two lines represents

the value of the coefficient of Z which could be incorrectly interpreted

by an .evaluator as the treatment effect.

The models presented in this section and the following section

are structure~ so that the program cQuld be evaluated without bias by

using gain scores as the dependent variable in the regression and the

dummy variab1eZ as the sole indep~ndent variable. The gain score G

is defined as G = Y - X for each observation. Campbell and Erlebacher
1

(1970, p. 197) note that the gain scores approach would avoid the bias problem,

but they warn that IIgainscores are in general such a treacherous quicksartd,

e.g. are so non comparable [sic] for high versus low scores within any

particular sample, that one is reluctant to recommend them for any

purpose. 1I This warning has been given by other psychometricians such

as Behrnstedt (1969) and Cronbach and Furby (1970). Gain scores

produce bias when we introduce complications such as heteroskedasticity

and nonzero growth rates into the models. Thus Campbell and Er1ebacher

have presented one model where regression analysis can lead to a biased

estimate of treatment effect in a quasi-experiment.



Tabl~ 1

Statistics for Simulation of Campbell-Erlebacher Model

. with 2000 Observations

1. Means, Standnrd Derivations, and Variances

Variable Mean Standard Deviation Variance

y 4.998 L 704 2.903

~ 5.024 L 738 3.022

Z .500 .500 .250

2. Covar.iance Ha trix

8

"

.y

.2.903

Xl

1.956

3.022

z
-,.4855 Y

";.4823. Xr
.2501 Z

3. Correlation Matrix

y

1.0000
\

.6603

1.0000

Z

-.5686 Y

-,.5548 Xl

1.0000 Z

4. Regression Equation (values in parenth~$es are t ratios)
. A

Y = 3.042 + .4883X
l
-.9955Z

(25.672) (26.073) (-,15.073)

F ratio

R
2

Y = Posttest

979.3

.4951

is..::: Pretest

1. ::: Dummy variable for" treatment
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3. Selection on True Ability for a One Population Model

It is possible to object to the Campbell-Erlebacher model on the

grounds that ability is not necessarily distributed in two separate

normal distributions but instead in one larger population. The model

developed below modifies the Campbell-Erlebacher model so that there is

only one population; to create the conditions similar to the Campbell-

Erlebacher model for the computer simulations we can select the

experimental and control groups on the basis of true ability. It should

be noted that the model is a general one for regression when there are

errors in one regressor; we are simply applying the model to a

Head Start evaluation.

We suppose the mode! to be:

*13 0 + SlXl + SZZ + v

where the variables are defined in the same way as in the introduction.

If Head Start has no effect, as we assume in· the simulation, then Sz "" O.

*We further assume that Xl is unavailable for the evaluation.. What

we do have available is the pretest score:

(16) *X = X· + u
1 1

*where u is independent of v, Xl'

*(17) c(u,Z) = c(u,v) ~ c(u,Xl ) a

and Z. Note that

*e(v,X
l

) m c(v,Z) = O.

*In addition, we shall assume that u, v, and Xl all have normal distributions.

We are interested in determining if the regression coefficient of Z will

*-be the same when we regress Y on Xl and Z rather than Y on Xl and Z.

Thus when we determine

(18) E(Y/Xl,Z) = a6 + a i xl + aZz,

will al = Sl and a
Z = SZ?
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First, let us make the following definitions:

* *(19) 011 = V(Xl ) , 0zz = V(Z), 0lZ = c(Xl , Z)

P =

Note that the variable P in th1s model is defined as the ratio of the

variance of true ability to the variance of the pretests for the entire

population, whereas in the Campbell-Erlebacher model P was the ratio of

the variances within each group. The vari~ble r 2 is the coefficient of

*determination we would obtain from a linear regression of Xl on Z,

2
and we know that 0 < r < 1. We can now use the normal equations found

in Johnston (1968, p. 56) to solve for al and a
2

in terms of 81 and 8
2

:

c(Y~Xl) . V(Z) - c(Y,Z) . c(Xl,Z)

al = V(Xl ) . V(Z) - c(Xl,Z) . c(Xl,Z)

(20)

PSl (OllOZZ - °lZOlZ)
=

°llOZZ - P 0lZOlZ

= P(1-r
2

) . Pl
al 1 _ pr 2

For a2 we find:
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• 13
1

Thus we find that in general a1 ~ 131 and aZ ~ 13Z'

Since we are trying to evaluate the effects of Head Start, we will be

particularly interested in knowing when a Z = 13 Z' One possibility of

this is when P = 1; it this is the case, however, then V(u) = 0 and

*Xl = Xl' Tnus P = 1 means that we have no measurement error and that we can

directly calculate 131

suffices for a
2

= 13Z'

and 13Z' Amore interesting case is that alZ = 0

*But O"lZ = 0 is equivalent to E(Xl!Z) = E(X~) ofor o

both values of Z; thus the mean of true abilities must be the same in

the experimental and control groups for a Z = 13Z' This would presumably

occur if treatment were determined randomly.

*To prepare the computer simulations for this model, values of Xl

were selected at random from a normal population with a mean of 5.0 and

a variance of Z.O. The values of u and v were selected at random from

a normal population with a mean of 0.0 and a variance of 1.0. The true effect

of Head Start, 13Z' was assumed to be 0.0, as was the constant SO' The'

observations were assigned to the experimental and control groups on

the basis of true ability as follows: Those who were in the upper half

of the sample on the basis of true ability were placed in the control

group; those who were in the lower half were placed in the experimental

group which is analogous to the Campbel1-Erlebacher model where treatment

depended on true ability. Simulations were run with 2000 and 500

osbservations. The results of the simulation with 2000 observations are

contained in Table II. The theoretical values for the regression equation,



Table 2

Statistics for Simulation of One Population-Selection on

Ability Model with 2000 Observations

1. Means, Standard Deviations, and Variances

Variable Mean Standard Deviation Variance

y 5.032 1. 711 2.928

Xl 5.030 1.696 2.878

Z .500 .500 .250

2. Covariance Matrix

y Xl Z

2.928 1.925 -.556 y

2.878 -.562 Xl
.250 Z

3. Correlation Matrix

y Xl ?:

1.000 .663 -.650 y

1.000 -.662 Xl
1.000 Z

4. Regression Equations (values in parentheses are t ratios)

Y = 3.572 + .418X1 - 1.284Z

(26.649) (19.983) (-18.103)

F ratio 1075.6

R2 .5186

Y = Posttest

Xl = Pretest

Z = Dummy variable for treatment

....

13
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calculated from the formulas in Goldberger (1972) are:

Y = 3.57 + .42Xl - 1.3lZ

A similar simulation with 500 observations was also run, and the results

are plotted in Figure 2 with the regression lines drawn in. The equation

produced from this simulation was:

Y = 4. 00 +
(14.14)

.334Xl - 1. 40Z,
(7.46) (-9.66)

.4673

which is similar to both the simulation with 2000 observations and the

theoretical equations. As in the Campbel1-Erlebacher model, if the

Head Start program is made available to those who are most needy, an

evaluation which did not take this selection procedure into account would

lead to biased estimates of the treatment effect. Thus we have a second

case where nonrandom selection will lead to bias in the evaluation •.

Note that if we select members for the experimental and control

groups on the basis of pretests (Xl)' we cannot say whether the above

*procedures will produce biased results even though ~(Xl ,Z) :f O. The

model does not apply since c(u,Z) :f a and assumption (17) is violated.

4. Selection on Pretests for a One Population Model

We now consider a model where a child is assigned to ·either the

Head Start or the control group on the basis of his pretest score rather

than his tr.ue ability. Since pretest scores are correlated (although

not perfectly) with true ability, when we select on the former we are

also selecting, in a sense, on ability. Lord and Novick (1968, p. 141)

refer to these two methods of selction as explicit selection and

incidental selection: Keeping in mind that we are dealing with a single

population, we may specify our model as follows:



(22)

(2:n

(24)

(25)

(26)

(27)

*Xl = Xl + u

*Y = Xl +v

* 2Xl - N(]l,O"*)

2 .
u - N(o, °" )

2
v - N(o,O" )

* *c(u,Xl )= c(v,Xl ) = c(u,v) = 0

16

If we solve for E(Ylxl ) as we did in (7E) - (9E) we find:

(28) E(Ylxl ) = (l-P)]l + PXl

*V(Xl )
where once again P = --=---­

V(X~) + V (u)

Lord and Novick (1968, p. 143) point out that "since the true

regression of Y on X is linear, the ••. regression function is not

affected by explicit selection on X; hence the regression coefficients

will be the same in the unselected [entire] group and in any selected

group." Thus, suppose that those who score in the lower half on a

pretest are assigned to the experimental (Head Start) group, and those

who score in the upper half are assigned to the control group. Assuming

once again that the treatment has no effect, we find:

(29)

(30)

E(ylxl ) =

E(Y IXl)

(l-P)]l + PX
l

for the experimental group, and

(l-P)]l + PXl for the control group.

__ fl for experimental groupDefining a variable Z such that Z o for control group

(29) and (30) can be written as:

(31) E(YIXl , Z=l) = (l-P)]l + PXl

(32) E(Y/Xl , Z=O) = (l-P)]l + PXl

so that

(33) E(Y/Xl,Z) = (l-P)]l + PXl + O~Z
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Thus we find that explicit selection on Xl' the fallible; indicator of

*Xl' does not produce a biased t~eatment effect. Even though the control

group is more able, there is no bias in the estimates of the effects of

Head Start; the dummy variable Z provides no information about the child's

ability that is not already contained in the pretest score (which

determines the value of Z). Campbell (1969) refers to this type of

evaluation as a "regression discontinuity design" and reconnnends its

use when evaluators are unwilling to use random selection procedures.

Goldberger (1972) has demonstrated that this type of evaluation is .

about 9/25 as efficient as a random selection experiment with equal

sample size.

Computer simulations with 2000 and 500 observations were conducted

with this model. The data used in the simulations are the same for the

simulations for the previous model except that group membership (Z)

was determined by pretests rather than true ability. The theoretical

values for the regression equations are

Y = 1.67 + . 67Xl + O.OZ

The results of the simulation with 2000 observations are sunnnarized in

Table III. The points from the simulation with 500 observations are

plotted in Figure 3 with the fitted regression line drawn in. The

fitted equation for the simulation with 500 observations is

Y = 2.04 + .596Xl - .098Z ,

(5.10) (9.65) (-.486)

2R = .3675

Both simulations verify the analysis and show that an evaluation

conducted in this manner will lead to unbiased estimates of the effects

of Head Start. Thus, if the "creaming" or "scraping" techniques were



Table 3

Statistics for Simulation of One Population-Selection on

Pretests Hodel \Jith 2000 Observations

1. Means t Standard Deviations, and Variances

18

Variable Nean Standard Deviation

y 5.032 1.711

x.t 5.030. 1.696

Z .500 .500

2. Covariance Matrix

.y Xl Z

2.928 1.925 -.453 Y

2.878 -.679 Xl:

.250 Z

.3. Correlation Matrix

Variance

2.928

2.878

.250

y

1.000
Xl

.663

1.000

Z

-.529 y

-.800 Xi

1.000 Z

4. Regression Equation (values in parentheses are t ratios)
"'.
Y = 1.637 + ;673X

1
+ .019Z

(8.864) (23.869) (.197)

l" ratio

R2
783.2

.4396

Y = Pastest

\ ::: Pretest

Z = Dummy variable for treatment
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used for group selection on the basis of pretests, we can still carry

out an unbiased evaluation,

5, A One Population Omitted Variable Model..

We now examine a more complex model where socio-economic status (SES)

is allowed to have an effect on posttest scores and where no pretests

are available; since true ability is unobserved, we have an omitted

variable problem rather than the errors in variable problem encountered

in the previous models, The model to be considered is

(34)

where Y = posttest score

*Xl = true ability

X2 = SES

Z = treatment variable

v = disturbance term

*We shall assume that Xl' X
2

, and v have normal distributions and that v

* the valueis independent of Xl and X
2

, Presently we are interested in

of S3 in (34) which measures the effectiveness of the treatment, If

*we had observations on Y, Xl' X2, and Z we could run an o~dinary least

squares regression to get an unbiased estimate of a3 , However, we shall

*assume that Xl is unobservable, and we must determine if the regression

will yield an (Y,3 = S3' For convenience we define. the following terms:

* * *(36) °11 = V(X1) °12 = c(X1 ,X2) 0 1Z = c(X1 ,Z)

°22 = V(X2) 0 2Z = c(X2 ,Z) 0 ZZ = V(Z)

*0 1y = c(X1 ,Y) 0 2y = c(X2,Y) 0 ZY = c(Z,Y)
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We now write the normal equations for (34):'

Similarily, the normal equations for (35) are:

(40) G22U2 + G2ZU3 = GZy

(41) G2ZUZ + GZZU3 = GZy

We now solve (40) and (41) for u3 and use equations (37) , (38), and (39)

to express the answer in terms of the 13 '·s:

GzzGZy -GZZGZy

GZZGZZ - GZZGZZ

=
GzZ(GlzBl *GZZB2 + GZzB3) - GZZ(G1ZBl + G2ZS2 + GZZB3)

GZZGZZ - GZZG2Z

(42)
B + GlZGZZ - GlZG2Z ', B

= 3 GZZGZZ ~ GZZG2Z . , 1

This is the standard result of running a regression without including

a relevant var1able, It can be demonstrated that

(43)

*where blZ '2 is the partial regression coefficient of Z when Xl is

regressed on Z and XZ' (This is a mechanical relationship and does not

*depend on a causal model where Xl is determined by Zand X2,)
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Thus in general OJ # S3 with the extent and direction of the

*inequality depending upon ~ and the variances and covariances of Xl'

X2 , and Z. There are several cases where OJ = S3 and the omitted

variable presents no problem. One such case is when S = 0, but if4

S4 = 0 true ability has no effect on test scores and the test would be

worthless. Another case is that when alZ = 0 and either a12 = 0 or

a
2Z

= 0 then a3 = S3' In an experiment where children were randomly

assigned to the two groups the sample covariances for alZ and aiz would

presumably be 0, and an ordinary least squares regression would produce

an a3 that is an unbiased estimate of S3' Note that in this model a
2Z

=··0

is not a sufficient condition for eliminating bias. Since partial

regression coefficients always have the same signs as the partial

correlation coefficients, r lZ ' 2 = 0 is a sufficient condition for

blZ ' 2 = 0 and hence for a
3

= S3' Thus, if children at any given SESlev.el

are assigned randomly with regard to true ability to either the experimental

or control group, a regression analysis will produce no spurious treatment

effect. To clarify this point, consider the following example. Suppose

that children are st~atified by SES into three groups--high, middle, and

low. Further assume that the administrators of a Head Start program are

primarily interested in helping those children who are most disadvantaged.

Then assume that 90% of the low SES group were selected at random and

assigned to the Head Start group with the remaining 10% assigned to the

control group. For the middle SES group we shall assume that 50% of the

children were selected randomly and assigned to the Head Start group

with the remainder assigned to the control group. Finally we assume
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that for the high SES children 10% were selected randomly and assigned

to the Head Start group and the other 90% were assigned to the control

group. If this selection procedure is used we know that rlZ ' the simple

correlation of ability and treatment, will not be 0 since most of the

abler children will be assigned to the control group (assuming that

ability and SES are positively correlated). The random selection

within each SES group assures us that r lZ ' 2 ' the partial correlation

between ability and treatment controlling for SES, will be equal to O.

Thus if we run a regression of Y on X2 and Z for a sample that was

selected in this manner the a
3

obtained will contain no spurious treatment

effect.

Computer simulations of the madel with the selection procedure

described above were carried out with 2100 and 600 observations. The

true ability scores were selected randomly from a population with a

mean of 5.0 and a variance of 1.0. The SES values for each observation

were set equal to the true ability score plus a disturbance term selected

randomly from' a normal population with a mean of 0.0 and a variance of 1.0.

To determine the treatment group for each observation the data were sorted

by SES with the upper third classified as "high SES", the'middle third

as "middle SES" and the lowest third as "low SES". A random number for

each observation was then selected from a rectangular (uniform)

distribution with a range of 0.0 to 1.0. This random number was used to

determine whether the observation was placed in the experimental group

or the control group. For "low SES" observations, the child was assigned

to the experimental group:if the random number was greater than .10; otherwise

he was assigned to the control group. Children in the "middle SES II. classifica­

tion were placed in the experimentaL group if the random number was greater

-._--.... _---._------- ~~-
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than .50, and children in the "high SES" group were assigned to the

experimental group if the random number was greater than .90. The values

of v were selected at random from a normal population with a mean of 0.0

and a variance of 1.0. Posttest scores were then determined from equation

(34) where the S' ·values were assigned as So = O. 0, (31 = 1. 0, (32 = .20, and

S3 = 0.0; once again the simulation assumes that the true effect of the

treatment is nil. A summary of the simulation with 2100 observations

appears in Table IV. The pretest-posttest points from the simulation with

600 observations are shown in Figure 4 with the regression lines drawn in.

The fitted equation for this simulation is
A

Y = 2.48 +
(10 .6)

.692 X
2(16.6)

+ 2.037 Z, R = .3847.
(.482)

The computer simulations confirm the conclusion that so long as group

assignment is· random within each SES group there will be no spurious

treatment effect.

Although three SES groups were used in this example, there would

be no spurious treatment effect regardless of the number of SES groups;

the spurious treatment effect is avoided 60 long as group assignment is

random within each SES group.

6. AEplications of the Models to the Westinghouse Head Start Evaluation

The primary intention of this paper has been to demonstrate that

under some circumstances ex post facto and other quasi-experimental

compensatory education evaluations can lead to unbiased estimates of

treatment effects. In this section various models a.re considered for

their usefulness in carrying out an evaluation of Head Start based on

the data collected for the Westinghouse Learning Croporation-Ohio University

study of Head Sta.rt (Cicarelli, et al., 1969). The Westinghouse study'
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T~ble 4

Statistics for Simulation of One Population-Random Selection

Within Each SES Group with 2000 Observations

1. Means, Standard Deviations, and Variances

Variable Mean Standard Deviation
y 6.01 1.533

Xz 5.04 1.430

z .494 .500

2. Covariance Matrix

y X2 Z

2.350 1.361 -.217 y

2.044 -.428 X2
.250 Z

3. Correlation Matrix

Variance

2.350

2.044

.250

y

1.000

X2
.621

1.000

z
-.354

.... 599

1.000

4. Regression Equation (values in parentheses are t ratios)
A

y = 2.527 + .683X2 + .0822·

(18.08) (29.81) (1. 26)

F ratio

R2

Y = Posttest

658.9

.3.859

X
2

= SES

Z = Dummy variable for treatment
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was an ex post facto analysis carried out for the Office of Economic

Opportunity in 1969 to determine the cognitive and psychological benefits

children received from Head Start. The main conclusion of the

Westinghouse study was that Head Start had virtually no effect on

cognitive test scores. The conclusions of the Westinghouse study have

been controversial, with criticisms coming from government officials

and academic social scientists. It is beyond the scope of this paper

to present a major critique of the study, but some suggestions will be

offered describing how the models presented in this paper might be

applied to the Westinghouse data.

To carry out the Westinghouse study, a random sample of 300 Head

Start centers was selected from a list of all Head Start centers in the

country. From the original sample a subsample of 104 centers was

selected for analysis ..1he final sample contained 75 centers with

summer Head Start programs and 29 with full-year programs. Eight

alumni were selected at random from each center who were in the first,

second, and third grades at the time the study was carried out. Then

an equal number of control students was selected from the same school

by a matching procedure. Each control student was matched to a Head

Start participant on the criteria of age, race, sex, grade and

kindergarten attendance. Each student was then given a battery of tests

to measure cognitive development and attitudes. The parents of the

children were interviewed to collect information on the socio-economic

and demographic characteristics of the children. In the following discussion

we shall only consider models that can be applied to the data collected for

evaluating summer Head Start for children who were in the first grade at

the time of the study; this minimizes the problems of growth rates and

interactions between Head Start alumni and their peers.
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Since the Westinghouse data was collected ex post ~acto., there are
I

no pretests available. If several assumptions are made, however, we

can interpret the SES information collected as a type of pretest. The

assumptions that must be made to view either a composite index of SES

(such as the Hollingshead Index) or a vector of SES variables as a measure

of true ability prior to Head Start are: (1) that bhe SES variable or

vector of variables is a function of ability; and (2) that exposure

to Head Start does not affect the SES of a child. The first assumption

*can be stated mathematically as X2 = a O + a1X1 + u in the notation of

this paper. If these two assumptions are made we can determine how the

models presented in sections 2, 3, and 4 can be applied.

The Campbe11-Er1ebacher model has the property of being unrefutable;

it assumes that the children in the Head Start group were selected

form a less able population than the control group. There is no way

of testing such an assertion when participation in the program is

voluntary rather than random. This leads Campbell and Er1ebacher to

conclude that only randomization can avoid bias.

The models presented in sections 3 and 4 can be tested to some

extent. To determine if group selection was done on the basis of true

ability, a discriminant analysis could be used to determine if the

experimental and control groups differed significantly on some relevant

measure of SES (either a composite index or a vector of SES variables).

The point made by Cicare11i (1970, p. 213) that a small but significant

difference in SES leads to a small artifact (bias) is incorrect; to

make a statement of this type we must know the structural relationship

between SES and ability. It is not difficult to construct a model where

the bias would be large. The statement by ~lans and Schiller (1970,

p. 217) that "Regression artifacts ... would seem to be at a minimum
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when the matching was carried out on such variables as sex, race, and.

kindergarten attendance" :is incorrect, too. The analysis in section 3

shows that matching on SES as well as their demographic variables would

have been preferable to matching on the qualitative variables alone.

T4e models presented in sections 4 and 5 demonstrate that analysis

of the data, collected for the Westinghouse study, will provide unbiased

results if particular se1~ction procedures were used, even if there is a

significant difference in SESbetween the Head Start and control groups.

Thus, if a discriminant analysis shows a significant difference between

the two groups, the ~va1uator must be prepared to closely reexamine Head

Start selection proc~dures. Murphy (1969) argu~s that selection within

SES groups was not random; how~ver, her assertions are based on personal

experience and may not apply to the Head Start population, in general,

and to the Westinghouse study, in particular. Clearly more research must

be done before any 'conclusions can be drawn. Campbell has suggested that

even if SES was used to determine group membership as in section 4, the

SES index used in a regression analysis may be different; in this case the

bias that would remain depends upon the reliability of the two SES measures.

7. Conclusions

We have demonstrated that ex post facto analysis and other quasi­

experiments can be valuable tools for program evaluation under some

circumstances. In general these tools have the advantages of being less

costly than random experiments and enable the evaluation to be carried out

quickly. For a nonrandom experimental evaluation to be unbiased, however,

the evaluators must understand the selection procedures used for the experi­

mental group and choose the. control group properly; there are some cases
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where an ex post facto anal.ysis cannot be· undertaken without introducing

bias. In defense of the Westinghouse study it should be noted that the

study was comm~ssioned by OEO to determine quickly and cheaply a rough

idea of how well Head Start was working; .OEO has also undertaken a more

complete longitudinal study of He~d Start which has not yet been completed.

The major shortcom~ng of the Westinghouse study is that the researchers

failed to specify the model with which they were implicitly dealing.

Campbell and Erlebacher presented one model which showed how the

Westinghouse data could lead to biased results. In this paper we have

presented several additional models, some which would not lead to bias.

It is the responsibility of any evaluator to explicitly state and defend

his model; only in this way can w~ ascertain the absence or presence of

bias in evaluations.



31

BIBLIOGRAPHY

. Althauser, Robert P. and Donald Rubin.
to the Mean in Matched Samples. 1I

(1971): 206-214.

IIMeasurement Error and Regression
Social Force~ Vol. 50, No. 2

Bohrnstedt, George W. 1I0bservations on the Measurement
E.F. Borgatta, ed., SociologicalMet~Edology1969.
Jossey-Bass Inc., 1969.

of Change," i.n
New York:

Breiter, Carl. IISome Persisting Dilemmas j.n the Measurement of Change,"
in C.W. Harris, ed., Problems i.n Measuring Change. Madison:
University of Wisconsin Press, 1967. _. __._.-

Cain, Glen G. and Robinson G. Hollister.
Social Action Programs. '.' Ma,<Uson:
Discussion Paper Lf2-69.

"The Methodology of Evaluating
Institute for Research on Poverty

Ie

Campbell, Donald T. "Reforms as Experiments." American PSy'choloi1ii~_

Vol. 24, No.4 (1969): 409-429.

Campbell, Donald T. and Albert Erlebacher. IIHow Regression Artifacts in
Quasi-'Experimental Evaluations Can Mistakenly Make Compensatory
Edncation Look Harmful, II in J. Hellmuth, ed., C0!llP~~E:fl.§:.tor'y_E4}lca.!:.!oll:

A National Deb<lte. Vol. III of Th~...R!:,?advan!:..<:!f,ed CbJ.1cl. Ne'1;>7 York:
Bru~merht'12ef'-1970.

Campbell, Donald T. and Albert Erlebacher. "Reply to the Replies," in
J. Hellmuth, ed., Comp~at0.E..Y.: Ecluc.ation: A National Debate, VoL III
of The Disadvantaged Child. Ncn York: Brunner/:H2.zel, 1970.

Campbell, Donald T. and Juli.an C. Stanley. Experim§.J;l.tal and Q!lasi­
~eri'1J1:~D:!:£l} Designs for Research. Chicago: Ran.d McNaJ.ly & Co., 1963.

Cicarelli, Victor G. "Head Start: Brief of the Study,1I i.n Davi.d G. Hays,
ed., Britannica~eviewof AmericaJ?, Education Vol. 1. Chicago:
En.cyclopedia Britannica, 1969.

Cicarelli, Victor G. liThe Relevance of the Regression Artifact Problem
to the Westinghouse-Ohio Evaluation of Head Start: A Reply to
Campbell and Er1ebacher," in J. Hellmuth, ed., Compensatory Educati.on:
A National Debate, Vol. III of The-p_!~advantaged Cq~ld. New York:
Brl.lnner!I1azel, J.970,

Cicarelli. Victor G., John W. Evans, and Jeffry S. Schiller. "The Impact
of Head Start: A Repiy to the Report Analysis." Harvard Educational
Review Vol. 4·0, No. 1 (1970): 105-129.

'-'-~---~----'-'-'----'-'-- .. _--_._ .. _--.- ._,----_. -- ------ ~--~-~--~- -- --- --_._---~--~------.__.-_.._-----_._-----_.._--------



\ .,

32

Cicare11i, Victor G., et a1. The Impact of Head Start: An Evaluation
of the Effects of Head Start on Children's Cognitive and Affective
Development Vol. I and Vol. II. A report presented to the Office
of Economic Opportunity pursuant to contract B89-4536, June 1969.
Westinghouse Learning Corporation, Ohio University.

Cochran, W.G. "Errors of Measurement in Statistics." Technometrics
Vol. 10, No.4 (1968): 637-666.

Cronbach, Lee J. and Lita Furby. "How We Should Measure 'Change '-Or
Should We?" Psychological Bulletin Vol. 74, No.1 (1970): 68-80.

Evans, John W. "Head Start: Comments on the Criticisms," in David G.
Hays, ed., Britannica Review of American Education Vol. I. Chicago:
Encyclopedia Britannica, 1969.

Evans, John W. and Jeffry Schiller. "How Preoccupation with Possible
Regression Artifacts Can Lead to a Faulty Strategy for the Evaluation
of Social Action Programs: A Reply to Campbell and Er1ebacher,"
in J. Hellmuth, ed., Compensatory Education: A National Debate
Vol. III of The Disadvantaged Child. New York: Brunner/Maze1, 1970.

Garfinkel, Irwin and Edward M. Gramlich. "A Statistical Analysis of the
OEO Experiment in Educational Performance Contracting." Unpublished
mimeograph, Office of Economic Opportunity, 1972.

Goldberger, Arthur S.
Communalities."

"Econometrics and Psychometrics: A Survey of
Psychometrika Vol. 36, No.2 (1971): 83-107.

Goldberger, Arthur S. "Selection Bias in Evaluating Treatment Effects:
Some Formal Illustrations." Madison: Institute for Research on
Poverty Discussion Paper, 123-72.

Johnston, J. Econometric Methods. New York: McGraw-Hill Book Co., 1963.

Kmenta, Jan. Elements of Econometrics. New York: The Macmillan Company, 1971.

Lord, Fredrick M. "Elementary Models for Measuring Change," in C.W. Harris,
ed., Problems in Measuring Change. Madison: University of Wisconsin
Press, 1967.

Lord, Fredrick M. "Large-Sample Covariance Analysis When the Control
Variable is Fallible." Journal of the American Statistical Association
Vol. 55 (1960): 307-321.

Lord, Fredrick M. "A Paradox in the Interpretation of Group Comparisons."
Psychological Bulletin Vol. 68 (1967): 304-305.

Lord, Fredrick M. and Melvin R. Novick. Statistical Theory of Mental
Tests. Reading, Pennsylvania: Addison-Wesley, 1968.



()

33

Madow, William G. "Head Start: Methodological Critique," in David
G. Hays, ed., Britannica Review of American E01c3~ion Vol. I.
Chicago: Encyclopedia Britannica, 1969.

Murphy, Lois Barclay. "Statement to the House Committee on Education
and Labor on the Subject of Heiid Start." Unpublished manuscript,
April 1969.

Smit;h, Marshall S. and Joan S. Bissell. "Report Analysis: The Impact
of Head Start." Harvard Educational Review Vol. 40, No. 1 (1970):
51-104.

Webster, Harold and Carl Breiter . "The Reliability of Changes Measured
by Mental' Test Scores," in C. W. Harris, ed., Problems in Measurin&
Chan~. Madison: University of Wisconsin Press, 1967.

Wholey, Joseph S., et a1. Federal Evaluation Policy: Analyzing the
Effects of Pub1icProg,rams. Washington, D.C.: The Urban
Institute, 1971.


